research

The 2+12+1 convex hull of a finite set

Abstract

We study R2R\mathbb{R}^2\oplus\mathbb{R}-separately convex hulls of finite sets of points in R3\mathbb{R}^3, as introduced in \cite{KirchheimMullerSverak2003}. When R3\mathbb{R}^3 is considered as a certain subset of 3×23\times 2 matrices, this notion of convexity corresponds to rank-one convex convexity KrcK^{rc}. If R3\mathbb{R}^3 is identified instead with a subset of 2×32\times 3 matrices, it actually agrees with the quasiconvex hull, due to a recent result \cite{HarrisKirchheimLin18}. We introduce "2+12+1 complexes", which generalize TnT_n constructions. For a finite set KK, a "2+12+1 KK-complex" is a 2+12+1 complex whose extremal points belong to KK. The "2+12+1-complex convex hull of KK", KccK^{cc}, is the union of all 2+12+1 KK-complexes. We prove that KccK^{cc} is contained in the 2+12+1 convex hull KrcK^{rc}. We also consider outer approximations to 2+12+1 convexity based in the locality theorem \cite[4.7]{Kirchheim2003}. Starting with a crude outer approximation we iteratively chop off "DD-prisms". For the examples in \cite{KirchheimMullerSverak2003}, and many others, this procedure reaches a "2+12+1 KK-complex" in a finite number of steps, and thus computes the 2+12+1 convex hull. We show examples of finite sets for which this procedure does not reach the 2+12+1 convex hull in finite time, but we show that a sequence of outer approximations built with DD-prisms converges to a 2+12+1 KK-complex. We conclude that KrcK^{rc} is always a "2+12+1 KK-complex", which has interesting consequences

    Similar works

    Full text

    thumbnail-image

    Available Versions