71 research outputs found

    Some snarks are worse than others

    Full text link
    Many conjectures and open problems in graph theory can either be reduced to cubic graphs or are directly stated for cubic graphs. Furthermore, it is known that for a lot of problems, a counterexample must be a snark, i.e. a bridgeless cubic graph which is not 3--edge-colourable. In this paper we deal with the fact that the family of potential counterexamples to many interesting conjectures can be narrowed even further to the family S≄5{\cal S}_{\geq 5} of bridgeless cubic graphs whose edge set cannot be covered with four perfect matchings. The Cycle Double Cover Conjecture, the Shortest Cycle Cover Conjecture and the Fan-Raspaud Conjecture are examples of statements for which S≄5{\cal S}_{\geq 5} is crucial. In this paper, we study parameters which have the potential to further refine S≄5{\cal S}_{\geq 5} and thus enlarge the set of cubic graphs for which the mentioned conjectures can be verified. We show that S≄5{\cal S}_{\geq 5} can be naturally decomposed into subsets with increasing complexity, thereby producing a natural scale for proving these conjectures. More precisely, we consider the following parameters and questions: given a bridgeless cubic graph, (i) how many perfect matchings need to be added, (ii) how many copies of the same perfect matching need to be added, and (iii) how many 2--factors need to be added so that the resulting regular graph is Class I? We present new results for these parameters and we also establish some strong relations between these problems and some long-standing conjectures.Comment: 27 pages, 16 figure

    Petersen cores and the oddness of cubic graphs

    Full text link
    Let GG be a bridgeless cubic graph. Consider a list of kk 1-factors of GG. Let EiE_i be the set of edges contained in precisely ii members of the kk 1-factors. Let ÎŒk(G)\mu_k(G) be the smallest ∣E0∣|E_0| over all lists of kk 1-factors of GG. If GG is not 3-edge-colorable, then ÎŒ3(G)≄3\mu_3(G) \geq 3. In [E. Steffen, 1-factor and cycle covers of cubic graphs, J. Graph Theory 78(3) (2015) 195-206] it is shown that if ÎŒ3(G)=Ìž0\mu_3(G) \not = 0, then 2ÎŒ3(G)2 \mu_3(G) is an upper bound for the girth of GG. We show that ÎŒ3(G)\mu_3(G) bounds the oddness ω(G)\omega(G) of GG as well. We prove that ω(G)≀23ÎŒ3(G)\omega(G)\leq \frac{2}{3}\mu_3(G). If ÎŒ3(G)=23ÎŒ3(G)\mu_3(G) = \frac{2}{3} \mu_3(G), then every ÎŒ3(G)\mu_3(G)-core has a very specific structure. We call these cores Petersen cores. We show that for any given oddness there is a cyclically 4-edge-connected cubic graph GG with ω(G)=23ÎŒ3(G)\omega(G) = \frac{2}{3}\mu_3(G). On the other hand, the difference between ω(G)\omega(G) and 23ÎŒ3(G)\frac{2}{3}\mu_3(G) can be arbitrarily big. This is true even if we additionally fix the oddness. Furthermore, for every integer k≄3k\geq 3, there exists a bridgeless cubic graph GG such that ÎŒ3(G)=k\mu_3(G)=k.Comment: 13 pages, 9 figure

    Snark Designs

    Full text link
    The main aim of this paper is to solve the design spectrum problem for Tietze's graph, the two 18-vertex Blanusa snarks, the six snarks on 20 vertices (including the flower snark J5), the twenty snarks on 22 vertices (including the two Loupekine snarks) and Goldberg's snark 3. Together with the Petersen graph (for which the spectrum has already been computed) this list includes all non-trivial snarks of up to 22 vertices. We also give partial results for a selection of larger graphs: the two Celmins-Swart snarks, the 26- and 34-vertex Blanusa snarks, the flower snark J7, the double star snark, Zamfirescu's graph, Goldberg's snark 5, the Szekeres snark and the Watkins snark.Comment: 92 pages. References updated, pictures added, typos corrected. Abridged version omitting all design details accepted by Utilitas Mathematic

    Generation and Properties of Snarks

    Full text link
    For many of the unsolved problems concerning cycles and matchings in graphs it is known that it is sufficient to prove them for \emph{snarks}, the class of nontrivial 3-regular graphs which cannot be 3-edge coloured. In the first part of this paper we present a new algorithm for generating all non-isomorphic snarks of a given order. Our implementation of the new algorithm is 14 times faster than previous programs for generating snarks, and 29 times faster for generating weak snarks. Using this program we have generated all non-isomorphic snarks on n≀36n\leq 36 vertices. Previously lists up to n=28n=28 vertices have been published. In the second part of the paper we analyze the sets of generated snarks with respect to a number of properties and conjectures. We find that some of the strongest versions of the cycle double cover conjecture hold for all snarks of these orders, as does Jaeger's Petersen colouring conjecture, which in turn implies that Fulkerson's conjecture has no small counterexamples. In contrast to these positive results we also find counterexamples to eight previously published conjectures concerning cycle coverings and the general cycle structure of cubic graphs.Comment: Submitted for publication V2: various corrections V3: Figures updated and typos corrected. This version differs from the published one in that the Arxiv-version has data about the automorphisms of snarks; Journal of Combinatorial Theory. Series B. 201

    Covering cubic graphs with matchings of large size

    Full text link
    Let m be a positive integer and let G be a cubic graph of order 2n. We consider the problem of covering the edge-set of G with the minimum number of matchings of size m. This number is called excessive [m]-index of G in literature. The case m=n, that is a covering with perfect matchings, is known to be strictly related to an outstanding conjecture of Berge and Fulkerson. In this paper we study in some details the case m=n-1. We show how this parameter can be large for cubic graphs with low connectivity and we furnish some evidence that each cyclically 4-connected cubic graph of order 2n has excessive [n-1]-index at most 4. Finally, we discuss the relation between excessive [n-1]-index and some other graph parameters as oddness and circumference.Comment: 11 pages, 5 figure

    An exploration of two infinite families of snarks

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2019In this paper, we generalize a single example of a snark that admits a drawing with even rotational symmetry into two infinite families using a voltage graph construction techniques derived from cyclic Pseudo-Loupekine snarks. We expose an enforced chirality in coloring the underlying 5-pole that generated the known example, and use this fact to show that the infinite families are in fact snarks. We explore the construction of these families in terms of the blowup construction. We show that a graph in either family with rotational symmetry of order m has automorphism group of order m2mâșÂč. The oddness of graphs in both families is determined exactly, and shown to increase linearly with the order of rotational symmetry.Chapter 1: Introduction -- 1.1 General Graph Theory -- Chapter 2: Introduction to Snarks -- 2.1 History -- 2.2 Motivation -- 2.3 Loupekine Snarks and k-poles -- 2.4 Conditions on Triviality -- Chapter 3: The Construction of Two Families of Snarks -- 3.1 Voltage Graphs and Lifts -- 3.2 The Family of Snarks, Fm -- 3.3 A Second Family of Snarks, Rm -- Chapter 4: Results -- 4.1 Proof that the graphs Fm and Rm are Snarks -- 4.2 Interpreting Fm and Rm as Blowup Graphs -- 4.3 Automorphism Group -- 4.4 Oddness -- Chapter 5: Conclusions and Open Questions -- References

    Feedback Numbers of Goldberg Snark, Twisted Goldberg Snarks and Related Graphs

    Get PDF
    A subset of vertices of a graph G is called a feedback vertex set of G if its removal results in an acyclic subgraph. The minimum cardinality of a feedback vertex set is called the feedback number. In this paper, we determine the exact values of the feedback numbers of the Goldberg snarks Gn and its related graphs Gn*, Twisted Goldberg Snarks TGn and its related graphs TGn*. Let f(n) denote the feedback numbers of these graphs, we prove that f(n)=2n+1, for n≄3

    Graphs, Friends and Acquaintances

    Get PDF
    As is well known, a graph is a mathematical object modeling the existence of a certain relation between pairs of elements of a given set. Therefore, it is not surprising that many of the first results concerning graphs made reference to relationships between people or groups of people. In this article, we comment on four results of this kind, which are related to various general theories on graphs and their applications: the Handshake lemma (related to graph colorings and Boolean algebra), a lemma on known and unknown people at a cocktail party (to Ramsey theory), a theorem on friends in common (to distanceregularity and coding theory), and Hall’s Marriage theorem (to the theory of networks). These four areas of graph theory, often with problems which are easy to state but difficult to solve, are extensively developed and currently give rise to much research work. As examples of representative problems and results of these areas, which are discussed in this paper, we may cite the following: the Four Colors Theorem (4CTC), the Ramsey numbers, problems of the existence of distance-regular graphs and completely regular codes, and finally the study of topological proprieties of interconnection networks.Preprin
    • 

    corecore