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Abstract. A subset of vertices of a graph G is called a feedback vertex set of G if its removal results in an acyclic
subgraph. The minimum cardinality of a feedback vertex set is called the feedback number. In this paper, we
determine the exact values of the feedback numbers of the Goldberg snarks G, and its related graphs G,", Twisted
Goldberg Snarks 7G, and its related graphs 7G,". Let f{n) denote the feedback numbers of these graphs, we prove

that fin)=2n+1, for n=3.

1 Introduction

Let G = (V, E) be a graph or digraph without multiple
edges, with vertex set V' (G) and edge set E(G). A subset
FcV (G) is called a feedback vertex set if the subgraph G

—F is acyclic, that is, if G—F is a forest. The minimum

cardinality of a feedback vertex set is called the feedback
number (or decycling number proposed first by Beineke
and Vandell [1]) of G. A feedback vertex set of this
cardinality is called a minimum feedback vertex set.

Apart from its graph-theoretical interest, the minimum
feedback vertex set problem has important application to
several fields. For example, the problems are in operating
systems to resource allocation mechanisms that prevent
deadlocks [2], in artificial intelligence to the constraint
satisfaction problem and Bayesian inference, in synchro-
nous distributed systems to the study of monopolies and
in optical networks to converters placement problem (see
[3,4]).

Determining the feedback number is quite difficult
even for some elementary graphs. However, the problem
has been studied for some special graphs and digraphs,
such as hypercubes, meshes, toroids, butterflies, cube-
connected cycles, directed split-stars (see [3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13]). In fact, the minimum feedback set
problem is known to be NP-hard for general graphs [14]
and the best known approximation algorithm is one with
an approximation ratio two [5].

Snarks are simple nontrivial connectes cubic graphs of
chromatic index four [16]. The importance of the snar-ks
does not only depend on the four colour theorem. Indeed,
there are several important open problems such as the
classical cycle double cover conjecture [18]. The smallest
snark is the Petersen graph and it was the first discovered.
In [17], it gave a survey of some results on some well
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known families of snarks, e.g. Flower snarks, Loupekine
snarks and Goldberg snarks.

Goldberg Snarks is referred to Loupekine by Goldbe-
rg himself. In fact, Goldberg Snarks are cartwheel snarks
[19]. Both Goldberg Snarks and twisted Goldberg Snarks
are graphs on 8 vertices with

V(G,)={}]0<i<n-11<;<8}

* For every odd n23, G, is called the Goldberg Snark
graph and adjacencies are defined as shown in Fig.1,
where the vertex labels i are read modulo 7.

Figure 1. Used in the construction of Goldberg snark

* For every even n24, G," is called Related graphs of
Goldberg Snark.

* For every odd n=23, let TG, be a graph obtained from
G by replacing the edges ;) and yy? with 21,0 and
vih!, respectively. We denote 7G, as Twisted Goldberg

Snark.
* For every even n24, TG," is called Related graphs of
Twisted Goldberg Snark.

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(http://creativecommons.org/licenses/by/4.0/).
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The example of Gs;, G,°, TG;s and TG, are shown in
Fig.2.

However, both Goldberg Snarks and twisted Goldberg
Snarks can be obtained via the Loupekine construction
from the Petersen graph [15].

In this paper, we determine the exact values of the
feedback number of the Goldberg snarks G, and its
related graphs G,", the twisted Goldberg snarks TG, and
its related graphs 7G,". Let fin) denote the feedback
number of these graphs, we prove that f(n)=2n+1, for n=3.

Figure 2. Graph Gs, G4, TGs and TG4*

2 Acyclic Vertex Set of G, and G,*

Let n mod 2=k, then n =2m+k , m>land 0<i<k .
Thus £#=0 and k=1 . Then, we discuss 2 cases as
follows.
Casel.If n mod2=1and n>3
Let V,(G,)=F"UF,, where
F' ={v(2),vg,vg,v2,vg}
O A A A B
F) = .U {vz,v3,v8,v6,v7,v5}
l:
Case2. If n mod2=0 and >4 .
Let V,(G,) = F" UF; UF; where
Fln :{vg,vg,vg,vg,vg}
anz{VE,V%,Vé,Vé,V%,V%}
A S AR B
F3 = U {v2:v35v85v65v75v5}
i=2
Lemma 2.1. G[V,(G,)]is acyclic for » mod 2=1 and
n=3.

Proof: Since V,(G,)=F"UF,', Then if we want to
prove G[V,(G,)] is acyclic, which is equivalent to verify
that G[F" U F{"] is acyclic.

Firstly, we prove the G[F"UF"] is a forest by
induction on n.

We first prove the basic step for n=3.

Combining case 1 and the definition of G, we have

F13 = {Vg,Vg,VSO,Vg,Vg}

3 :{vl L1 2 2 02 2 20 2

2 2273278767 777752727732 787677775
Obviously, the induced subgraph of vertex set > and
the induced subgraph of vertex set f are acyclic

graphs(see Fig.3 and Fig.4) and each graph of G[Fl3] and
G[F23] is a tree.

Figure 4. Subgraph of G[F23 ]

Since Fl3 r\F23 =, then the induced subgraph of

vertex set Fl3 qu3 is acyclic. That is, G[Fl3 qu3 ]lisa
forest.

Suppose G[F" UF,'] is acyclic, we now prove that

GLF"™? U Fy**] is acyclic.

Since

n+2 0.0 .0 _0_0

R ={vy,v3,v8,v6.v7}
n+2-1

n+2 i i i i i i

F2 = U{VZ,V3,V8,V6,V7,V5}
i=1

Then we have
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Fvln+2 — Fvln

n—1
n+2 AT Y S B B
F, :U{VZ’V35V83V65V7’V5}
i=1

n+l
R T T R B
UU{V27V37V8=V67V7:V5}
i=n
n+l
n R AT SN S B
=F, UU{V25V35V83V63V7’V5}

i=n

For convenience, we denote 7 as vertex set

n+l
U{v’z,vé,vé,vg,vé,vg} , then we denote the induced
i=n
n+l
subgraph of vertex set U{vé,vé,vé,vé,vé,vé} as G[T1].
=n

Obviously, G[T] = G[F23] (see Fig. 5), then G[T] is a

tree.
- — ‘ — _—

Tt

Ve L

Figure 5. Subgraph of G[T]

Since TN F,' =@, then G[T UF,'] is a forest.

Since TNF" =@, then G[TUF" UF,'] is a forest.
That is, GIF"** U F;"**] is acyclic.

Combining induction step with basic step, the
G[F" UF,'] is a forest. Thus, G[V,(G,)] is acyclic.

The lemma holds.

Lemma 2.2. G[V, (G, )] is acyclic for n mod 2 =0 and
n>4.

Proof: Since V,(G,)=F"UF, UF', Then if we
want to prove G[V, (G: )] is acyclic, which is equivalent
to verify that G[F" U F,' U Fy'] is acyclic.

Firstly, we prove the G[F" UF,' U Fy'] is a forest by

induction on n.
We first prove the basic step for n=4.

Combining case 2 and the definition of G,", we have

4 0.0 .0 .0 _0

F ={v3,v3,v5,V6,V7}
4 11 .1 .1 .1 .1

Fy ={vy,v3,v5,v¢,v7,Vs}

Fi' = (03 V3,08, V5,v7 V3, v2,v3 05 Vv, V3 )
Obviously, G[F*], G[F,'] and G[F;'] are acyclic
graphs, and each graph of G[Fl4],G[F24] and G[F34] is
a tree.
Since Fl4 mF24 = (), then the induced subgraph of

vertex set F' U F, is acyclic.

Since Fl4 mF34 =, then the induced subgraph of
vertex set F,' U F; is acyclic.

Since F,' N F; =@, then the induced subgraph of
vertex set F, UF; is acyclic.

Thus ,we have Fl4 r\F24 mF34 =, then the induced
subgraph of vertex set Fl4 uF24 ) F34 is acyclic.

That is, G[Fl4 uF24 ) F34] is a forest. The vertices set
is shown as Fig 6.

—
-
S
&
—T
i
&
o g ol o

R

Figure 6. Subgraph of G[F*'UF' UF}]

Suppose G[F" UF, UF']is a forest, we now prove

that G[F"*? U Fy** U F{"?] is a forest.

Since

n+2 0O _0_0_.0._.0
Fl :{VZ,V3,V8,V6,V7}

n+2 1.1 .1 .1 .1 .1

Fy7 " ={v3,v3,v8,V6,V7, Vs }
n+2-1

n+2 N A B R

Fe = U{V2=V37V87V67V77V5}
i=1

Then, we have

n+2 _ pn
o =h
n+2 _ pn
F2 _FZ
n—1
n+2 i o0 i i
F; =U{V2:V3a"87"6a"7:"5}
=2
n+l

i T A SN SR AN |
UU{VZ’VBsVSavéaV%VS}
i=n
n+l
n i i i i i i
=F3 UU{V27V37V87V67V7JVS}

i=n

For convenience, we also denote T as vertex set

n+l1
U{vé,vé,vé,vé,vé,vé} , then we denote the induced
subgraph of vertex set U{v’z,vé,vé,vé,vé,vg} as G[T1].
Obviously, G[T= G[F3'], then G[T] is a tree.
Since TN F;' =@ ,then G[T U F;'] is a forest.
Since TN F" =@,then GITUF" UF'] is a forest.
Since TNF, = @then G[TUF"UF, UF;'] is a

forest. That is, G[F""* U Fy"** U F{"*?] is acyclic.
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Combining induction step with basic step, the
GIF' UF) UF'] is a forest. Thus, G[V,(G,)] is
acyclic.

The lemma holds.

3 Acyclic Vertex Set of TG, and TG,

Let n mod 2=k, then n =2m+k, m>2land 0<i<k.
Thus £#=0 and k=1 . Then, we discuss 2 cases as
follows.

Case1.If » mod2=1and n>3

Let V,(TG,) = F" U F," ,where
R =003, i g g
n-2
o R RERERS:
-1
Case2.If n mod 2=0,and n>4
Let V,(TG,) = F" U Fy ,where
B =00 vy s
n—2 S
o U RERIRURERYS
i=1

Lemma 3.1. G[V,(TG,)] is acyclic for »n mod 2=1
and n>3.

Proof: Since V, (TG,)=F" UF,, Then if we want to
prove G[V,(TG,)] is acyclic, which is equivalent to
verify that G[F" UF},'] is acyclic.

Firstly, we prove the G[F'UF,’] is a tree by

induction on n.
We first prove the basic step for n=3.

Combining case 1 and the definition of 7G, ,we have

F3 _ 4.0 0.0 _0_ 0.2 2 2 2 2 2
1 - {V2,V3 s Ve s Vg V7,V2,V3,V8,V6,V7,V5

3 1.1 .1 .1 .1 .1
F5 ={vy,v3,vg,v6,V7,Vs}

Obviously, by the definition of 7G, , we have that
G[F?]and G[F; ] are acyclic graphs, and each graph of
G[F]and G[F;']is a tree.

Since Fl3ﬁF23 =, then the induced subgraph of

vertex set F> UF; is acyclic. That is, G[F UF;] is a
tree. The vertices set is shown as Fig 7.

Figure 7. Subgraph of G[Fl3 U F23 ]

Suppose G[F' UF,'] is a tree, we now prove that

GIF"* UF)*] is a tree.

Since

n+2 0.0 _ 0.0 .0 ntl _n+tl _n+l _n+l _n+l _n+l
F77 ={vy,v3,v8,v6,V7,v0 V3 LVg LVg LV7 Vs

n+2-2
n+2 T A SN B B
F,7" = U{V2:V3:V8a"6:v7a"5}
i=1
n-2 n
R SRR S B B T TN SN R B
:U{v25v37V8’V6’V7’V5}U U{V27V37V8=V67V7=V5}

i=1 i=n—1

n
n R T R B
=F v U{VZ’V33V85V63V7’V5}

i=n—1

Then we have
n+2 . on
R =R

n
n+2 n U R S A A
B =R o oo vy

i=n-1
For convenience, we denote T as vertex set

n
U{vé,vg,vé,vg,vé,vg} , then we denote the induced

i=n—1

subgraph of vertex set LnJ V5, V5, v, e, vh viY as GIT].
i=n—1

Obviously, G[T= G[F; ], then G[T] is a tree.

Since TN Fy' =@, then G[T UF,'] is a tree.

Since TNF" =@, then G[TUF"UF,'] is a tree.
That is, G[F"** U F,"**] is acyclic.

Combining induction step with basic step, the
G[F" UF,'] isatree. Thus, G[V,(TG,)] is acyclic.

The lemma holds.

Lemma 3.2.G[V,(TG,)]is acyclic for n mod 2=0 and
nx4.

Proof: Since V,(TG,;)=F" UF,, Then if we want
to prove G[V,(TG,)] is acyclic, which is equivalent to
verify that G[F" U F,'] is acyclic.

Firstly, we prove the G[F"UF,'] is a tree by

induction on n.
We first prove the basic step for n=4.

Combining case 2 and the definition of TG, ,we have

4 0.0 0. 0.0.3 .3 3 3 3 3
F =1{v2,v3,V8,V6,V7,V3,V3,V5,Vg,V7,V5 |

FAol pl bl 122 0 2 2 0
2 = {V2,V3,V8,V6,V7, V55V, V3, V85 V6, V75 Vs

Obviously, G[Fl4] and G[F24] are acyclic graph, and
each graph of G[Fl4] and G[F24] is a tree. Since
F' A F, =@, then the induced subgraph of vertex set
F'UF, is acyclic. That is, G[F,' UF,'] is a tree. The
vertices set is shown as Fig 8.
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Figure 8. Subgraph of Gl VFy]

Suppose G[F" UF,'] is a tree, we now prove that
GIF" U F*?] is a tree.

Since

n+2 0.0.0_.0_0 n-l
F7 ={vy,v3,v8,v6,v7,v,  }

n+l _n+l _n+l _n+l o+l
Vv L vs LV L Ys )
n+2-2

n+2 R R SN B B
Fy = U{Vz’VB’VSsvésV%VS}
i=1

Then we have
Fvln+2 ~ Fvln

n
n+2 n TS S R S N |
=R U{stvsaVSsvﬁaV%Vs}

i=n—1
For convenience, we also denote T as vertex set

n
i i i i i i :
U{vz,v3,v8,v6,v7,v5} , then we denote the induced

i=n—1

subgraph of vertex set LnJ{v;,vg,vé,vé,vé,vg} as G[T].
i=n—1

Obviously, G[T]= G[F,'], then G[T] is a tree.

Since TN F,' =@, then G[T U F;'] is a tree.

Since TNF" =@, then G[TUF"UF,'] is a tree.
That is, GIF"** U F;"**] is acyclic.

Combining induction step with basic step, the
G[F" UF)] is atree. Thus, G[V,(TG;)] is acyclic.

The lemma holds.

4 Feedback Number of graphs
By the Lemma 2.1 and Lemma 2.2, we obtain
Lemma 4.1. V(G,)\V,(G,) is feedback vertex set of
G, .
Lemma 4.2. V(G,)\V,(G,) is feedback vertex set of
G .

By the Lemma 3.1 and Lemma 3.2, we obtain
Lemma 4.3. V(TG,)\V,(TG,) is feedback vertex set

of TG, .
Lemma 4.4. V(T G: WV, (T G; ) is feedback vertex set
of TG, .

For convenience, we denote f(n) as the feedback

numbers of Goldberg Snark, Twist Goldberg Snark and
their related graphs.
Lemma 4.5. For n >3, the upper bound of feedback

number is
f(n)<2n+1
Proof: By Lemma 4.1, we have the feedback number
of V(G,) as follows.
IV(G)\V,(G,)]
<SPG\ V)|
=V (G- (F" v F)|
=8n—[5+6(n-1)]
=2n+1

By Lemma 4.2, we have the feedback number of
V(G,) as follows.

[V(G)\V,(G,)|
<V GI\(F" U F; UF)|
=V (G) |- (K" UF UF])]
=8n—[5+6+6(n—2)]
=2n+1

By Lemma 4.3, we have the feedback number of
V(TG,) as follows.

V(TG )\V,(TG,)|
SIV(IG)\FH" O F)|
=|V(TG,)|-|(F" VF)]
=8n—[11+6(n-2)]
=2n+1

By Lemma 4.4, we have the feedback number of
V(TG,) as follows.

|V(TG)\V,(TG,)]
<|V(TG)\(F" UF3)]|
=[V(TG,)| | (F" UF}")|
=8n—[11+6(n-2)]

=2n+1

Then, we have the upper bound of feedback number
ofis f(n)<2n+1
Lemma 4.6. For n >3, the lower bound of feedback
number is

f(n)=22n+1

Proof: By reference [20], Beineke and Vandell prove
a lower bound of general graphs G(V,E) :
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- A-1
Since |[V|=8n,|E|=12nand A =3. Thus, we obtain a

lower bound of these graphs as follows:

‘E‘—M*—l | 12n-8n+1
f(")% Al { 3-1 w

:{4n2+1—‘:(2n+1—‘

By the Lemma 4.5 and Lemma 4.6, we obtain the
feedback number of these graphs as follows.
Theoreml. For n >3, the feedback number of these

graphsis f(n)=2n+1.

Acknowledgment

The work was supported by NNSF of China
(No.61802046) and Key Research Items in Natural
Science Foundation of Liaoning (No.20170520327) and
Doctoral Start up Fund of Dalian Ocean University
(No.HDYJ201818).

References

1. L. W. Beineke, R. C. Vandell, Decycling graphs, J.
Graph Theory, 25, 59-77, (1997).

2. 1. Niven, H. S. Zuckerman, An Introduction to the
Theory of Numbers (5th ed.).John Wiley and Sons,
New York, (1991).

3. 1. Caragiannis, C. Kaklamanis, P. Kanellopoulos,
New bounds on the size of the minimum feedback
vertex set in meshes and butterflies. Information
Processing Letters, 83, 75-80, (2002).

4. P. Festa, P. M. Pardalos, M. G. C. Resende,
Feedback set problems. Handbook of Combinatorial
Optimization (D.-Z. Du, P.M. Pardalos eds.), Vol. A,
Kluwer, Dordrecht, pp. 209, (1999).

5. V. Bafna, P. Berman, T. Fujito, A 2-approximation
algorithm for the undirected feedback vertex set
problem. SIAM J. Discrete Mathematics, 12, 289-
297, (1999).

6. S.Bau, L. W. Beineke, Z. Liu, G. Du, R. C. Vandell,
Decycling cubes and grids. Utilitas Math., 59, 129-
137, (2001).

7. R. Bar-Yehuda, D. Geiger, J. S. Naor, R. M. Roth,
Approximation algorithms for the feedback vertex set
problem with applications to constraint satisfaction
and Bayesian inference. SIAM J. Comput., 27, 942-
959, (1998).

8.

10.

1.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

R. Focardi, F. L. Luccio, D. Peleg, Feedback vertex
set in hypercubes. Information Processing Letters, 76,
1-5, (2000).

Y. D. Liang, On the feedback vertex set in
permutation graphs. Information Pro cessing Letters,
52, 123-129, (1994).

F. L. Luccio, Almost exact minimum feedback
vertex set in meshes and butterflies. Information
Processing Letters, 66, 59-64, (1998).

G. W. Smith, Jr. and R. B. Walford, The
identification of a minimal feedback vertex set of a
directed graph. IEEE Trans. Circuits and Systems, 22,
9-15, (1975).

C.-C. Wang, E. L. Lloyd, M. L. Soffa, Feedback
vertex sets and cyclically reducible graphs. J. Assoc.
Comput. Mach., 32, 296-313, (1985).

F.-H. Wang, C.-J. Hsu, J.-C. Tsai, Minimal feedback
vertex sets in directed split stars. Networks, 45,
218-223, (2005).

M.R. Garey, D.S. Johnson, Computers and
Intractability, Freeman, San Francisco, CA, (1979).
Mohammad Ghebleh, The circular chromatic index
of Goldberg snarks. Discrete Mathematics, 307,
3220-3225, (2007).

A.Cavicchioli, T.E. Murgolo, B. Ruini and F.
Spaggiari. Special Classes of Snarks. Acta
Applicandae Mathematicae, 76, 57-88, (2003).

A. Cavicchioli, M. Meschiari, B. Ruini, and F.
Spaggiari. A Survey on Snarks and New Results:
Products, Reducibility and a Computer Search.
Journal of Graph Theory, 28(2), 57-86, (1998).

M. Abreu, D. Labbate, R. Rizzi, J. Sheehan, Odd 2-
factored snarks. European Journal of Combinatorics,
36, 460-472, (2014).

John J. Watrins, Snarks. Annals New York Academy
of Sciences, 576, 606-622, (2006).

L. W. Beineke, R. C. Vandell, Decycling graphs, J.
Graph Theory, 25, 59-77, (1997).

S.J. Zhang, X.R. Xu, C. Yin, N.Cao, Y.S. Yang,
Feedback Numbers of Augmented Cubes AQn,
Utilitas Mathematica, 97, 183-192, (2015)

S.J. Zhang, X.R. Xu, C. Yin, et al. The feedback
number of Knddel graph W3, n, ARS Combinatoria,
140, 397-409, (2018).

X.R.Xu,C.Yin,S.J.Zhang, et al.Improved Feedback
Vertex sets in Kautz Digraph Kautz Digraph K(d,
n),CIS 2014, 161-165, (2014).

X.R. Xu, S.P. Dino, H.F. Zhang, et al.D ecycling
number of crossed cubes CQn, CIS 2017, 145-150,
(2017)

Forbes A.D.. Snark Design. Utilitas Mathematica,
107,167-192, (2018).



