10,482 research outputs found

    Small cycles, generalized prisms and Hamiltonian cycles in the Bubble-sort graph

    Full text link
    The Bubble-sort graph BSn, n⩾2BS_n,\,n\geqslant 2, is a Cayley graph over the symmetric group SymnSym_n generated by transpositions from the set {(12),(23),…,(n−1n)}\{(1 2), (2 3),\ldots, (n-1 n)\}. It is a bipartite graph containing all even cycles of length ℓ\ell, where 4⩽ℓ⩽n!4\leqslant \ell\leqslant n!. We give an explicit combinatorial characterization of all its 44- and 66-cycles. Based on this characterization, we define generalized prisms in BSn, n⩾5BS_n,\,n\geqslant 5, and present a new approach to construct a Hamiltonian cycle based on these generalized prisms.Comment: 13 pages, 7 figure

    On the coarse classification of tight contact structures

    Full text link
    We present a sketch of the proof of the following theorems: (1) Every 3-manifold has only finitely many homotopy classes of 2-plane fields which carry tight contact structures. (2) Every closed atoroidal 3-manifold carries finitely many isotopy classes of tight contact structures.Comment: 12 pages, to appear in the 2001 Georgia International Topology Conference proceeding

    The 2+12+1 convex hull of a finite set

    Full text link
    We study R2⊕R\mathbb{R}^2\oplus\mathbb{R}-separately convex hulls of finite sets of points in R3\mathbb{R}^3, as introduced in \cite{KirchheimMullerSverak2003}. When R3\mathbb{R}^3 is considered as a certain subset of 3×23\times 2 matrices, this notion of convexity corresponds to rank-one convex convexity KrcK^{rc}. If R3\mathbb{R}^3 is identified instead with a subset of 2×32\times 3 matrices, it actually agrees with the quasiconvex hull, due to a recent result \cite{HarrisKirchheimLin18}. We introduce "2+12+1 complexes", which generalize TnT_n constructions. For a finite set KK, a "2+12+1 KK-complex" is a 2+12+1 complex whose extremal points belong to KK. The "2+12+1-complex convex hull of KK", KccK^{cc}, is the union of all 2+12+1 KK-complexes. We prove that KccK^{cc} is contained in the 2+12+1 convex hull KrcK^{rc}. We also consider outer approximations to 2+12+1 convexity based in the locality theorem \cite[4.7]{Kirchheim2003}. Starting with a crude outer approximation we iteratively chop off "DD-prisms". For the examples in \cite{KirchheimMullerSverak2003}, and many others, this procedure reaches a "2+12+1 KK-complex" in a finite number of steps, and thus computes the 2+12+1 convex hull. We show examples of finite sets for which this procedure does not reach the 2+12+1 convex hull in finite time, but we show that a sequence of outer approximations built with DD-prisms converges to a 2+12+1 KK-complex. We conclude that KrcK^{rc} is always a "2+12+1 KK-complex", which has interesting consequences

    Lens Spaces and Handlebodies in 3D Quantum Gravity

    Get PDF
    We calculate partition functions for lens spaces L_{p,q} up to p=8 and for genus 1 and 2 handlebodies H_1, H_2 in the Turaev-Viro framework. These can be interpreted as transition amplitudes in 3D quantum gravity. In the case of lens spaces L_{p,q} these are vacuum-to-vacuum amplitudes \O -> \O, whereas for the 1- and 2-handlebodies H_1, H_2 they represent genuinely topological transition amplitudes \O -> T^2 and \O -> T^2 # T^2, respectively.Comment: 14 pages, LaTeX, 5 figures, uses eps

    Bucolic Complexes

    Full text link
    We introduce and investigate bucolic complexes, a common generalization of systolic complexes and of CAT(0) cubical complexes. They are defined as simply connected prism complexes satisfying some local combinatorial conditions. We study various approaches to bucolic complexes: from graph-theoretic and topological perspective, as well as from the point of view of geometric group theory. In particular, we characterize bucolic complexes by some properties of their 2-skeleta and 1-skeleta (that we call bucolic graphs), by which several known results are generalized. We also show that locally-finite bucolic complexes are contractible, and satisfy some nonpositive-curvature-like properties.Comment: 45 pages, 4 figure

    Inverse problems for linear hyperbolic equations using mixed formulations

    Get PDF
    We introduce in this document a direct method allowing to solve numerically inverse type problems for linear hyperbolic equations. We first consider the reconstruction of the full solution of the wave equation posed in Ω×(0,T)\Omega\times (0,T) - Ω\Omega a bounded subset of RN\mathbb{R}^N - from a partial distributed observation. We employ a least-squares technique and minimize the L2L^2-norm of the distance from the observation to any solution. Taking the hyperbolic equation as the main constraint of the problem, the optimality conditions are reduced to a mixed formulation involving both the state to reconstruct and a Lagrange multiplier. Under usual geometric optic conditions, we show the well-posedness of this mixed formulation (in particular the inf-sup condition) and then introduce a numerical approximation based on space-time finite elements discretization. We prove the strong convergence of the approximation and then discussed several examples for N=1N=1 and N=2N=2. The problem of the reconstruction of both the state and the source term is also addressed
    • …
    corecore