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Abstract. A subset of vertices of a graph G is called a feedback vertex set of G if its removal results in an acyclic 
subgraph. The minimum cardinality of a feedback vertex set is called the feedback number. In this paper, we 
determine the exact values of the feedback numbers of the Goldberg snarks Gn and its related graphs Gn

*, Twisted 
Goldberg Snarks TGn and its related graphs TGn

*.  Let f(n) denote the feedback numbers of these graphs, we prove 
that f(n)=2n+1, for n≥3. 

1 Introduction  

Let G = (V, E) be a graph or digraph without multiple 
edges, with vertex set V (G) and edge set E(G). A subset 
F⊂V (G) is called a feedback vertex set if the subgraph G

−F is acyclic, that is, if G−F is a forest. The minimum 

cardinality of a feedback vertex set is called the feedback 
number (or decycling number proposed first by Beineke 
and Vandell [1]) of G. A feedback vertex set of this 
cardinality is called a minimum feedback vertex set.  

Apart from its graph-theoretical interest, the minimum 
feedback vertex set problem has important application to 
several fields. For example, the problems are in operating 
systems to resource allocation mechanisms that prevent 
deadlocks [2], in artificial intelligence to the constraint 
satisfaction problem and Bayesian inference, in synchro-
nous distributed systems to the study of monopolies and 
in optical networks to converters placement problem (see 
[3, 4]). 

Determining the feedback number is quite difficult 
even for some elementary graphs. However, the problem 
has been studied for some special graphs and digraphs, 
such as hypercubes, meshes, toroids, butterflies, cube-
connected cycles, directed split-stars (see [3, 4, 5, 6, 7, 8, 
9, 10, 11, 12, 13]). In fact, the minimum feedback set 
problem is known to be NP-hard for general graphs [14] 
and the best known approximation algorithm is one with 
an approximation ratio two [5]. 

Snarks are simple nontrivial connectes cubic graphs of 
chromatic index four [16]. The importance of the snar-ks 
does not only depend on the four colour theorem. Indeed, 
there are several important open problems such as the 
classical cycle double cover conjecture [18]. The smallest 
snark is the Petersen graph and it was the first discovered. 
In [17], it gave a survey of some results on some well 

known families of snarks, e.g. Flower snarks, Loupekine 
snarks and Goldberg snarks. 

Goldberg Snarks is referred to Loupekine by Goldbe-
rg himself. In fact, Goldberg Snarks are cartwheel snarks 
[19]. Both Goldberg Snarks and twisted Goldberg Snarks 
are graphs on 8n vertices with 

}81,10|{)(  jnivGV i
jn  

• For every odd n≥3, Gn is called the Goldberg Snark 
graph and adjacencies are defined as shown in Fig.1, 
where the vertex labels i are read modulo n. 

 

Figure 1. Used in the construction of Goldberg snark 

• For every even n≥4, Gn
* is called Related graphs of 

Goldberg Snark. 
• For every odd n≥3, let TGn be a graph obtained from 

Gn by replacing the edges 0
1

1
2 vvn  and 0

3
1

4 vvn  with 0
3

1
2 vvn  and 

0
1

1
4 vvn , respectively. We denote TGn as Twisted Goldberg 

Snark. 
• For every even n≥4, TGn

* is called Related graphs of  
Twisted Goldberg Snark. 
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The example of G3, G4
*, TG3 and TG4

* are shown in 
Fig.2. 

However, both Goldberg Snarks and twisted Goldberg 
Snarks can be obtained via the Loupekine construction 
from the Petersen graph [15]. 

In this paper, we determine the exact values of the 
feedback number of the Goldberg snarks Gn and its 
related graphs Gn

*, the twisted Goldberg snarks TGn and 
its related graphs TGn

*. Let f(n) denote the feedback 
number of these graphs, we prove that f(n)=2n+1, for n≥3. 

 

Figure 2. Graph G3, G4
*, TG3 and TG4

* 

 

2 Acyclic Vertex Set of Gn and Gn
* 

Let kn 2mod , then kmn  2 , kiandm  01 . 

Thus 0k  and 1k . Then, we discuss 2 cases as 
follows. 

Case 1. If  12mod n  and 3n  

Let nn
na FFGV 21)(  , where 
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Case 2. If 02mod n  and 4n . 

Let nnn
na FFFGV 321
*)(  ,where 
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Lemma 2.1.  )]([ na GVG is acyclic for n mod 2=1 and 

n≥3.   

Proof: Since nn
na FFGV 21)(  , Then if we want to 

prove )]([ na GVG  is acyclic, which is equivalent to verify 

that ][ 11
nn FFG   is acyclic. 

Firstly, we prove the ][ 11
nn FFG   is a forest by 

induction on n. 
We first prove the basic step for n=3. 
Combining case 1 and the definition of Gn, we have 
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Obviously, the induced subgraph of vertex set 3
1F  and 

the induced subgraph of vertex set 3
2F are acyclic 

graphs(see Fig.3 and Fig.4) and each graph of ][ 3
1FG  and 

][ 3
2FG  is a tree. 

 

Figure 3.  Subgraph of  ]3
1[FG  

 

Figure 4. Subgraph of  ]3
2[FG  

 

Since  3
2

3
1 FF Ø, then the induced subgraph of 

vertex set 3
2

3
1 FF   is acyclic. That is, ][ 3

2
3

1 FFG   is a 

forest.  

Suppose ][ 21
nn FFG   is acyclic, we now prove that 

][ 2
2

2
1

  nn FFG  is acyclic. 

Since 
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Then we have  
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For convenience, we denote T as vertex set 


1

576832 },,,,,{




n

ni

iiiiii vvvvvv , then we denote the induced 

subgraph of vertex set 
1

576832 },,,,,{




n

ni

iiiiii vvvvvv  as ][TG . 

Obviously, ][][ 3
2FGTG  (see Fig. 5), then ][TG  is a 

tree.  

 

Figure 5. Subgraph of ][TG  

Since  nFT 2 Ø, then ][ 2
nFTG   is a forest. 

Since  nFT 1 Ø, then ][ 21
nn FFTG   is a forest. 

That is, ][ 2
2

2
1

  nn FFG  is acyclic. 

Combining induction step with basic step, the 

][ 21
nn FFG   is a forest. Thus, )]([ na GVG  is acyclic. 

The lemma holds. 

Lemma 2.2. )]([ 
na GVG is acyclic for 02mod n  and 

4n . 

Proof: Since nnn
na FFFGV 321)(  , Then if  we 

want to prove )]([ *
na GVG  is acyclic, which is equivalent 

to verify that ][ 321
nnn FFFG   is acyclic. 

Firstly, we prove the ][ 321
nnn FFFG   is a forest by 

induction on n. 
We first prove the basic step for n=4. 
Combining case 2 and the definition of Gn

*, we have 
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Obviously, ][ 4
1FG , ][ 4

2FG  and ][ 4
3FG are acyclic 

graphs, and each graph of  ][ 4
1FG , ][ 4

2FG  and ][ 4
3FG  is 

a tree.  

Since   4
2

4
1 FF Ø, then the induced subgraph of 

vertex set 4
2

4
1 FF   is acyclic. 

Since  4
3

4
1 FF Ø, then the induced subgraph of 

vertex set 4
3

4
1 FF   is acyclic. 

Since  4
3

4
2 FF Ø, then the induced subgraph of 

vertex set 4
3

4
2 FF   is acyclic. 

Thus ,we have   4
3

4
2

4
1 FFF Ø, then the induced 

subgraph of vertex set 4
3

4
2

4
1 FFF   is acyclic. 

That is, ][ 4
3

4
2

4
1 FFFG   is a forest. The vertices set 

is shown as Fig 6. 

 

Figure 6. Subgraph of ][ 4
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Suppose ][ 321
nnn FFFG  is a forest, we now prove 

that ][ 2
3

2
2

2
1

  nnn FFFG  is a forest. 
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Then, we have  
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For convenience, we  also denote T as vertex set 


1

576832 },,,,,{




n

ni

iiiiii vvvvvv , then we denote the induced 

subgraph of vertex set 
1

576832 },,,,,{




n

ni

iiiiii vvvvvv  as ][TG . 

Obviously, ][][ 4
3FGTG  , then ][TG  is a tree.  

Since  nFT 3 Ø ,then ][ 3
nFTG   is a forest. 

Since  nFT 1 Ø,then ][ 21
nn FFTG   is a forest.  

Since  nFT 2 Ø,then ][ 321
nnn FFFTG   is a 

forest. That is, ][ 2
3

2
2

2
1

  nnn FFFG  is acyclic. 
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Combining induction step with basic step, the 

][ 321
nnn FFFG   is a forest. Thus, )]([ 

na GVG  is 

acyclic. 
The lemma holds. 

3 Acyclic Vertex Set of TGn and TGn
*  

Let kn 2mod , then kmn  2 , kiandm  01 . 

Thus 0k  and 1k . Then, we discuss 2 cases as 
follows. 
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Case 2. If 02mod n , and  4n  

Let nn
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*)(  ,where 
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Lemma 3.1. )]([ na TGVG is acyclic for 12mod n  

and 3n . 

Proof: Since nn
na FFTGV 21)(  , Then if  we want to 

prove )]([ na TGVG  is acyclic, which is equivalent to 

verify that ][ 21
nn FFG   is acyclic. 

Firstly, we prove the ][ 21
nn FFG   is a tree by 

induction on n. 
We first prove the basic step for n=3. 

Combining case 1 and the definition of nTG ,we have 
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Obviously, by the definition of TGn , we have that 
][ 3

1FG and ][ 3
2FG are acyclic graphs, and each graph of 

][ 3
1FG and ][ 3

2FG is a tree.  

Since  3
2

3
1 FF Ø, then the induced subgraph of 

vertex set 3
2

3
1 FF   is acyclic. That is, ][ 3

2
3

1 FFG   is a 

tree. The vertices set is shown as Fig 7. 

 

Figure 7. Subgraph of ][ 3
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Then we have 
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For convenience, we denote T as vertex set 


n

ni

iiiiii vvvvvv
1

576832 },,,,,{


, then we denote the induced 

subgraph of vertex set 
n

ni

iiiiii vvvvvv
1

576832 },,,,,{


as ][TG . 

Obviously, ][][ 3
2FGTG  , then ][TG  is a tree.  

Since  nFT 2 Ø, then ][ 2
nFTG   is a tree. 
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nn FFTG   is a tree. 

That is, ][ 2
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Combining induction step with basic step, the 

][ 21
nn FFG   is a tree. Thus, )]([ na TGVG  is acyclic. 

The lemma holds. 

Lemma 3.2. )]([ 
na TGVG is acyclic for 02mod n  and 

4n . 

Proof: Since nn
na FFTGV 21)(  , Then if  we want 

to prove )]([ 
na TGVG  is acyclic, which is equivalent to 

verify that ][ 21
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Firstly, we prove the ][ 21
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induction on n. 
We first prove the basic step for n=4. 
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Obviously, ][ 4
1FG and ][ 4

2FG are acyclic graph, and 

each graph of ][ 4
1FG and ][ 4

2FG is a tree. Since   

 4
2

4
1 FF Ø, then the induced subgraph of vertex set 

4
2

4
1 FF   is acyclic. That is, ][ 4

2
4

1 FFG   is a tree. The 

vertices set is shown as Fig 8.    
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Figure 8. Subgraph of ][ 4
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For convenience, we also denote T as vertex set 
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Obviously, ][][ 4
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Since  nFT 2 Ø, then ][ 2
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The lemma holds. 

4 Feedback Number of graphs  
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For convenience, we denote )(nf as the feedback 

numbers of Goldberg Snark, Twist Goldberg Snark and 
their related graphs.  

Lemma 4.5. For 3n , the upper bound of feedback 
number is 

12)(  nnf  

Proof: By Lemma 4.1, we have the feedback number 
of )( nGV  as follows. 

12

)]1(65[8

|)(||)(|

|)(\)(|

|)(\)(|

21

21








n

nn

FFGV

FFGV

GVGV

nn
n

nn
n

nan

 

By Lemma 4.2, we have the feedback number of 
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By Lemma 4.3, we have the feedback number of 

)( nTGV  as follows. 
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By Lemma 4.4, we have the feedback number of 

)( nTGV  as follows. 
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Then, we have the upper bound of feedback number 
of is 12)(  nnf  

Lemma 4.6. For 3n , the lower bound of feedback 
number is 

12)(  nnf  

Proof: By reference [20], Beineke and Vandell prove 
a lower bound of general graphs ),( EVG : 
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Since nV 8 , nE 12 and 3 . Thus, we obtain a 

lower bound of these graphs as follows: 
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By the Lemma 4.5 and Lemma 4.6, we obtain the 
feedback number of these graphs as follows. 

Theorem1. For 3n , the  feedback number of these 
graphs is 12)(  nnf . 
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