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Abstract 

Nowadays, various cryptographic devices, such as smart cards, RFID tags, voting 

machines, cryptographic coprocessor, are widely used to provide authentication of 

users and to store secrete information for secure systems. Recently, not only the 

mathematical cryptanalysis, but also the side channel analysis which is based on the 

physical leakage, such as electromagnetic emission and power consumption, is 

performed. The security of cryptographic devices becomes a significant research 

topic.  

Among the side channel analysis, the electromagnetic analysis (EMA) and power 

analysis (PA) can be performed with inexpensive equipment, and hence are powerful 

and play important roles in security fields. They are included in the fundamental 

research and involved in practical development. Lots of designs are contrived to 

prevent cryptographic devices from these attacks. In particularly, the security 

evaluations on the resistance of these designs based on EMA and PA are also actively 

conducted. However, due to the complexities of the implementation environment of 

cryptographic algorithms, there are still problems with conventional analysis for the 

security evaluation shown as follows: (1) The Gaussian noise in the side channels has 

been reduced by Le (IEEE TIFS07). Diversified non-Gaussian noises that especially 

occur to EM side channel because of the coupling of encryption modules are still 

unsolved. (2) Although the Hamming Distance leakage model proposed by Brier 

(CHES04) is generally effective, it overlooks the Glitch power consumption and is not 

device-specific. (3)The classical statistical tests-based leakage localization method, 

which was proposed by Sauvage (ACM TRTS09), is inaccurate for determining the 

locations of EM emission. All these problems lead to the deficient performance (the 

correctness of key detection and computational time) of EMA and PA. 

The target of this dissertation is to enhance the performance of EMA and PA. 

Because the performance of EMA and PA depends on the following key factors: less 
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noisy signals, accurate leakage model and sound statistical test. This dissertation 

proposes effective methods for them respectively. The contributions of this 

dissertation also cover three main aspects: (1) Addressing the noise issue that occurs 

to the EM side channel, especially, for correlated noise and simultaneous noise, 

several effective algorithms are proposed to decrease their influence on EMA. (2) 

Considering the Glitch power consumption, a new Switching Glitch leakage model is 

proposed to improve the performance of both EMA and PA. (3) To improve the 

localization accuracy, a novel leakage localization method using instant signal 

variance based on near-field scan is proposed to enhance the performance of EMA. 

With all these proposed methods for EMA and PA, the correct key is detected with 

less computational time, and efficient security evaluation is also made possible. 

Therefore, this dissertation consists of 6 chapters as follows. 

Chapter 1 [Introduction] gives a brief introduction to side channel analysis. 

The main principles of PA and EMA are explained. The researches on performance 

enhancement are overviewed. The motivation and contribution of this dissertation are 

summarized. 

Chapter 2 [Correlated Noise Reduction for EMA] proposes three techniques 

to reduce the correlated noise for EMA. The correlated noise is caused by the 

interferences of clock network to the cryptographic module and exhibits strong 

correlation with encryption signal. The Discrete Wavelet Transform (DWT) proposed 

by Pelletier (NIST 05) cannot separate this noise because the noise has overlapped 

frequency bands with encryption signal. It is discovered that unlike the encryption 

signal, the clock signal has a high variance at the signal edges. Based on this property, 

the first and second techniques: single-sample SVD and multi-sample SVD reduce the 

correlated noise by extracting the high variance component from encryption signal. 

And the third technique: averaged subtraction is efficient when background samplings 

are included. These techniques are validated by the EM emission acquired from the 

AES (Advanced Encryption Standard) implementation on both ASIC 

(Application-Specific Integrated Circuit) and FPGA. Compared with existed methods, 
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the proposed techniques increase the SNR as high as 22.94dB, and the success rates of 

EMA shows that the data-independent information is retained and the performance of 

EMA is enhanced.  

Chapter 3 [Simultaneous Noise Reduction for EMA] presents the Source 

Recovery algorithm to reduce simultaneous noise for EMA. The simultaneous noise is 

introduced in the EM side channel by running multiple encryption modules 

simultaneously, which is probably used as an effective countermeasure. However, the 

fourth-order cumulant-based Gaussian noise reduction strategy presented by Le (IEEE 

TIFS07) fails to deal with this type of noise. The proposed Source Recovery 

algorithm takes advantage of the FastICA algorithm (Hyvärinen, IEEE TNN99) to 

separate the single encryption from mixed encryptions, and then by the amplitude 

recovery follows the correlation judgment to attenuate the noise. The effectiveness is 

demonstrated through the analyses of multiple AES and Camellia encryption modules 

on synthesized ASIC. The number of signals needed to detect keys has been 

dramatically reduced by 47.8% compared with standard EMA, and the performance of 

EMA is greatly enhanced. 

Chapter 4 [The Switching Glitch Leakage Model for EMA and PA] presents 

a new leakage model for EMA and PA. The conventional leakage model: Hamming 

Distance model, which was formalized by Brier(CHES 04), is widely used due to its 

generality. However Glitch (Glitch is the unnecessary signal transition due to the 

unbalanced path delays to the inputs of a logic gate in a circuit) effects, which account 

for 20% to 40% of the dynamic switching power in CMOS circuits, are not involved. 

This leads to a low performance for EMA and PA. The proposed leakage model not 

only considers the data dependent switching activities but also includes Glitch power 

consumptions in cryptographic module. Furthermore, the switching factor and Glitch 

factor are introduced in the model. The estimation of these factors is shown. The 

advantage of this model is that the factors can be adjusted according to the analyzed 

devices during evaluation. Compared with Hamming Distance model, the power 

traces of recovering keys have been decreased by as much as 24.5%, and the EM 
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traces has been decreased by as much as 17.1%. Namely, the performance of EMA 

and PA are both enhanced.  

Chapter 5 [A novel Leakage Localization Method for EMA] proposes a novel 

leakage localization method for EMA. Due to the locality of EM emission, namely, 

secret information leaks from multiple locations around cryptographic devices, it is 

challenging to determine the exact location before conducting an EMA. Sauvage 

(ACM TRTS09)’s localization method has limitation in finding all the data-dependent 

EM emissions. Based on the EM emission acquired from near field scan, the instant 

signal variance of EM emission is proved as an equivalent statistical test to DoM 

(Difference-of-Means) test. Thus, it is proposed to identify the locations that have 

data-dependent EM emission. Additionally a small and low-cost probe is made to 

verify the proposed EMA on ASIC implementations. The EMA against unprotected 

AES indicates that the localization accuracy is improved by 48.6% compared with 

Sauvage (ACM TRTS09)’s method. Moreover, the EMA on AES WDDL (Wave 

Dynamic Differential Logic) implementation shows that proposed method is also 

effective to expose the leakage locations in the presence of countermeasure. 

Chapter 6 [Conclusion] concludes this dissertation. 
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1  Introduction 

In this chapter, side channel analysis is introduced. The main principles of PA and 

EMA are explained. The researches on PA and EMA are overviewed. The motivation 

and contributions of this work are summarized. The experimental platform is 

described and the outline of this dissertation is provided. 

 

1.1  Side Channel Analysis 

 

In modern society, the information security is a major concern during the 

acquisition, storage, processing, and transmission of data. It is conventionally 

considered that the cryptographic devices are secure because they are based on 

elaborate cryptographic algorithms and authentication mechanisms. However, 

this is not true. Various attacks have threatened the security of cryptographic 

devices. According to the ways of access them, these attacks are classified into 

three main categories [1]: invasive attacks, semi-invasive attacks and 

non-invasive attacks. 

An invasive attack involves depackaging the cryptographic devices to get 

direct access to the internal components. For example, an attacker may perform 

reverse engineering to integrated circuits (ICs). He grinds away the IC layer by 

layer and takes pictures with an electron microscope to reveal the complete 

hardware and software part of the IC. 

A semi-invasive attack is access the device through the authorized surface 

without damaging it. The fault-induced attacks are such attacks. The attacker 

may use a laser beam to influence the operation of the processor, and utilize the 

incorrect output of this device to deduce the internal data state or the instructions 

that the processor is running. 

A non-invasive attack involves close observation or manipulation of the 

device’s operation. Unlike the invasive attack involves depackaging the 
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cryptographic devices to get direct access to the internal components. This attack 

only exploits externally available information which is often unintentionally 

leaked, such as supply voltage and clock signal of the processor.  

An important class of non-invasive attacks is side channel attack or side 

channel analysis (SCA). It exploits the physical information leaked from 

cryptographic devices during encryption or decryption to infer secrets. 

There are several types of SCA developed during the last decades. 

The timing attack is one of the pioneer works, which was presented by Kocher 

[2] on the international conference CRYPTO in 1996. The time of RSA modular 

exponentiation was observed and used to recover the secret key.  

The power attack, was introduced by Kocher et al.[3] in 1999. They perform 

power analysis on the implementation of DES. And it is demonstrated as a 

powerful attack for most straightforward implementations of symmetric and 

public key ciphers. 

Electromagnetic Analysis attacks were also studied by many researchers. The 

electromagnetic emission was investigated as one of the compromising 

emanations by military in TEMPEST document presented by National Security 

Agency [4]. 

The cache attack monitors the cache misses to recover secret information. It 

usually happens to CPU which has cache. When CPU accesses data that are not 

stored in the cache, a delay is engendered for loading the data from main memory 

to cache. And the measurement of this delay maybe utilized to determine the 

occurrence and frequency of the cache misses. It was exploited as one of the side 

channel attacks by Kelsey et al.[5] 

There are other side channel attacks that exploit the physical leakage. For 

example, the acoustic attack that explores the correlation between the sound of a 

processor and its computation was proposed in [6]. The visible light, e.g., 

average luminosity of a CRT’s diffuse reflection off a wall was reconstructed to 

recover the signal displayed on the CRT in [7]. 
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The characteristics of SCAs are summarized based on the above introduction, 

shown as follows.  

 SCAs are applicable to almost all the cryptographic devices; 

 SCAs threaten a cryptographic device even if its cryptographic algorithm 

is secure; 

 SCAs are easily to mount (they seldom require to modify the hardware 

design); 

 SCAs are likely to occur to cryptographic devices in the absence of 

awareness; 

Therefore, SCAs are very powerful. They play an important role in the 

researches and applications of security of cryptographic devices.  

Among the SCAs, the power analysis (PA) and electromagnetic analysis (EMA) 

can be performed with inexpensive equipment, and hence represent serious 

threats to cryptographic devices in hostile environments. They have attracted 

more attention from research community and the industry. In this dissertation, we 

also concentrate on the researches of PA and EMA. 
 

1.2  Power Analysis (PA) 

 

Power analysis is based on analyzing the power consumption of the module 

while it performs the operation of encryption or decryption. 

The principle of PA is introduced below. Various cryptographic devices are 

essentially based on CMOS technology, and made up of logic gates, such as NOT 

gate, AND gate, and OR gate, etc.  

The power consumption of cryptographic module is the sum of its individual 

gate. For each logic gate, when it works, its output is likely to have 4 types of 

transitions: 0 0, 1 1, 0 1, 1 0. And the gate draws power from the source. 

The main power consumption happens in the latter two cases, i.e., from 0 to 1, 

and from 1 to 0. For these two cases, the gate switches and it is called the 
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dynamic power consumption occur. And this power consumption is data 

dependent. A CMOS NOT gate is shown in Fig.1.1 (a), and its power 

consumption is illustrated in Fig.1.1 (b). When the output switches at 4th ns and 

8th ns, the current drawn from the source displays peaks respectively. 

For a cryptographic module, all the switches at each logic gate contribute to 

the power consumption of the circuit. When it encrypts or decrypts, the number 

of transitions that occur during a certain time interval has correlation with the 

real power consumption. This is the key idea for power analysis. 

Input Output

 
     (a) CMOS NOT gate 

 
     (b) Dynamic power consumption 

Fig.1.1 CMOS NOT gate and its dynamic power consumption 

The real power consumption is measured across the inserted resistor on the 

VDD line or GND line. It is shown in Fig.1.2. Typically, an oscilloscope is used 

to measure the voltage from the resistor. And the current drawn from the source 

is computed as 
UI
R

=                                             (Eq.1.1) 
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where U is the measured voltage, R is the resistance value of the resistor. Since 

the measured voltage is proportional to the consumed current, it is used to 

perform power analysis in practice. 

Clock

Q

QSET

CLR

S

R

Q

QSET

CLR

S

R

Q

QSET

CLR

S

R

Q

QSET

CLR

S

R

CMOS circuit

Vdd

R

I

Measured 
voltage U

 

Fig.1.2 The measurement for power analysis 

Though the key idea for power analysis is the same, several different types of 

power analysis were developed. 

Simple Power Analysis (SPA) was introduced by Kocher et al. [3] in 1999. It 

relies on detailed knowledge of the cryptographic algorithm being implemented 

and visual inspection of the power consumption curves, and tries to extract secret 

keys. In fact it is quite challenging to recover the keys by only one or very few 

power traces. The author revealed the sequence of DES instructions executed on 

a smart card by SPA in [3].  

Differential Power Analysis (DPA) was introduced in the same literature with 

SPA. The author used Hamming Weight model, and the Difference of Means 

(DoM) test to recover secret key. Compared with SPA, DPA adds statistical 

techniques to separate signal from noise, and requires less detailed knowledge of 

the implementation of cryptographic algorithm. The original DPA was single-bit, 

which based on the fact that the power consumption to switch one bit to 1 is 

different from the power consumption to switch it to 0. Then it was extended to 
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multi-bit DPA in [8] and [9], respectively. In general, they are more efficient 

than single-bit DPA because more bits contribute to the power consumption in 

most of the implementations. 

The Correlation Power Analysis (CPA) was developed by Brier et al.[10] in 

2004. The correlation-based power analysis has been suggested in several papers 

[11, 12, 13]. It was formalized to use the Pearson correlation factor between 

Hamming Distance and measured power consumption to analyze secret keys in 

[10]. 

The Partitioning Power Analysis (PPA) was proposed by Le et al.[14] in 

2006 . It is an extension to CPA. The weights are adaptively set for each 

Hamming Distance in each partition. Though PPA builds a flexible relationship 

between Hamming Distances and power consumption, the selection of suitable 

weights for each partition is left open. 

Template-based attack is another important type of PA attack, which was 

initially proposed in [15], and then developed under the name Template Attack 

[16]. It also exploits the dependency of power consumption on the processed data, 

but assumes that an identical device is available to the attacked one. It consists of 

two stages: template building (also named as profiling) stage and template 

matching stage. In template building stage, a large number of power traces are 

used to characterize the device, e.g., a multivariate Gaussian distribution is 

extracted based on the sampled signals, and several templates, which describe the 

data and corresponding key is built up. In the template matching stage, the secret 

key is determined by analyzing the given power trace matching the template. The 

template attack does not try to reduce noise but uses the multivariate-Gaussian 

noise model to extract information present in a single sample. 

The procedure for PA attack is as follows. Firstly, a certain process of the 

encryption of the algorithm is selected as the target for analysis. Secondly, the 

real leakage during the execution of encryption is measured. Then statistic 

analysis is performed based on leakage models, such as Hamming Weight, 
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Hamming Distances, and using distinguishers such as correlation coefficient, 

DoM. Finally the secret keys are recovered. 
 

1.3  Electromagnetic Analysis (EMA) 

 

EMA is performed with electromagnetic sensors to extract the secret 

information from cryptographic devices. The EM sensor is always a magnetic 

probe, which was suggested in EMC measurement methods [17]. The principle of 

EMA is briefly introduced below.  

An IC which is composed of a number of power lines and signal lines can be 

simplified as a current loop excited by alternating current source. A time-variant 

electromagnetic field is generated around the current loop. 

The region around a radiant source can be divided into near field and far field 

in general case. The boundary d is given by 

2 2
cd

f
λ
π π

= =                                              (Eq.1.2) 

where λ is the wavelength, c is the propagation velocity of EM wave, f is the 

frequency. 

The magnetic field generated by the current loop [18] at location P with 

spherical coordinates ( r ,θ ,φ ) as shown in Fig.1.3 are given by 

 

3

2 2

[2cos (1 )
4
sin (1 ) ]

j rIAeH j r r
r

j r r

β

θ β
π

θ β β θ

−

+            

       + + +                         (Eq.1.3) 

where A denotes the area of the current loop, β denotes a constant of (2π/λ), r  

and θ  represent that the magnetic field H has two components along the r and 

θ  direction. φ  represents that the electric field E has component in φ  

direction. μ is the magnetic permeability. In near field, r λ/2π, i.e. βr 1 , the H 

field of current loop is given by Eq.1.4. While in far field, r λ/2π, i.e. βr 1 , 

the H field of current loop is given by Eq.1.5. 
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The equations indicate that the intensity of measured H-field of a current loop 

is proportional to its current I. 

φErH
θH

φ

θ

 

Fig.1.3 The EM field generated by a current loop  

 

 
Fig.1.4 Typical measurement for EMA  

EMA works because this current I is caused by the switching activity of the 

circuit (e.g., from 0 to 1, or vice versa). In other words, this current I is 

data-dependent. Thus by monitoring these data-dependent EM emissions, the data 

handled by the device can be disclosed. Thereby, the more precise the EM field one 

measures, the more accurate the current can be represented and the switching 

activity can be revealed, which leads to a faster EMA. A typical measurement is 

illustrated in Fig.1.4. The measured voltage on EM sensor is proportional to the 

radiated EM field from data-dependent current in the circuit. 

The initial EMA published with experimental results was against smart cards in 

2001 by Quisquater et al. [19]. And Simple EMA (SEMA) and differential EMA 

(DEMA) have been demonstrated by Gandolfi et al.[20] in the same year.  
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EM leakage has been assessed in [21]. The authors showed that EM emanations 

not only can be used to attack cryptographic devices where the power side-channel 

is unavailable, but also can be used to break countermeasures which designed for 

power analysis. Gebotys et al.[22] showed EMA attacks on a PDA which runs 

Rijndeael and elliptic curve cryptography. 

Because both EMA and PA exploit the power consumption which depends on 

the cryptographic computation, similar to PA, there are also DEMA, CEMA, etc., 

classified according to the used distinguishers. Additionally, the procedure for 

EMA is the same as that for PA, except that the EM emission is acquired not the 

power leakage. 

One important characteristic that discriminates EM side channel from Power 

side channel is that the EM emission can be measured locally. This may further 

lead to several positive influences on EMA. (1)With an EM probe of small size 

and high resolution, the measurements can be carried out over the cryptographic 

module, which can result in a higher signal-to-noise ratio. The number of 

measurements is likely to reduce. (2)Because that the EM side channel is 

measured locally not globally as the case of power side channel, the power 

consumption which is not related to the processing of encryption, can be 

attenuated. The “ghost peaks”, which means that the differential curve with the 

highest peak does not represent the correct subkey, is therefore avoided to some 

extent. (3) EMA may overcome some of the countermeasures which are 

implemented against DPA. 
 

1.4  Countermeasures 

 

Countermeasures that protect cryptographic devices from side channel attacks 

have been actively studied. The PA attack works because the power consumption 

of cryptographic device depends on intermediate values of the executed 
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cryptographic algorithm. The goal of every countermeasure is to make the power 

consumption of a cryptographic device independent of the intermediate values.  

They are mainly classified into two categories, the software countermeasure 

and hardware countermeasure. The software countermeasure tries to implement a 

cryptographic algorithm in terms of an existing hardware processor, such as a 

general computer, Advanced RISC Machines (ARM) or digital signal processors. 

The hardware countermeasure tries to design certain circuits to perform the 

cryptographic algorithm. There is no clear boundary between these two types of 

countermeasures. For example, the cryptographic algorithm may be modified and 

implemented with a customized architecture. 

Software countermeasures include the insertion of dummy code, power 

consumption randomization, etc. Chari et al. [23] proposed to split all 

intermediate data results using a secret sharing scheme, in which the attacker has 

to analyze joint distribution functions on multiple points in the power signal. 

Goubin et al. [24] proposed a similar strategy: duplication method, to protect the 

DES algorithm from DPA. 

Another one of the software countermeasures is selecting the instructions that 

used for the implementation. Since not every instruction of the hardware platform 

leaks the same amount of information about its operands, it is possible to choose 

the instructions that leak the smallest amount of information to reduce the 

leakage. And the codes which include conditional jumps that depend on the key 

should be avoided. 

The disadvantage of software countermeasures is that they may result in 

significant memory and execution time overhead. And it is very limited by 

selecting the instructions. 

Hardware countermeasures mainly fall into two categories: masking and 

hiding. Masking is a method that masks all the intermediate values of circuit by 

random number. Typical masking is random precharging, and masking buses. In 

random precharging, random values are sent through the circuit to prcharge all 
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combinational and sequential cells. The implementation examples are shown in 

[25] and [26]. The masking buses are used for the implementations that encrypt 

the data and address buses which connect the processor to memory and 

cryptographic co-processor. One scheme for bus masking is to exclusive-or 

random value with the value on the bus. Some publications are [27] and [28]. 

Hiding conceals the power consumption by inserting dummy operations, 

dummy cycles or adding power supply filter. And several proposed schemes also 

tried to affect the clock signal of the cryptographic devices, such as randomly 

changing the clock frequency, or generating multiple clock signals and randomly 

switching between them. In [29], a switched-capacitor power filter was 

demonstrated on an AES core. But it needs additional custom design for its 

power filter. In addition, a number of hiding countermeasures are implemented 

with balanced logic cells that try to make the power consumption of each cell 

constant in every clock cycle for all processed logic values. Examples are the 

dual-rail precharge (DRP) logic styles. They include Sense Amplifier Based 

Logic (SABL) which was proposed by Tiri et al.[30], and Wave Dynamic 

Differential Logic (WDDL) which was proposed by Tiri and Verbauwhede[31].  

It is noted that the goals for designing countermeasures are not the same for 

softwares and hardwares. Goals for software countermeasure are high speed. 

Goals for hardware countermeasure are maximum throughput and minimum area. 
 

1.5  Overview of PA and EMA 

 

Abundant researches on PA and EMA are carried out, and they have attracted the 

attention from academic communities and industries. They are mainly summarized 

into 4 directions:  

 Attack methodologies; 

 Principles and mechanisms; 

 Design of countermeasures; 

 Evaluation of implementations; 
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1.5.1  Attack Methodologies 

 

Plenty of researches are carried out on exploring the advanced attack 

methodologies. 

More distinguishers are developed besides the classical DoM test. They are 

listed as follows. 

 DoM:  Presented in DPA [3]; 
 Pearson Correlation: Proposed in CPA [10]; 
 Maximum Likelihood: Introduced in Template attacks [32] and used 

when probability density functions (PDF) can be estimated; 
 Covariance: Introduced initially as the multi-bit generalization of the 

DoM [33]; 
 Variance: Proposed as an alternative to the mutual information 

distinguisher [34]; 
 Spearman rank correlation: Introduced in Rank Correlation Based DPA 

[35]; 
 Least square: Introduced in stochastic attacks [36];  
 Mutual information [37]: Introduced in Mutual Information 

Analysis(MIA) from information-theoretic perspective; 
 Principal components analysis (PCA): Introduced in differential cluster 

analysis (DCA) [38], and then presented in [39] which is a typical 
example of DCA; 

There are also other works that propose advanced attack methods mainly 

against countermeasures, such as second-order DPA attacks that exploit the 

leakage of two intermediate values related to the same mask. 

Against masking. The earliest publication with practical attack is against 

software masking by Messerges.[40]. Waddle et al.[41] proposed several second 

order attacks that extend the DPA by preprocessing the signal traces, i.e. 

computing the difference of the means of squares. The first second-order PA 

against hardware masking was proposed by Mangard[42]. And the first few work 

against the asymmetric cryptographic algorithm was the attack on RSA with a 

secret-sharing scheme in [43].  
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Against hiding: Clavier et al.[44] proposed the sliding-window DPA to attack 

the implementations with random process interrupts and noisy power 

consumption. DPA attack against WDDL was presented in [45].The hidden 

Markov model was used to attack the asymmetric cryptography with randomized 

addition-subtraction chains [46].  

Moreover, numerous of papers have been published on enhancement of PA 

and EMA. Agrawal et al.[47] proposed multi-channel attack. It is to combine the 

acquired power signal and EM emission together for analysis, which leads to 

enhanced performance of attack. The efficiency of higher-order attacks were 

studied and improved against masking in [48, 49, 50]. Addressing the 

misalignment of signal, Homma et al.[51]applied the phase-only correlation in 

EMA to eliminate the misalignment of the signals on DES implementation. Le et 

al.[52] proposed the energy-based DPA to overcome the misaligned signal 

acquire from DES implementation on ASIC. In [53], the WDDL implementation 

on FPGA was attacked successfully by the EM cartography in frequency domain. 

In [54], an overview of the application of signal processing techniques to PA and 

EMA was provided. In [55], the Entropy Power Analysis (EPA) was proposed to 

attack the protected implementation based on the masking countermeasure. It 

uses a weighted sum of conditional entropies as a distinguisher. A better success 

rate is shown when compared with the MIA attack and Variance-based PA attack. 

In [56], the author proposed an enhanced SEMA, which can find out the 

demodulation frequencies of the acquired signal. And the effectiveness is 

presented by the attack against RSA implementation on FPGA.  
 

1.5.2  Principles and Mechanisms 

Besides the pioneer works that proposed the DPA, EMA, etc. There are 

numbers of works that discuss the principles and mechanisms of PA and EMA.  
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In [57], the weakness of previously known hardware countermeasures was 

analyzed based on a new model and the secure conditions for the hardware 

countermeasure were also discussed. 

In [58], the classical leakage model was analyzed and a so-called switching 

distance model was proposed for both PA and EMA. The locality of EM leakage 

was also indicated. 

In [59], the “ghost peaks” problem was analyzed and explained regarding to 

different power consumption model and various weighting techniques. The 

properties of S-boxes were studied and the resistance of an s-box against DPA 

attacks was quantified by introducing the notion of transparency order in [60]. 

In [61], the mechanism of EMA from remote locations was discussed from the 

view point of Electromagnetic Compatibility. And the authors claimed that the 

radiation of cryptographic chip conducts to peripheral circuits was based on 

ground bounce. 

In [62] it is proved that all the distinguishers (e.g. DoM test, correlation factor, 

maximum likelihood) essentially have the same efficiency given the same leakage 

model. And the authors also concludes that the correlation factor and information 

theoretic metric are equally suitable to compare the leakage of devices in 

unprotected implementations. 
 

1.5.3  Design of Countermeasures 

Numerous works have been published on the design of countermeasures for 

cryptographic devices. Lots of hardware architectures were designed to prevent 

PA and EMA. The decoupling of the power supply of the cryptographic devices 

using two capacitors was proposed in [63]. A similar work was presented in [64], 

which used a three-phase charge pump to supply the power to the devices. Rakers 

et al. [65] discussed the use of active circuits to reduce the leakage for RFID 

devices. The non-deterministic processors, which can randomly change the 

sequence of executed program, was presented by May et al.[66]. In [67], the 
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authors propose to randomly change the supply voltage and the clock frequency 

of the circuit. 

Some other novel logic styles were proposed besides the SABL and WDDL. 

The Dual-Spacer Dual-Rail (DSDR) logic style, in which both of the possible 

precharge values are used alternately, was presented by Bystrov et al.[68]. A 

similar logic style, named as Three-Phase Dual-Rail Precharge Logic(TDPL) was 

proposed by Bucci et al.[69]. Moore et al.[70] discussed the use of asynchronous 

circuits to counteract PA attacks. The Dynamic Current-Mode Logic (DyCML) 

[71] was proposed as DPA resistant logic style. 

Various countermeasures for masking have also been proposed. Messerges[72] 

presented algorithms for Boolean and arithmetic masking for AES candidates. 

Akkar and Girand[73] proposed to mask AES S-box. In 1996, the additive or 

multiplicative masking for RSA was discussed by Kocher in [2]. The similar 

techniques for ECC were discussed in [74]. The masked AND gate were 

proposed by Trichina et al. [75] 
 

1.5.4  Evaluation of Implementations 

The security evaluations are also carried out on both the unprotected and 

protected implementations. The DPA and EMA were used to evaluate the 

security of asynchronous smart-card style device, which were implemented as 

16-bit RISC architecture processors by Fournier et al. [76]. The result of 

assessing the resistance of implementations with WDDL and differential routing 

against DPA was presented in [45]. The PA was used to evaluate the WDDL and 

MDPL implementations on FPGA in [77]. The security of Boolean masking for 

block ciphers was theoretically analyzed in [78]. PA against the DES 

implementations of WDDL logic style and SecLib (is a logic style that is based 

on quasi delay insensitive (QDI) asynchronous primitives) logic style, were 

evaluated by Guilley et al. [79], and the authors concluded that, provided that the 

back-end of the WDDL module is carefully designed, its vulnerability cannot be 
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exploited by state-of-the-art attacks. Two analysis methods were proposed based 

on a preprocessing of the power traces to analyze the DPA-resistant S-box in [80]. 

A novel analysis method, named as algorithmic collision analysis, was proposed 

to evaluate the implementations of cryptographic algorithms in [81]. 
 

1.6  Contributions of Dissertation 

 

From the procedure for PA and EMA, it indicates that the key reveal depends 

on side-channel signals, leakage models and statistic test. In general, less noisy 

signals lead to a faster key detection. An accurate leakage model and sound test 

can accelerate the key detection. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1.5 Contributions of the dissertation 

Therefore, we concentrate on all these three factors, and the corresponding 

contributions are summarized as follows, shown in Fig.1.5. 
 Critical factors for key detections: our contributions 

 less noisy signals : Noise reduction 

 accurate leakage model: Model improvement 

 sound statistic test: Equivalent test methods 

 

Selecting specific point of encrypt 

Measuring the real leakage 

Noise reduction

Statistic analysis and computing 

Keys

Leakage model Statistic test
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1.6.1  Noise Reduction for EMA 

 

In this dissertation, two types of noises that frequently emerge in the EM side 

channel are thoroughly studied. Consequently new algorithms for the noise 

reduction are proposed. For the correlated noise, three techniques are proposed, 

namely: single-sample SVD, multi-sample SVD, and averaged subtraction. For 

the simultaneous noise, the Source Recovery algorithm is proposed. 

The correlated noise is caused by the interferences of clock network in the 

cryptographic module and exhibits strong correlation with encryption signal. 

This noise frequently presents in the acquired EM signal in both FPGA and ASIC 

implementations, which dramatically decreases the performance of EMA. From 

the observation and simulation, we discovered that unlike the encryption signal, 

the clock signal has a high variance at the signal edges. Then based on this 

property, the first and second techniques: single-sample SVD and multi-sample 

SVD reduce the correlated noise by extracting the high variance component from 

encryption signal. And the third technique: averaged subtraction is efficient when 

background samplings are included.  

The main characteristics of the proposed techniques are: single-sample SVD 

can extract the clock signal with only one EM sample. Multi-sample SVD is 

capable of suppressing the clock signal with short sampling length. The averaged 

subtraction is suitable for estimation of correlated noise. Furthermore, these 

techniques are validated by the EM emission acquired from the AES 

implementation on both ASIC and FPGA. Compared with existed noise reduction 

methods, the proposed three techniques increase the SNR as high as 22.94dB, 

and the success rates of EMA shows that the data-independent information is 

retained and the performance of EMA is enhanced. 

The simultaneous noise is introduced in the EM side channel by running 

multiple encryption modules simultaneously, which is probably used as one 
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effective countermeasure. However, the conventional noise reduction strategies 

fail to deal with this type of noise. The proposed Source Recovery algorithm 

takes advantage of the FastICA algorithm to separate the uncorrelated encryption 

from mixed encryptions, and then by a difference computation follows the peak 

judgment to attenuate the noise.  

The effectiveness is demonstrated through the analyses of multiple AES and 

Camellia encryption modules on synthesized application-specific integrated 

circuit (ASIC). Experiments show that the proposed algorithm recovers the secret 

key in the presence of the simultaneous noise.  The number of signals needed to 

reveal keys has been dramatically reduced by 47.8%. And the performance of 

EMA is greatly enhanced. In addition, the results also provide enlightment for 

the design of countermeasures. It is that the mixed execution of different 

encryption sources can be bypassed with signal processing techniques, which 

means it is not an effective countermeasure. 
 

1.6.2  EMA and PA Enhancement Based on A New Leakage Model 

 

In this dissertation, a new leakage model: Switching Glitch leakage model is 

proposed for EMA and PA. 

The conventional leakage model, Hamming Distance model is widely used 

due to its generality. However in this model, glitch effects, which account for 

20% to 40% of the dynamic switching power in CMOS circuits, are not involved. 

This leads to a low performance for PA and EMA. The Switching Glitch leakage 

model not only considers the data dependent switching activities but also 

includes glitch power consumptions in cryptographic module. Furthermore, the 

switching factor and glitch factor are introduced in the model. And from a 

theoretical point of view, we show how to estimate these factors. The advantage 

of this model is that the factors can be adjusted according to the analyzed devices 
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during evaluation, which makes it device specific and more accurate for the 

modeling of power consumption.  

The PA and EMA on AES implementation validate the proposed model. 

Compared with conventional Hamming Distance model, the power traces of 

recovering keys have been decreased by as much as 24.5%, and the EM traces 

have been reduced as much as 17.1%.. 
 

1.6.3  EMA Enhancement Based on A Novel Leakage Localization Method 

 

In this dissertation, a novel leakage localization method that based on the 

DoM-equivalent statistic test is proposed for EMA. 

Due to the locality of EM emission, namely, secret information leaks from 

multiple locations around cryptographic devices, it is challenging to determine 

the exact location before conducting an EMA. Based on the EM emission 

acquired from near field scan, the instant signal variance of EM emission is 

proved as an equivalent statistical test to DoM test. Thus, it is proposed to 

identify the information leakage of cryptographic modules. Therefore, by 

calculating the instant signal variance at each scanning point and computing the 

higher values, the points that have data-dependent EM emission are disclosed, 

namely, the leakage locations are found. And the time complexity is also reduced 

compared with conventional EMA. In addition, a small and low-cost probe is 

made to verify the proposed EMA on ASIC implementations.  

The EMA on AES PPRM1 implementation indicates that misjudgments of the 

leakage are reduced, and the accuracy is improved by 48.6% compared with 

existing methods. Moreover, the EMA on AES WDDL implementation shows 

that proposed method is also effective to expose the leakage locations in the 

presence of countermeasure. 
 

1.7  Experimental Platform 
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In this section, the experimental platform for this dissertation is introduced. 

What is more, a small and low-cost magnetic probe is made for the near-field 

scan. The making process and verification are also presented in this section. The 

hardware platforms for PA and EMA are quite different in the research 

community. Since the ASIC and FPGA are widely applied as cryptographic 

devices, Side-channel Attack Standard Evaluation Board (SASEBO)-R and 

SASEBO are used as hardware platforms, which have many cryptographic 

modules implemented on ASIC and FPGA respectively and provided by National 

Institute of Advanced Industrial Science and Technology (AIST) [101]. The 

cryptographic modules used in this dissertation are listed in Table 1.1. The 

configurations of the two boards are similar. The RS-232 interfaces are connected 

to the host PC for communication. The analyses are programmed in C language. 

Table 1.1 Cryptographic modules on ASIC [101] 

Name Implementation Gate No. Area (μm 2) 

AES0 
Composite field S-box 

with encryption and 
decryption 

25,483 129,763 

AES1 
S-box with Look Up 

Table 
20,639 105,097 

AES2 
* PPRM-based S-box 

using 1-stage 
AND-XOR logic 

61,801 314,702 

AES3 
PPRM-based S-box 

using 3-stage 
AND-XOR logic 

16,541 84,230 

AES4 
Composite field S-box 
with encryption only 

12,059 61,408 

AES11  
AES with WDDL 
(Wave Dynamic 

Differential Logic)
29,894 152,225 

Camellia 
Composite field S-box 
with encryption only 

14,416 73,407 

*Note: PPRM denotes Positive Prime Reed Muler.  
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1.7.1  Measurement Setup for PA 

 

A cryptographic LSI and a control FPGA are mounted on PCB of dimension 

230 mm x 180 mm x 1.6 mm. The cryptographic cores on SASEBO-R use 

0.13μm TSMC standard library of CMOS process technology. DES, AES and 

some other encryptions are implemented on the LSI. For SASEBO, Two FPGAs 

of Xilinx Virtex-II pro series are used. 

The connection between devices is shown in Fig.1.6. The computer randomly 

generates 56-bit plaintext for DES (or 128-bit plaintext for AES) in groups, 

which are transmitted to the FPGA through RS-232 serial ports, and then upon 

receipt of the plaintext, the FPGA control the LSI to execute DES (or AES) 

encryption. At the same time, the execution signal on LSI triggers the 

oscilloscope to start sampling, and thus the oscilloscope acquires and records 

power signals through coaxial cable, shown in Fig.1.7. The oscilloscope is 

Agilent MSO 54832D. The sampled data is transmitted to computer through LAN. 

When the encryption is finished, the ciphertexts are transmitted to computer and 

used to perform PA. 

 
     

Fig.1.6 Block diagram of experimental environment for power analysis 
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Fig.1.7 Experimental environment for power analysis 

 

1.7.2  Measurement Setup for EMA 

 

For EMA, besides the instruments for PA, a sustentation, a baseplate, an EM 

probe and a preamplifier are needed.  

The connection between instruments for EMA is shown in Fig.1.8. A 

preamplifier with gain of 51 dB is connected to EM probe through coaxial cable 

to magnify the weak EM signals before they are sent to the oscilloscope. The 

experimental environment is shown in Fig.1.9. A 3D-positioning sustentation 

with scales in three dimensions is used to control the position of the probe above 

the PCB. A close-up of the scales is shown in Fig.1.10. With this configuration, 

we can record the specific location of each measurement, which yields repeatable 

and accurate experiments. 

 
 
 
 
 
 
 
 
 
                 

Fig.1.8 Connections between devices for EMA 
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Fig.1.9 Experimental environment for EMA    

 

Fig.1.10 Scales on 3D-positioning sustentation 

1.7.3  Probe Making 

 

The quality of the obtained EM field signals strongly depends on the utilized 

field probes. Inductive loop probes are used for magnetic field measurement. 

Three probes are made out of semi-rigid coaxial cable mounted on a SMA 

connector. The design process and verification are presented. 

A loop probe is sensitive to magnetic field. It outputs a voltage proportional to 

that field. The voltage Vi induced in the loop probe by an electromagnetic wave [82] 

is determined from Maxwell's equations and Stoke's theorem, given by 

i iV jw H NSμ= −                                    (Eq.1.6) 

where Hi is the time variant magnetic field, w is the angular frequency of Hi, N is the 

number of loop turns, and S is the area of the loop. 
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The distributed capacitance of the probe has no detrimental effect since it is 

shorted. At low frequencies, the probe acts as a resistance. At high frequencies, 

this resistance gets negligible against the impedance of the inductance. Thus the 

frequency response of the probe is flat with a closed circuit. 

In addition, the performance of probe is influenced by the number of turns and 

the area of the loop. In general, a multiple turns of loop has better sensitivity than 

single loop. Large area loop has better sensitivity than small loop. However, as the 

loop becomes larger in size, it not only introduces more disturbances in the field 

being measured, but also reduces the spatial resolution. Therefore, a tradeoff 

between sensitivity and spatial resolution has to be found.  

                 

Fig.1.11 Magnetic field probes: MP3, MP2 and MP1 

Three single-turn probes: MP1, MP2 and MP3 were made and shown in 

Fig.1.11 in order to measure the magnetic field near cryptographic LSI. They are 

in square aperture, which have side length 2mm, 5mm and 10mm respectively, and 

soldered on the inner conductor of the semi-rigid coaxial,. The diameter of the 

copper loop is 150 um. Because the aperture of the loop is square and the 

dimensions of the loop probes are much smaller than the wavelength, the induced 

electric field is compensated in the loop. 

The magnetic field 0.5 mm above a micro-strip line is measured with probes 

MP1, MP2 and MP3 respectively, shown in Fig.1.12. The micro-strip line 

terminated with a 50 Ohm load SMA connector is fabricated on a FR-4 substrate 
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with dielectric constant of 4.5 and a substrate height of 0.8 mm. The length of the 

micro-strip line is 36 mm, and width is 1.0 mm. The micro-strip line is oriented 

horizontally along X axis and the center is at Y=0 mm. Then it is excited by a 

network analyzer Agilent N3382A with 10 dbm input power at 300 MHz. The 

probe is controlled by a positioning sustentation and moves along Y direction at a 

step of 0.25 mm. The measured amplitudes with three probes are shown in 

Fig.1.13. The simulation is also plotted. 

 

 

 

 

 

 

Fig.1.12 Micro-strip line and probe 
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Fig.1.13 Measurement and simulation over micro-strip line 
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Fig.1.14 Performance factor of 3 probes 

Simulations over the micro-strip line are carried out for comparison. An EM 

simulator based on Finite Element Method (FEM) by Ansoft HFSS is used. The 

transmitted power is calculated between one port of the line and the port of the 

probe. 

To evaluate the agreement between the measured value and simulated one, 

performance factor of the 3 probes are calculated and shown in Fig.1.14. 

Performance factor in time domain is defined as the ratio of the amplitude of the 

simulated value to the amplitude of the actual measured value. They are expected 

as straight lines in theory. The standard deviation of MP1, MP2 and MP3 are 

computed respectively: 0.0233, 0.0331 and 0.0415. The results indicate that 

measurement from MP1 is more accurate than MP2 and MP3. 
 

1.8  Organization of Dissertation 

 

The remainder of this dissertation is organized as follows. The researches on 

noise reduction are presented in Chapter 2 and Chapter 3. The three techniques 

for correlated noise reduction are described in detail in Chapter 2. The algorithm 

for simultaneous noise reduction is proposed in Chapter 3. The Switching glitch 

leakage model is proposed, and the performances on both PA and EMA are 

demonstrated in Chapter 4. The novel leakage localization method is presented, 
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and EMA on unprotected and protected module is shown in Chapter 5. The 

conclusion for this dissertation is drawn in Chapter 6.
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2  Correlated Noise Reduction for EMA 

The issue of correlated noise is studied. Firstly, the background and related 

works are briefly introduced. Secondly, the problem is defined based on signal 

model, and the signal characteristics under correlated noise are analyzed. Then 

the proposed 3 techniques for correlated noise reduction are explained in detail in 

section 2.3, 2.4, and 2.5 respectively. The experiments are demonstrated in 

section 2.6. Finally, a summary for this chapter is presented.  
 

2.1  Background and Related Works 

 

The background and related works for correlated noise reduction are introduced in 

this section. 

 

2.1.1  Noise in Side Channel 

 

Similar to the power side channel, there are several types of noise that 

influence the EM side channel, such as external noise, which is caused by the 

environmental interference; and the intrinsic noise results from the physical 

variation of circuits which is widely occurs to electronic device, as well as the 

noise introduced by analog-to-digital converter. They are classified as white 

noise in [83]. Several techniques have been proposed to deal with this noise. The 

averaging, which was first mentioned by Kocher[3] was used to eliminate the 

noise which influence the amplitude of the sampled signals. Ryoo et al.[84] 

proposed the signal companding, which is a non-linear weighting method to 

minimize the noise presented in the amplitude for DES encryption. The filtering 

was used to suppress white noise in the work of [21, 85]. Moreover, Le et al.[83] 

adopted the Fourth-order Cumulant to preprocess the white noise which contains 

in the acquired EM signal during DES encryption. Charvetd et al. [86] applied 
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the Discrete Wavelet Transform (DWT) to denoise and smooth the signal. In[89], 

convolutive noise, which was present in the encryption signal on smartcard, was 

decreased with the technique of Ceptstrum. 

Noises may occur due to the complicated transmission mechanism of EM 

emissions. For any cryptographic devices, besides the cryptographic module, 

other modules such as I/O interfaces, Phase-locked loops (PLL) circuit, and clock 

network, also radiate and may be coupled into the encryption signal during 

sampling as a result of the superposition of EM fields. They are not directly to 

encryption activities. Namely, they are data independent.  

 In [92], Dehbaoui et al. applied the magnitude squared incoherence function 

to differentiate the EM signals above the DES module and the clock network. 

The former signals were considered as data dependent and were used to perform 

EMA. This method uses only two sampling signals in time domain to identify the 

data dependent signals, which is efficient. However, the noise reduction is left 

open in [92]. Even if the EM signal is data dependent, it is probably corrupted by 

correlated noise in EM side channel. 
 

2.1.2  Correlated Noise 

 

The correlated noise in this work is defined as the unwanted signal consisted 

in the sampled signal, which is correlated by sampling locations. An example of 

such EM sample is shown in Fig.2.1 (b). This sample is collected over the crypto 

core of the LSI but close to the clock network. The AES encryption is almost 

totally immersed in the signals radiated from clock network compared with Fig. 

2.1(a). Fig. 2.1(a) is a low-noise AES encryption signal collected above the 

crypto core, and Fig. 2.1(c) is the clock signal collected above the clock network. 

The correlation coefficients between the three samples are calculated, and shown 

in Table 2.1. The EM sample in Fig. 2.1(b) has a strong correlation as high as 

0.5676 with clock signal. And in frequency domain, shown in Fig. 2.2, because 
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that the crypto LSI works at the same frequency with clock signal, their 

frequency spectrums overlap and covers a wide frequency band. 

-0.2

0

0.2

-1

0

1

0   250 500 750 1000 1250 1500
-2

0

2

S
am

pl
in

g 
vo

lta
ge

 (v
)

Sampling time (ns)

(a)

(b)

(c)

Encryption operation

 

Fig.2.1 Three EM samples in time domain 

(a) low-noise encyption signal acquired above the AES crypto core (b) mixed signal 
(corrupted by clock signal) acquired over the crypto core and close to the clock 
network (c) clock signal acquired above the clock network. 

Table 2.1 Correlation coefficients between EM traces 

Corr(a,b) Corr(a,c) Corr(b,c) 

-0.1780 0.2114 0.5676 

a , b, and c are from the EM samples shown in Fig.1(a),(b),and (c). respectively. 
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Fig.2.2 The frequency spectrums (0-300MHz) for the three EM samples 
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The correlated noise in the EM sample is caused by the interference of the 

clock network, which results from different sampling locations. In fact, if the 

sampling locations can be properly chosen, e.g., always over the crypto core, 

such noise can be minimized. However, in general case, during an automatic 

sampling process, the location of the crypto core can not be determined without 

preliminary knowledge. The interference from the clock network is unavoidable. 

The correlated noise occurs frequently in practice. 
 

2.1.3  The Influence on EMA 

The correlated signal can be acquired from both the surface of cryptographic 

ASIC and FPGA. And when EMA performed with such signals, the peak of 

correlation coefficient for the correct key can not be detected with 10000 

plaintexts, which is shown in Fig.2.3. 
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Fig.2.3 Correlation-based EMA of the correct key for signals shown in Fig.2.1(a),(b), 

and (c) 

The conventional averaging can not eliminate the correlated noise. And the 

filtering, such as the one mentioned in [21, 85] is ineffective due to the severely 

overlapped frequency spectrum. Because that the mixed signal is not independent, 

and generally there is only one EM sensor, which does not meet the basic 

assumptions of the solution such as Difference ICA [90] to separate the mixed 
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signal. Moreover, since the amount of correlated noise coupled in the sampled 

signal varies at different sampling locations, it is unable to refer the samples 

from other locations to reduce the correlated noise. 

 
2.2  Characteristics of EM Traces 

 

In order to solve the noise reduction problem, the signal is modeled and the 

characteristics of EM traces are studied in this section.  
 

2.2.1  Signal Model 

 

The acquired EM trace during encryption is formulated as follows. For a 

cryptographic device, generally, multiple modules radiated their own EM emissions 

during encryption activities of the system. Theses emissions are superposed, and they 

are picked up by EM probes. The EM probe outputs a voltage proportional to the 

strength of emissions. And then the emissions are observed and converted to digital 

signals in time domain by oscilloscope.  

Because that devices during this acquisition chain are linear, the measured EM 

emission W(t) is represented by a combination of the primary source signals: Senc(t), 

which is mainly from cryptographic module, such as AES or DES core, contains data 

dependent information. And Sclk(t) represents the correlated interference that comes 

from the clock network. η denotes other independent noises, such as white noise etc, 

expressed by Eq.2.1. 

( ) ( ) ( ) η= + +enc clkW t S t S t                        (Eq.2.1) 

where t is sampling time. 

   The problem is that each source signal can not be measured directly. Only the 

mixed EM emission is acquired. Owing to the addition of multiple sources, the mixed 

EM emission covers a wide range of frequency content. Furthermore, the radiated 

Senc(t) may contains direct EM emission and modulated emission at certain frequency 
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due to the coupling of EM field. A formal physical expression is unavailable. Thus, 

we deduce some characteristics of mixed EM emission by analyzing the characteristic 

of each source in time domain. 
 

2.2.2  Edge Variance 

 

It is observed that fluctuation of clock signal occurs at the edges and is larger than 

the fluctuation of encryption signal. We explain this fact by modeling the EM 

emission. 
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Fig.2.4 Power traces and the computed variances from SASEBO during AES runs 

(a) clock signal; (b) variance of this clock signal; (c) encryption signal; (d)variance of 
this encryption signal. The vertical axis denotes the sampling voltage (in volt). 
Sampling length is 11 rounds.Sampling time is 470 ns. 
 

(1)The observation of edge variance 

The high clock edge variance is observed in the power traces. Fig.2.4 shows the 

power traces from SASEBO when AES runs. Fig.2.4(a) is the clock signal sampled 

through the resistor on the board. Fig.2.4(b) is the variance of (a) computed by 5000 
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traces. Fig.2.4(c) is the encryption signal sampled by the resistor through the power 

node on board. Fig.2.4(d) is the variance of (c) computed by 5000 traces. It clearly 

indicates that the clock signal has a much higher variance at the edges. 

The high clock edge variance is also observed in the EM traces. Fig.2.5 is the EM 

traces from SASEBO when AES runs. Fig.2.5(a) is the clock signal sampled by EM 

probe above the clock oscillator. Fig.2.5(b) is the variance of (a) computed by 5000 

traces. Fig.2.5(c) is the encryption signal sampled above the crypto LSI. Fig.2.5 (d) is 

the variance of (c) computed by 5000 traces. It indicates that for the EM traces the 

clock signal has a much higher variance at the edges. This is explained by the the fact 

that the EM signals are radiated by the current in the power/ground network. 

Similarly, we also measured the clock signal and the encryption signal from 

SASEBO-R. The EM traces and their variance are shown in Fig. 2.6.  
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Fig.2.5 EM traces and the computed variances from SASEBO during AES runs 

(a) clock signal; (b) variance of this clock signal; (c) encryption signal; (d) variance of 
this encryption signal. The vertical axis denotes the sampling voltage after the 
preamplifier (in volt). Sampling length is 11 rounds.Sampling time is 470 ns.  
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Fig.2.6 EM traces and the computed variances from SASEBO-R during AES runs 

(a) clock signal; (b) variance of this clock signal; (c) encryption signal; (d) variance of 
this encryption signal. The vertical axis denotes the sampling voltage after the 
preamplifier (in volt). Sampling length is 11 rounds.Sampling time is 470 ns. 

(2)The explanation of edge variance 

EM emission is radiated by electric current on the circuits during encryption or 

decryption. The electric current includes not only the one flows on the power/ground 

network, but also the one flows on the clock network. It is noted that although these 

two types of electric current originate from similar CMOS primitives, such as logic 

gates or clock trees. The activities of these primitives are different. The former is 

data-dependent, and the latter is not. Thus the measured signals from EM field are 

different though they may both appear spiky due to the wireless transmissions and 

EM interferences. It is reasonable to model them differently. We describe the 

characteristics of these emissions according to their source, i.e. the electric current. 

From the measured current through inserted resistor, it is known that the encryption 

signal is a slowly changing analogue signal and has a triangle-wave shape, which is 

different from the clock signal (It has rectangle-wave shape and has shorter rising 

time and falling time). 
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Therefore, the encryption signal is modeled by triangle wave and the clock signal 

is modeled by rectangle wave in the following simulation. They are denoted as Simclk 

and Simsig respectively. 
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     Fig.2.7 Large fluctuations caused by time deviation f at clock edges  

(a1) and (b1) are clock signal and analogue signal with period T, and amplitude 1 respectively; 
(a2) and (b2) are the expected value of each signal sampled multiple times; (a3) and (b3) are 
differential curves between each signal and its expected value; (a4) and (b4) are squared 
deviation of differential curves. 

It is generally considered that the clock signal of LSI is constant. This is true 

except for the short rising and falling time. Due to clock jitter which is the undesired 

deviation from true periodicity of clock signal and the electromagnetic interference 

between signals, the slight time difference between each period and fluctuation of the 

average amplitude of the clock signal probably occur. Because every module of LSI is 

linked to the clock network, this deviation is dispersed to every module and affects 

each signal. The fluctuation of the amplitude can be described by the deviation from 

its expected value, namely variance. Suppose a jitter takes place, which causes a time 

deviation f of the clock signal Simclk from its expected value. And consequently, the 

fluctuation is also observed on Simsig. They are explained by Fig.2.7. The clock signal 

and the analogue signal have the same period T. The time deviation f from the 

expected value is shown in Fig.2.7 (a2) and (b2), respectively. A differential 

computation is in Fig.2.7 (a3) and (b3). The resulted peaks occur at the edges of clock 
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signal. Moreover, Fig.2.7 (a4) and (b4) shows the squared deviation. The periodicity 

of Simclk, becomes 0.5T compared with Simsig. The resulted amplitude of Simclk is 400 

times larger than Simsig when f = 0.025 T . 

Table 2.2 Simulation results of slight deviation  

Time deviation f Resulted Simclk Resulted Simsig Resulted Simclk/Simsig 
2.5×10-2T 4.0 1.0×10-2 4.0×102 
1.0×10-3T 4.0 1.6×10-5 2.5×105 

(Note: The original amplitudes of Simclk and Simsig are 1, and the periods are T) 

In practice, generally, the period of clock jitter is smaller than the rise time of the 

clock signal according to the datasheet of a typical clock oscillator [104]. For example, 

for a 50MHz clock oscillator, the period is T=20 ns. The typical period of clock jitter 

is about 20 ps (1.0×10-3T), while the typical period of the rise time is 2 ns (0.1T). 

Then by simulation with our model, the resulted amplitudes of Simclk and Simsig by the 

small deviation f are listed in Table 2.2. 

The second line in Table 2.2 indicates that even if the time deviation is very small, 

i.e. as short as the period of clock jitter 1.0×10-3T, there is a large edge variance for 

the clock signal compared with encryption signal. Therefore, we have corrected the 

occurrence of large fluctuation is probably caused by clock jitter or electromagnetic 

interference between signals. 

This result gives hints for the comparison of variance of sampled signals at 

multiple times. Since the definition of the variance is mean of the squared deviations. 

It hints that the variance at the clock edges is much larger than an analog signal in the 

same condition. 
 
2.2.3  Time Delay 

 

Following the explanation of the edge variance, we interpret the timing 

relation between Simclk and Simsig during encryption.   

For any cryptographic LSI, all the switching activities of each module are 

strictly under the control of the clock signal, which is generated from the clock 
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oscillator and distributed as clock network in the cryptographic LSI. The data 

begins to change, and the power consumes. In other words, the logic gates switch 

only when the clock signal arrives at its high level. Consequently, the power 

consumption signal requires a short time to be observed. In fact, for CMOS clock 

signal, there is a rising time RT before it arrives at the high level and a falling 

time FT preceding the low level. Therefore, there is a time delay ∆t between 

rising point of clock signal and observed power consumption signal (in volt) 

during encryption, and ∆t > RT, shown in Fig.2.8. RT or FT is about several 

nanoseconds for a typical CMOS oscillator, which can be viewed by 

oscilloscope.  

The time delay is further explained in Fig.2.9. Suppose the Simsig is sampled 

in correspondence of the rising edges of the clock oscillator. The time delay ∆t 

between (a1) Simclk and (b1) Simsig is compared. A jitter causes the both of these 

signal deviated from their expected value shown in (a2) and (b2). The deviation f 

from the expected value of these signals is shown in (a2) and (b2). Fig.2.9 (a3) 

and (b3) are the differential curves for each signal. Finally, (a4) and (b4) are the 

squared deviation for each signal, where P1 denotes the position of the peak 

value of squared deviation of Simclk, and P2 denotes the position of the lower 

value of squared deviation of Simsig. 

 

Fig.2.8 Timing relation between the clock signal and power signal during encryption 
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Fig.2.9 The different positions (P1, P2) of peak values of clock signal and analogue 
signal caused by a time delay  

 

It indicates that there is time delay between the position of peak value of the 

variance of Simclk and Simsig, and the peak value of Simclk will not be attenuated if 

the two signals superposed, which is the case for the mixed EM trace. In other 

words, if the two signals mixed, the variances have a chance to be differentiated 

due to the time delay.  

In the following subsection, we propose three techniques in order to reduce 

the correlated noise without referring the samples from other locations. Based on 

the observation that the correlated noise has a high variance at signal edges, the 

Singular Value Decomposition (SVD)-based techniques which are capable of 

extracting the signal components with high variance by SVD computation, are 

proposed to extract the clock noise from the mixed signal. The single-sample 

SVD takes the advantage of encryption periodicity in neighboring rounds to 

denoise the high-variance component (correlated noise) in one sample, while the 

multi-sample SVD extracts the high-variance component using multiple samples 
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but with short-length. Additionally, the third technique: averaging subtraction is 

an alternate technique to suppress the correlated noise given sufficient sampling 

length. Because that the corrupted sample has a strong correlation with clock 

noise, namely there is a similarity between them, based on this similarity, this 

technique subtracts clock noise from the sample after averaging to attenuate 

correlated noise.  

The proposed techniques are validated on sampling signals from the AES 

encryption on both FPGA and ASIC implementations. The SNR gains via the 

number of samples and length of samples are demonstrated. Their effectiveness 

for EMA are also compared with existed works: [86][90]. 

 
2.3  Proposed Single-sample SVD Algorithm 

 

Suppose that only several rounds of an encryption is available in one sample, 

which the sampling length L >= 2 rounds. We propose to use single-sample SVD to 

reduce the correlated noise. By dividing one sample into periodic segments, the SVD 

can extract the component with largest variance, which is the clock signal. And finally 

subtract it from the mixture. Therefore, the steps include:  

 Period division 

 SVD 

 Clock subtraction 
 

2.3.1  Period Division 

 

Most block ciphers are designed by iterated computation (each iteration is 

termed as round), which results in the periodicity of the EM trace. And each round 

encryption takes one or more clock cycles in practice. Therefore it is possible to 

make use of the periodicity to divide one EM trace into multiple similar segments. 
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One acquired EM trace is one signal, which can be represented by a sequence and 

handled as a row vector.  

 

Fig.2.10 The length of EM trace W, and the length of its one round WR  

The cross-correlation function measures the similarity between two signals. 

We adopt it to divide one EM trace into several segments, and each of them is 

nearly periodic. The cross-correlation function between two signals X and Y is 

defined as  

*(( , ) )τ τ+= ∑ ii i
i

Cross X Y X Y                            (Eq.2.2) 

where signal X is denoted as a sequence{x(1), x(2), … , x(n)}, and n is the sampling 

point. X* denotes the conjugate transpose of X, which is defined by taking the vector 

transpose and then taking the complex conjugate of X (for an real-valued signal, its 

complex conjugate is itself). And i is the index for the sampling point, τ denotes an 

integer offset. Eq.2.2 is a function of offset respect to signal X. A peak value of this 

function means signal Y is most similar to X at an offset of τ. 

Suppose one EM trace is W ={w(1), w(2),…, w(n)}, where n denotes the sampling 

point. If we take one-round sample as WR ={ w(1), w(2),…, w(k)} with period length 

k, and shown in Fig.2.10, then the offsets that maximize the cross-correlation between 

W and WR is given by H(τ) with length m, given by 

1,2,...,
( ) argmax( ( , ) )

m
H Cross W WR τ

τ
τ

=
=                         (Eq.2.3) 

Then with these offsets, a single EM trace W is divided into a matrix WP of 

consecutive periods of size (m+1) x k, given by 
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(1) (2) ... ( )
( (1)) ( (1) 1) ... ( (1) 1)
( (2)) ( (2) 1) ... ( (2) 1)

... ... .... ...
( ( )) ( ( ) 1) ... ( ( ) 1)

w w w k
w H w H w H k

WP w H w H w H k

w H m w H m w H m k

⎡ ⎤
⎢ ⎥+ + −⎢ ⎥

= + + −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+ + −⎣ ⎦

               (Eq.2.4) 

   Through the period division, the variance of the correlated noise which consists in 

one encryption round is able to be distinguished by statistical tool. 
 

2.3.2  SVD 

 

Singular value decomposition (SVD) is such a tool that can extract the component 

of the largest variance from a series of samples. It is widely applied in signal 

processing, which is a factorization of a real or complex matrix. The SVD of the 

real-valued WP, is given by  

= Σ TWP U V                                   (Eq.2.5) 

where T denotes the transpose of matrix, U and V are named as the left and right 

singular vector matrices for ∑, respectively. U is in size (m+1)x(m+1), and V is in size 

k x k. The (m+1)xk matrix ∑ is comprised by non-negative singular values σ1,σ2,…,σp, 

p Є Z, which are ranged in decreasing order: σ1 ≥ σ2 ≥…,σp ≥ 0 in the diagonal, given 

by 
1

2

0 0 0 0
0 0 0 0
0 0 ... 0 0
0 0 0 0
0 0 0 0 0

p

σ
σ

σ

⎡ ⎤
⎢ ⎥
⎢ ⎥

Σ = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                             (Eq.2.6) 

In fact, the singular values are the non-negative square roots of the eigenvalues of 

(WP)T(WP), and they are the variances of WP. The energy of WP is expressed by 

                 2 2 2 2
1 2 ...σ σ σ= + + + pF

WP                          (Eq.2.7) 

where the subscript F denotes Frobenius norm. 

According to the characteristics that the variance of the edges of clock signal is 

much larger than the encryption signal, which means it includes the major energy of 
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WP and consists in σ1; therefore the matrix ∑ of singular values can be partitioned 

into three groups, given by Eq.2.8. 

0

0 0
0 0
0 0

clk

enc

Σ⎡ ⎤
⎢ ⎥Σ = Σ⎢ ⎥

Σ⎢ ⎥⎣ ⎦

                            (Eq.2.8) 

where ∑clk contains rclk singular values, which corresponding to the clock signal; ∑enc 

contains renc singular values, which corresponding to the encryption signal; the ∑0  

contains the remaining singular values, which represents the other EM interferences 

and white noise. Thus the contribution from clock signal is : 

1

σ
=

= ∑
clkr

T
i i i

i

Sclk u v                             (Eq.2.9) 

where ui is the ith column of U, and vi is the ith column of V. Sclk is a matrix in the 

same size with WP.  
 

2.3.3  Clock Subtraction 

 

The reduction of the correlated noise comes down to the subtraction of the clock 

signal from WP: 

= −Wres WP Sclk                           (Eq.2.10) 

   Then a recovery of this single-sample signal is achieved by assembling each row 

of the Wres. 

 

2.4  Proposed Multi-sample SVD Algorithm 

 

If the sampling length is limited L <= 2 rounds, which means there is no sufficient 

round-signals that can be used to form into periodic matrix WP, then multiple samples 

are required to compute SVD. The single-sample SVD is extended to the 

multi-sample SVD. 

Suppose g samples, each of which has length c, with different plaintexts are 

acquired and have been aligned during sampling by trigger signal.  



                        2 Correlated Noise Reduction for EMA                   

- 44 - 
 

Theses samples are organized into one matrix Wg of size g x c. Then the following 

steps are the same as in multi-sample SVD, whereas the resulted Wres are the low 

noise samples, which can be used to perform EMA, given by  

T
gW U V= Σ                              (Eq.2.11) 

gWres W Sclk= −                             (Eq.2.12) 

 

2.5  Proposed Averaged Subtraction Algorithm 

 

Provided that the sampling length is sufficient, L >= full rounds, but the number 

of sample is limited. The Averaged subtraction is proposed to get rid of the correlated 

noise. This technique is based on the following fact: firstly, there is periodicity of the 

clock signal in one EM trace W. Secondly, clock signals which are present in 

encryption phase, and non-encryption phase have high similarity. This argument is 

based on the strong auto-correlation in W. And thirdly, it is shown in section 2.2 that 

the correlated clock signal is an addictive impact on the EM trace. Therefore, it is 

possible to extract one averaged, period segment of the clock signal from 

non-encryption phase, and subtracted from WP. In this way, the impact from the clock 

signal can be attenuated.  

Thus this method includes two steps: clock extraction, and clock subtraction.  

 

Fig.2.11 The length of encryption phase Wept and non-encryption phase Wnept  

( WP is the length of one-round encryption, Segclk is one segment of non-encryption signal) 
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2.5.1  Clock Extraction  

 

It is assumed that the correlated noise only appears in encryption phase Wept for 

one sample trace W. Referring to Eq.2.4, Wept is expressed as 

Wept={w(1),w(2),…,w(H(m)+k-1)}. Thus the non-encryption phase is expressed as 

Wnept={w(H(m)+k), w(H(m)+k+1),…,w(n)}, which is considered contains clock signal 

as well as addictive white noise. Fig.2.11 shows their relation. Owing to the clock 

synchronization of crypto LSI, the Wnept can be divided into J segments Segclk(i), 

given by 

( ) (( 1) 1) (( 1) 2) ... ( )nept nept neptSegclk i w i k w i k w ik⎡ ⎤= − + − +⎣ ⎦             (Eq.2.13) 

where i=1,2,…,J, and J is the number of segments, and k is the length of segment. The 

remaining sampling points which are insufficient for one period are discarded. 

Furthermore, to diminish the accidental error which may emerge at each clock signal 

due to the EM interference, these segments are averaged as Segclk , given by 

                         
1

1 ( )
=

= ∑
J

i

Segclk Segclk i
J

                    (Eq.2.14) 

2.5.2  Clock Subtraction 

 

Segclk  is duplicated to a matrix of (m+1) equivalent rows and subtracted from WP, 

given by  

( 1)( ) + ×= − m kWres WP Segclk                   (Eq.2.15) 

The limitation of this technique is that the subtraction may cause negative 

amplitudes, which becomes noise. And this technique is applicable to the EM sample, 

whose length is larger than encryption period. 
 

 
                         Fig.2.12 Experimental procedures 
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2.6  EMA Based on Correlated Noise Reduction 

 

The procedures for the experiments are shown in Fig.2.12. Three steps are 

included. 

The signal acquisition is carried out on both FPGA and ASIC implementation of 

AES, and the platform is SASEBO and SASEBO-R, respectively. The configurations 

of the devices are similar. The computer randomly generates 128-bit plaintext in 

groups, which are transmitted to FPGA through RS-232 serial ports, and the execution 

signal on LSI triggers the oscilloscope for sampling. AES runs at 24MHz, therefore 

the clock cycle is about 41.6 ns. The sampling rate is 2GSa/s to ensure a sufficient 

bandwidth. The EM probe is placed 0.5mm over the surface of cryptographic LSI. 

The EM traces that corrupted by clock signal are captured at the locations close to the 

clock oscillator, where 10000 traces with different plaintexts are recorded. The key is 

fixed but randomly chosen in 16-byte (the final round): 28 AF CE 9F 5A FF C8 F1 E0 

54 B3 52 B0 CE 43 0E.  

   Then the proposed three techniques are compared with other two methods for both 

noise reduction and their effectiveness on EMA. The two methods are DWT which 

was proposed in[86] and Difference ICA which was presented in [90].  

In order to evaluate the performance of proposed techniques, the SNR is defined. 

Because that we do not have knowledge about the power or amplitude ratio between 

encryption signal and noise, thus instead of the conventional definition, the SNR is 

defined as the correlation peak corresponding to the correct key, given by    

/ 10

| |
( ) 20log

| |
= peak

e c
noise

A
SNR t

A
                        (Eq.2.16)  

where |  | denotes the amplitude of the signal, and Apeak is the amplitude of 

correlation peak, Anoise is the average amplitude of the other parts of the curve. 

In addition, the effectiveness of proposed techniques is assessed by success rate 

[18] for EMA. Success rate, which was proposed by Standaert et al., expresses the 

number of correct subkey guesses among the secret key. Both of these two metrics are 
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used in the following experiments. 

  
2.6.1  EMA on FPGA Implementation 

 

Noise reductions are carried out with various techniques on the EM traces 

acquired from FPGA. One corrupted EM trace (unprocessed trace) is shown in first 

line of Fig.2.13. The sampling points are trimmed to 3000, which involves the 

full-round AES encryption and background noise. 

For the proposed single-sample SVD (S-SVD), only the sampling points of the 

first 1832 points are used, thus W=[w(1),w(1832)].These points are sufficient to 

suppress the correlated noise. Meanwhile it avoids introducing the inaccuracy of 

variances due to the difference of amplitudes. WR is [w(1), w(167)]. SVD is 

computed on WP, Because that σ1
2/σ2

2 ≈784.1 and it is far larger than 1, which 

means that the first variance is much larger than the second one and the energy is 

concentrated in the first component, the first singular value is picked up to project 

the clock component from the mixture. Finally, the results from clock subtraction 

is assembled back to a sample and combined to the complete sample. 

For the multi-sample SVD (M-SVD), in fact the selection of points of 

interested is not constrained. We used 3000 sampling points in order to compare 

with other methods. Similarly, After SVD, σ1
2/σ2

2 is computed. Its value is 625.3 

which is much larger than 1 and indicates that the clock noise mainly consists in 

the first singular value. Thus the first singular value is used to extract clock 

component.  

In the technique of averaged subtraction (A.Subt.), 6 clock segments are 

averaged and subtracted. Additionally, the “Symlet” family of DWT is used to 

process the mixed signal as in[86]. And a repeated sampling is performed with 

another EM probe putting close to the clock oscillator in order to obtain two groups 

of samples which satisfy the condition of Difference ICA[90]. 
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The signals after denoising are shown in Fig.2.13. And the correlation peak of 

the correct key with 10000 each signal is shown in the right column. The extracted 

clock noise by proposed S-SVD and M-SVD are shown in Fig.2.14 (a) and (b), 

respectively. 
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Fig.2.13 EM signals from SASEBO 
Left column: The unprocessed EM signal, and signals processed by Single SVD(S-SVD), 
Multi-SVD (M-SVD), Averaged subtraction (A.Subt.), DWT[86], and Difference 
ICA[90]. Right column: correlation peak of EMA corresponding to the correct key when 
10000 traces are used. 
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Fig.2.14 Extracted clock noise by proposed SVD-based methods on SASEBO (a) by 
S-SVD (b) by M-SVD. 
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Table 2.3 Average SNR comparison of signals on FPGA  

 Unproc. S-SVD M-SVD A.Subt. DWT[86] D.ICA[90] 

SNR(dB) -0.86 14.49 21.58 8.08 2.45 0.03 

(10 groups, each with 10000 different samples) 
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Fig.2.15 Success rates of EMA on SASEBO with unprocessd signal and the noise 
reduced signals  

In order to evaluate the results quantitatively, 10 groups of acquired EM traces 

with correlated noise, which with 10000 samples are processed with each method. 

The averaged SNR of each signal are calculated according to Eq.2.16, shown in 

Table 2.3.  

The S-SVD and M-SVD have larger SNR compared with the unprocessed 

signal and other methods. They are as high as 14.49 dB and 21.58 dB respectively 

compared with other 3 methods. This is because that the clock component which 

contains strong edge variances is extracted by SVD method. And M-SVD has 

higher SNR than S-SVD, because that more samples are used and the singular 

value is computed more accurate. By contrast, for DWT[86], though by setting the 

wavelet coefficients of the low-valued details to zero, white noise can be filtered. 

This does not have effect on the correlated noise, which covers the same frequency 

bands with encryption signal. And it indicates that the Difference ICA [90] 

removes the noise only to some limited extent. The algorithm does not decorrelate 
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the mixed signals adequately, which leads to its low performance. The negative 

SNR occurs because the correlation for peak of the correct key is smaller than the 

amplitude of noise. 

EMAs are performed with these 6 groups of signals to further confirm their 

effectiveness. The output of s-box in the final round of AES is chosen as a target to 

analyze. Then the Pearson correlation is computed to recover all the 16 sub-keys. 

The success rates versus number of traces are plotted in Fig.2.15. EMA with 

M-SVD succeeds fastest, and all the sub-keys are recovered with only 4308 traces. 

S-SVD is with 4825 traces, and 6861 traces for Averaged subtraction. The DWT 

requires 9425 traces. And Difference ICA only recovers 81.25% with 10000 traces. 

This result is in consistent with the SNR. EMA performs better with the proposed 

methods, since higher SNR are achieved. 
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Fig.2.16 EM signals from SASEBO-R  

Left column: The unprocessed EM signal, and signals processed by Single SVD(S-SVD), 
Multi-SVD (M-SVD), Averaged subtraction(A.Subt.), DWT[86], and Difference 
ICA[90]. Right column: correlation peak of EMA corresponding to the correct key when 
10000 traces are used. 
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Fig.2.17 Extracted clock noise by proposed SVD-based methods on SASEBO-R(a) by 
S-SVD (b) by M-SVD. 

 

2.6.2  EMA on ASIC Implementation 

 

The correlated noise is also observed on the implementation of cryptographic 

LSI on ASIC.  

The unprocessed signals and signals after noise reduction with each method are 

shown in Fig.2.16, respectively. 3000 sampling points for each signal. Similar to 

the FPGA experiments, σ1
2/σ2

2 is calculated. It is 1224.7 and 961.4 for the S-SVD 

and M-SVD method, respectively. The first singular values are extracted. The 

extracted clock noise by proposed S-SVD and M-SVD on SASEBO-R are shown 

in Fig.2.17 (a) and (b), respectively. It shows that after the noise reduction, the 

peak of correct key is exposed by S-SVD, M-SVD, A.Subt., and DWT. The 

averaged SNR is listed in Table 2.4. S-SVD performs best, which has an averaged 

SNR of 23.06 dB. By contrast, the average SNR for DWT is only 4.13 dB. The 

correct key is immersed in the background noise for the Difference ICA method 

and the unprocessed signal.  

Table 2.4 Average SNR comparison of signals on ASIC  

 Unproc. S-SVD M-SVD A.Subt. DWT[86] D.ICA[90] 

SNR(dB) -3.87 23.06 20.45 11.14 4.13 -1.86 

(10 groups, each with 10000 different samples) 
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Fig.2.18 Success rates of EMA SASEBO-R with unprocessd signal and the noise 

reduced signals 

The success rates of EMA for recovery all the sub-keys with each method are 

shown in Fig.2.18. All the sub-keys are revealed by S-SVD, M-SVD, A.Subt., and 

DWT within 10000 EM traces. Only 3319 traces are required for S-SVD to recover 

all the sub-keys, 4127 traces for M-SVD, and 5413 traces for A.Subt. While the 

success rate for D.ICA and unprocessed trace is only 81.25%. These results are 

similar to the results given by FPGA experiments.  

Then the performances of proposed techniques are further investigated. They are 

related to the variation of number of samples and the length of samples. SNR Gain 

means that the gain of SNR compared with unprocessed EM traces. The number of 

samples is the sample used for preprocessing the EM trace. It always refers to the 

number of samples stored and processed online. It can be very small, such as one, 

two, etc. This is different from the meaning of number of traces, which are the 

traces required for key recovery. Since EMA relies on the statistics of EM traces, 

generally at least several hundred traces are required to reveal the key. Thus this 

discussion is meaningful for the real time processing of EM samples. 
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2.6.3  Performance Evaluation 

 

The discussion about the performance of proposed techniques is provided below. 

The variation of SNR Gain of S-SVD, M-SVD, and A.Subt., along with the number 

of samples is shown in Fig.2.19. For this result, the length of sample is fixed at 

3000 points. When only one sample is involved in the preprocessing, the S-SVD 

achieves a SNR gain of 14.49 dB by utilizing the periodicity of encryption rounds. 

And the A.Subt. has a gain of 8.08 dB. By contrast, the gain for M-SVD is around 

0, because that this method depends on the variance computation and it is not 

available for a single sample. When the number of samples increases, the SNR gain 

of M-SVD rises since the computation of variance become accurate. It arrives as 

high as 21.58 dB when there are 10000 samples. However, the computational cost 

for preprocessing these samples also increases. It indicates that the S-SVD can 

achieve a relative high SNR gain when the number of sample is limited. 
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Fig.2.19 The variation of SNR Gain of proposed 3 techniques along with the number of 
samples  
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Fig.2.20 The variation of SNR Gain of proposed 3 techniques along with the length of 
sample  

The variation of SNR Gain of S-SVD, M-SVD, and A.Subt., along with the 

length of samples is summarized in Fig.2.20. This experiment is performed with 

10000 samples for each method. When the sample involves only one round of 

encryption (It is assumed that the interested round, which is used for key recovery, 

is included), the M-SVD achieves a high SNR gain of 22.94 dB by computing the 

variances among all the available samples, while S-SVD can not, which leads to 0 

gain. And similarly, the A.Subt. can not be performed, since there is no extra 

length of sample for subtraction. The gain of A.Subt. increases unless the length of 

sample exceeds the full encryption round, and its performance is bellow S-SVD 

and M-SVD. 

Thereby, it indicates that M-SVD has best performance when the length of 

sample is limited. And A.Subt. is a coarse estimation if the background noise 

sampling is available. 

The proposed three techniques can be applied to the online pre-processing of 

EM samples. The online pre-processing is needed especially for the EM 

cartography or near-field scan based EMA, in which it needs to collect and store 

many samples. These samples are stored on oscilloscope temporarily. Because 

the storage capacity Mon of oscilloscope is limited, the number of samples Non 

that can be stored and the sampling length Lon have constraints. Generally, it has 
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= ×on on onM N L                          (Eq.2.17) 

In this case, it is necessary to select an appropriate method. Given storage 

capacity Mon , when Lon < 2 rounds, it is better to select M-SVD because Non can 

be larger, which means that multi samples are available. When Lon >=2 rounds, it 

is better to use S-SVD (Non is smaller). And when Lon >= full rounds, A.Subt. 

also can be used (Non is smaller). 

In addition, the proposed three techniques can be applied to various scenarios 

for EMA. It is noted that these three techniques reduce the correlated noise in 

time domain, whereas the applications are not constrained. For S-SVD, after the 

correlated noise is attenuated, the clean signal can be transformed to frequency 

domain for performing EMA. Since the sampling length L >= 2 rounds, the clean 

signal has a fine frequency resolution (The frequency resolution is computed by 

Fs/N, where Fs is the sampling rate, and N is the number of sampling points. 

Given sampling rate, if the sampling length is larger, namely the number of 

sampling points is larger, then the frequency resolution is finer). This leads to 

efficient EMA. In addition, since more than one round’s signal is available, the 

comparative EMA between different rounds is enabled. For M-SVD, it is more 

appropriate for EMA in time domain. Because the sampling length L < 2 rounds 

(the interested round for key recovery is included), the data-dependent 

information concentrates in the limited sampling points, the computational time 

for the comparison of the correlation-based EMA can be saved (This is similar to 

the key idea of “compression of power traces”). For A.Subt., as the sampling 

length is larger than the full rounds, the EMA in frequency domain is more 

efficient. Moreover, since the background noise is included in the sampled signal, 

the comparative study on the noise characteristics at different locations is 

possible, and this is helpful in finding the best location for EMA. A 

summarization is shown in Table 2.5. 
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Table 2.5 The applications of proposed methods 

Sampling 
length L 

Method Applications 

L < 2 
rounds 

M-SVD Time domain EMA; 

L >= 2 
rounds 

S-SVD Frequency domain EMA; 
Round comparison of EMA; 

L >= full 
rounds 

A.Subt. Frequency domain EMA; 
Location finding for EMA; 

 
2.7  Summary 

 

In this chapter, the correlated noise consisted in EM emission, which is 

commonly occurs to cryptographic devices, is studied. The characteristics of such 

signal are investigated based on observation and analyses. They indicate that the 

clock signal of the cryptographic system has a high variance at signal edges. 

Therefore, the single-sample SVD and the multi-sample SVD are proposed to 

reduce the correlated noise by extracting the clock component from the mixture. 

The single-sample SVD is suitable for online preprocessing of EM trace since 

only one sample is needed to suppress the correlated noise. The multi-sample 

SVD is able to reduce the correlated noise without much constraint of sampling 

length unless the points of interest are included. Additionally, the third technique: 

averaged subtraction is effective for a coarse estimation of clock noise.  

Furthermore, these techniques are validated by the EM emission acquired from 

the AES implementation on ASIC and FPGA. Compared with existed noise 

reduction methods, the proposed 3 techniques increase the SNR as high as 22.94dB, 

and the success rates of EMA shows that the data-independent information is 

retained and the performance of EMA is improved
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3  Simultaneous Noise Reduction for EMA 

In this chapter, the simultaneous noise is studied. Firstly, we give a brief 

introduction about the noise in side channel. Secondly, the proposed algorithm is 

presented in detail. Then the EMA with the proposed algorithm is shown and 

compared with EMA based on bandpass filtering [90]. Finally, a short summary 

is concluded. 
 

3.1  Background and Related Works 

The necessary background for our work is introduced in this section. 
 

3.1.1  Intentional Noise 

 

The noise discussed in subsection 2.1.1 is mainly unintentional. Noise in side 

channel can be intentional, which means noise is introduced as countermeasure to 

prevent the EMA or PA. It is named as noise-countermeasure. This is another 

category of typical countermeasures, besides the application of logic styles, 

hiding, and masking. It makes the PA/EMA difficult or impossible by either 

adding extra hardware or random processing to change the signature of power 

consumption of the cipher.  

There are mainly 3 of such noise-countermeasures in the literatures: variable 

clock, random delay insertion, and correlated power-noise generator, shown as 

follows. 

(1) Variable clock  

It consists in clocking a chip with an internal oscillator whose parameters 

(frequency, duty cycle, shape, etc.) vary randomly in time. It was mentioned and 

by Kafi, et al[105]. These authors also proposed the parametric deconvolution to 

reduce it.  Another solution to this noise is proposed in [86]. In that work, DWT 
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was used firstly to denoise the power traces, and then “Simulated annealing” 

algorithm was used to resynchronization the power traces 

(2) Random delay insertion (RPI) 

The delays can be inserted randomly during the operations of a cipher, e.g. 

delays are inserted before SubByte during AES computation, as this operation is 

more vulnerable. Such implementation leads to the misalignment of the collected 

signal traces. The solutions are actively studied. Clavier et al.[44] restored the 

original amplitude of the power traces by integrating the RPI-protected signal 

over several consecutive cycles. Homma et al.[87]proposed phase-based 

waveform matching method. Gebotys et al.[88]introduced the phase replacement 

technique. 

(3) Power-noise generator 

Kamoun et al. [106] proposed a power-noise generator for AES. The generator 

is composed by the most vulnerable AES functions, and works concurrently with 

the AES core but using different keys. However, to our best knowledge, there are 

no solutions discussed in the literatures.   
 

3.1.2  Simultaneous Noise 

 

The simultaneous noise is defined as the unwanted signal, which is mixed 

with interested signal but independent from interested signal in this work. The 

simultaneous noise belongs to class (3) Power-noise generator, and it is one of 

the noise-countermeasure. It was discovered during our experiment. When 

multiple crypto modules work simultaneously, some of the modules act as noise 

generator to other interested modules. Its generation and reduction is studied in 

the following part. 

In the literatures, simultaneous switching noise (SSN) [119] is well known as 

a phenomenon with adverse and severe effects when a large number of high 

speed chip drivers switch simultaneously causing a large amount of current to be 
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injected into the power distribution grid. It was actively studied in [120-123]. In 

the field of side channel analysis, the hardware decoupling has been a technique 

for reducing the conduction of the SSN current of logic ICs [124]. The 

simultaneous noise defined in this dissertation is kind of implementation of SSN 

in cryptographic LSI.  

The advantage of such noise generator is that there is not any hardware cost. 

Compared with the noise generator proposed in [106], the Camellia module acts 

as a noise generator for AES module, and they use the same key to encrypt in this 

work. There are no additional gate counts; meanwhile it plays the role of 

countermeasure to prevent the attacks.  

In order to meet demands for the various encryption standards, multiple 

cryptographic modules are integrated to one LSI. For example, AES, DES, 

Camellia, and RSA are likely produced on one ASIC to support for both the 

private and the public cryptosystems, shown in Fig.3.1. Multiple AES modules 

(AES0, AES1,…, AESn) and Camellia are integrated on one ASIC.  

 

Fig.3.1 Multiple cryptographic modules on circuit 

A short description of AES and Camellia is provided below. 

Advanced Encryption Standard (AES) was published by the National Institute 

of Standards and Technology (NIST) of United States in 2001 [107]. It has 

become one of the most popular symmetrical encryption algorithms. It has a 

128-bit block size, with key sizes of 128, 192 and 256 bits. AES is designed to be 

easy to implement on hardware and software, as well as in restricted 
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environments and offer good defenses against various attack techniques. And 

plenty of research works are carried out on the security evaluation of AES. 

Camellia [108] is a symmetrical key block cipher developed jointly by 

Mitsubishi Electric Corporation and Nippon Telegraph and Telephone Public 

Corporation (NTT in short) in 2000. And it is specified in ISO/IEC 18033-3. 

Camellia's block size is 16 bytes (128 bits), and can use 128-bit, 192-bit or 

256-bit keys. The block cipher was designed to be suitable for both software and 

hardware implementations, from low-cost smart cards to high-speed network 

systems. The cipher has security levels and processing abilities comparable to 

AES. 

In general, only one encryption module runs and the corresponding EM 

signals are measured and collected during an EMA. However, in order to hide the 

data-dependent information from attackers, multiple encryption modules may run 

simultaneously. This is considered as simultaneous noise, which is an effective 

countermeasure that slower the key detection. For instance, AES0, AES1 and 

Camellia run at the same time, shown in Fig.3.2. The plaintext is input for each 

of the 3 modules, and the same key is used for encryption, and finally the 

ciphertexts are output as Ciphertext 1, Ciphertext 1, and Ciphertext 2, 

respectively, since the algorithms of AES and Camellia differ. The only 

difference between AES0 and AES1 is that they have different S-box structures: 

AES0 is Composite-field based S-box, and AES1 is Look-up -table based S-box. 

There is reason for their simultaneous run. AES and Camellia have the same 

block size: 128 bits, the same key size, and work under the system clock, 

although the structures of the ciphers vary: AES is Substitution-Permutation 

Network (SPN) implemented in 11 rounds while Camellia is Feistel Network (FN) 

structure in 23 rounds. Given sufficient sampling time (larger than 23 rounds), a 

mixed power curves can be collected, which includes the power signature of AES 

and Camellia.  
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Fig.3.2 The generation of the simultaneous noise: 2 AES modules and Camellia work 
simultaneously 

When this kind of noise generator works, it prevents the EMA on interested 

cipher. For example, Camellia acts as noise generator to prevent AES key 

detection. When EMA or PA is performed against AES, a number of EM traces 

or power traces and ciphertexts are required. The signal traces denote the power 

consumption of AES. The ciphertexts are used to compute the data-dependent 

switching activities in Hamming Distance (HD) model for ASIC device. (A 

detailed introduction about the models is in subsection 4.1.1) It assumes that the 

power consumption of AES PAES is proportional to the data-dependent switching 

activities HDAES, given by 

PAES     HDAES                                 (Eq.3.1) 
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However, when AES module and Camellia work simultaneously, the ciphertext 

of AES is used to compute HDAES, but the power consumption becomes PAES + 

PCamellia, since the power traces have altered, shown as 

PAES + PCamellia      HDAES                                   (Eq.3.2) 

namly, the power consumption is no longer proportional to the data-dependent 

switching activities HDAES . Thus, Camellia alters the power signatures for AES 

key detection, and it is a noise generator in this case. 

Therefore, the requirements for such noise generators are: (1) it is 

implemented in the same LSI with interested cipher in order that they work in the 

same clock cycle. (2) It shares the input channel with the interested cipher. 

Usually this requires the other cipher is the same class and has the same block 

size with the interested cipher. (3) Its key size is the same with the interested 

cipher. There are other noise generators for AES besides Camellia. Here, AES is 

the interested cipher. For example, the block ciphers: Serpent (block size :128 

bits, key size: 128, 192 or 256 bits), Twofish (block size :128 bits , key size: 128, 

192 or 256 bits), SEED (block size :128 bits , key size: 128 bits), RC5 (block 

size :32,64, 128 bits , key size: 0 to 2040 bits). (4) There should be one interface- 

register that acts as control circuit, for example, when some bits of the register is 

set to 1, both of these crypto modules could run. Otherwise, only one crypto 

module runs. 

An example of such noise generator is shown in detail below. The key 

detection process becomes quite difficult.  

On the ASIC, we activate module AES0-AES4 and Camellia simultaneously, 

record the mixed signals, and perform EMA. The 16 byte-keys are detected 

within 8291 signals, the evolution of the second byte key “AF” is shown in 

Fig.3.3(b). By contrast, only 3614 signals are needed when only AES0 runs, 

namely without simultaneous noise, shown in Fig.3.3(a).  

The simultaneous noise can not be reduced by existed works as mentioned in 

subsection 2.1.1, because averaging [3]: attenuates both the interested signal and 
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noise; The Fourth-order Cumulant-based method [83] reduces the wide-band 

Gaussian noise; Signal compandings [84] only compress/expand the amplitude of 

signal; And Digital Filtering [21,85] to remove the signal and noise together at 

certain frequency bands. These methods are not capable of reducing the 

simultaneous noise, which is from another encryption source, appears as strong 

as the interested signal, and has the same frequency band with interested signal. 

Therefore, new algorithms are in need to reduce such noise.  
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(a)EMA without simultaneous noise 

2000 4000 6000 8000 10000
0

0.02

0.04

0.06

0.08

0.10

0.12

Number of signals

correct key 

 

           (b) EMA without simultaneous noise 

Fig.3.3 The evolution of the second key byte: “AF” 

3.1.3  Blind Signal Separation 

 

Aiming at probing into the possible solutions to reduce simultaneous noise, we 

studied the problem of blind signal separation (BSS). It is explained as follows.    
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Consider that there are a number of signals emitted by some physical objects or 

sources, such as the electric signals emitting by different areas of brain, the radio 

signals emanated by mobile phones or the speech signals etc. Then the sensors 

receive and record these signals in the form of a mixture of the original source 

signals. We are interested to find the original source signals from the mixture with 

little or no knowledge about the source signals. 

ICA has been proved as an effective way to solve this problem. And it has 

been applied to separation of different speech signals, analysis of EEG data, 

functional magnetic resonance imaging (fMRI) data, and as a model of biological 

image processing. There are plenty of derivative algorithms of ICA.  

According to the computational complexity, the algorithms fall into two 

categories: the low-computational algorithms, which are based on the first-order 

or second-order statistics, such as AMUSE[109,110], GED [111], SOBI[112], 

and the gradient-based algorithm [113]. And the algorithms based on high-order 

(larger than second-order) statistics of the mixed signals, such as JADE[114], 

EASI[115], [116], [117], and FastICA[ 91].  

The basic model for these algorithms is shown as follows. Assume that we 

observe m linear mixed signals X of n independent source signals (m>=n) 

                X AS N= +                                     (Eq.3.3) 

where X=(X1,X2,…,Xm)T, is m mixed signals which are observed, S=(S1,S2,…,Sn)T, is 

the n source signals, N=(N1,N2,…,Nm)T, denotes the m noise vector, superscript T 

denotes transpose of matrix. All of these signals have sampling length L. Then, after 

estimating a matrix W, the independent component can be obtained by: S =WX.  

FastICA is introduced as follows.  

The FastICA is based on a fixed-point iteration scheme to find a direction, i.e. a 

unit vector W such that the projection WTX maximizes nongaussianity. The algorithm 

is as follows, given by Eq.3.4-3.6. 

Z QX=                                     (Eq.3.4) 
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'
1( ) ( )T T

LxW Zg Z W Wg W Z O+ ← −                    (Eq.3.5) 

W W W+ + +←                               (Eq.3.6) 

where X is centered and whitened to simplify the computation. Q is unitary matrix, 

E(ZZT)=I is satisfied, where E is the mathematical expectation, g is the non-linear 

contrast function (namely objective function), Vector OLx1 has all values of one. And 

in Eq.3.6, the normalization has been added to improve the stability. g’ denotes the 

mathematical derivative. 

The value of W iterate until it converges. Namely, the old and new values of W 

point in the same direction, which the contrast function reaches its maxima. Thus the 

nongaussianity is maximized, and S is solved.  

Indeterminacy of the Independent Components. 

Due to the shortage of the knowledge of the source signal and the transmission of 

the mixed signal, there are two indeterminacies of the separation algorithms inherent 

to all the solutions, as mentioned in [118]. 

(1)The order of the separated signal is undetermined.  

Suppose B is a permutation matrix, then it holds 
1X AB BS−=                                     (Eq.3.7) 

where BS is the separated signal, AB-1 is the mixing matrix. It is obvious that BS may 

still equals to S only differs with the order.  

(2) The amplitude and the phase of the separated signal are undetermined.  

This means the separated source signal may have different amplitude with the 

real source signal. Suppose that bj is a non-zero constant, it satisfies 

1

1( )( )
N

j j j
j j

X a b S
b=

= ∑
                                  

(Eq.3.8)
 

where bjSj is one of the separated signal. bj is a scale for the separated signal. It 

shows that the separated signal may have amplitude as bjSj , which is different from 
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the amplitude of the real source Sj . Since that bj can be negative, the phase of the 

separated signal also can not be determined. 
 

3.2  Proposed Source Recovery Algorithm 

 

The Source Recovery (SR) algorithm is proposed to reduce the simultaneous 

noise, and it is introduced in detail.  

The problem of simultaneous noise fits well with the ICA model. EMA is 

conducted when the details of encryption module is unknown. One can only measure 

the leaked mixed signals. The source encryption signals are independent, since the 

algorithms of different ciphers differ and their power signatures vary (the switching 

activities are different even if the secret key is the same).  

More restrictions are needed in order to meet the requirements of ICA and to solve 

simultaneous noise. The restrictions are: (1) The encryption for one class of cipher is 

interested, the signals from other modules act as noise signal. (2) Only the mixed 

signal can be collected (The interested signal and noise signal can not be collected 

separately). (3) The implementations of the ciphers are in different cycles (the 

interested signal and the noise signal have different number of peaks in the collected 

signals). 

In this case, the classical ICA algorithms can be adopted to separate the noise 

signal from the collected mixed signal as the first step. However, because there are 

two indeterminacy of the separated signal as mentioned in subsection 3.1.3, the 

separated signal can not be simply used for EMA (As the success of EMA depends on 

the statistics of a large number of signal traces, which is sensitive to the variations of 

signal amplitudes). More processing techniques are proposed to determine the 

interested signal and recover the amplitudes. They are described as SR algorithm in 

detail to reduce the simultaneous noise for EMA.   
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3.2.1  Overview of the Algorithm 

The signal model for the proposed algorithms is similar to the classical ICA 

model, as shown in Eq.3.3. It is assumed that the measured mixed signal X= (X1, 

X2), contains two different encryption sources, S1 and S2. One of it is correlated 

with the Hamming Distance (HD) of interested cipher, and the other is 

uncorrelated to this HD. In addition, the number of rounds for the two source 

ciphers are Ns1 and Ns2, and Ns1 < Ns2. The number of sampling point in each 

round is L, thus the sampling lengths for them are Ns1 L and Ns2 L respectively, 

shown in Fig.3.4.  

Ns2 L
 Ns1  L 

 

(a) Mixed encryption signal X1 

 N1 L

 N2 LNs2 L

 

(b) Separated encryption signal S1 

Fig.3.4 Illustration of the mixed encryption signal and separated encryption signal 

In order to obtain the real source signal Sreal1 and Sreal2 from two mixed 

samples X1 and X2, the proposed SR algorithm includes the following three steps: 

(1) Source separation 

(2) Correlation judgment 
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(3) Amplitude recovery 

The step (1) takes advantage of the classical FastICA to obtain the raw 

separated signals S1 and S2 from the 2 mixed samples X1 and X2. It is assumed 

that the signal is correctly separated but the order of S1 and S2 are not determined, 

and the real amplitudes of them are mismatched. Then step (2) determines the 

interested signal, namely to determine the order of the separated signal. For EMA, 

the interested signal is the one correlated to the HD of interested cipher, since the 

number of encryption rounds of different cipher is different because of the cipher 

structure. Then by judging the number of peaks of the separated signals, the 

correlated source can be identified. Finally step (3) computes the amplitude of 

the real source signal for the interested cipher. The flow chart of the algorithm is 

shown in Fig.3.5. 

Signal 
Alignment

Ratio 
Extraction

Scale 
Recovery

Signal 
PartitionFastICA

Peak 
Counting

ACF

2.Correlation 
Judgment

3. Amplitude 
Recovery

1. Source 
Separation

 

Fig.3.5 Flow chart of SR algorithm 

The reasons for adopting FastICA are explained. Among the algorithms for 

BSS problem, there are low-computational algorithms, AMUSE and GED require 

that the source signals completely uncorrelated, namely, the correlated matrix for 

the source signal should be strictly diagonal matrix, because these algorithms 

obtain the separated source by decomposing the eigenvalue of the mixed matrix. 
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This requirement is seldom satisfied for the mixed encryption signals since they 

may slightly correlated due to the clock synchronization in practical cases. For 

the SOBI algorithm, it requires the source signal is non-whitten as it utilizes the 

nonzero-lag correlated function. And the gradient-based algorithm demands the 

source signal is non-stationary. Due to the above limitations, these algorithms are 

not suitable for separating the mixed encryption signals.  

On the other hand, the algorithms, such as JADE[114], EASI[115], and 

FastICA [91] are based on high-order (larger than second-order)statistics of the 

mixed signals without the requirements of non-whittening or non-stationary. And 

another advantage of these algorithms is that they are immune to Gaussian noise 

in the mixed signal, as the high-order of the Gaussian noise is zero. Among these 

algorithms, JADE and EASI need very complex matrix or tensorial operations. 

[116,117] are based on stochastic gradient methods , which has slow convergence 

and the convergence depends on the correct choice of the learning rate 

parameters. On the contrary, FastICA [91] has a fast convergence, which means 

it finds the separated signal in several iterations. It has been one of the most 

popular algorithms. This is suitable for solving the mixed encryption signals 

which always need thousands of separations of mixed signals with different 

plaintexts. 

 
3.2.2  Step 2 of Source Recovery Algorithm 

 

The step 2 of SR algorithm is Correlation Judgment, which includes (1) ACF 

(Auto-Correlation function), (2) Peak Counting. ACF is to enhance the peak feature of 

different ciphers, and then the Peak Counting differentiates the separated signals. 

(1) ACF 

ACF measures the similarity of one sequence (A signal is expressed as one 

sequence). For the signal X , its ACF is defined as  
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− ∑

                           (Eq.3.9) 

where m = 0, 1, 2,… , (N-1). m denotes an integer offset. N is the length of signal X, i 

is the index for the sampling point, and T denotes the vector transpose of X.  

From the properties of ACF, it is known that the ACF of a periodic signal is still 

periodic, and the length of the periodicity remains the same with that of the signal. 

Another property is that the superposition of uncorrelated noise. It states the ACF of 

one signal contains uncorrelated noise is composed of the individual ACF’s of both 

the signal and noise. And this property is often used to detect signal from noise. 

Therefore, ACF is used to enhance the peak feature of different ciphers with noise. 

(2) Peak Counting 

Since the number of peaks of different ciphers varies, the Peak Counting follows 

the ACF of the signals can differentiate the signals, shown as follows. 

Peak Counting (ACF(S1))  
   For i = 1 to N 
   If ACF(S1(i)) > Th, Num ++; 
   End 

where Th is the threshold of amplitude of the signal. This parameter depends on the 

SNR of the ACF resulted signal. In experience, k AVR(ACF(S1)), AVR denotes the 

average value, and k = 0.1 for the low-noise ACF resulted signal.  Num is the 

number of peaks detected from the signal S1.  

Then after the Peak Counting, the interested signal is identified, since the number 

of rounds of the interested cipher is known. Here suppose S1 is the interested signal, 

which has the correlated power signature and it will be further processed. 

 
3.2.3  Step 3 of Source Recovery Algorithm 

 

The step 3 of SR algorithm is Amplitude Recovery. Its goal is to recover the 

amplitude of the real source signal. And it includes the (1) Signal Alignment, (2) 
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Signal Partition, (3) Ratio Extraction, and (4) Scale Recovery. They are explained in 

detail as follows. 

(1) Signal Alignment 

The cross-correlation function is proposed to align the signal. It measures the 

similarity between two signals. It can identify the signal offset between two similar 

signals. The cross-correlation function between two signals X and Y is defined as  

*(( , ) )τ τ+= ∑ ii i
i

Cross X Y X Y
                             (Eq.3.10)  

where X* denotes the conjugate transpose of X, which is defined by taking the vector 

transpose and then taking the complex conjugate of X (for an real-valued signal, its 

complex conjugate is itself ). And i is the index for the sampling point, τ denotes an 

integer offset. A peak value of this function means signal Y is most similar to X at an 

offset of τ.  

Cross(X1, S1) is computed. With the resulted offset, the signal S1 and X1 are 

aligned to each other.  

(2)Signal Partition  

Because X1 is sampled in the strict clock cycle when the ciphers run, it has near 

periodicity. It can be partitioned into two segments X1_Fr and X1_Bc according to the 

length of the two ciphers, expressed by 

[ ]1 1 1 1 1_ (1) (2) ... ( )sX Fr X X X N L= i                              (Eq.3.11) 

[ ]1 1 1 1 1 1 2_ ( 1) ( 2) ... ( )s s sX Bc X N L X N L X N L= + +i i i                    (Eq.3.12) 

Similarly, S1 is partitioned into 2 segments S1_Fr and S1_Bc, given by 

[ ]1 1 1 1 1_ (1) (2) ... ( )sS Fr S S S N L= i                                (Eq.3.13) 

[ ]1 1 1 1 1 1 2_ ( 1) ( 2) ... ( )s s sS Bc S N L S N L S N L= + +i i i                  (Eq.3.14) 

(3) Ratio Extraction 

Then the quotients of the uncorrelated parts of signal X1 and S1 is obtained in 

order to compute the ratios between them, shown as follows. 

1 1_ _R X Bc S Bc=                                          (Eq.3.15) 
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The average scale is the mean value of these ratios, computed by 

2 1

12 1

1 ( )
( )

s sN L N L

is s

R R i
N L N L

−

=

=
− ∑

i i

i i                                    (Eq.3.16) 

(4) Scale Recovery 

Finally the real source signal Sreal1 is recovered by this average scale, given by 

1 1realS S R= i
                                                (Eq.3.17) 

It is noted that the discussion of the algorithm is limited to the 2 classes of 

sources. It can be extended to more classes of sources. The interested source can be 

processed as that for S1 in the above SR algorithm. However, most of the applications 

involve only 2 classes of sources for one LSI in practice, as the number of sources 

increase, the power consumption of the LSI also increases dramatically.   
 

3.3  Experimental Results 

 

In the following experiments, SR algorithm is applied to the mixed signal to 

separate the most uncorrelated source of encryption. And it is compared with 

bandpass filtering. 
 

3.3.1  Two Simultaneous Encryption Sources 

 

We set the bits in the interface circuits through computer. The AES0 and 

Camellia on the LSI execute simultaneously. Two mixed signals which are shown 

in Fig.3.6 (a) (b), with different plaintext and the same key are input to the FastICA 

algorithm. This leads to two separated signals: one is AES0 signal, and the other is 

Camellia signal. They are shown by Fig.3.6 (d) (f) respectively. Then the AES0 

and Camellia executes individually. These are supposed to be the source signals, 

which are plotted in Fig.3.6 (c) (e) respectively. 

In order to evaluate the effectiveness of the separation, we compute the 

correlation coefficient between the resulted signals and the source signals. The 
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correlation coefficients are listed in Table 3.1. The correlation of resulted AES0 

and source AES0 is 0.8791, which is much greater than the correlation between 

resulted AES0 and source Camellia: 0.0236. This is the same case for the resulted 

Camellia. The strong correlations indicate that the separation is successful. 
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Fig.3.6 The signals of two encryption source: AES0 and Camellia 

Table 3.1 Correlation coefficients between the source signal and resulted signal  

 S.AES0 S.Camellia

Re.AES0 0.8791 0.0236 
Re.Camellia 0.0207 0.8904 

(“S.”denotes“source”and“Re.”denotes “resulted”.) 

Fig.3.7 shows the 2 mixed signals processed with bandpass filtering, 

respectively. As suggested in [90], the pass band is [0Hz, 40MHz]. This 

processing technique only smoothes the signals to some extent. A close-up of the 

processed signal is shown in Fig.3.8. Although the bandpass filtering suppresses 

the frequency components upon 40MHz, the filtering does not separate the mixed 

signals, since AES0 and Camellia work at the same frequency. 

During the execution of AES0 and Camellia, 10000 EM signals each with 

sampling length 2000, are recorded with oscilloscope. Then every two signals are 

processed with SR algorithm, it yields 10000x2 separated signals in total, which 

has the same number of AES signals and Camellia signals. The 10000 resulted 

Camellia signals are subtracted from the mixed signals. EMA is performed with 
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the differential signals. In order to compare it with the bandpass filtering, the 

10000 mixed signals are processed with filtering.  
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Fig.3.7 Mixed signal processed with bandpass filtering 
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Fig.3.8 A close-up of filtering (a) EM signal without filtering (b) EM signal with 
filtering 
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Fig.3.9 Success rates of unprocessed signal (two sources), filtered signal, and SR 
algorithm resulted signal 
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The success rates of EMA with unprocessed signals, filtering, and SR 

algorithm are shown in Fig.3.9, respectively. All the key bytes are revealed within 

4926 signals by SR algorithm, while 7482 signals are required for filtering. They 

are faster than the unprocessed signals, which is with 8133. 
 

3.3.2  Three Simultaneous Encryption Sources 

 

The situation becomes complex when 3 encryption sources are mixed. The 

encryption signals are recorded when AES1, AES2 and Camellia run 

simultaneously. Similar to the previous process, we use 3 mixed signals and 

attempt to obtain the 3 separated signals. However, the resulted signals are not 

clearly separated. Only one of the resulted signals has a greater correlation with the 

source Camellia. This indicates the Camellia has been separated successfully. 

The explanations for these results are: because any one of the AES executions 

(AESi, i=0-5) on LSI has a linear relation with Hamming Distance, the relation 

between different AES is not independent. The independence assumption of ICA is 

not satisfied. Thus the separation of different AES fails. The resulted mixed signal, 

namely the mixture of AES1 and AES2, is shown in Fig.3.10 (c). The differential 

signal is shown in Fig.3.10 (b).Then EMA is conducted with the differential 

signal.  

The success rates are compared with the case of unprocessed signals, and 

filtered signals, shown in Fig.3.11, respectively. More than 10000 signals are 

required to reveal all the key bytes for the unprocessed signals. The filtering costs 

8793 signals, while only 5371 signals are needed for SR algorithm. The success 

rate is greatly enhanced. It also suggests that the mixed execution of AES0 and 

AES1 do not have much influence for the result of EMA. 
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Fig.3.11 Success rates of unprocessed signal (three sources), filtered signal, and SR 
algorithm resulted signal 

Table 3.2 The number of needed signals and correlations for each mixed encryption 

Mixed type Unprocessed SR algorithm Filtering 
No. Corr. No. Corr. Rate No. Corr. Rate 

AES1,2, C  Fails 0.0422 5,371 0.0996 46.3% 8793 0.0514 12.1%
AES1,3, C  7,012 0.0627 4,126 0.1098 41.1% 6025 0.0682 14.1%
AES1,4, C 6,411 0.0703 3,679 0.1327 42.6% 5517 0.0835 13.9%
AES2,3, C Fails 0.0419 5,301 0.0921 47.0% 9102 0.0501 8.9 % 
AES2,4, C 9,835 0.0580 5,527 0.0908 43.8% 8359 0.0589 15.0%
AES3,4, C 7,164 0.0695 4,175 0.1162 41.7% 6120 0.0674 14.6%
AES1-4, C 8,291 0.0613 4,327 0.1204 47.8% 7038 0.0636 15.1%
*No.: denotes the number of needed signals. 
*Corr.: the maximal correlation coefficients for key revealing. 
* AES1,2, C: denotes the mixed type of “AES1, AES2 and Camellia”. 
*Fails: the keys can not be revealed within 10000 signals. 
*Reduction rate: the number of needed signals compared with unprocessed signal, and “Fails” 
is computed as 10000 for the rate. 
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This inference has been further confirmed in the mixed executions of AES1, 

AES3 and Camellia, AES1, AES4 and Camellia, AES2, AES3 and Camellia etc. 

The number of signals to reveal all the key bytes and the maximal correlation 

coefficient are listed in Table 3.2. After the application of SR algorithm, The 

number of signals has been reduced by 41.1% at least, while the Filtering-based 

EMA is only 15.1% at most. This result indicates the effectiveness of SR 

algorithm. 

  
3.3.3  More Than Three Simultaneous Encryption Sources 

From the hint of Experiment2, we only need to separate Camellia from the 

mixed signals of multiple modules of AES executions and Camellia. Five signals, 

namely AES0-AES4 and Camellia are processed by SR algorithm. We perform 

EMA with the resulted signal. The number of signals used to reveal all the key 

bytes has been reduced 47.8%, which is much better than the filtering-based EMA 

listed in the last line of Table 3.2. 

All the above three groups of experiments indicate the successful application 

of the proposed SR algorithm to EMA. 

 
3.4  Summary 

The main contribution of this chapter is that we propose SR algorithm and 

successfully apply it to reduce the simultaneous noise for EMA. This is confirmed 

by the experiments of EMA against AES and Camellia implementation on ASIC. 

Additionally, the proposed algorithm is compared with bandpass filtering. It 

indicates that the proposed algorithm can reduce the number of EM traces as 

much as 47.8%, which is much better than bandpass filtering. Several conclusions 

are elicited. Bandpass filtering is a general processing technique, which can 

attenuate the inference from multiple frequency components, but is not suitable 

for simultaneous noise. By contrast, SR algorithm is particularly effective to 
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separate uncorrelated signals, which is fit for the mixed encryption 

implementations. With SR algorithm, the countermeasure of simultaneous noise is 

greatly weakened. The mixed execution of different encryption can be bypassed 

with signal processing techniques. These results may also provide enlightment for 

the design of countermeasures.  

In the future, more advanced signal processing techniques will be investigated 

and studied. They will be applied to the evaluation of other countermeasures in 

order to improve the security of cryptographic devices. 
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4  The Switching Glitch Leakage Model for EMA and PA 

A new switching glitch model is proposed for PA and EMA. Section 4.1 

describes the background and related works. Section 4.2 presents the proposed 

leakage model in detail. Section 4.3 shows the application of the proposed model 

in PA and EMA. Section 4.4 summarizes this chapter. 

By improving the leakage models, it is possible to enhance both PA and EMA. 

As mentioned by many research works [20], EMA uses the same power models as 

PA. The measurement from EM field generated by the device is indirect method 

for power consumption, which is presented in the IEC standard 61967[93].  
 

4.1  Background and Related Works 

 

The related works on leakage model are briefly introduced. The power 

consumption of CMOS circuits which is the basis of modeling power 

consumption of cryptographic devices is analyzed.  
 

4.1.1  Leakage Models for EMA and PA 

 

Leakage models are used to establish a hypothesized power consumption of 

attacked cryptographic device for PA. 

Several works have been done on it. Aimed at improving Hamming Weight (HW) 

leakage model [3] in PA, Brier et al. [10] proposed Hamming Distance (HD)-based 

correlation power analysis (CPA) attack which utilized the correlation factor between 

HD and measured power to reveal keys in 2004.  

For a n-bit processor, Hamming Weight (HW) expresses the number of bits that 

are set in the processed data value X, given by Eq.4.1, where ix is the value of (i+1)th 

bit of the processing data value X. 

1

0
( ) n

ii
HW X x−

=
= ∑  , ix ∈ {0,1}                         (Eq.4.1)



                  4 The Switching Glitch Leakage Model for EMA and PA          

- 80 - 
 

In HW model, it is assumed that the power consumption Y is proportional to 

Hamming Weight, given by Eq.4.2, where a is a scalar gain, b denotes the offsets, 

time dependent components and noise. 

( )Y aHW X b= +    (Eq.4.2)

Hamming Distance is computed according to Eq.4.3, where X is an intermediate 

value during a target implementation, R is a reference state of the running algorithm. 

, ( )X RHD HW R X= ⊕   (Eq.4.3)

It assumes that power consumption Y is proportional to the transitions of the 

intermediate values not the value being processed, given by Eq.4.4. 

,X RY aHD b= +  (Eq.4.4)

Since there is a linear relationship between the real leakage, namely the measured 

power consumption P of the cryptographic device and the assumed power model 

Y[10].The more accurate the hypothesized power consumption Y, the more legible the 

relation with the measured power consumption appears.  

Thereby several other models contribute to more accurate description of the 

power model. 

The Switching Distance model was suggested by Peeters et al. [58] and they 

mounted the simulated attacks on an 8-bit PIC16F877 microprocessor against 

S-box output in 2007. The transition activities of the CMOS circuits, namely from 

0 to 1 and from 1 to 0, were differentiated by defining a normalized parameter φ. 

The advantage of this model is that it is more precise than HD model. The 

performance of PA and EMA may be both improved. However, the problem is 

that the method of determining the value of φ is left open. Probably one could not 

know the exact value of φ without pre-measurement, and this value might varies 

with the attacked devices.  

A so-called Zero-Value model [94] was proposed, which is based on the 

observation that the input value zero of S-box for a cipher implementation 

consumes significantly less power than in case of all other input values. Thus the 

power consumption for the data value zero is set lower than the power 
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consumption for all other values. However, this model is only effective for the 

S-box implemented with the composite field arithmetic, because essentially all 

multiplications in S-box are multiplications by zero in such case. 

Therefore it is a trade-off. A more accurate leakage model is possible at the 

cost of the knowledge of many details of the attacked devices. For instance, if the 

transistor netlist of the attacked device is known, then the difference equations 

might be available to characterize the power consumption. In this work, we 

assume that the attackers do not have knowledge about the details of the 

cryptographic devices. 
 

4.1.2  Power Consumption of CMOS Circuit 

 

To simplify the problem, the following conditions are satisfied: the 

cryptographic device is built of CMOS logic gates and edge-triggered flip-flops, 

and is synchronous. The power supply and ground voltage are fixed on the chip. 

The simplified structure of a typical CMOS circuit is shown in Fig.4.1. 

 

Fig.4.1 Simplified structure of CMOS circuit 

The power consumption of CMOS circuits includes two parts: dynamic power 

and static power [95]. Static power is consumed when there are no transition 

activities. Dynamic power consumption occurs if the sequential components 

or/and combinational components transits. This is the dominant part of the 

dynamic power. Besides, there is a short-circuit power consumption, which is 
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caused by signal transition at a gate output when the pull-up and pull-down 

transistors conducts simultaneously for a short period of time. A summarization 

is shown in Fig.4.2. 

 

Fig.4.2 A summarization of power consumption of CMOS circuits 

Table 4.1 Power consumptions of CMOS circuits and their computations 

Dynamic  

Switching 
activity 

Flip-flop  

Combinational

components 

Normal 
Transition

2
1

0.5 ( )n
dd ii xi

V f C P x
=∑

glitch 2
dd av glchV fC N  

Short-circuit 
0

1 ( )
t

s cP t d t
t ∫  

Static Vdd Ileak   

 

Glitch or hazard is the temporary states of the output of combinational 

components because of the different arrival times of the input signals. Glitch 

power is a significant portion of the dynamic power consumption. On account of 

the indeterminate property, a probabilistic modeling is adopted to characterize the 

glitch power Pglch. The power dissipation due to input glitches [102,103] is shown 

by 

Pglch   
 
=

 

2
dd av glchV fC N                    (Eq.4.5) 

where Cav is the average capacitance at logic gates. Nglch expresses the number of 

generated glitches within a circuit. 

The total power consumption of a CMOS circuit is summarized in Table 4.1, 

where f denotes the clock frequency. Cx is the total capacitance at one flip-flop 

output. P(x) is the transition probabilities. Pnorm expresses the power consumption 

of logic gates when they perform normal signal transitions to finish required logic 

  20.5 ( )dd xV fC P x
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functions. Cxi denotes the total capacitance at one gate. P(xi) is the transition 

probabilities(Transition probability for a logic gate or flip-flop X:  The average 

fraction of clock cycles in which the value of X at the end of the cycle is different 

from its initial value.). n is the total number of logic gates in the circuit. Vdd is the 

voltage of the power supply. Ileak is the leakage current. Psc(t) is the instantaneous 

short-circuit power consumed by one flip-flop or logic gate. 
 

4.2  Proposed Leakage Model 

 

Our work follows the Hamming Distance model whereas considering a more 

accurate description to the data dependent power dissipation.  
 

4.2.1  Switching Factor and Glitch Factor 

 

In power analysis, the data dependent and operation dependent power 

consumption are of the main interest of research. However, in general cases, 

operation dependent power consumption are more relied on specific 

cryptographic devices and it is totally black box for attackers, while the 

short-circuit and static power are negligible [23]. When the logic states change 

on the arrival of clock cycle, the intermediate value or cipher is stored in 

flip-flops, and the combinational components perform switching activities. 

During this period, glitches take place at some logic gates. The dissipated power 

which is related to data Pdata is the sum of the power consumed by flip-flops and 

combinational components, given by 

              Pdata= Pflip +Pnorm+ Pglch                      (Eq.4.6) 

For an encryption circuit, it is costly to compute the exact value of each part 

of Pdata by the equation in 1. But quantitatively, from the equations in Table 4.1, 

we can conclude that the power consumption of flip-flops and combinational 

components is in a close magnitude. In other words, a number of flip-flops could 
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consume similar power with the normal combinational components except the 

little difference of load capacitances.  

So we simplify this proportional relation with two factors: switching factor α 

and glitch factor β to summarize the corresponding power, shown in Table 4.2. 

Table 4.2 Switching factor and glitch factor 

Switching 

power 

1 N01 

α N10 

Glitch power β 

N01 and N10 are the number of switches performed by the circuit from 0 to 1 

and 1 to 0 respectively. α is switching factor, it characterizes the difference of 

such transitions. The existence of switching factor is based on the fact that these 

two kinds of transitions consume different power in normal switching activities. 

While glitch factor β describes the glitch power which is circuit and algorithm 

specific. For different chips and encryption data paths, the glitch factors vary a 

lot. 
 

4.2.2  The New Leakage Model 

 

Our work follows the Hamming Distance model whereas considering a more 

accurate description to the data dependent power dissipation. Since there is a linear 

relationship between the power consumption Y of the cryptographic device and the 

assumed power consumption E, given by Eq.4.7-Eq.4.9.  

Y ~ E                                    (Eq.4.7) 
E = Esf + β                              (Eq.4.8) 

               Esf = N01+ α N10                        (Eq.4.9) 

where E is the estimated energy of encryption, Esf denotes the power of normal 

switching activities of combinational gates and flip-flops. The more accurate the 

assumed power, the more legible this relation appears.  

Then we show how to estimate the switching factor and glitch factor. 



                  4 The Switching Glitch Leakage Model for EMA and PA          

- 85 - 
 

In order to find the optimal switching factor, the “accumulation factor” Sacu is 

defined and given by Eq. 4.15 to quantitatively explore which switching factor is 

better for PA or EMA,  

              Sacu(α) = 
1
( )L

HDi SFii
X X

=
−∑                        (Eq.4.10) 

where α is switching factor, for the ith key byte, XHDi denotes the number of 

power traces required by HD, and XSFi denotes the number of power traces 

required by switching factor α. 

This definition means that for switching factor α, the accumulative numbers of 

power traces of all the L bytes (eg. For AES encryption, L=16) is the sum of the 

differences of each byte. It expresses the improved accumulative number of power 

traces compared with HD. When Sacu is positive, that means the number of power 

traces is decreased. While the negative Sacu stands for an increase of power traces. 

For HD itself, this value is 0. By selecting the largest Sacu, the optimal switching 

factor is determined. 

In order to estimate glitch factor β , the division is computed as  

Esf / β = Pnorm / Pglch =                            (Eq.4.11) 

Suppose that the total capacitance at each gate Cxi equals to Cav, and then the 

expression is simplified as  

            Esf / β  =                                  (Eq.4.12) 

For an encryption circuit, the value of P(xi) depends on the input data. Furthermore, 

if we know the relation between the numbers of generated glitches Nglch and the logic 

gates n, then β can be expressed by some expression of Esf. In fact, because of the 

complexity of the design technologies and detailed processing techniques of CMOS 

circuits, it seems that this relation is unpredictable without CAD simulation tool. We 

will make a further reckon and verify it through experiments. 

From Eq.4.12, β can be expressed by  

 β = E sf Nglch / 1
0.5 ( )n

ii
P x

=∑                       (Eq.4.13) 

  2 2
1

0.5 ( )n
dd i dd av glchi xi

V f C P x V fC N
=∑

 
1

0.5 ( )n
i glchi

P x N
=∑
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It is always assumed that the plaintext is randomized when power analysis is 

performed, the transition probability of the logic gates can be estimated with value 0.5. 

Then β is derived as  

 β = Esf Nglch / 0.25 Ngats                      (Eq.4.14) 

where Ngats denotes the number of logic gates in encryption circuit. For one byte input 

data, with switching factor α = 1.0, which is the HD model, Esf is in 10 magnitude. 

Suppose that the average generation rate of glitches at the logic gates is 0.1, and then 

β is calculated from Eq.4.14 at 1.0 magnitude. 

In practice, it is possible to estimate the optimal value for α and β by above 

method to make them device specific, and thus more accurate. This is further 

explained by the experiments.  

4.3  Side Channel Analysis with SG Model 
 

In this section, the proposed leakage model is verified by both PA and EMA on 

AES implementations.  
 

4.3.1  PA with SG Model 

 

Firstly the optimal value of switching factor and glitch factor are estimated by 

power analysis on one AISC, named as ICa. Then these factors are applied to ICb, 

which is produced with the same technology. The cryptographic core uses 0.13μm 

TSMC standard library of CMOS process technology. Throughout the experiments, 

the initial encryption 16-byte keys are set as hexadecimal numbers: 12 34 56 78 90 

AB CD EF 12 34 56 78 90 AB CD EF. The final round encryption keys are: C3 BE 

32 F4 60 A9 B3 4E F7 43 61 57 F2 B9 19 D8. 

 

 

 



                  4 The Switching Glitch Leakage Model for EMA and PA          

- 87 - 
 

Table 4.3 The number of power traces used to recover all the 16-byte keys 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Sacu

SF3.5 42 62 34 16 29 74 30 37 46 36 39 48 100 22 63 63 -132

SF3.0 42 61 34 16 29 74 30 35 41 35 28 49 90 21 51 50 -75 

SF2.5 42 57 16 16 29 74 31 32 38 34 29 48 90 21 51 54 -53 

SF2.0 42 54 34 11 31 55 32 35 37 33 22 48 41 21 50 50 13 

SF1.8 42 52 17 11 31 55 32 35 38 34 22 48 41 22 50 50 29 

SF1.7 43 51 15 11 29 58 36 35 33 34 21 51 40 21 50 48 35 

SF1.6 35 51 16 15 31 56 40 24 32 32 28 48 41 21 50 47 42 

SF1.5 35 51 16 15 31 56 40 24 28 32 28 47 38 20 50 47 51 

SF1.3 35 54 16 15 28 75 55 31 31 29 38 58 38 15 49 28 14 

SF1.1 35 65 16 15 46 76 55 21 26 35 23 64 37 15 49 28 3 

SF0.9 38 70 15 20 46 93 67 21 38 39 31 66 40 25 50 28 -72 

SF0.8 35 70 15 20 46 93 67 21 28 41 34 66 43 23 50 26 -66 

HD 35 65 16 15 46 76 55 24 26 35 23 64 37 15 49 28 0 
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       Fig.4.3 Sacu of switching factors for AES1 

Table 4.3 shows Sacu and the number of power traces used to recover all the 

16-byte (128-bit) keys of AES when the value of α is set to range from 0.8 to 3.5. 

Some identical lines are omitted. For example, when SF is 1.4, the number of power 

traces is the same as SF1.3. Note that, all the numbers are in unit 100. For instance, 
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when switching factor is 3.5, the first bytes of AES keys can be recovered at 4200 

power traces. 

Fig.4.3 gives a more clear vision of Sacu at different switching factors. We can see 

that the Sacu is the largest when switching factor is 1.5. Therefore, for AES encryption 

on ICa, when switching factor is set to 1.5, the 16-byte keys can be recovered with 

least power traces. Similarly, the same experiments are repeated when AES2, AES3 

and AES4 run. The Sacu for AES2, AES3 and AES4 are shown in Fig.4.4. The 

switching factors for them are 1.6, 1.2, and 1.4, respectively. 
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Fig.4.4 Sacu of switching factors for power traces 

Fig.4.5 shows the glitch factor for power traces from AES1, AES2, AES3, and 

AES4. In order to determine glitch factor for each of AES, PA is conducted with 

different values, and the number of traces is compared with HD model. The glitch 

factor which has the largest reduction rate is the optimal one. For AES1, we find that 
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1.0E-1 is the optimal value rather than the theoretical value 1.0. That means when β = 

0.1 the number of power traces is least. Therefore, the glitch factors for AES2, AES3, 

and AES4 are 0.09, 0.09, and 0.20 respectively.  
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Fig.4.5 Glitch factor for power traces (1)AES1 (2)AES2 (3)AES3 (4)AES4 

Table 4.4 Switching factor and glitch factor of PA with SG model on ICa 

 
Name 

Switching 
factor 

Glitch 
factor 

SG 
model 

Reduction 
rate (%)* 

AES1 1.5 0.10 5400 28.9 
AES2 1.6 0.09 2900 17.1 
AES3 1.2 0.09 2800 12.5 
AES4 1.4 0.20 3800 22.4 

(* Reduction rate : compared with HD model.) 

 

Table 4.4 lists the switching factor, glitch factor and the least number of power 

traces used to recover 16-byte keys by SG model as well as the reduction rate for 

power traces for each of the AES respectively. For example, the first line of this table 

means: For AES1 implementation on ICa, the switching factor is 1.5, glitch factor is 

0.10. The SG-based CPA recovers 16-byte keys with 5400 power traces. And the 

power traces have been reduced by 28.9% compared with that with HD model. 
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Table 4.5 PA with HD model[10], SD model[58] and SG model on ICb 

 
Name 

HD 
model[10] 

SD 
model[58]

Glitch 
factor 

SG 
model 

Reduction 
rate (%)* 

AES1 6100 5800 
0.05 5000 18.0 
0.10 4600 24.5 
1.00 5100 16.3 

AES2 3000 2700 
0.05 2700 10.0 
0.09 2600 14.4 
1.00 2900 3.3 

AES3 2300 2300 
0.05 2200 4.3 
0.09 2000 13.0 
1.00 2200 4.3 

AES4 3400 3300 
0.05 2900 14.7 
0.20 2700 20.6 
1.00 3000 11.8 

(* Reduction rate : compared with HD model.) 

The switching factors and glitch factors trained from ICa are further verified on 

ICb. The results are also compared with HD model [10], SD model [58]-based PA, 

and listed in Table 4.5. According to [58], the value of φ is 0.17. Namely the 

transition from 0 to 1 is denoted by 1, and from 1 to 0 is denoted by 0.63 (1-0.17). 

Compared with HD model, the number of power traces is slightly reduced by SD 

model for AES1, AES2 and AES4. It keeps the same for AES3. The reason for the 

very limited reduction is likely that the value of φ is optimal for microprocessor 

PIC16F877 but not for SASEBO. For the SG model, different glitch factors are used 

for each AES implementation, the reduction rates for different glitch factors vary. The 

largest reduction rate 24.5% is achieved at glitch factor 1.0 for AES1. This shows that 

the SG model with glitch factors trained from ICa has highest reduction rate. Thus the 

result of SG model is best among the 3 models.  
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Fig.4.6 Success rates of PA against AES1on ICb 

The success rates are compared with HD model-based PA, and SD model-based 

PA against AES1 are illustrated in Fig.4.6. Success rates express the number of power 

traces when all the keys can be recovered. With HD model, 100% appears at 6100 

power traces, while for SD model, it cost 5800 power traces. But with SG model, 

100% appears at 4600 power traces. The power traces of recovering keys have been 

reduced by 24.5%. 

0   0.1 0.2 0.3 0.4 0.5 0.6
-1.5

-1.0

-0.5

0

0.5

1.0

1.5

Sampling time (us)

M
ea

su
re

d 
vo

lta
ge

 (v
ol

t)

x10-2

 

Fig.4.7 An EM trace 
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Fig.4.8 Sacu of switching factors for EM traces 
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Fig.4.9 Glitch factor for EM traces (1)AES1 (2)AES2 (3)AES3 (4)AES4 

 
4.3.2  EMA with SG Model 

 

The proposed SG model is verified by EMA experiments in this subsection. As it 

is mentioned by many research works, an effective way to find the best location 

performing EMA attack with less EM signals is to move the EM probe manually 

around radiation area. The location where EM signal has higher amplitude might 

succeed faster. It suggests the upper right corner of LSI has a larger EM leakage. An 

EM signal during AES1 runs is shown in Fig.4.7.  

The switching factors using EM traces for each of the AES on ICa are shown in 

Fig.4.8. The value of switching factor is determined by the largest Sacu. The glitch 

factors are calculated by EMA and shown in Fig.4.9.The switching factors and glitch 

factors for each AES implementation are listed in Table 4.6.  

Similarly, we perform EMA on ICb using different glitch factors for SG model 

and compare the results of PA with HD model[10], SD model[58]. The results are 

shown in Table 4.7. For the SD model, φ is 2.0. It shows that the number of EM 

traces is not reduced for AES2 and AES3, probably because this model deviates from 
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the real consumption for SASEBO. On the contrary, for SG model, the numbers of 

EM traces are reduced at different rates: the lowest is 8.7% for AES3, and the highest 

is 17.1% for AES1. Furthermore, it indicates that the least number of EM traces is 

achieved at the estimated glitch factor trained from ICa, which validated that the 

proposed model is more accurate than HD model [10] and SD model [58]. 

  Table 4.6 Switching factor and glitch factor of EMA with SG model on ICa 

 
Name 

Switching 
factor 

Glitch 
factor 

SG 
model 

Reduction 
rate (%)* 

AES1 1.3 0.08 4500 20.2 
AES2 1.4 0.09 2700 11.5 
AES3 1.1 0.11 2500 10.0 
AES4 1.2 0.12 3700 17.8 

(* Reduction rate : compared with HD model) 

Table 4.7 EMA with HD model[10], SD model[58] and SG model on ICb 

 
Name 

HD 
model[10] 

SD 
model[58]

Glitch 
factor 

SG 
model 

Reduction 
rate (%)* 

AES1 5000 4900 
0.01 4900 2.0 
0.08 4100 17.1 
1.00 4800 4.0 

AES2 2700 2800 
0.01 2700 0.0 
0.09 2400 10.2 
1.00 2600 3.7 

AES3 2400 2600 
0.01 2400 0.0 
0.11 2200 8.7 
1.00 2300 4.2 

AES4 3600 3500 
0.01 3600 0.0 
0.12 3200 12.0 
1.00 3500 2.8 

(* Reduction rate : compared with HD model) 
 

4.4  Summary 

 

In this chapter, a new power consumption model, namely Switching Glitch 

model, is proposed, which characterizes the power consumption of cryptographic 

devices more accurately. The distinguishing of two different dynamic switching 
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activities and the power consumption of glitches are both included. Compared 

with Hamming Distance model-based PA, it can reduce the number of power 

traces by as much as 24.5%, which also outperforms the Switching Distance 

model. The performance is also enhanced for EMA; the number of EM traces is 

reduced by as much as 17.1%. In addition, we also show how to estimate the 

switching factor and glitch factor, and they are experimentally represented from 

AES implementation on ASIC after theoretical derivations. Therefore, this model 

is appropriate for the evaluation of information leakage of implementations 

against both EMA and PA. 
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5  A Novel Leakage Localization Method for EMA 

A novel leakage localization method is proposed for the performance 

enhancement of EMA. Section 5.1 introduces the background and related works. 

Section 5.2 presents the proposed leakage localization method in detail. Section 

5.3 shows the application of the proposed method in EMA. Section 5.4 

summarizes this chapter. 
 

5.1  Background and Related Works 

 

The background and related works for the leakage localization are introduced 

in this section. 
 

5.1.1  DoM Test 

 

Suppose that at one scanning point, a leakage model is used. We adopt the widely 

admitted leakage model. It assumes that EM signal S(t) depends on a selection 

function H, which is an intermediate value of encryption, and related to plaintext and 

key[3], given by Eq.5.1, where t is sampling time, a represents a scalar gain, b 

denotes the offset, and time dependent components. 

( ) = +S t aH b                                         (Eq.5.1) 

Then a distinguisher is applied to test the dependence between S(t) and H. Our 

leakage indicator is from the distinguisher Difference of Means (DoM), which is 

briefly reviewed here. To determine whether one candidate key Kc is correct or not, 

DoM uses N random plaintexts Ci (i =1,2,…, N) which yield N sampling signals, S(t) 

= Si(t). The selection function H = H(Ci, β, Kc) partitions Si(t) into two sets: S1={Si(t) | 

H(Ci, β, Kc)=1 } and S0 ={Si(t) | H(Ci, β, Kc)=0 } under an examined bit β. For 

example, H is the Hamming weight of a single-bit output of SubBytes computation 

for AES, and H  {0,1}. β denotes one bit of s-box. Then DoM computes a differential ∈
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trace Dβ(t), which is the difference between the averaged S1 and S0, given by 

1 0
1 0

( ) ( )

1 1( ) ( ) ( )β
∈ ∈

= −∑ ∑
i i

i i
S t S S t S

D t S t S t
S S

                        (Eq.5.2) 

where | S1 | +| S0 | = N , and it is simplified as  

( ) [ ( ) | 1] [ ( ) | 0]β = Ε = − Ε =D t S t H S t H                        (Eq.5.3) 

Dβ(t) tends to 0 for wrong key guess because the partitioning is statistically random. 

Dβ(t) ≠ 0 for correct key and this results in a peak. The correct key is identified as the 

one that yields the highest peak in differential trace at some instant t = τ.  
 

5.1.2  Leakage Localization Methods 

 

Then for conducting EMA attacks, majority of the published works use probes 

of small size, in the millimeter range or even smaller. The benefit of this probe is 

that it distinguishes EM emissions from close locations, thus the noise caused by 

modules not related to cryptographic computation is attenuated. An example of a 

handmade probe described in literature was 3 mm long [20]. The commercially 

available tiny magnetic-field probes, which are designed for electromagnetic 

compatibility (EMC) analysis, such as the one mentioned in [96], were also used 

for EMA. 

In this case, a challenging issue is where the possible locations are before 

conducting EMA attacks. In general, an attacker lacks the knowledge of the exact 

locations from which EM signals are emitted by a cryptographic module or 

communication interface. He may open the package of cryptographic LSI to 

recognize its different modules with a microscope. Nevertheless this is a 

semi-invasive approach, which is destructive [97].  

Another way is to put the probe blindly, for example, far away from the 

cryptographic module, which leads to a very slow key detection or even failure. 

The drawback of this approach which is named “blind placement”, is that the 

leakage regions are not localized accurately. 
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Other approaches have been proposed. Quisquater and Samyde[98] exploited 

EM Cartography, which is an imaging technique, to observe the EM emissions of 

a smart card. Sauvage et al. [10] applied this technique to reveal the active 

regions of DES encryption modules on FPGA. In their work, 50 points x 50 

points on a region of 2.08 cm x 2 cm over the FPGA were scanned, and the 

maximum peak-to-peak amplitudes of EM signals in the time domain were 

extracted to acquire an EM map. Then the most radiating point was identified 

based on the EM map and used to perform EMA. This approach is named 

“peak-to-peak amplitude” in this paper. It is feasible and more accurate than 

blind placement. In fact, the EM image was achieved from a near-field scan using 

an EM probe of high spatial resolution over the surface of FPGA in their work. 

However, it is noted that the maximum peak-to-peak amplitude of EM signals 

after a subtraction computation between the active and idle phase of the DES 

module is utilized to draw the EM map, which is not an optimal indicator for 

revealing the locations of highest leakage and probably causes misjudgment, 

because the maximum peak-to-peak amplitude only represents the region where 

EM emissions are highest, but not necessarily the data-dependent EM signals, 

which are crucial for the success of EMA. Additionally, though the influence of 

surrounding noise might be reduced by the subtraction computation, numerous 

other data-independent EM signals, such as signals from communication 

interfaces, still exist and may prevent correct judgments of information leakage. 

Furthermore, when countermeasures are applied, the data dependence of 

encryption is concealed. The peak-to-peak amplitude of EM signals does not 

expose real leakage locations. 

5.2  Proposed Leakage Localization Method 

The proposed EMA includes two steps: near-field scan and leakage localization. In 

near-field scan, EM signals are acquired. In leakage localization, a leakage indicator 

is used to identify leakage locations. They are explained in detail in this section. 
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5.2.1  Near-field Scan for EMA 

 

Near-field scan is a technique that is used to specify the radiated source on LSIs or 

printed circuit boards (PCBs). It has been standardized as International 

Electro-technical Commission (IEC) 61967-3[17]. The near-field scanning system 

comprises a magnetic-field probe, a device under test (DUT), a sustentation and 

positioning instrument which is used to fix and move the probe over the DUT. 

Moreover, a spectrum analyzer or oscilloscope is required to receive the measured 

values from the magnetic-field probe. A preamplifier, which magnifies weak signals, 

is optional.  

A typical near-field scanning system is similar for EMA experiment shown in Fig. 

1.8. In the context of EMA, an exact computation for the strength of the measured EM 

field is not necessary because the voltage output from the probe is proportional to the 

EM field around the cryptographic LSI and it represents the activity of each 

encryption. In DEMA or CEMA, a differential voltage or correlation coefficient is 

sufficient to detect the correct key. In addition, although the quality of the obtained 

EM signals depends on the utilized probes, there is no standard for its size in the 

application to EMA.  

After setting up of a near-field scanning system, it is used to acquire EM signals 

over the surface of DUT when the encryption algorithm runs. Suppose that at each 

scanning point, N different random plaintexts are used, during each run i (i =1,2,…, 

N), an EM signal trace Wi(t) is recorded, which consists of encryption-related signals 

Si(t) and independent noise η, expressed by 

( ) ( ) η= +i iW t S t                                (Eq.5.4) 

where t is sampling time. In this paper, we assume that noise is well reduced by 

preprocessing techniques. 
 

5.2.2  The Equivalence of Instant Signal Variance 
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To localize hot spots of DUT, i.e., cryptographic LSI, the most accurate method is 

to perform EMA with signal traces at each scanning point. Then the locations where 

EMA succeeds faster are hot spots. However, the time computation for such an 

exhaustive method is quite large. Every key candidate must be examined to test the 

success of EMA at each location. Moreover, hot spots cannot be exposed unless EMA 

is conducted. To enable an accurate prediction of the hot spots and reduce the 

computation, we attempt to devise a leakage indicator, which is an equivalent metric 

for EMA to localize hot spots and avoid the computation of key searches. Signal 

variance is such a metric. The derivation and proposition are shown below. 

In fact, we do not compute Dβ(t) to localize hot spots at the scanning point, but 

attempt to look for a substitute. It is noted that the variance of EM signal S(t) is 

Var[S(t)], given by  
2[ ( )] [( ( ) [ ( )]) ]= Ε − ΕVar S t S t S t  

2[( [ ]) ]= Ε + − Ε +aH b aH b

 
2 [ ]= a Var H

                                  
(Eq.5.5)

 
The covariance of S(t) and H is expressed as

 [ ( ), ] [ , ]= +Cov S t H Cov aH b H   

[ , ] [ , ]= +Cov aH H Cov b H

 
[ ]= aVar H

                                   
(Eq.5.6) 

where Cov[b, H] = 0, since b and selection function H are independent. Then Eq. 5.5 

rewrites as 

           [ ( )] ( [ ]) [ ( ), ]= =Var S t a aVar H aCov S t H                        (Eq.5.7)  

The covariance of S(t) and H is calculated as 

[ ( ), ] [( ( ) [ ( )]) ( [ ])]= Ε − Ε ⋅ − ΕCov S t H S t S t H H  

[ ( ) ( [ ]) [ ( )] [ ( )] [ ]]= Ε ⋅ − Ε − Ε ⋅ + Ε ⋅ ΕS t H H S t H S t H  

[ ( ) ( [ ])] [ ( )] [ ] [ ( )] [ ]= Ε ⋅ − Ε − Ε ⋅ Ε + Ε ⋅ ΕS t H H S t H S t H                

[ ( ) ( [ ])]= Ε ⋅ − ΕS t H H                           (Eq.5.8) 
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Then, according to the definition of mathematical expectation, Eq. 5.8 rewrites as 

[ ( ), ] [ ( ) , ] ( [ ])= Ρ = = ⋅ ⋅ − Ε∑∑
s h

Cov S t H S t s H h s h H  

[ ( ) | ] [ ] ( [ ])= Ρ = = ⋅ Ρ = ⋅ ⋅ − Ε∑∑
s h

S t s H h H h s h H
  

                (Eq.5.9) 

For single-bit selection function H, the probability of its value being 1 and 0 is equal, 

namely, P[H=1]=P[H=0]=1/2, and H-E[H]   {-1/2,+1/2}. Thus Eq. 5.9 rewrites as 
1[ ( ), ] [ ( ) | 1] ( )
2

= Ρ = = ⋅ ⋅ −∑
s

Cov S t H S t s H s  1[ ( ) | 0] ( )
2

+ Ρ = = ⋅ ⋅ +∑
s

S t s H s  

1 [ ( ) | 1] [ ( ) | 0]
2

= −Ρ = = ⋅ + Ρ = = ⋅∑ ∑
s s

S t s H s S t s H s
 

1 [ ( ) | 1] [ ( ) | 0]
2

= Ε = − Ε =S t H S t H
 

1 ( )
2 β= D t                                        (Eq.5.10) 

From Eq. 5.8 and Eq.5.10, we have the relation  
2( ) [ ( )]β =D t Var S t
a

                                      (Eq.5.11)  

When the selection function is multi bit, H=H(Ci, Є, Kc), where Є =β1β2...βG. For 

example, H is the Hamming weight of the 8-bit output of SubBytes computation for 

AES, and H  {0,1,2,3,4,5,6,7,8}. Є denotes 8 bits of the s-box, and G=8. DoM 

computes the differential trace D(t) as a sum of each examined bit in the case of single 

bit, given by  

1 2
( ) ( ) ( ) ... ( )β β β= + + +

G
D t D t D t D t                           (Eq.5.12) 

( )β= ⋅G D t  

2 [ ( )]=
G Var S t
a

                                    (Eq.5.13) 

under the assumption that each bit contributes identically to the power dissipation. 

Indeed, this assumption is true for a number of hardware platforms, such as ASIC. 

Thus, Eq. 5.13 is obtained, which proves that DoM is equal to the signal variance of 

EM emissions despite a constant gain of 2G
a

. 

Therefore, our proposition is: the signal variance Var[S(t)] at time t for N leakage 

signals, given by Eq.5.14, is used as an equivalent metric to DoM to test data 

∈

∈
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dependence. 

2

1 1

1 1[ ( )] ( ( ) ( ))
= =

= −∑ ∑
N N

i i
i i

Var S t S t S t
N N

                         (Eq.5.14) 

 
5.2.3  EMA with Instant Signal Variance 

 

This proposition means that signal variance is the equivalent metric for evaluating 

the dependence between EM emissions and data encryption, because DEMA 

identifies the correct key by DoM test, whereby the dependence between EM 

emission and data encryption can be evaluated. For a certain encryption 

implementation, a high signal variance denotes intensive fluctuation of the EM field, 

which is caused by the dynamic change of instantaneous current in the LSI. This 

dynamic change is due to the switching activities of its components, i.e., from 0 to 1, 

or 1 to 0. In other words, a high variance represents strong dependence on input data, 

and a low variance means that the instantaneous signal remains the same and is 

independent of input data. This is the reason why signal variance can reveal 

information leakage. It also indicates that there is no direct relationship between 

“peak-to-peak amplitude” and the evaluation metric. Although a high “peak-to-peak 

amplitude” means strong EM emission, this emission is not necessarily 

data-dependent. Thus it cannot accurately express the data dependence of 

cryptographic operation, and it may result in misjudgments of hot spots. It is not an 

optimal indicator for localizing leakage. 

The time complexity is reduced by computing signal variance. Suppose that the 

sampling length is M for each of N signal traces. DoM decides the correctness of only 

one partitioning at each run. Thus for a DEMA attack that attempts L partitioning, 

where L is the size of one subkey, e.g., L=28 for AES, it requires a time complexity of 

θ(NML). For a CEMA attack, the correlation coefficient between signal traces and 

leakage model must be calculated. It is θ(2NML). With our proposition, the time 

complexity is θ(NM), because the partitioning for guessing key is avoided.  
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Signal variance can be used to disclose the information leakage of implementations 

with countermeasures. As we know, when countermeasures, either masking or hiding, 

are applied to cryptographic modules, information leakage becomes difficult to detect 

by SCAs because of the concealment of data-dependent operations. However, they 

still exist. In a masked circuit, a logic gate potentially switches more than once during 

one clock cycle, which results in considerable amount of power dissipation. Thus this 

dissipation of the gate is still correlated to some unmasked inputs and outputs. The 

masked implementations are susceptible to DEMA and DPA attacks. For 

countermeasures that use dual-rail circuits, such as WDDL, MDPL, when input 

signals have a difference of delay time, the timing of starting the power dissipation 

varies independent of the signal values during an operation cycle. Then the difference 

of power dissipation remains detectable by DEMA and DPA. Thereby, the signal 

variance is still capable of identifying information leakage in these cases. 

Nevertheless, more signal traces are required to expose hot spots. 

The equivalence of signal variance to the DoM test has been presented. For every 

scanning point, the above proposition holds. Therefore, with the signals acquired for 

each scanning point from near-field scan, we calculate the signal variance at instant t 

= τ, which is the time the examined value is handled (Note that this instant is 

estimated in accordance with the attacked encryption operation in specific 

implementation). A leakage map can be plotted. Hot spots are those locations with 

higher values of signal variance. EMA succeeds faster at these locations. 
 

5.3  EMA Based on Proposed Method 

 

The verification of the proposed method on unprotected module and protected 

module is shown in this section. 

 

5.3.1  EMA on Unprotected Module 
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A near-field scan over the surface of the LSI when AES PPRM1 implementation 

runs, is carried out. The origin of the Cartesian coordinate system is set at the corner 

of pin1 and pin160 of the LSI, which has a package area of 28 mm x 28 mm, shown 

in Fig. 5.1. The probe plane is kept at 0.5 mm over the packaged surface in order to 

receive the strong vertical field, and it moves in steps of 1.0 mm from location (1, 1). 

Thus, there are 784 (28x28) scanning points. Encryption proceeds with 10000 random 

plaintexts at each point and a fixed but randomly chosen 16-byte key (the final round): 

28 AF CE 9F 5A FF C8 F1 E0 54 B3 52 B0 CE 43 0E. The EM signals Wi(t) 

(i=1,2,…,10000, and t = [1,1000] ns) are acquired and averaged 30 times by the 

oscilloscope. The sampling rate is 1G Sa/s, and 1000 points are recorded for each 

sample. This covers the total encryption period. Start timing for trigger signal is the 

EXEC signal, which is obtained from the pin of encryption execution on LSI. The 

clock cycle of encryption is 41.6 ns. A signal trace at location (1, 1) is shown in Fig. 

5.4. The 10-round encryption and a register access are shown by 11 peaks in 11 clock 

cycles. 

Signal variance in the final round of AES encryption is calculated according to Eq. 

(13), and normalized to [0,1]. The leakage map is shown in Fig. 5.3(a). Since we are 

interested in the output of s-box in the final round for analysis, t = 709.4 ns at each 

point. At this instant, the 10-round encryption is finished, and the ciphertext is to store 

in the data registers in the area of silicon die. The leakage map indicates several active 

and inactive regions. Four regions (R1-R4), which have hot spots, and region R5, 

which has cold spot (note that cold spot is defined as the point with the minimum 

value on leakage map in this paper), are marked with rounded rectangles in Fig. 

5.3(a).  
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Fig.5.1 Depackaged cryptographic LSI 
Fig.5.2 Correlation coefficients of EMA for the scanning area 
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Fig.5.3 (a) Leakage map for AES PPRM1 calculated with proposed method, (b) 
Leakage map for AES PPRM1 calculated with peak-to-peak amplitude [96] 
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Fig.5.4 Signal trace of AES PPRM1 at (1,1) 

The leakage map in Fig. 5.3(a) agrees with present activity of cryptographic 

LSI according to the manual of LSI [99]. These regions(R1-R5) are also marked 

in Fig.5.3. As we have mentioned, higher signal variance represents strong 

dependence on data encryption activities of LSI. Region R3 which is around the 

silicon die, exhibits hot spots due to the encryption of the cryptographic core. 
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Region R1 which is around the pins of data output, and region R2, which is in the 

vicinity of the address bus, also have hot spots. Although pins around R4 and R5 

are not active at this moment, R4 has hot spots because of the EXEC pin. A 

summarization of the connected pins, present activity, and range of signal 

variance of these regions is listed in Table 5.1. 

Table 5.1 Summarization of regions R1-R5 and calculated signal variance 

Region Connected pins Present activity Range of  
signal variance 

R1 Data output Active [0.8712, 1.0000] 
R2 Address bus Active [0.7955, 0.9103] 
R3 Silicon die Active [0.8339, 0.8821] 
R4 N.C.*, EXEC* Inactive, active [0.6818, 0.8014] 
R5 Data input Inactive [0.0000, 0.2052] 

*N.C.: denotes not connected, *EXEC: execution signal for cryptographic core 

It is noted that region R3 is not at the exact center of the silicon die. This is 

probably due to the distribution of power/ground grid of the cryptographic LSI. 

Because of the complexity of this distribution, it is difficult to deduce any 

characteristic about EM emission. The mechanism behind leakage has been actively 

studied by researchers, such as Schmidt et al. [100]. It is not discussed further in this 

paper. 

In order to compare the results with conventional methods, maximum 

peak-to-peak amplitude [96] at the same instant after a subtraction of idle sampling at 

each point is calculated, normalized and plotted in Fig. 5.3(b). 

The locations of hot spots exposed in Fig. 5.3(a) and Fig. 5.3(b) are quite 

different. They are marked with small circles. Hot spots of Fig. 5.3(a) are L1, L2, L3, 

and L4, with L5 as a cold spot. In Fig.5.3(b), hot spots are L1, L6, L7, and L8. Cold 

spots are L9 and L10. L6, L7, and L8 are not hot spots, and L9 is not a cold spot in Fig. 

5.3(a). But they are identified as hot spots and cold spots, respectively, in Fig. 5.3(b). 

To verify whether these hot spots shown in the above two leakage maps are true 

or not, EMA at 784 locations is performed. Hamming Distance model is used. 

Correlation coefficients between the signal traces and hypothesized leakage of the 

output of s-boxes in the final round are calculated to reveal each subkey. In terms of 
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correlation-based attacks, the correlation coefficient corresponding to the correct key 

guess represents data dependence and determines MTD. A higher correlation 

coefficient suggests that the EM emission has a stronger data dependence on 

encryption, thus secret key is not difficult to detect. In this case, EMA succeeds faster 

and MTD is small, vice versa. Thereby, the value of correlation coefficient 

corresponding to the correct key guess at each location is used to represent the 

performance of EMA. It is normalized to [0,1] and plotted in Fig. 5.2. The correlation 

coefficients of 10 locations L1-L10, are sorted and listed in descending order in the 

first column of Table 5.2. In a similar way, the signal variance obtained by the 

proposed method and peak-to-peak amplitude in[96] are also listed in descending 

order in Table 5.2. It is expected that the orders of leakage indicators (signal variance 

or peak-to-peak amplitude) are consistent with the orders of the results of EMA. In 

this case, the method is accurate, and the leakage indicator correctly reveals the data 

dependence at each location. 

Table 5.2 Results of two methods at locations L1-L10 
EMA results 

Corr., MTD, Loc.* 
Proposed 

Loc.,Signal Var.* 
Method[96] 

Loc.,Peak.Amp.* 
0.2113, 3218, L1(28,28) L1, 1.0000 L1, 1.0000 
0.1989, 3590, L2(27,01) L2, 0.9103 L7, 0.9762 
0.1896, 4713, L3(13,16) L3, 0.8821 L8, 0.9215 
0.1783, 5421, L4(05,02) L4, 0.8014 L6, 0.8819 
0.1715, 5986, L7(14,17) L7, 0.7380 L3, 0.8734 
0.1290, 6495, L10(11,08) L10, 0.4979 L2, 0.8246 
0.1161, 7542, L6(24,11) L6, 0.3015 L4, 0.7043 
0.1032, 8270, L9(26,14) L9, 0.2928 L5, 0.5921 
0.0797, 9251, L8(04,16) L8, 0.1276 L10, 0.2852 
0.0634, 9982, L5(02,27) L5, 0.0000 L9, 0.0000 

* Corr., MTD, Loc.: correlation coefficient, MTD, and location, respectively 
* Loc.,Signal Var.: location and signal variance, respectively 
* Loc., Peak.Amp.: location and peak-to-peak amplitude, respectively 

Table 5.2 is the comparison of the two methods with the results of EMA at 10 

locations. The orders determined by the proposed method agree well with the orders 

of correlation coefficients from EMA. EMA succeeds fastest at L1, where the 

maximum correlation coefficient reaches 0.2113, and only 3218 MTD is required to 
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detect secrete key. Both methods correctly predict that L1 is a hot spot. However, 

EMA succeeds slower at L7, L6, and L8 than at L1, L2, L3, and L4. The method in[96] 

is unable to reveal this relative relation. On the contrary, this is correctly indicated by 

the proposed method. In other words, the data dependence is misjudged by 

method[96], whereas the hot spots indicated by our proposed method are accurate. 

To determine which leakage map (Fig. 5.3(a) or Fig.5.3 (b)) better agrees with Fig. 

5.2, namely, to quantitatively evaluate the accuracy of proposed method and the 

method of peak-to-peak amplitude[96], we adopt a “sorting and consistency counting” 

approach for all the scanning points. Firstly, sorting, the correlation coefficients from 

EMA are ranged in descending order. The locations identified by the proposed 

method and method [96] are also sorted in descending orders according to the signal 

variance and peak-to-peak amplitude respectively. Secondly, consistency counting, 

for one location, if its order determined by one method matches with its order 

determined by EMA, then this location is counted as consistent, and that method is 

considered as accurate. If there is no match, the method is not accurate. Finally, the 

accuracies of the two methods are evaluated and listed in Table 5.3. 

Table 5.3 Accuracy calculations for the two methods at scanning area 
EMA results 

Corr., MTD, Loc.* 
Proposed

Loc., Signal Var.*
Method[96] 

Loc., Peak.Amp.* 
0.2113, 3218, (28,28) (28,28), 1.0000 (28,28), 1.0000 
0.2082, 3365, (28,27) (28,27), 0.9791 (28,27), 0.9923 
0.2016, 3380, (27,28) (27,28), 0.9348 (28,26), 0.9881 
0.2001, 3417, (26,28) (26,28), 0.9250 (27,28), 0.9642 
0.1998, 3428, (24,28) (25,28), 0.9187 (28,25), 0.9576 

… … …
0.0672,9680, (01,25) (01,25), 0.0236 (26,12), 0.2454 
0.0663,9762, (01,26) (01,26), 0.0187 (25,13), 0.1730 
0.0659,9775, (02,28) (02,28), 0.0158 (25,14), 0.1326 
0.0657,9831, (01,27) (01,27), 0.0104 (26,13), 0.0578 
0.0634,9982, (02,27) (02,27), 0.0000 (26,14), 0.0000 
Accuracy 573/784≈73.1% 192/784≈24.5% 
Improved Accuracy 73.1%-24.5%= 48.6%

* Corr., MTD, Loc.: denotes correlation coefficient, MTD, and location, respectively  
* Loc.,Signal Var.:  denotes location and signal variance, respectively 
* Loc., Peak.Amp.: denotes location and peak-to-peak amplitude, respectively 
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Table 5.3 shows the accuracy calculations for the two methods at the scanning 

area. The results indicate that the leakage map Fig.5.3(a) calculated by the proposed 

method better fits Fig. 5.2. Most of the orders determined by the proposed method 

agree with the orders determined by EMA. The proposed method has an accuracy of 

73.1%. By contrast, the orders calculated from method [96] appear to be inconsistent. 

Only 24.5% locations agree with the order determined by EMA. The accuracy of 

proposed method is improved by 48.6% compared with that of the method [96].  

The above experiments confirm that signal variance accurately reveals the data 

dependence of encryption that leads to the success of EMA, and peak-to-peak 

amplitude suffers from misjudgments of data dependence. In addition, it is noted that 

the accuracies of the two methods are not as high as expected. There are several 

possible reasons. 

The first possible reason is the influence of noise. Signal variance and 

peak-to-peak amplitude of EM emission are influenced by noise during signal 

acquisition. To show a naive result of the proposed method, only averaging of signal 

traces was adopted to attenuate surrounding noise in the above experiments. More 

sophisticated techniques can be applied to reduce noise during the preprocessing to 

improve the accuracy of these methods. A detailed discussion of noise sources and 

reductions can be found in [83, 90]. It is not iterated here. 

The second possible reason is the accuracy calculation approach. The approach 

of “sorting and consistency counting” was used in the experiment to quantitatively 

compute the accuracy of these two methods. This is a strict evaluation approach. For 

higher accuracy, it requires a correct relative relation between the points around hot 

spots. However, it is fair to use it for evaluating these two methods, and it shows that 

the proposed method is more accurate. 
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5.3.2  EMA on Protected Module 

 

WDDL proposed by Tiri and Verbauwhede [31], is a countermeasure in the family 

of Dual-rail with Precharge Logic (DPL) that attempts to make power consumption 

independent of manipulated data. WDDL includes two stages of the calculation: 

precharge and evaluation. The differential signals are forced into the same state in the 

precharge phase. Then, in the evaluation phase, either the true or false signal turns to 

the opposite state. Thereby the number of transitions is considered as constant when 

switching from the precharge to the evaluation phase. However, as pointed out by 

Suzuki and Saeki[77], because of  the flaw that there is leakage caused by the 

difference in delay time between input signals of WDDL gates, it is still vulnerable to 

SCA.  
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Fig.5.5 Signal trace of AES WDDL at location (1,1) 
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Fig.5.6 (a) Leakage map for WDDL calculated by proposed method (b) Leakage map 

for WDDL calculated with peak-to-peak amplitude [96] 
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A near-field scan over the surface of LSI when AES WDDL runs, is conducted. 

20000 samplings are acquired at each scanning point. A signal trace at (1, 1) is shown 

in Fig. 5.5. The 10-round encryption is shown by 20 peaks. 

Signal variance at t = 887.1 ns in the final round of encryption for each point is 

computed and plotted in Fig.5.6(a). A leakage map by computing peak-to-peak 

amplitude [96], is shown in Fig. 5.6(b). The hot spots in these two leakage maps are 

totally different. Three hot spots, Lw1, Lw2, and Lw3, are indicated by Fig. 5.6(a), 

while two other hot spots, Lw4 and Lw5 are revealed in Fig. 5.6(b). Their positions 

are further away from each other over the surface of LSI. The positions of hot spots 

Lw4 and Lw5 exhibit rather dark in Fig. 5.6(a). The cold spot Lw6 in Fig. 5.6(a) 

agrees with that in Fig. 5.6(b). 

Table 5.4 EMA results and two leakage indicators for AES WDDL at 6 locations 

Loc. Coordinates MTD Corr. Proposed* Method[96]* 
Lw3 (14,28) 12,057 0.0713 1.0000 0.5205 
Lw2 (28,02) 12,732 0.0689 0.9732 0.1814 
Lw1 (27,28) 13,169 0.0630 0.8874 0.7829 
Lw5 (04,01) >20,000 0.0302 0.4136 1.0000 
Lw4 (25,12) >20,000 0.0281 0.2912 0.9816 
Lw6 (02,27) >20,000 0.0154 0.0000 0.0083 

*Proposed: The signal variance is calculated and normalized 
*Method[96]: The peak-to-peak amplitude is calculated and normalized 
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Fig.5.7 Success rates for AES WDDL at 6 locations 

 



                     5 A Novel Leakage Localization Method for EMA                           

- 112 - 
 

 

Table 5.5 MTD and maximal correlation for each s-box of AES WDDL at Lw3 and 
Lw5 

S-box S1 S2 S3 S4 S5 S6 S7 S8 
Lw3 12,057 6,739 8,806 9,503 5,864 11,127 9,104 10,274

0.0713 0.0943 0.0848 0.0796 0.1022 0.0720 0.0815 0.0771
Lw5 x* 14,031 19,436 x 13,812 x 19,815 17,523

0.0302 0.0495 0.0342 0.0336 0.0517 0.0311 0.0340 0.0376
S-box S9 S10 S11 S12 S13 S14 S15 S16 
Lw3 9278 6,873 11,564 8,721 6,925 10,338 6,121 7,012 

0.0802 0.0921 0.0729 0.0867 0.0927 0.0765 0.0980 0.0913
Lw5 x 14,308 x 16,149 14,797 x 14,176 15,534

0.0331 0.0429 0.0318 0.0382 0.0418 0.0324 0.0489 0.0407

* x: the subkey is not revealed with 20000 MTD. 

Correlation-based EMA at the 6 locations is performed to verify the hot spots. We 

are more interested in the correctness of the proposed method in the case of 

countermeasures. Therefore, instead of a strict “sorting and consistency counting” 

approach at all the scanning points to compare the accuracy, only sorting is used. The 

locations are shown in descending order according to the values of correlation 

coefficient, and the signal variance and peak-to-peak amplitude are also listed in 

Table 5.4. All the subkeys are revealed at Lw3, Lw2, and Lw1 within 20000 signal 

traces, but not at Lw5 and Lw4. Table 5.4 indicates that the values of signal variance 

agree well with the correlation coefficients at 6 locations. 

Success rates of EMA at the 6 locations are shown in Fig. 5.7. It clearly displays 

that EMA succeeds faster at Lw3, Lw2, and Lw1. The success rate is 62.5%, namely, 

only 10/16 subkeys are recovered at Lw5 and 9/16 at Lw4 when signal traces reach 

20000. In other words, Lw3, Lw2, and Lw1 are hot spots, but Lw5 and Lw4 are not. 

This is correctly indicated by the proposed method. 

The results of EMA at Lw3 and Lw5 are shown in Table 5.5. The fastest guess 

for the key is the fifth s-box, where 5864 signal traces are required at Lw3 and 13812 

signal traces at Lw5. The slowest guess is for the first s-box. Table 5.5 further 

demonstrates that EMA succeeds faster at Lw3 than at Lw5. This confirms that the 
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proposed method correctly reveals this data dependence and predicts the possible 

leakage locations in the presence of WDDL.  

It is noted that 10000 signal traces in section 5.3.1 and 20000 signal traces in 

section 5.3.2 are acquired for each scanning point. They are sufficient for this 

experimental configuration. The number of signal traces varies in terms of 

signal-to-noise ratio of a specific platform. For instance, if stronger countermeasures 

are applied, then the signal-to-noise ratio decreases, and more signal traces are 

required to compute signal variance. 

Furthermore, a trigger signal is used to align the signal traces during signal 

acquisition in the experiments presented in section 5.3.1 and section 5.3.2. If other 

countermeasures, such as the insertion of random delays, are applied in the 

implementation, additional preprocessing techniques, such as phase-only correlation 

proposed by Homma et al.[87], are necessary to remove the displacements in signal 

traces. 
 

5.4  Summary 

 

In this chapter, instant signal variance was proposed as an indicator for localizing 

hot spots over the surface of cryptographic LSI. It was proved as an equivalent metric 

to DoM in classical DEMA. Although signal variance does not reveal the specific 

locations of cryptographic modules by near-field scan, it is capable of identifying 

data-dependent EM emissions, which leads to the success of EMA. Blind placement is 

avoided, thus EMA is conducted accurately. Additionally, signal variance is also 

effective in finding leakage points when countermeasures are applied. Furthermore, a 

small and low-cost probe was made to verify the proposed method. The experiment of 

EMA against AES PPRM1 implementation revealed that misjudgments of the leakage 

are reduced and the accuracy is improved 48.6% compared with the method of 

peak-to-peak amplitude. The experiment on AES WDDL implementation 



                     5 A Novel Leakage Localization Method for EMA                           

- 114 - 
 

demonstrated that a faster EMA is enabled under the guidance of signal variance. The 

performance of EMA is enhanced. 

We have shown the richness of the information disclosed by signal variance based 

on near-field scan in the time domain, which is an effective tool to explore the secret 

of cryptographic LSI. In the future, with this tool, more features of EM emissions in 

the frequency domain will be studied to improve the performance of EMA.
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6  Conclusion 

In this dissertation, the performance of EMA and PA are enhanced by the 

proposed algorithms. The algorithms cover the 3 key aspects of side channel 

analysis, that is: noise reduction, model improvement and equivalent test method. 

For the noise reduction, three techniques are proposed to reduce the 

correlated noise for EMA. From the observation and simulation, we discovered 

that unlike the encryption signal, the clock signal has a high variance at the 

signal edges. Then based on this property, the first and second techniques: 

single-sample SVD and multi-sample SVD reduce the correlated noise by 

extracting the high variance component from encryption signal. And the third 

technique: averaged subtraction is efficient when background samplings are 

included. The main characteristics of the proposed techniques are: single-sample 

SVD can extract the clock signal with only one EM sample. Multi-sample SVD is 

capable of suppressing the clock signal with short sampling length. The averaged 

subtraction is suitable for estimation of correlated noise. Furthermore, these 

techniques are validated by the EM emission acquired from the AES 

implementation on both ASIC and FPGA. Compared with existed noise reduction 

methods, the proposed three techniques increase the SNR as high as 22.94dB, 

and the success rates of EMA shows that the data-independent information is 

retained and the performance of EMA is enhanced. 

In addition, Source Recovery algorithm is proposed to reduce the 

simultaneous noise that occurs to the EM side channel. The fourth-order 

cumulant-based Gaussian noise reduction strategies presented by Le et al. fail to 

deal with this type of noise. The proposed Source Recovery algorithm takes 

advantage of the FastICA algorithm to separate the single encryption from mixed 

encryptions, and then by the amplitude recovery follows the correlation judgment 

to attenuate the noise. The effectiveness is demonstrated through the analyses of 
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multiple AES and Camellia encryption modules on synthesized 

application-specific integrated circuit (ASIC). Experiments show that the 

proposed algorithm recovers the secret key in the presence of the simultaneous 

noise. The number of signals needed to reveal keys has been dramatically 

reduced by 47.8%. And the performance of EMA is greatly enhanced. In addition, 

the results also provide enlightment for the design of countermeasures. It is that 

the mixed execution of different encryption sources can be bypassed with signal 

processing techniques, which means it is not an effective countermeasure. 

For the model improvement, a new Switching Glitch leakage model is 

proposed. It not only considers the data dependent switching activities but also 

includes glitch power consumptions in cryptographic module. Furthermore, the 

switching factor and glitch factor are introduced in the model. And from a 

theoretical point of view, we show how to estimate these factors. The advantage 

of this model is that the factors can be adjusted according to the analyzed devices 

during evaluation, which makes it device specific and more accurate for the 

modeling of power consumption. The EMA on AES implementation validates the 

proposed model. Compared with conventional Hamming Distance model, the 

power traces of recovering keys have been decreased by as much as 24.5%. 

For the equivalent test method, a novel leakage localization method is 

proposed for EMA. Based on the EM emission acquired from near field scan, the 

instant signal variance of EM emission is proved as an equivalent statistical test 

to DoM test. Thus, it is proposed to identify the information leakage of 

cryptographic modules. Therefore, by calculating the instant signal variance at 

each scanning point and computing the higher values, the points that have 

data-dependent EM emission are disclosed, namely, the leakage locations are 

found. And the time complexity is also reduced compared with conventional 

EMA. In addition, a small and low-cost probe is made to verify the proposed 

EMA on ASIC implementations. The EMA on AES PPRM1 implementation 

indicates that misjudgments of the leakage are reduced, and the accuracy is 
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improved by 48.6% compared with existing methods. Moreover, the EMA on 

AES WDDL implementation shows that proposed method is also effective to 

expose the leakage locations in the presence of countermeasure 

 With the above proposed algorithms, the performance of EMA and PA are 

enhanced. The efficiency of security evaluation is improved, and guidelines for 

the test practices in industries are also shown. 

The future work covers three aspects. 

For noise reduction, the uniqueness of the correlated noise will be further 

studied to detect this noise. Although the frequently occurred noise either in EM 

or power side channels has been reduced successfully, the noise detection is still 

an open problem. The noise detection means to differentiate the noise and the 

leakage signals. To some extent, it is a signal classification problem. The target 

is to identify what the noise signal is, and how strong it is among the acquired 

samples. And one needs to differentiate the data-dependent signal from the 

data-independent signal. This is also quite challenging. Even if the 

implementation details, such as the cryptographic algorithm, hardware 

architecture, and the gate counts, are known, the data-dependent signal and the 

data-independent signal is still as a black box to the analyzer due to the 

complexity of the generation, transmission, etc. Luckily, the correlated noise has 

been reduced based on the discovered characteristics in this dissertation. Its 

uniqueness will be further studied to identify this noise.  

For leakage model, the switching glitch leakage model will be extended to 

analyze the cryptographic LSI with different countermeasures. The proposed 

leakage model is targeted at analyzing the cryptographic LSI without 

countermeasure. The possibilities of improving the leakage model based on 

considering both the glitch and switching activities has been explored. However, 

when the crypto algorithm implemented with countermeasure, the situation 

becomes more complex. Both the switching characteristics and the glitch are 

altered due to the additional hardware circuits. They might be masked or hidden 
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completely or incompletely. The switching glitch leakage model needs to be 

extended to consider the new characteristics incurred by the countermeasure. 

For leakage localization method, more features in frequency domain will be 

studied to further improve the localization accuracy. The instant signal 

variance-based method utilizes the statistical characteristics in time domain. The 

data-dependent information has been exploited in time domain. As we know, the 

time-domain signal is straight expression for its periodicity, peak, mean, and 

variance. Due to the energy equivalence principle, the signal also has its 

frequency expression, which is described by frequency band, phase, and 

amplitude. There is likely contains more rich information that can be explored 

whether it is data-dependent. This will be one of the future works. 
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