89 research outputs found

    Particle Swarm Optimization of Information-Content Weighting of Symbolic Aggregate Approximation

    Full text link
    Bio-inspired optimization algorithms have been gaining more popularity recently. One of the most important of these algorithms is particle swarm optimization (PSO). PSO is based on the collective intelligence of a swam of particles. Each particle explores a part of the search space looking for the optimal position and adjusts its position according to two factors; the first is its own experience and the second is the collective experience of the whole swarm. PSO has been successfully used to solve many optimization problems. In this work we use PSO to improve the performance of a well-known representation method of time series data which is the symbolic aggregate approximation (SAX). As with other time series representation methods, SAX results in loss of information when applied to represent time series. In this paper we use PSO to propose a new minimum distance WMD for SAX to remedy this problem. Unlike the original minimum distance, the new distance sets different weights to different segments of the time series according to their information content. This weighted minimum distance enhances the performance of SAX as we show through experiments using different time series datasets.Comment: The 8th International Conference on Advanced Data Mining and Applications (ADMA 2012

    Adaptation of an Evaluation System for e-Health Environments

    Get PDF
    Proceedings of: 14th International Conference, KES 2010, Cardiff, UK, September 8-10, 2010The increase in ageing of European population implies a high cost in economy and society in any European country and it can be reduced if we pay attention and develop home care systems. Evaluation of these systems is a critical and challenging issue but seldom tackled. It is important before evaluating a system to figure out what is the evaluation goal. In our case, such a goal is to evaluate enhanced user experience and beyond the evaluation goal it is also a central concern about what to evaluate. In this paper we propose a multi-agent home care system where we describe how agents coordinate their decisions to provide e-services to patients when at home after hospitalization. Finally we center our proposal on the adaptation of an evaluation system, previously developed, to support the challenges of an e-Health environment and also the multi-user evaluation. These evaluation methods (online/offline) will provide user's (patients, patient's relatives and healthcare professionals) feedback into the system.This work was supported in part by Projects CICYT TIN2008-06742-C02-02/ TSI, CICYT TEC2008-06732-C02-02/TEC, CAM CONTEXTS (S2009/ TIC-1485) and DPS2008-07029-C02-02.Publicad

    A Comparative Study of Dimensionality Reduction Techniques to Enhance Trace Clustering Performances

    Get PDF
    Technology Management/ Information System/ EntrepreneurshipProcess mining aims at extracting useful information from event logs. Recently, in order to improve processes, several organizations such as high-tech companies, hospitals, and municipalities utilize process mining techniques. Real-life process logs from such organizations are usually very large and complicated, since the process logs in general contain numerous activities which are executed by many employees. Furthermore, lots of real-life process logs generate spaghetti-like process models due to the complexity of processes. Traditional process mining techniques have problems with discovering and analyzing real-life process logs which come from less structured processes. To overcome the weaknesses of traditional process mining techniques, a trace clustering has been developed. The trace clustering splits an event log into several subsets, and each subset contains homogenous cases. Even though the trace clustering is useful to handle complex process logs, it is time-consuming and computationally expensive due to a large number of features generated from complex logs. In this thesis, we applied dimensionality reduction (preprocessing) techniques to the trace clustering in order to reduce the number of features. To validate our approach, we conducted experiments to discover relationships between dimensionality reduction techniques and clustering algorithms, and we performed a case study which involves patient treatment processes of a hospital. Among many dimensionality reduction techniques, we used three techniques namely singular value decomposition (SVD), random projection, and principal components analysis (PCA). The result shows that the trace clustering with dimensionality reduction techniques produce higher average fitness values. Furthermore, processing time of trace clustering is effectively reduced with dimensionality reduction techniques. Moreover, we measured similarity between clustering results to observe the degree of changes in clustering results while applying dimensionality reduction techniques. The similarity is resulted differently according to used clustering algorithm.ope

    The Role of Occupants in Buildings’ Energy Performance Gap: Myth or Reality?

    Get PDF
    Buildings’ expected (projected, simulated) energy use frequently does not match actual observations. This is commonly referred to as the energy performance gap. As such, many factors can contribute to the disagreement between expectations and observations. These include, for instance, uncertainty about buildings’ geometry, construction, systems, and weather conditions. However, the role of occupants in the energy performance gap has recently attracted much attention. It has even been suggested that occupants are the main cause of the energy performance gap. This, in turn, has led to suggestions that better models of occupant behavior can reduce the energy performance gap. The present effort aims at the review and evaluation of the evidence for such claims. To this end, a systematic literature search was conducted and relevant publications were identified and reviewed in detail. The review entailed the categorization of the studies according to the scope and strength of the evidence for occupants’ role in the energy performance gap. Moreover, deployed calculation and monitoring methods, normalization procedures, and reported causes and magnitudes of the energy performance gap were documented and evaluated. The results suggest that the role of occupants as significant or exclusive contributors to the energy performance gap is not sufficiently substantiated by evidence.</jats:p

    Developing a person guidance module for hospital robots

    Get PDF
    This dissertation describes the design and implementation of the Person Guidance Module (PGM) that enables the IWARD (Intelligent Robot Swarm for attendance, Recognition, Cleaning and delivery) base robot to offer route guidance service to the patients or visitors inside the hospital arena. One of the common problems encountered in huge hospital buildings today is foreigners not being able to find their way around in the hospital. Although there are a variety of guide robots currently existing on the market and offering a wide range of guidance and related activities, they do not fit into the modular concept of the IWARD project. The PGM features a robust and foolproof non-hierarchical sensor fusion approach of an active RFID, stereovision and cricket mote sensor for guiding a patient to the X-ray room, or a visitor to a patient’s ward in every possible scenario in a complex, dynamic and crowded hospital environment. Moreover, the speed of the robot can be adjusted automatically according to the pace of the follower for physical comfort using this system. Furthermore, the module performs these tasks in any unconstructed environment solely from a robot’s onboard perceptual resources in order to limit the hardware installation costs and therefore the indoor setting support. Similar comprehensive solution in one single platform has remained elusive in existing literature. The finished module can be connected to any IWARD base robot using quick-change mechanical connections and standard electrical connections. The PGM module box is equipped with a Gumstix embedded computer for all module computing which is powered up automatically once the module box is inserted into the robot. In line with the general software architecture of the IWARD project, all software modules are developed as Orca2 components and cross-complied for Gumstix’s XScale processor. To support standardized communication between different software components, Internet Communications Engine (Ice) has been used as middleware. Additionally, plug-and-play capabilities have been developed and incorporated so that swarm system is aware at all times of which robot is equipped with PGM. Finally, in several field trials in hospital environments, the person guidance module has shown its suitability for a challenging real-world application as well as the necessary user acceptance

    Text-image synergy for multimodal retrieval and annotation

    Get PDF
    Text and images are the two most common data modalities found on the Internet. Understanding the synergy between text and images, that is, seamlessly analyzing information from these modalities may be trivial for humans, but is challenging for software systems. In this dissertation we study problems where deciphering text-image synergy is crucial for finding solutions. We propose methods and ideas that establish semantic connections between text and images in multimodal contents, and empirically show their effectiveness in four interconnected problems: Image Retrieval, Image Tag Refinement, Image-Text Alignment, and Image Captioning. Our promising results and observations open up interesting scopes for future research involving text-image data understanding.Text and images are the two most common data modalities found on the Internet. Understanding the synergy between text and images, that is, seamlessly analyzing information from these modalities may be trivial for humans, but is challenging for software systems. In this dissertation we study problems where deciphering text-image synergy is crucial for finding solutions. We propose methods and ideas that establish semantic connections between text and images in multimodal contents, and empirically show their effectiveness in four interconnected problems: Image Retrieval, Image Tag Refinement, Image-Text Alignment, and Image Captioning. Our promising results and observations open up interesting scopes for future research involving text-image data understanding.Text und Bild sind die beiden häufigsten Arten von Inhalten im Internet. Während es für Menschen einfach ist, gerade aus dem Zusammenspiel von Text- und Bildinhalten Informationen zu erfassen, stellt diese kombinierte Darstellung von Inhalten Softwaresysteme vor große Herausforderungen. In dieser Dissertation werden Probleme studiert, für deren Lösung das Verständnis des Zusammenspiels von Text- und Bildinhalten wesentlich ist. Es werden Methoden und Vorschläge präsentiert und empirisch bewertet, die semantische Verbindungen zwischen Text und Bild in multimodalen Daten herstellen. Wir stellen in dieser Dissertation vier miteinander verbundene Text- und Bildprobleme vor: • Bildersuche. Ob Bilder anhand von textbasierten Suchanfragen gefunden werden, hängt stark davon ab, ob der Text in der Nähe des Bildes mit dem der Anfrage übereinstimmt. Bilder ohne textuellen Kontext, oder sogar mit thematisch passendem Kontext, aber ohne direkte Übereinstimmungen der vorhandenen Schlagworte zur Suchanfrage, können häufig nicht gefunden werden. Zur Abhilfe schlagen wir vor, drei Arten von Informationen in Kombination zu nutzen: visuelle Informationen (in Form von automatisch generierten Bildbeschreibungen), textuelle Informationen (Stichworte aus vorangegangenen Suchanfragen), und Alltagswissen. • Verbesserte Bildbeschreibungen. Bei der Objekterkennung durch Computer Vision kommt es des Öfteren zu Fehldetektionen und Inkohärenzen. Die korrekte Identifikation von Bildinhalten ist jedoch eine wichtige Voraussetzung für die Suche nach Bildern mittels textueller Suchanfragen. Um die Fehleranfälligkeit bei der Objekterkennung zu minimieren, schlagen wir vor Alltagswissen einzubeziehen. Durch zusätzliche Bild-Annotationen, welche sich durch den gesunden Menschenverstand als thematisch passend erweisen, können viele fehlerhafte und zusammenhanglose Erkennungen vermieden werden. • Bild-Text Platzierung. Auf Internetseiten mit Text- und Bildinhalten (wie Nachrichtenseiten, Blogbeiträge, Artikel in sozialen Medien) werden Bilder in der Regel an semantisch sinnvollen Positionen im Textfluss platziert. Wir nutzen dies um ein Framework vorzuschlagen, in dem relevante Bilder ausgesucht werden und mit den passenden Abschnitten eines Textes assoziiert werden. • Bildunterschriften. Bilder, die als Teil von multimodalen Inhalten zur Verbesserung der Lesbarkeit von Texten dienen, haben typischerweise Bildunterschriften, die zum Kontext des umgebenden Texts passen. Wir schlagen vor, den Kontext beim automatischen Generieren von Bildunterschriften ebenfalls einzubeziehen. Üblicherweise werden hierfür die Bilder allein analysiert. Wir stellen die kontextbezogene Bildunterschriftengenerierung vor. Unsere vielversprechenden Beobachtungen und Ergebnisse eröffnen interessante Möglichkeiten für weitergehende Forschung zur computergestützten Erfassung des Zusammenspiels von Text- und Bildinhalten
    corecore