

Convergence Analysis of

ILC Algorithms with application to

Compass Gait Bipedal Walking Robot

A thesis submitted to The University of Manchester for the degree of

Doctor of Philosophy

in the Faculty of Engineering and Physical Sciences

2013

Inam Ul Hasan Shaikh

School of Electrical and Electronic Engineering

2

TABLE OF CONTENTS

Table of contents ... 2

List of Figures .. 7

List of tables ...11

Abbreviations and Acronyms..12

Abstract ..13

Declaration..16

Copyright Statement ..17

DEDICATION..19

Acknowledgements..20

List of publications related to this thesis ..22

1 Introduction ...23

1.1 Motivation...24

1.2 Problem Formulation ..26

1.3 Thesis Contributions and Achievements ...27

1.4 Thesis Outline ...29

2 ILC and Bipedal Walking - Literature Review..31

2.1 Bipedal Humanoid Robots...31

2.2 Passive Dynamics for Walking Robots..33

3

2.3 Importance of Learning for Bipedal Walking Robots34

2.4 What is ILC ..35

2.5 History of ILC ...36

2.6 ILC for Bipedal Robots ...37

2.7 Iterative Learning Control - Architecture ...39

2.8 ILC Notation and Assumptions...42

2.8.1 Assumptions ...42

2.8.2 Discrete-time System and Input-output Relationship43

2.9 ILC Update Rules ...44

2.9.1 D-ILC ...45

2.9.2 P-ILC ...46

2.9.3 PD-ILC...47

2.9.4 PI-ILC ..47

2.9.5 PID-ILC ...48

2.9.6 Anticipatory ILC ..48

2.9.7 Optimal ILC...49

2.9.8 Cyclic ILC and Use for Robotics ..49

2.10 Summary ...51

3 Modelling the Dynamics of Bipedal Walking Robot52

3.1 Two-Legged Human Locomotion...52

3.1.1 Compass Gait Model for Biped Robot..53

3.1.2 Assumptions for Compass Gait Model ...54

3.2 Dynamics of Compass Gait Robot ..55

3.2.1 Swing Phase Dynamics in State Space Form58

3.2.2 Impact Reset During Stance Phase ..59

4

3.3 Simulations of Passive Compass Gait Robot.....................................61

3.3.1 Simulations for Passive CG Walking Over Flat Surface61

3.4 Compass Gait Robot on Slope...63

3.4.1 Equations of Motion for Down-hill Walking CG..........................64

3.4.2 Simulations of Passive CG Robot Walking on Slope....................65

3.5 The Actuated Compass Gait Robot ..67

3.6 Linearised Model of the Compass Gait Robot...................................67

3.7 Model Uncertainties in Compass Gait Robot74

3.7.1 Effects of Model Uncertainties..74

3.7.2 How to Analyse the Model Uncertainties74

3.7.3 Formulation to Analyse Effects of Uncertainties..........................75

3.7.4 Simulations with variable parameters ..81

3.8 Summary ...82

4 Convergence Analysis - ILC with Zero Initial Errors83

4.1 Discrete-time LTI System ...83

4.2 D-ILC Control Input Update ..85

4.3 Convergence of ILC in Terms of Output Error86

4.3.1 Batch to Batch Output Error Evolution86

4.4 Convergence of Control Input at Component Level Using D-ILC.....89

4.4.1 Batch to Batch Control Input Sequence.......................................90

4.5 Rate of Convergence of Control Input Error.....................................94

4.5.1 Input Error Evolution at Component Level - Formulation94

4.5.2 Properties of Relation for Control Input Error Evolution97

4.5.3 Rate of Convergence for the Input Error at Component Level98

4.6 Case Study: 1st Order SISO System ..104

5

4.7 Case Study: ILC Algorithm for a Damped Pendulum.....................110

4.7.2 Controllability via D-ILC ...122

4.7.3 Effect of Offset State Errors ...122

4.8 Summary ...123

5 Convergence Analysis for Cyclic ILC...125

5.1 Control Input & Initial State Errors for Cyclic D-ILC....................125

5.1.1 Problem Formulation ...126

5.1.2 Modelling Cyclic ILC..127

5.1.3 Evolution of Control Input and Initial State Errors...................128

5.1.4 Comments on the Structure of Error Evolution Matrix128

5.1.5 Convergence of Error Evolution Matrix129

5.2 State Errors for Cyclic D-ILC ...135

5.3 Convergence of Cyclic PD–ILC ...136

5.4 Evolution of State Errors for Cyclic PD-ILC140

5.5 Damped Pendulum with Cyclic ILC- Simulations...........................141

5.5.1 CASE 1: Cyclic D-ILC ...142

5.5.2 CASE 2: Cyclic PD-ILC...150

5.5.3 CASE 3: Cyclic PD-ILC Using P Gain Less Than D Gain153

5.6 Parameters for Stable Cyclic PD-ILC Learning159

5.7 Summary ...160

6 ILC for Robotics ..161

6.1 Cyclic D-ILC for Actuated Compass Gait Robot............................161

6.1.1 Simulations of CG Robot Walking on Flat Surface Actuated

with Cyclic D-ILC Generated Torques...162

6

6.1.2 Simulations of CG Walking Downhill with Cyclic D-ILC164

6.2 Modified Cyclic PD-ILC for Bipedal Walk......................................166

6.3 Simulations for CG Walk Using Modified Cyclic PD-ILC166

6.4 Summary ...174

7 Conclusions ..175

APPENDIX A ..177

APPENDIX B...181

REFERENCES ...182

Word Count: 25,426

7

LIST OF FIGURES

Figure 2.1: Basic ILC scheme.. 40

Figure 2.2: Feedback versus learning .. 41

Figure 3.1 The 2-link compass gait robot.. 54

Figure 3.2 Pre-impact and post-impact during double support

phase... 60

Figure 3.3 Stick diagram of CG robot walking on flat surface................ 62

Figure 3.4 Phase portrait of a selected leg of CG robot for 10 steps....... 63

Figure 3.5 Compass gait robot walking down a slope 64

Figure 3.6 Stick diagram of CG robot walking down hill........................ 66

Figure 3.7 Stable limit cycle for CG walking on slope 66

Figure 3.8 Comparison between nonlinear and linear models of CG....... 73

Figure 3.9 Effects of +/- 20 % change in hip mass of CG robot............. 81

Figure 3.10 Effects of +/- 20 % change in leg mass of CG robot 82

Figure 4.1: Sequential convergence of samples .. 94

Figure 4.2: Singular values and eigenvalues of matrix T 105

Figure 4.3: Evolution of components of control input errors................. 106

Figure 4.4: Short range evolution of control input errors...................... 106

Figure 4.5: Medium range evolution of control input errors 107

Figure 4.6: Long range evolution of control input errors 108

Figure 4.7: Convergence rates of control input components.................. 108

8

Figure 4.8: Bounds for rate of convergence ... 109

Figure 4.9: A damped pendulum... 111

Figure 4.10: Tracking control input with ILC algorithm 113

Figure 4.11: Tracking desired angle and velocity using ILC 114

Figure 4.12: RMS control input, angle and velocity errors 114

Figure 4.13: Evolution of control input at selected indices 115

Figure 4.14: Convergence rates for control input errors 116

Figure 4.15: Short-term rates for control input errors........................... 117

Figure 4.16: Medium-term rates for control input errors 117

Figure 4.17: Long-term rates for control input errors 118

Figure 4.18: RMS errors in angle, velocity and control input 119

Figure 4.19: Evolution of input error at selected time indices 119

Figure 4.20: Long-term rates for control input errors 120

Figure 4.21: RMS values for D-ILC with zero initial conditions 121

Figure 4.22: Convergence rate for input error 121

Figure 4.23: Convergence of velocity errors with offset state errors...... 123

Figure 5.1: Root mean squared initial state and input errors 145

Figure 5.2: Tracking of desired control input.. 146

Figure 5.3: Tracking of desired angle and velocity................................ 146

Figure 5.4: Evolution of input error at selected time indices 147

Figure 5.5: Convergence rate of input error at selected indices............. 147

9

Figure 5.6: Evolution of angle error at selected time indices 148

Figure 5.7: Evolution of velocity error at selected time indices............. 148

Figure 5.8: Convergence rate for velocity error..................................... 149

Figure 5.9: RMS initial state and input errors using Cyclic PD-

ILC ... 150

Figure 5.10: Tracking of control input using Cyclic PD-ILC 151

Figure 5.11: Tracking of angle and velocity using Cyclic PD-ILC 151

Figure 5.12: Evolution of input error using Cyclic PD-ILC 152

Figure 5.13: Convergence rate of control input errors using Cyclic

PD-ILC... 152

Figure 5.14: RMS initial state and input errors 153

Figure 5.15: Tracking for different initial states with Cyclic PD-

ILC ... 154

Figure 5.16: Tracking input for different initial states using Cyclic

PD-ILC... 154

Figure 5.17: Input errors evolution with Cyclic PD-ILC....................... 155

Figure 5.18: Long-term rate of input error with Cyclic PD-ILC........... 157

Figure 5.19: Evolution of angle error using Cyclic PD-ILC 157

Figure 5.20: Evolution of velocity error using Cyclic PD-ILC 158

Figure 5.21: Stability boundary for Cyclic PD-ILC 159

Figure 6.1: Torques generated using Cyclic D-ILC on flat surface........ 163

Figure 6.2: Phase portrait on flat surface using Cyclic D-ILC 163

10

Figure 6.3: Torques using Cyclic D-ILC for CG robot walking

downhill .. 164

Figure 6.4: Limit cycle - CG robot walking on slope 165

Figure 6.5: Cyclic D-ILC torques for CG using reduced dK 165

Figure 6.6: Tracking ankle joint torque... 167

Figure 6.7: Tracking hip joint torque.. 168

Figure 6.8: Tracking stance foot angle .. 168

Figure 6.9: Tracking hip joint angle.. 169

Figure 6.10: Evolution of ankle input torque error 170

Figure 6.11: Slopes showing rate of ankle input torque error................ 170

Figure 6.12: Evolution of Hip Joint torque ... 171

Figure 6.13: Slopes showing rate of hip joint error 171

Figure 6.14: Log-log RMS values of state and input errors................... 172

Figure 6.15: Phase portrait of ankle joint at last step........................... 172

Figure 6.16: Phase portrait of hip joint at last step.............................. 173

Figure 6.17: RMS values with modified Cyclic PD-ILC........................ 173

11

LIST OF TABLES

Table 3-1 Compass gait robot parameters .. 62

Table 4-1: Pendulum parameters .. 111

Table 4-2: Final RMS values... 113

12

ABBREVIATIONS AND ACRONYMS

ILC Iterative Learning Control

RC Repetitive Control

NRILC No-reset ILC

RMS Root Mean Square

P Proportional

PD Proportional – Derivative

PID Proportional – Integral – Derivative

SISO Single Input Single Output

MIMO Multiple Input Multiple Output

LTI Linear Time Invariant

CITE Current Iteration Tracking Error

DOF Degrees Of Freedom

AIST Advanced Industrial Science and Technology

KAIST Korea Advanced Institute of Science and Technology

ASIMO Advanced Step in Innovative MObility

HRP Humanoid Robotics Project

WABIAN WAseda BIpedal humANoid

IIT Italian Institute of Technology

COP Centre of Pressure

ZMP Zero Moment Point

LQR Linear Quadratic Regulator

CG Compass Gait

ASP Average Speed of Progression

IFT Iterative Feedback Tuning

13

ABSTRACT

At an early age, i.e., up to about 1-2 years the humans learn to walk and

subsequently develop a robust and flexible gait. This is learned by

repetitively taking similar steps and the experience is stored in the

muscle/reflexive memory. Over the last 30 years, a variety of humanoid

bipedal robots have been developed to copy the human gait. However,

walking/locomotion is still a relatively difficult control problem due to its

complex hybrid nature because of non-smooth dynamics. Although, simple

walking comprises of single support in which one leg swings forward, then

it impacts with ground for a brief double support phase and further

transition of the other support leg to start a new swing. The steps are

repeated again and again in a similar manner for walking over an even

surface. As the swinging leg strikes the ground, it is a non-linear impact

which poses a challenge since it causes non-zero initial state errors for

each step which depend on the error in the gait at last moment for

previous step. The usual bipedal control relies on complex techniques

based on inverse kinematics, ZMP (Zero-Moment Pole) and COP (Centre

Of Pressure) to generate the required control inputs for the joints.

However, a basic cognitive assumption is that walking is a relatively

simple task which can be learned and the biological systems have achieved

it by simple repetitions. This has been over-looked in these control

techniques.

In the past, ILC has been proposed to solve the repetitive learning

problems. The Iterative Learning Controller learns to generate the desired

set of input signals to compensate for the output tracking errors in a

14

sequential manner such that in the initial iterations, the signals values at

earlier time indices have faster rate than the later ones. So, at the last

time index the convergence is achieved after all the earlier ones. ILC

learns/adapts the joint control for repetitive gaits. In this thesis it has

been proposed to be used as a muscle memory where control signals are

learnt for a repetitive batch. Thus, ILC equates to “learning a sequence of

action by muscles”. Due to the transfer of state error in a cyclic manner

from the end of a previous step/repetition to the recent step/repetition,

the convergence has to be established in joint control and state space.

Similar is the case of continuous walking where the ground impacts

transfer part of the error in the gait to the start of a new step

representing an impacting Cyclic ILC scenario. Hence, the ILC problem is

changed from finite to an infinite horizon. The second problem occurs

with the non-constant length of the iteration due to change in step size.

The two scenarios have been considered: Firstly, when the control input is

updated using ILC with identical initial conditions at the start of each

repetition. Secondly, control input update under varying initial conditions

leading to Cyclic ILC. The batch to batch evolution of control inputs at

each sample time within a batch is formulated. The sequential

convergence of control input generated by ILC algorithms has been

investigated. The exact relationship for the rate of convergence of the

control input has been formulated down to the sample-time level. This

provides deeper insight about the ILC algorithms and hence exact factors

affecting the convergence could be established. Limits of the learning

process have been clearly demonstrated as well. Although, simpler D-ILC

converges for zero initial error but for cyclic non-zero initial errors, it has

15

offset error which corresponds to the initial state error. With proportional

part, the PD-ILC algorithm has eliminated the offset error which has been

illustrated for a damped pendulum and further implemented to bipedal

locomotion. For reasons of energy efficiency, passive dynamics has been

chosen for the compass gait model of the biped. The walking problem for

the compass gait robot has been solved using the modified PD-ILC which

utilizes the acceleration error term as well. The steady gait has been

achieved for the compass gait robot on flat surface which has been verified

by the phase portraits.

16

DECLARATION

No portion of the work referred to in this thesis has been submitted in

support of an application for another degree or qualification of this or

any other university or other institution of learning.

17

COPYRIGHT STATEMENT

[i] The author of this thesis (including any appendices and/or

schedules to this thesis) owns any copyright in it (the

“Copyright”) and he has given The University of Manchester the

right to use such Copyright for any administrative, promotional,

educational and/or teaching purposes.

[ii] Copies of this thesis, either in full or in extracts and whether in

hard or electronic copy, must be made only in accordance with the

Copyright, Designs and Patents Act 1988 (as amended) and

regulations issued under it or, where appropriate, in accordance

with the licensing agreements which the University has from time

to time. This page must form part of any such copies made.

[iii] The ownership of any patents, designs, trade marks and any and

all other intellectual property rights except for the Copyright (the

“Intellectual Property Rights”) and any reproductions of copyright

works, for example graphs and tables (“Reproductions”), which

may be described in this thesis, may not be owned by the author

and may be owned by third parties. Such Intellectual Property

Rights and Reproductions cannot and must not be made available

for use without the prior written permission of the owner(s) of the

relevant Intellectual Property Rights and/or Reproductions.

18

[iv] Further information on the conditions under which disclosure,

publication and commercialisation of this thesis, the Copyright and

any Intellectual Property Rights and/or Reproductions described

in it may take place is available in the University IP Policy (see

http://documents.manchester.ac.uk/display.aspx?DocID=487), in

any relevant Thesis restriction declarations deposited in the

University Library, The University Library’s regulations (see

http://www.library.manchester.ac.uk/aboutus/regulations/)and

in The University’s Policy on Presentation of Theses.

19

DEDICATION

To

My Parents

Father:

Late Azimuddin Ahmad (Rahmatullah alaihe)

and

Mother:

Tasneem Sultana.

20

ACKNOWLEDGEMENTS

First and foremost, I am thankful to the Almighty Allah for He gave

me the strength to pursue and complete this research. It gives me great

pleasure to offer gratitude to my supervisor Dr. Martin Brown for his

untiring support and guidance throughout my stay at Manchester. He

groomed me up from roots and enabled to put up this novel work.

Further, I would like to express my appreciation for the help and

motivation from Prof. Hong Wang, Dr. Ahmad Hussain Al-Bayati, Dr.

Onder Tutsoy and many other colleagues at Control Systems Centre.

Some other kind friends whose moral support shall be remembered are

Shafiq Qureshi, Saad Ahmad, Muhammad Kibria, Dr. Waseem Aziz,

Dr. Zahid Mahmood, Dr. Muhammad Ali, Dr. Sarmad Sohaib, Dr.

Junaid Ahmed, Dr. Laraib, Dr. Rashid Saleem, Dr. Muhammad Yaqub,

Shabbir Majeed Choudhry, Dr. Muhammad ObaidUllah and Dr. Ahsan

Ali.

I am also thankful for the financial support from University of

Engineering and Technology, Taxila, Pakistan. Dr. Muhammad Abbas

Choudhry, The Vice Chancellor of UET Taxila, Ex-VC Prof. Dr.

Habibullah Jamal along with Prof. Dr. Ahmed Khalil Khan, Prof. Dr.

Zafrullah, Prof. Dr. Tahir Nadeem Malik, Prof. Dr. Muhammad Ahmad

Choudhry and Prof. Dr. Muhammad Iram Baig, all have continued to

support my endeavour.

21

I am obliged to following for their useful comments: Dr. Fida

Muhammad Khan, Dr. Sohail Akhtar and Dr. Syed Zafar Ali from Air

University, Islamabad. Dr. Amir Iqbal Bhatti from MAJU, Islamabad,

Pakistan gave deep insight about my research.

Lastly, but most importantly, the patience and motivation from my

family during whole of my study has been the catalyst.

22

LIST OF PUBLICATIONS RELATED TO THIS

THESIS

• Shaikh, I. U. H., “Iterative Learning Controller - Rate of

Convergence Analysis”, in PGR poster conference, The

University of Manchester, Manchester, UK, 24 November, 2010.

• Shaikh, I. U. H., Khalili, H. H., Brown, M., “Convergence

Analysis of Cyclic Iterative Learning Control Scheme”, in

Proceedings of 2012 9th International Bhurban Conference on

Applied Sciences and Technology (IBCAST), Islamabad,

Pakistan, 9-12 January, 2012.

• Shaikh, I. U. H., Brown, M., “A Convergence Analysis of D-ILC

Algorithm”, in UKACC Control 2012, Cardiff, UK, 3-5

September, 2012.

23

 Chapter 1

1 Introduction

To design a humanoid robot which can successfully demonstrate

bipedal locomotion is a complex, hybrid control problem [1]. Most of

the previous approaches use conventional feedback control based on

inverse kinematics with some form of trajectory generation based on

ZMP (Zero Moment Point). However, these are typically complex,

require a lot of design effort and even then usually end up producing

un-natural walking gaits and high energy consumption. But in real life

humans learn to walk at a relatively early age. Aspects of balance are

learnt using aids such as frames or furniture, then repetitive trials/steps

are performed by infants and unsuccessful attempts/inefficient gaits are

continuously improved. It is hypothesized that equipping a humanoid

robot with such cognitive/learning abilities would produce robust

walking gaits with a minimal amount of prior design as well as enabling

the study of cognitive/learning algorithms in robots, the so-called

embodiment principle [2-4]. There has been dire need to search of

learning control algorithms for bipedal walking robot which do not

require complex inverse kinematics and are closer to the human

learning [5]. Iterative Learning Control (ILC) appears to be suitable to

use for a bipedal walking robot due to its repetitive/batch learning

24

formulation and ILC techniques have previously been proposed for

bipedal robot locomotion, but no results demonstrated [6, 7].

ILC is a Learning Control System which evolved in 1970-80’s. It

improves the tracking performance of systems which operate in a

repetitive manner. These repetitions occur after fixed intervals of time.

ILC has helped to improve the performance of repetitive control

systems especially when dealing with uncertain systems [8].

This chapter presents an overview of the research, i.e., background

motivation, problem formulation, contributions, achievements and the

brief outline of the thesis.

1.1 Motivation

The human brain has the capability to acquire new knowledge or

modify existing knowledge on the basis of recent experience. This is

termed as cognitive learning [9-11]. In other words learning involves the

transformation of information in the environment into knowledge that

is stored in the mind. This has opened the door for the development of

Learning Control Systems which learn from their past experience, in a

manner similar to the human brain. The attractive features such as

learning capability, model-free control design, simple architecture, etc.,

have led to the work described in this thesis which applies and analyses

ILC algorithms to the problem of designing bipedal gaits in humanoid

robots.

25

The aim is to replicate the reflexive/muscle memory feature of humans

which allows certain physical actions to become easier so that

eventually the actions are performed without conscious thought. This

learning process occurs through repetition of a particular action over

and over again as walking, running, athletics and other physical games.

Whilst, this repetition or practice of movement is carried out, new

neural pathways within the brain are likely created that allow the

action to be performed with less and less conscious effort on the part of

a person. After sufficient time, the long-term muscle memory develops

and future actions can be performed easily and accurately without

conscious effort. The biological systems thus achieve maximum

efficiency within the motor and memory systems.

Designing a bipedal walking robot is a complex, hybrid control problem

due to non-linear effects such as stiction, the difficulty in estimating

important parameters and the problem with modelling impacts,

amongst others. Similarly, trajectories designed using ZMP (Zero

Moment Point) often have an unnatural gait and high energy

consumption. There is, therefore, a need to investigate how learning

control algorithms can be applied to bipedal walking robots in order to

reduce the design effort and also to inform ideas about cognitive

learning [5]. In this research, simple ILC techniques have been

successfully applied to compass gait model of the bipedal robot

locomotion [12].

26

1.2 Problem Formulation

The learning control for bipedal robots can not be directly implemented

as a conventional ILC problem due to non-zero initial state errors at

the start of each step. Each step is considered as one batch. For

continuous walking the error in the gait at last moment just before the

swinging leg strikes the ground affects the initial state at the start of

next step so the ILC horizon becomes infinite, unlike conventional

Cyclic ILC which assumes a finite, horizon. Moreover, the fixed length

assumption for each step can not be fulfilled in many cases such as

when the foot impacts with ground occur earlier or later in consecutive

steps due to variations in speed or step length. Moreover, the learning

problem should not just be analysed in terms of its asymptotic

behaviour. Humans learn to walk in hundreds or thousands of trials.

Efficient learning, especially during the initial stages of learning is

required, it is not enough to simply establish asymptotic convergence

results. So, in this research, the rate of convergence of conventional ILC

systems across the batch (i.e., for each time index) has been analysed.

It has been further extended to non-zero initial condition Cyclic ILC so

as to handle the impacting systems.

ILC is typically used for controlling stable systems or it may be

incorporated along with a stabilizing controller which keeps the system

with in the required stability region. The ILC iteratively improves the

tracking performance and in the long run would be able to compensate

for parameter variations in the plant. However, although establishing

27

convergence of the ILC algorithm is model-free, the rates of

convergence depend on the system dynamics. Hence, to address the

convergence rate problem, the general statement is given as follows:

“How to analyse the convergence rate of ILC generated control input

up to component level and apply for the impacting systems having

nonzero initial errors from previous iterations such as bipedal walking

robots?”

The general problem stated above covers mathematical formulation,

verification and simulation analysis of LTI and nonlinear impulsive

hybrid dynamic systems such as bipedal walking robot.

1.3 Thesis Contributions and Achievements

The casting of walking problem in terms of Cyclic ILC required

mathematical formulation which has been achieved by relaxing the

conventional fixed length, zero initial error assumptions. For this the

effect of initial state error on each of the time index inside a batch has

to be formulated until the end so as to analyse how does it effect the

initial state for the next consecutive iteration. Following is the brief

about thesis contributions during this research:

• Development of a homogeneous two-dimensional input error

evolution relationship at component level instead of conventional

two dimensional models [13-15]. (Section 4.5)

• Derived the relationship for component-wise input error

convergence rate and proved that long-term rate at all time

28

indices equals the eigenvalue of the matrix which relates the

evolution from one iteration to the other in line with

conventional asymptotic analysis. (Theorem 4.1)

• Extension of homogeneous two-dimensional input error evolution

at component level and the convergence analysis for non-zero

initial error ILC and impacting Cyclic ILC (Section 5.1).

• While analysing the simple D-ILC algorithm for impacting Cyclic

ILC it was observed that initial error caused constant offset error

which pointed towards existence of a dominant eigenvector

associated with unit magnitude eigenvalue. It has been stated

and proved as Theorem 5.1.

• The input error reduced to zero on adding proportional error

term to D-ILC, i.e., using PD-ILC algorithm for Cyclic ILC.

Hence stated and proved that for the input error evolution

matrix that there does not exist eigenvector associated with unit

magnitude eigenvalue (Theorem 5.2)

• Implementation of simple D-ILC algorithm to generate impulse-

type torques for both the ankle and hip joints at the start of

each step for compass gait robot to achieve stable walking gait of

the robot (Section 6.1).

• Implementation of a modified PD-ILC algorithm under Cyclic

ILC scheme to generate torques for both the ankle and hip joints

at each sample time during the steps for stable biped walk

(Sections 6.2 and 6.3).

29

1.4 Thesis Outline

This introductory chapter is followed by literature review of ILC in

chapter 2. Its properties and features which distinguish it form

conventional feedback (classical as well as modern) control systems

have been elaborated. Various types of ILC update rules have been

mentioned. Bipedal walking robot has been discussed including the

efforts to use ILC algorithms to generate a stable walking gait.

In chapter 3, passive compass gait robot dynamics have been modelled

for stable walking over a flat surface as well as on a slope. The passive

dynamic compass gait robot has been chosen due to reasons of energy

efficiency [16-21]. From the un-actuated passive walking downhill under

the action of gravity considered as reference, the model for actuated

compass gait has been achieved. Linearised version of the biped model

has been presented along with analysis for uncertain parameters.

Convergence issues for the D-ILC algorithm have been covered in 4th

chapter. A linear discrete-time system is considered with no initial state

error. For control input update, D-ILC algorithm has been employed.

Component-wise input error evolution from iteration to iteration has been

formulated. Convergence analysis has been based on the operator matrix

which relates the input error evolution.

In chapter 5, the case for non-zero initial states at the start of each

repetition has been presented. The Cyclic ILC case where state errors

are transferred from the end of one iteration to the start of next

30

iteration has been investigated. D-ILC has been unable to provide a

satisfactory solution. It has been mathematically proven in Theorem

5.1. However, PD-ILC algorithm has achieved convergence for the

variable initial states. Component-wise input error evolution for PD-

ILC has been developed which has been implemented to generate the

control inputs for damped pendulum.

In chapter 6, the ILC techniques have been applied to bi-pedal

locomotion. The D-ILC algorithm has been applied to generate input

torques for the hip and ankle joints at the start of each step for bipedal

walk on a flat surface. These torques are applied at the start of each

step. During the whole step, the robot legs move passively. This has led

to a stable walking pattern learned by the compass gait robot while

employing the minimum amount of torques. Secondly, using a reference

trajectory from a fine-tuned feedback type PD controller, a modified

Cyclic ILC algorithm for biped locomotion has been formulated to

generate the set of control inputs for both the ankle and hip joints for

stable gait of robot.

In chapter 7 the conclusions have been drawn about this research

reflecting the overall summary of the thesis along with directions for

future research.

31

Chapter 2

2 ILC and Bipedal Walking -

Literature Review

In this chapter, efforts to achieve stable walking gait for biped robot

and the importance of learning for the robots have been elaborated.

This has led to use of ILC algorithms to solve the biped walking

problem. What is ILC, the difference from traditional feedback control

and how has ILC evolved, the brief history of the ILC and the various

commonly employed ILC update rules have been discussed. The Cyclic

ILC and the corresponding research have been reviewed which has been

employed in this research to solve the walking problem of the biped

robot.

2.1 Bipedal Humanoid Robots

The interest in 2-legged (bipedal) humanoid robots as autonomous

walking machines has been quite old [22]. The ability of walking over

difficult uneven terrains, running, climbing up stairs and most

important the ability for compliance in a human environment to work

as servants or developing the prosthetic limbs for handicapped people

are the main objectives. Recent trend focuses on the optimal

32

performance in which a robot can extract knowledge from the

surroundings and learn to interact in an optimal manner.

Few notable bipedal humanoid robots are ASIMO (Advanced Step in

Innovative MObility) developed by Honda, Japan. It has 34 DOFs with

the ability to walk and run as well [23]. The Humanoid Research Group

of Japan’s National Institute of Advanced Industrial Science and

Technology (AIST) has come up with a series of human-sized robots as

HRP-2, HRP-3, HRP-4C and HRP-4, the human co-operative robot.

These robots have impressive capabilities of running, walking and even

dancing [24]. WABIAN (WAseda BIpedal humANoid) and WABIAN-

2R with 41 and 43 degrees of freedom (DOFs) respectively, have been

developed by Biped Humanoid Robot Group at University of Waseda,

Japan [25]. Humanoid Robot Research Centre at Korea Advanced

Institute of Technology (KAIST) have developed HUBO (41 DOFs)

and later HUBO2 (40 DOFs) which consumes lesser energy due to

stretched-leg walking instead of traditional ZMP [26]. Under the

European Commission funded RobotCub project, cognitive robots iCub

and C-Cub with 53 DOFs have been developed to implement and

explore the learning behaviour in humanoid walking robots similar to a

human child of about 3 years of age. It is an open system platform

licensed under Free Software Foundation GNU licences to allow its free

use for research. First iCub prototype was developed at The Italian

Institute of Technology (IIT) in Genoa, Italy [27]. The Humanoid

33

Robotics Research Group at The University of Manchester is also

actively involved in the bipedal walking research [28].

2.2 Passive Dynamics for Walking Robots

Dynamics of the un-actuated passive walking robots were pioneered by

Ted McGeer who showed that for gentle slopes, stable bipedal walking

can be achieved where the necessary force is applied by the gravity [16]

Later on by many others for energy efficient steady walking patterns on

slopes under the action of gravity only [29]. The passive dynamics have

been extended for active energy inputs to create stable human-like

walking [17, 30]. Limit Cycle Walking patterns called gaits have been

developed which ensure stability of the passive walking [31]. Effects

such as bifurcations and chaos were investigated which occur because of

the parameter variations [24, 25]. For compass-like biped robot,

passivity mimicking control laws were formulated for the hip and ankle

joints to obtain a robust and efficient walking pattern [32]. Foot

placement and velocity control of the biped robot have been further

employed to eliminate problem of walking on rough terrains [33]. ILC

has been employed to generate the stable walking gait for the bipedal

humanoid robot using variational symmetry [34]. Instead of

decentralized PID controllers, a centralized LQR multivariable

controller has been successfully implemented for the stable and robust

humanoid walking using iterative scheme [35]. The research is still

under way to develop a biped robot with capability of learning to walk

34

properly having same Degrees of Freedom (DOF), weight and length as

a human. Research also focuses on the locomotion of the biped robots

on unseen terrains along with energy efficiency during walking.

2.3 Importance of Learning for Bipedal Walking

Robots

There has been a lot of progress in terms of development of hardware

for bipedal robots and advanced control techniques for walking. But

still there are unsolved issues such as robustness, energy efficiency,

complete autonomy, safety and user-friendliness for the bipedal robots.

Bipedal robots cannot cope with large movements, variable speeds and

many other constraints. Due to these discrepancies, the current bipedal

robots lack the level of robustness, versatility and adaptability that

biological systems have and use them for efficient walking.

To address the stability and periodic walking issues, centre of pressure

(COP) and zero moment point (ZMP) concepts have been previously

implemented. However, biped robot needs to act like a human, so that

they must be capable of learning new gaits in the case of moving in

unknown terrains. Therefore, these force control techniques should be

combined with learning strategies, because learning ability allows the

bipedal robot to modify its dynamic walking pattern to the changing

conditions that is necessary for autonomous walking. The control

techniques for bipedal robot have been based on kinematic and

dynamic modelling of the mechanism which requires complete state

35

measurement and interaction between feet and ground. This requires

heavy computation and optimization. Intelligent control techniques are

capable to overcome these constraints [29, 30]. Cognitive Robotics

includes the representation of experience and reasoning problems

handled by an autonomous robot in a dynamic and incompletely known

environment [36].

2.4 What is ILC

There are many real life applications where same sequence of actions is

repeated again and again such as assembly lines, robot manipulators,

rolling mills, chemical batch processes, etc. The conventional feedback

controllers cannot utilize the information from successive repetitions.

Learning Control techniques such as ILC incorporate the intelligence to

modify the performance on the basis of previous repetition. Iterative

Learning Controllers provide an adaptive solution. The controller

utilizes the error information of each batch and updates the control

input accordingly for the next batch or batches. The control input

signal using ILC converges to the desired value of the control input

which is the inverse solution. Owing to this property, it is also termed

as Iteration Inversion Process [37]. The error information at each time

index can be used in a variety of ways to generate the update for

control input. Hence, there are D, PD, PI, PID, etc many types of ILC

controllers in which the output error, its derivative, integral or some

combination of these is added to the current control input to generate

36

input for the same time instant in next batch. Learning occurs through

pre-determined repetitions at hardware level [8]. These repetitions

provide experience to the mental level [38, 39]. The experience is stored

as data [34].

2.5 History of ILC

ILC evolved in 1970-80s, as one of the learning control systems.

However, earliest use of the term learning control was reported in a

1967 US patent No. 3,555,252 by Murray Garden [40] as presented and

compared with conventional ILC in [41]. The contributions of Cryer

[42], Uchiyama [43] and Arimoto [34] are considered to be the initial

works of ILC [44]. ILC improves the transient performance of systems

which operate in a repetitive manner. These repetitions occur after

fixed intervals of time. ILC has helped to achieve better performance of

control systems especially when dealing with uncertain/stochastic

systems [8]. The concept of learning through repeated trials evolved for

improving the motion control of mechanical arms [34, 45]. The D-ILC

algorithm based on the derivative of the output error for linear time-

varying systems with application to robotic manipulators were

developed [34, 46]. However, the D-ILC suffered with the problem of

differentiation of high frequency noise. Later, the P-ILC improved upon

by using only the error instead of its derivative [47]. The Current

Iteration Tracking Error (CITE) was then introduced to formulate ILC

in line with feedback control paradigm and helped to overcome large

37

overshoot thus convergence could be accelerated [48]. The discrete-time

version of D-ILC was formulated for MIMO linear systems which

possessed global robustness against state disturbances, measurement

noise and re-initialisation error at the beginning of each iteration [49].

The ILC law has been formulated for non-linear time varying systems

having affine input and linear output. Uniform convergence of input

and state was achieved when there were no disturbances [8].

Robot manipulators have replaced the humans at many places in

industrial environment such as manufacturing, assembly lines, tooling,

palleting, machining and painting etc. The use of ILC has improved the

motion control in time-invariant robot manipulators [24, 25]. For such

robotics applications, D and PD type ILC were initially proposed and

gave successful results [50]. But these could not be directly applied to

bipedal walking due to zero-initial error constrain.

2.6 ILC for Bipedal Robots

The humans learn many physical actions by repetition such as walking

at their early age. The experience is stored as muscle memory so that

after few repetitions the humans are able to do these actions without

conscious effort. It is achieved due to cognitive learning ability of the

humans. So there are two important aspects that learning is achieved

via a simple and repetitive process. Since, ILC has both the features

hence it has been considered as a suitable candidate for learning the

bipedal locomotion [6, 7].

38

Walking with two feet consists of swinging motion by one leg while the

other rotates around the ankle but its foot remains fixed. Then, impact

of swing leg occurs when it touches the ground associated with the

change over to the other leg which again swings and impacts. Each

cycle/repetition constitutes a step for the biped. Thus it is a special

case for Cyclic ILC in which the state at start of new step/repetition is

a function of the state at the end of the previous step/repetition.

Use of ILC to solve walking problem of the robot is relatively a new

application area. ILC was initially employed to generate optimal

passive gait trajectories for a one-legged hopping robot which required

zero input for passive running [35]. ILC along with virtual constraints

has produced optimal gait which resulted in constant speed walking

patterns achieved for compass gait robot modelled as a Hamiltonian

system [51]. Satoh et al. has used ILC to generate optimal gaits for one-

legged hopping robot and extended to biped on the basis of variational

symmetry of the Hamiltonian systems using virtual constraints [52, 53].

Iterative Feedback Tuning (IFT) has been used in conjunction with

ILC using virtual constraint to generate stable gait for compass gait

robot [54]. Zhang et al. have proposed impulsive toe-off push generated

with ILC which is applied to the biped just before the heel strikes

(ground impact of swing leg). However, there is no actuation during the

entire swing phase and the swing leg moves passively [6, 55]. Keeping in

view the impact based dynamics, a control strategy based on Receding

Horizon Control was also suggested to stabilize the compass gait robot

39

against initial states in [56]. But even here the swing phase has been

left un-actuated.

However, the bipedal walk using actuation for both the ankle and hip-

joint together has not been solved using ILC/RC techniques until now

[16, 29, 57-60]. So, in this research, a mathematical frame work for the

two-dimensional evolution of input and state errors for Cyclic ILC has

been developed for the evolution of initial state errors for D- and PD-

ILC on the basis of the rate of convergence analysis for zero initial

errors [41-44]. This allowed casting the walking problem as a

continuous process from one step to the other. The ground impacts

could be modelled as well as the non-uniform step length has been

accommodated. Further, simple PD-ILC algorithm modified with the

acceleration error term has been used to generate input torques at

ankle and hip joint for the steady gait generation of compass gait model

of the biped. The hybrid dynamics of compass gait biped locomotion

have been handled with the proposed scheme [61]. Compass gait model

for biped robot based on Lagrangian dynamics has been used for the

analysis in this thesis [9, 21, 23, 40, 41, 43].

2.7 Iterative Learning Control - Architecture

In ‘Iterative Learning Control’ Iterative points to the repetitive or

recursive operation of the plant/system. Starting from identical initial

conditions for each batch, it was observed that such systems exhibit

similar errors in the output response. This motivated to record these

40

errors and modify/update the control input signal for the subsequent

repetitions, i.e. learning from past experience [34]. Learning Systems

can adapt and change their behaviour on the basis of input-output

observations.

ILC can be defined as follows. “It’s a learning control technique where

the controller learns to generate the desired set of control inputs over

the iterations so as to minimize the tracking error between the output

and the reference signal in a sequential manner” [38, 46, 62-65].

The Figure 2.1 below shows the basic ILC scheme in which current

input (,)u i k is applied to the system to generate output (,)y i k at the

thi time index during the thk batch. These values are stored in memory

and used off-line to calculate values of control input (, 1)u i k + for the

next (1)thk + iteration such that the desired output *()y i is tracked

over the iterations.

Figure 2.1: Basic ILC scheme

SYSTEM

MEMORY

I L C

MEMORY

(,)u i k

(, 1)u i k +

(,)y i k

*()y i

41

ILC differs from conventional feedback control where only the current

error is used to correct or update the control input for the next time

instant as shown by yellow block arrow on top row in Figure 2.2. Since

there is no mechanism to utilize the results of one batch to improve the

output of the other batches, the same errors are repeated over different

iterations [38]. However, in case of ILC the tracking error information

of each iteration is utilized to improve the output for next consecutive

iteration/s as shown by blue block arrow in Figure 2.2.

The system response to control input at each instant of time within the

batch is memorized and the error information is used to correct/update

Figure 2.2: Feedback versus learning

Feedback

It
er
a
ti
o
n
 N

o
.

Time Index

ILC

42

the control input for the next iteration. This updated input minimizes

the performance error during the next iteration [39]. In ILC the

parameters of the controller are not changed so it can be distinguished

from Adaptive Control in which the parameters of the controller itself

are changed for performance improvement. Likewise, ILC is different

from Optimal Control since exact model parameters are not required to

be known [66].

2.8 ILC Notation and Assumptions

ILC has been established for continuous-time as well as discrete-time

systems. It is being utilized for both linear and non-linear systems

successfully. In this research ILC for discrete-time systems has been

considered.

2.8.1 Assumptions

Following assumptions usually hold for conventional zero-initial error

ILC algorithms [67-70].

• Initial conditions are reset at the start of each batch.

• The error converges after every iteration. Although there may be

uncertainties/un-modelled dynamics, i.e., minimal knowledge

about the exact system parameters.

• The length of a batch is fixed.

The ILC learns to produce the best possible control signal without

changing its own configuration or parameters. This distinguishes it

43

from Adaptive Controller. The control signal update for the next

iteration is computed off-line, i.e., at the end of the current iteration.

However, in this research some of the assumptions have been relaxed to

accommodate the walking problem of the bipedal robot such as zero

initial error. It is required because the initial state error for each

iteration/step is inherited from the end of the previous iteration/step.

It thus represents a specific class of non-zero initial error ILC called

Cyclic ILC. It still needs further enhancement because ground impacts

introduce a specific relation for the state transformation. The next

assumption relaxed is the batch size which may not remain same for

each iteration/step due to variations in speed or step size.

2.8.2 Discrete-time System and Input-output Relationship

The discrete-time state space description of the system is used with two

indices 1,i M ∈ and k which stand for the time index inside a batch

and the batch number respectively as follows.

(1,) (,) (,)x i k Ax i k B u i k+ = + (2.1)

 (,) (,)y i k C x i k= (2.2)

where state vector is nx ∈ ℝ , input ∈ ℝ(,) pu i k and output of the

system is ∈ ℝ(,) my i k . , A B and C are the real-valued state, input and

output matrices respectively having appropriate dimensions. (,1)u i is

the control input vector for first batch which may be externally

44

specified or left to be zero [38, 71]. The input-output relation for a LTI

system is described in Eq. (2.3) below.

=() ()y k H u k (2.3)

where the vectors ()y k , *y , ()u k and ()e k are the actual output, desired

output, input and errors respectively, given as follows.

 = … () (1,), (3,), , (,)
T

y k y k y k y M k (2.4)

 = …
* * * *(1), (2), , ()

T
y y y y M (2.5)

 = … () (1,), (2,), , (,)
T

u k u k u k u M k (2.6)

 = − = …
*() () (1,), (2,), , (,)

T
e k y y k e k e k e M k (2.7)

Matrix H in lifted form has elements which are impulse response

coefficients or the Markov parameters of the plant ()G z in Eq. (2.8).

+

+ +

+ − + − + −

 …

 …

…=

 …

⋮ ⋮ ⋮ ⋱ ⋮

1

2 1

1 2 3

0 0 0

0 0

0

r

r r

r r r

r M r M r M r

h

h h

h h hH

h h h h

 (2.8)

The Markov parameters are generally given by 1i

i
h CA B−= .

2.9 ILC Update Rules

The researchers have introduced many variants of ILC. The more

common have been briefly discussed below.

45

2.9.1 D-ILC

The generic form of ILC is D-ILC. It updates the control input for next

iteration using the derivative of the output error of the current iteartion

[8]. For a deterministic system, which is initialised after each iteration, the

D-ILC update mechanism is given in Eq. (2.9) below.

(, 1) (,) (,)du i k u i k K e i k+ = + ɺ (2.9)

where (,) * () (,)e i k y i y i k= −ɺ ɺɺ is the derivative of the output or state

error and gain matrix dK is the learning gain parameter. For identical

initial conditions, the initial error is zero at the start of each iteration,

i.e., (1,) 0e k = or (1,) * (1)y k y= . The asymptotic convergence of

output
→∞

=lim (,) * ()
k

y i k y i is achieved for all time indices []0,i T∈

under the following condition in Eq. (2.10).

()− <max eig 1dI K CB (2.10)

For monotonic convergence, the norm condition is specified as under

[67].

1d pI K CB− < (2.11)

where Eq. (2.11) is the thp operator norm, such that {1,2, , }p ∈ ∞… . If

p is not mentioned, it is assume that it is 2-norm. The product 0CB ≠

is 1h , the 1st. Markov parameter in the matrix of Markov parameters as

given in Eq. (2.8). Since, the above condition is independent of the

system matrix A , it points towards the ability of ILC to generate

46

desired control input even when the plant parameters are not fully

known [72-75].

D-ILC has the capability to capture the trend similar to derivative part

in conventional PD or PID controller design. The negative factor about

D-ILC is that it requires derivative of the output error which may not

be measurable or obtained through numerical differentiation. It may

contain noise which can degrade effectiveness and accuracy. This is usually

avoided by using forward difference error as an alterantive to the

derivative of the output error.

2.9.2 P-ILC

In P-ILC, the input is updated using the error itself which is multiplied

with learning gain pK . Hence, its simpler as compared to D-ILC as there

are no derivative or integral components [76].

(, 1) (,) (,)pu i k u i k K e i k+ = + (2.12)

However, the use of P-ILC algorithm ensures convergence only if the

uncertainties or disturbances are absent. Robustness against uncertainties

is achieved when scalar forgetting factor γ is used. Then P-ILC is

modified as given in Eq. (2.13) [72].

(, 1) (1) (,) (, 0) (,)pu i k u i k u i K e i kγ γ+ = − + + (2.13)

The forgetting factor γ may be either fixed or variable from iteration to

iteration. The bias term (, 0)u iγ constrains so that input generated for

next iteration does not vary extra-ordinarily. Thus, use of forgetting factor

47

reduces variance of the output in the early iterations [67]. Another

option has been to use both positive and negative learning gains. It has

achieved learning of more frequency components as compared to

conventional P-ILC [8, 38]. However, still some gaps in frequency could

not be learned by this scheme. It has been overcome by using

anticipatory ILC discussed later in Section 2.9.6.

2.9.3 PD-ILC

The PD-ILC update has both the proportional and derivative of the

error term as given in Eq. (2.14) below.

(, 1) (,) (,) (,)d pu i k u i k K e i k K e i k+ = + +ɺ (2.14)

Use of proportional (P) and derivative (D) components together in ILC

helps to achieve better convergence of tracking errors [77]. In this work it

has been observed to acquire faster rate of convergence as compared to D-

ILC and given in detail in chapter 4. The convergence achieved for the

Cyclic PD-ILC case has been given in chapter 5.

2.9.4 PI-ILC

PI-ILC has input update based on proportional and integral

components of the error as given below.

(, 1) (,) (,) (,)p iu i k u i k K e i k K e i k dt+ = + + ∫ (2.15)

The added advantage is that PI-ILC achieves monotonic convergence for

discrete-time LTI systems in the sense of any norm besides the

48

exponentially weighted sup-norm. As compared to P-ILC, better

performance of the PI-ILC has been shown in terms of convergence rate.

However, if the time instants are large for each batch, then the integral

component of PI-ILC does not give any significant advantage [72].

2.9.5 PID-ILC

In line with PID algorithm for conventional feedback, the PID-ILC has

been formulated as shown below [78].

(, 1) (,) (,) (,) (,)p d iu i k u i k K e i k K e i k K e i k di+ = + + + ∫ɺ (2.16)

PID-ILC update algorithm uses the error information (,)e i k from the

previous iteration and possesses linear effect of the past input (,)u i k as

well [79].

2.9.6 Anticipatory ILC

The Anticipatory ILC avoids the use of derivative ()ky tɺ to capture the

trend. Usually, the time delayed version of the derivative, i.e. (,)y i k+ ∆ is

used as given below [80].

(, 1) (,) ()[* () (,)]u i k u i k L y i y i k+ = + ⋅ + ∆ − + ∆ (2.17)

Use of time-delayed version of derivative ensures that causal pair of input

and output (,), (,)u i k y i k + ∆ from thk iteration are utilised for the next

iteration.

49

2.9.7 Optimal ILC

For using ILC in an optimized manner, control input is updated so as

to minimize a specific cost function. Different cost functions have been

formulated, such as the controller which minimizes a weighted cost

function as given in Eq. (2.18) [44, 81].

{ }

1,

21 2

1

((, 1))

 || (, 1) || (1,) (, 1)

k M

M
i

i

J u i k

e i k u i k u i kλ

+

−

=

+ =

+ + + − +∑
 (2.18)

where λ is the weight selected such as to minimize the cost function J

for each successive iteration.

2.9.8 Cyclic ILC and Use for Robotics

In ILC literature, the initial states which are the final states of the last

repetition have been termed as “Cyclic learning control”[79], “No-reset

ILC (NRILC)” [82], ‘continuous’ ILC [81] or “alignment condition” [83,

84]. In case of both the reference and the output trajectory following

the “alignment condition”, robust ILC algorithm based on the inverse

dynamics of robotic manipulator was employed to achieve convergence

[83]. Conditions for monotonic convergence were further formulated

using PD-ILC with selective learning under restrictive assumptions for

non-linear systems [85] and systems with non-parametric

uncertainties[86]. The bipedal walking has been posed as impacting

Cyclic ILC scenario where each step constitutes an iteration whose

50

state at the last moment does effect the initial state of the next

consecutive step/iteration.

2.9.8.1 Cyclic D-ILC for CG walking robot

It has been argued that motions such as walking, running etc are

perfected by humans using simple repetitive learning rules and do not

require deep conscious involvement. Keeping in view the biological

plausibility, the cognitive robotics need to be developed around simple

learning rules [36, 87-90]. The Cyclic D-ILC algorithm has been used

for car-like mobile robots by transforming the systems in chained form

via feedback. However, the techniques were not further implemented to

solve the walking problem [91]. For non-zero initial errors, the initial

state learning has been an active research area [84, 92-96]. Using only

the final state to generate initial state to be used as necessary control

action has been proposed [97]. In this research we have employed initial

state learning in Cyclic ILC scenario for a CG (compass gait) robot for

which the ankle and hip actuation has been generated using Cyclic D-

ILC. During the swing phase the robot is un-actuated and moves under

the action of gravity only. With carefully selected initial states for the

1st step, stable walking gait could be realized as illustrated by phase

portraits in chapter 6.

2.9.8.2 Modified Cyclic PD-ILC for CG walking

The length of iteration or time period of a step cannot be fixed due to

variation in step size and/or speed. For this the non-standard approach

51

of non-uniform repetition length as proposed in conjunction with Cyclic

PD-ILC to track periodic signals in non-linear systems has been utilized

in which shorter of two consecutive step lengths is considered and if the

ground impacts occurs earlier so that last time index is missed, then it

is calculated from the dynamics so that error signal could be generated

from it [98]. The standard Cyclic PD-ILC could not give successful

results for the CG walking. But using a modified Cyclic PD-ILC which

allowed using the acceleration term has been shown to achieve the

stable gait for CG walking after few hundred steps as demonstrated in

chapter 6.

2.10 Summary

In this chapter, a review of the bipedal locomotion has been presented

with emphasis on the learning techniques with a discussion of the

research using ILC schemes. The common ILC schemes have been

presented. The conventional zero-initial error ILC techniques and the

related research have been briefly summarized. Further, the efforts to

relax the zero-initial error condition have been discussed. These were

later extended to the Cyclic ILC scheme in which the state errors from

the end of iteration are transferred to the beginning of the next

iteration as required in the legged locomotion of the bipedal robot.

52

Chapter 3

3 Modelling the Dynamics of

Bipedal Walking Robot

In this chapter, the compass gait robot dynamics for (un-actuated)

passive and actuated modes have been modelled using Lagrangian

dynamics. In particular, a linearised dynamic model is formulated

which will be central to the Cyclic ILC convergence presented in

chapter 6. While walking over a flat surface, at every heel strike, the

angular momentum of the robot is conserved but the energy is lost.

Hence, some actuation is required to keep it in walking mode. Ted

McGeer had proposed un-actuated bipedal robot walking downhill

which works under the action of gravity only [16]. These passive

dynamic walkers have been further augmented with joint actuation to

achieve stable walking on flat surface [17, 59]. Humans learn to walk

with a stable gait from an early age of 12 to 18 months. The simple and

repetitive nature of walking makes it a suitable candidate for

realization with ILC schemes [6, 7, 35].

3.1 Two-Legged Human Locomotion

Human walking is a complex bipedal locomotion since it lacks static

equilibrium of the moving body. It’s an extensively studied research

53

area. There are various phases in walking such as the nonlinear swing

phase during single support, the impact with ground which resets the

state, the double support phase in which the two feet are switched and

the transition to single support phase where an “impulsive toe-off”

occurs. Therefore, walking is modelled as a hybrid system for which the

control system has to be designed so that desired dynamic performance

i.e., stable walking is achieved along with safety and reliability. A

passive compass gait robot provides the simplest model to study the

biped walking dynamics as discussed in the next section. The periodic

motion of the robot link mechanism and its interactions with the

ground produces a displacement on the ground which is called biped

walking gait. This is also known as “limit cycle walking” [31, 54].

3.1.1 Compass Gait Model for Biped Robot

A compass gait robot is a simple model in sagittal plane which can be

used to study the nonlinear dynamics of the biped locomotion. The two

legs of the compass gait have no knees or feet and are connected with

each other by a friction-less hip joint. It has been named due to its

similarity to a pair of compasses. It is a rigid body system having two

links only, as shown in Figure 3.1. The whole robot rotates around the

fixed reference point 0p which acts as pointed “stance or support foot”.

The “swing leg” is the free leg which moves forward (left to right) and

is swapped with the stance leg on impact with the ground [16, 21, 58].

54

The joint angles 1q and 2q are measured anti-clockwise. 1q is the angle

between vertical axis and the stance leg. The inter-leg angle 2q for

swing leg is measured with reference to the stance leg. Legs are

assumed symmetric and mass-less except that each leg has equal point

mass m. Each leg has equal length l a b= + . The hip mass
h

m

summarizes the upper body mass.

3.1.2 Assumptions for Compass Gait Model

Following assumptions have been used in modelling the compass gait

robot [19, 58, 99-101]

• No knees so the legs are straight rigid links.

• Retractable lower legs to prevent foot scuffing.

• Hip mass represents the upper body.

Figure 3.1 The 2-link compass gait robot

x

y

m

0
p

2
q

m

h
m

2
p

3
p

4
p

1
p

1
q−

a

b

a b l+ =

55

• Feet are pointed having no mass.

• Pointed feet do not slip.

• Friction-less joints.

• Walking is only in two-dimensional plane, i.e. no swaying.

• Both feet touch the ground instantaneously during double

support phase.

• Motor dynamics are ignored for actuated walking.

The joint angles and respective velocities constitute the state of the

compass gait robot. Hence, the state vector x is defined as follows.

,
T

x q q = ɺ (3.1)

where, vectors 1 2,
T

q q q = and 1 2,
T

q q q = ɺ ɺ ɺ represent the joint angles

and the angular velocities respectively.

3.2 Dynamics of Compass Gait Robot

When the robot is in contact with the ground with only one foot, it is

said to have single support and the other leg swings freely hence called

the swing phase. During the swing phase, the dynamics are similar to

the 2nd order non-linear differential of an inverted pendulum coupled

with a normal pendulum. The equations of motion for the swing phase

can be obtained using Euler-Lagrange approach. The Lagrangian (L) is

defined as the difference between the Kinetic (KE) and Potential (PE)

energies of the robot.

(,) (,) ()L q q KE q q PE q= −ɺ ɺ (3.2)

56

The equations of motion for the joint angles are obtained from the

Lagrangian given in Eq.(3.2) as follows.

1

2

(,) (,) ud L q q L q q
udt q q

τ
 ∂ ∂ − = = ∂ ∂

ɺ ɺ

ɺ
 (3.3)

where τ represents the vector of applied torques. The ankle joint

torque 1u causes the stance leg to rotate around it so that robot moves

forward. The hip torque 2u rotates the swing leg anti-clockwise to

move it forward. Using Eq.(3.2), the Lagrangian (L) is substituted with

KE and PE in Eq.(3.3), so that

(,) (,) ()d KE q q KE q q dPE q

dt q q dq
τ

∂ ∂ − + = ∂ ∂
ɺ ɺ

ɺ
 (3.4)

The PE for the compass gait can be easily calculated using

trigonometry to give

() 1 1 2() ()) cos() cos()hPE q m a l m l g q mgb q q= + + − + (3.5)

The instantaneous KEs of the individual point masses are added to give

the total KE as follows.

2 2 2

1 2 32 2 2

1 1 1

2 2 2h
KE m p m p m p= + +ɺ ɺ ɺ (3.6)

The velocities for each point mass are given by

1

1 1
1

cos()

sin()

q
p aq

q

 = −

ɺ ɺ (3.7)

1

2 1
1

cos()

sin()

q
p lq

q

 = −

ɺ ɺ (3.8)

57

1 1 2

3 1 1 2
1 1 2

cos() cos()1
()

sin() sin()2

q q q
p lq b q q

q q q

 + = − + + +
ɺ ɺ ɺ ɺ (3.9)

Substituting the point mass velocities in Eq. (3.6) and after

simplification using trigonometric identities gives the total KE for the

compass gait robot.

()

()

2 2 2 2 2
2 1

2 2 2
2 2 1 2

1 1
2 cos()

2 2

1 1
 cos() 2

2 2

h
KE m l m l a b bl q q

mb q m b bl q q q

 = + + + −

+ + −

ɺ

ɺ ɺ ɺ

 (3.10)

The relation in Eq.(3.10) can be converted to the familiar form of KE

using the velocity vector qɺ as

1
(,) ()

2
TKE q q q M q q=ɺ ɺ ɺ (3.11)

where

() ()
()

2 2 2 2 2
2 2

2 2
2

()

2 cos() cos()

cos()

h

M q

m l m l a b bl q m b bl q

m b bl q mb

 + + + − − =
 −

 (3.12)

()M q is known as the inertia matrix which is independent of stance leg

angle 1q and only a function of the masses, lengths and inter-leg angle

2q .

Substituting the derivatives from Appendix A in Euler-Lagrange

Eq.(3.4) and further simplification, the following 2nd order, nonlinear

equation describes the dynamics of the compass gait robot

58

() (,) ()M q q C q q q G q τ+ + =ɺɺ ɺ ɺ (3.13)

where, (,)C q qɺ is the centripetal/coriolis matrix

2 2 2 2

1 2

() (,)
(,)

2 sin() sin()

sin() 0

dM q KE q q
C q q q

dt q

mblq q mblq q

mblq q

∂
= −

∂

 = −

ɺ
ɺ ɺ

ɺ ɺ

ɺ

 (3.14)

and ()G q represents the gravity vector as follows.

() 1 1 2

1 2

()
()

() sin() sin()

sin()
h

dPE q
G q

dq

m a l m l g q mgb q q

mgb q q

=

 − + + + + = +

 (3.15)

The swing phase continues until the swing leg strikes the ground and

robot enters the double support phase followed by another swing action

for the previously stance leg [54].

3.2.1 Swing Phase Dynamics in State Space Form

To simulate the 2nd order nonlinear equation of motion for the swing

phase in Eq.(3.13), it has to be represented in general nonlinear form as

(,)x f x u=ɺ (3.16)

The state vector x is 4-dimensional and given as

1 2 1 2
, , ,

Tq
x q q q q

q

 = =

ɺ ɺ
ɺ

 (3.17)

Hence, the nonlinear dynamics of the actuated compass gait robot

during swing phase in state-space form is given by

59

() 1
() (,) ()

q
x

M q C q q q G qτ
−

 = − −

ɺ
ɺ

ɺ ɺ
 (3.18)

The output is given by output equation as follows.

q
y Cx I

q

 = = ɺ

 (3.19)

In this research, the Eq.(3.18) has been implemented using ODE solvers

from MATLAB®.

3.2.2 Impact Reset During Stance Phase

For an appropriate initial condition, the compass gait robot moves

forward such that the stance leg rotates around the stance foot and the

other free leg swings left to right until it touches the ground surface. In

the double support phase both feet are on the ground. This is modelled

as an instantaneous event and swapping of feet occurs, i.e., the

previously swinging leg becomes stance leg as new reference point and

vice versa as shown in Figure 3.2. The coordinates are re-labelled at

impact using + and – superscripts to represent pre- and post- impact

conditions, respectively as

1 1 2 2 and q q q q+ − + −= − = − (3.20)

Eq.(3.20) gives the relationship for both the transformed pre- and post-

impact joint.

60

The transformed angles in vector-matrix notation are as follows

1 0

0 1
q q+ −

 − = −
 (3.21)

The geometry at the impact has determined that the inter-leg angle is

twice the stance leg angle as below

2 1 2q q= − (3.22)

However, the joint velocities have changed abruptly at impact. The KE

is decreased due to energy loss at impact. Assuming a perfect impact,

the angular momentum remains constant as under

() ()M q q M q q− − + +=ɺ ɺ (3.23)

The pre- and post-impact inertia matrices are calculated in Appendix A

to find the transformed joint velocities at impact as follows

q Rq+ −=ɺ ɺ (3.24)

Figure 3.2 Pre-impact and post-impact during double support phase

x

y

m m 3p 1p

2p

4p

2q

1q−

Pre-impact

m m

hm

1p
3p

2p

4p

2q−

1q

Post-impact

hm

61

where reset matrix R describes the switch over at impact for the

angular velocities. Hence, the state vector update at impact after

combining Eq.(3.21) and Eq.(3.24) is given below

0

0

I
x x

R
+ −

 − =
 (3.25)

Since the derivation of angular momentum for even a simple compass

gait model is quite complex, the models with higher DOFs require

symbolic tools to simplify the process.

3.3 Simulations of Passive Compass Gait Robot

A passive compass gait robot has no input torques applied upon it.

Hence, it represents the unforced homogeneous model of the robot

which can be studied to analyse the natural response as under

() (,) () 0M q q C q q q G q+ + =ɺɺ ɺ ɺ (3.26)

The natural unforced dynamics of compass gait have been analysed

with suitable initial states walking over a flat surface.

3.3.1 Simulations for Passive CG Walking Over Flat Surface

The passive compass gait robot is simulated with parameters given in

Table 3-1 from the initial state vector []0 0.2, 0.4, 0.8, 2.1 Tx = − − .

62

Parameter Value Units

Leg mass (m) 5 kg

Hip mass (
h

m) 10 kg

Half leg lengths (a b=) 0.5 m

A stick diagram shows multiple snap shots for ten steps of the passive

compass gait robot walking on a flat surface in Figure 3.3. Stance and

swing legs are represented by solid and the dotted lines, respectively.

0 0.5 1 1.5 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

The corresponding phase portrait in Figure 3.4 is used to show the

relationship between joint angles and respective angular velocities of a

leg during all phases of walking, such as swing phase (I-II) to impact

Table 3-1 Compass gait robot parameters

Figure 3.3 Stick diagram of CG robot walking on flat surface

63

reset (II-III), then stance phase (III-IV) followed by impact for the

other swing leg (IV-I) leading to swing phase to start the next step.

The contraction in limit cycles shows that the un-actuated passive

compass gait robot is losing energy [31, 57]. The steps of compass gait

robot are getting smaller and smaller along with decreasing angular

velocities until it comes to a stand still or either falls down. If torques

are applied to the joints of the robot, it can continue to move forward

and may achieve stable walking gait as discussed in next section.

3.4 Compass Gait Robot on Slope

When a passive compass gait walks down a slope having angle γ with

respect to the horizontal axis, as shown in Figure 3.5, gravity acts upon

Figure 3.4 Phase portrait of a selected leg of CG robot for 10 steps

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-3

-2

-1

0

1

2

Angle (rad)

A
n
g
u
la

r
V

e
lo

c
it
y
 (

ra
d
/s

)

II

I

IV

III

64

it and can provide the necessary actuation to keep it walking in a

stable fashion.

Using suitable initial values of the joint angles and angular velocities,

sustained periodic walking patterns/gaits can be obtained for slopes

having suitable shallow gradients, for example, up to 5 degrees [57,

102].

3.4.1 Equations of Motion for Down-hill Walking CG

The KE in Eq.(3.11) of the compass gait robot is not affected by

downhill walking. Only the PE in Eq.(3.5) changes depending on the

slope γ as shown below

() 1 1 2() cos() cos()hPE m a l m l g q mgb q qγ γ= + + + − + + (3.27)

This change in PE only changes the gravity vector ()G q in Eq.(3.27) as

Figure 3.5 Compass gait robot walking down a slope

m m

hm

1p

0p

1q

 γ

2q

4p

3p

2p

a

b

a b l+ =

65

() 1 1 2

1 2

() sin() sin()
()

sin()

hm a l m l g q mgb q q
G q

mgb q q

γ γ

γ

 − + + + + + + =
 + +

 (3.28)

The other two matrices ()M q and (,)C q qɺ remain same as for the

compass gait on flat surface in Eq.(3.12) and Eq.(3.14), respectively.

The gravity acts as external torque acting on the joints to keep the

compass gait robot to continue walking downhill.

3.4.2 Simulations of Passive CG Robot Walking on Slope

A passive compass gait robot is allowed to walk down a slope having

gradient of -3 degrees under the force of gravity. The stick diagram in

Figure 3.6 shows the symmetric walking pattern for compass gait robot

walking down hill where the initial values for the state vector have

been chosen as []0 0.2, 0.4, 0.8, 2.1 Tx = − − . The corresponding phase

portrait of a selected leg in Figure 3.7 shows that down hill walker has

achieved symmetric gait since it has converged to a stable limit cycle.

Thus, the gravity has compensated for the loss of energy due to

impacts. The compass gait under the action of gravity is sensitive to

initial conditions as well as to external disturbances.

66

0 1 2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Angle (rad)

A
n
g
u
la

r
V

e
lo

c
it
y
 (

ra
d
/s

)

Figure 3.6 Stick diagram of CG robot walking down hill

Figure 3.7 Stable limit cycle for CG walking on slope

67

3.5 The Actuated Compass Gait Robot

To realize flexible walking on a flat surface, the compass gait robot

needs to be actuated instead of just relying on gravity as discussed in

the previous section. After adding the actuating torques at stance foot

(ankle) and the hip joint, the two torque inputs are collectively called

“hip and ankle joint actuation”. The ankle joint actuator provides

rotational motion for the stance leg and hip joint actuator causes the

free leg to swing forward [17, 20, 59].

In this research, the actuated compass gait robot have been

implemented using D-ILC and modified PD-ILC algorithms to generate

the input torques τ for stable walking gait as given in chapter 6 [12].

3.6 Linearised Model of the Compass Gait Robot

The nonlinear equation for the compass gait robot can be linearised

using a Taylors Series to obtain the linear equation of the unit leg

length robot during swing phase [31, 57, 59]. The Eq. (3.13) is re-

written as two separate unforced differential equations as under

()1 2 1 2 2 2 1 2

2
2 2 1 1 2 1

3
cos() 1 2 cos() sin()

2 4

3 1
sin()() sin() sin() sin() 0

2 2 2

h

h

m
m q m q q q q m q q q

m
q q mg q mg q q m q

 + − + − +

+ − + + − =

ɺɺ ɺɺ ɺɺ ɺ ɺ

ɺ

 (3.29)

and

() 2
2 1 2 2 1 1 2

1 1 1 1
1 2 cos() sin()() sin() 0

4 4 2 2
m q q mq m q q mg q q− + − + + =ɺɺ ɺɺ ɺ

 (3.30)

68

Re-arrange Eq. (3.29) as under

1 2 1 2 2 2 2 1 2

2
2 2 1 1 2

3 1 1
cos() cos() sin()

2 4 2

1 3 1
sin()() sin() sin() 0

2 2 2

h

h h

m m q m q q mq m q q m q q q

m q q m m g q m g q q

 + − + − +

 + − + + + =

ɺɺ ɺɺ ɺɺ ɺɺ ɺ ɺ

ɺ

 (3.31)

To find equilibrium points, set all derivatives to zero

1 1 2

3 1
sin() sin() 0

2 2h h
m m g q m g q q

 + + + =
 (3.32)

For the above Eq. (3.32), to be valid, it is required that

1 1 2
sin() 0 and sin() 0q q q= + = (3.33)

The solution of Eq.(3.33)
1 2

0q q= = , provides suitable equilibrium

points as
1

0q = and
2

0q = .

Similarly, re-arranging Eq.(3.30), gives

2
1 2 1 2 2 1 1 2

1 1 1 1 1
cos() sin()() sin() 0

4 4 4 2 2
mq m q q mq m q q mg q q− + − + + =ɺɺ ɺɺ ɺɺ ɺ

 (3.34)

To find the equilibrium points, put all derivatives to zero in Eq.(3.34)

1 2

1
sin() 0

2
mg q q+ = (3.35)

For Eq.(3.35), to be valid
1 2

0q q+ = , and again provides suitable

equilibrium points as
1

0q = and
2

0q = .

69

Hence, the suitable equilibrium condition occurs when the compass gait

is in straight standing position with no movement. Hence, equilibrium

occurs when joint angles are zero as under

1 2
0q q= = (3.36)

and the respective angular velocities are zero as

1 2
0q q= =ɺ ɺ (3.37)

Hence, the equilibrium state
eq
x is given by

1 2 1 2
, , , , 0, 0, 0, 0

T T

eq eq eq eq eq
x q q q q = = ɺ ɺ (3.38)

The first-order Taylors series expansion for a function of several

variables
1

(, ,)
n

f x x… around equilibrium points
1
, ,

eq neq
x x… is given as

follows

1

1 1
1

(, ,)
(, ,) (, ,) ()

n
eq neq

n eq neq j jeq
j j

f x x
T x x f x x x x

x=

∂
= + −

∂∑
…

… … (3.39)

Applying the expansion in Eq. (3.39) to the Eq. (3.31) for biped robot

to linearise around the chosen equilibrium point
eq
x while using

1 1 1eq
q q q− = ∆ ,

2 2 2eq
q q q− = ∆ ,

1 1 1eq
q q q− = ∆ɺ ɺ ɺ ,

2 2 2eq
q q q− = ∆ɺ ɺ ɺ ,

70

() ()

1

1

2

1 2 2

1 1

1 2 1 1 10
1 0

02 1 2 1 2 2 1 1
0 0 02 1

0 0

2 2

3 1 3
sin() sin()

2 4 2

cos() cos() cos()

1
cos()

2

h h q
q

q
q q q

q q

d
m m q mq m m g q q q

dq

m q q q q q q q q
q q

m q q

=
=

=
= = =

= =

 + + − + + ∆

 ∂ ∂

− + ∆ + ∆
 ∂ ∂

−

ɺɺ

ɺɺ ɺɺ

ɺɺ ɺɺ

ɺɺ ɺɺ ɺɺ ɺɺ
ɺɺ

ɺɺ () ()

() ()

2

2 2 2

2 2

2 2

1 1 2
2 2 1

2

0 2 2 2 2 2 2
0 0 02 2

0 0

0 0
2 1 2 2 1 2 2 2 1 2 10 0 0

0 02 1 0
0

2

2

cos() cos()

sin() sin() sin()

sin()

q
q q q

q q

q q
q q q
q q q

q

q q q q q q
q q

q q q q q q q q q q q
q q

m

q q
q

=
= = =

= =

= =
= = =
= = =

=

 ∂ ∂
 + ∆ + ∆
 ∂ ∂

∂ ∂
+ ∆ + ∆

∂ ∂

+
∂

+
∂

ɺɺ

ɺɺ ɺɺ

ɺ ɺ
ɺ ɺ ɺ

ɺ

ɺɺ ɺɺ ɺɺ
ɺɺ

ɺ ɺ ɺ ɺ ɺ ɺ ɺ
ɺ

ɺ
ɺ

()

() ()

2

1

2

2 2 2

2 2 2

1 1

2 2

1 2 20
0
0

2 2 2
0 0 02 2 2 2 2 2 2 2
0 0 0

2 2

0 01 2 1 2 1
0 0

1 2

1
sin()() sin()() sin()()

2

1
sin() sin() sin

2

q
q
q

q q q
q q q

q q
q q

q q

m q q q q q q q q
q q

mg q q q q q
q q

=
=
=

= = =
= = =

= =
= =

∆

 ∂ ∂ + + ∆ + ∆
 ∂ ∂

∂ ∂
+ + + + ∆ +

∂ ∂

ɺ
ɺ

ɺɺ ɺɺ ɺɺ

ɺ ɺ

ɺ ɺ ɺ ɺ
ɺ

1

2

01 2 2
0

()

 0

q
q

q q q=
=

 + ∆

=

 (3.40)

On evaluating the differentials and putting the values

1 2 1 1

2

1 2

3 1 3
0 0

2 4 2

1 1
0 0 0 0 0 0 0 0 0

2 2

1
0 0

2

h h
m m q m q m m g q m q

m q m m

mg q q

 + ∆ + ∆ − + ∆ − − + ∆

 − + + ∆ + + + + + + +

 + + ∆ + ∆ =

ɺɺ ɺɺ ɺɺ

ɺɺ

 (3.41)

Further simplification of Eq. (3.41) gives

()1 2 1 2

1 1 1
0

2 4 2h h
m m q m q m m g q mg q

 + ∆ − ∆ − + ∆ + ∆ =
ɺɺ ɺɺ (3.42)

71

Similarly, Eq.(3.34) is linearised around equilibrium point as under

()

()

()

2 2

1 1

2

1

2 2

1 1

0 02 1 2 1 2
0 0

2

1

02 1 1
0

1

2 2
0 02 1 2 1 2
0 0

2

2

2 1

1

cos().() cos()()
1 1

4 2
cos()()

sin()() sin()()
1 1

4 2
sin()()

q q
q q

q
q

q q
q q

q q q q q
q

mq m

q q q
q

q q q q q
q

mq m

q q
q

= =
= =

=
=

= =
= =

 ∂ + ∆
 ∂ − ∂ + ∆ ∂

∂
+ ∆

∂
−

∂
+

∂

ɺɺ ɺɺ

ɺɺ

ɺ ɺ

ɺɺ ɺɺ

ɺɺ

ɺɺ ɺɺ
ɺɺ

ɺ ɺ

ɺɺ

ɺ
ɺ
()

2

1

1 1

2 2

1

2

2
0 1
0

0 01 2 1 2 1
0 0

1

01 2 2
0

2

sin() sin()
1

0
2

sin()

q
q

q q
q q

q
q

q

q q q q q
q

mg

q q q
q

=
=

= =
= =

=
=

 ∆

 ∂ + + + ∆
 ∂ = ∂ + + ∆ ∂

ɺ

ɺ

 (3.43)

On evaluating the differentials and putting values

1 1 2

1 2

1 1 1 1
0 0 0 0 0

4 2 4 2

1
0 0

2

m q m q m q m

mg q q

 ∆ − + + ∆ + ∆ − + +

 + + ∆ + ∆ =

ɺɺ ɺɺ ɺɺ

 (3.44)

Further simplification of Eq. (3.44) gives

1 2 1 2

1 1 1 1
0

4 4 2 2
m q m q mg q mg q− ∆ + ∆ + ∆ + ∆ =ɺɺ ɺɺ (3.45)

The equations (3.42) and (3.45) can be written in matrix form as below

1 1

2 2

1 1
() 0

4 2
1 1 1 1 0

4 4 2 2

h h
m m m m m mgq q

q q
m m mg mg

 + − − + ∆ ∆ + = ∆ ∆ − −

ɺɺ

ɺɺ
 (3.46)

The ∆ can be removed for simplicity, so Eq.(3.46) can be compactly

written as

72

0 0
0M q G q+ =ɺɺ (3.47)

where, the
0

M is the inertia matrix for the linearised model as

0
2 4

4 4

h

m m
m

M
m m

 + −
 =
 −

 (3.48)

and
0

G is the gravity matrix below

0

()
2

2 2

h

mg
m m g

G
mg mg

 − +
 =

 (3.49)

Similarly, the linearised equation of motion for actuated compass gait

robot is given by

0 0
M q G q τ+ =ɺɺ (3.50)

The linearised state space description for the actuated compass gait

robot from Eq. (3.50) can be formulated further as

2 2 2 2 2 2

1 1
0 0 2 2 0

0 0

0

Iq q

q qM G M
τ

× × ×
− −

×

 = + −

ɺ

ɺɺ ɺ
 (3.51)

The Eq. (3.51) can be written in standard form as under

x Ax Bu= +ɺ (3.52)

for the state vector x chosen as

1 2 1 2
, , ,

Tq
x q q q q

q

 = =

ɺ ɺ
ɺ

 (3.53)

73

and, the matrices A and B are given by

2 2 2 2

1
0 0 2 2

0

0

I
A

M G

× ×
−

×

 = −

 (3.54)

2 2

1
0

0
B

M

×
−

 =

 (3.55)

The linearised model needs to be a reasonable approximation of the

nonlinear model. This can be achieved since the average values of joint

angles are within 0.3± radians which can be safely approximated as

zero for linear model. The average values for the joint angular velocities

lie within 1± rad/s. The effect of the velocity needs further analysis for

which the linear model is also simulated with same parameters as used

for nonlinear compass gait robot.

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
-3

-2

-1

0

1

2

3

Angle (rad)

A
n
g
u
la

r
V

e
lo

c
it
y
 (

ra
d
/s

)

___ Nonlinear
...... Linear

The comparison given in Figure 3.8 shows that the performance of the

linearised model is close to the nonlinear model. Hence it can be safely

Figure 3.8 Comparison between nonlinear and linear models of CG

74

assumed that for normal walking of compass gait the chosen linear

model is a reasonable approximation of the nonlinear model and hence

can be used for the ILC analysis.

3.7 Model Uncertainties in Compass Gait Robot

Following reasons cause the uncertainty in the mathematical model of

the robot:

Linearization, point mass assumption, neglecting the hardware such as

electrical wiring cables, the centres of gravity may also change from

original ones and other simplifying assumptions.

3.7.1 Effects of Model Uncertainties

The output may not match with the real robot, phase portraits can also

differ and stable walking gait may not be achieved over a real robot.

3.7.2 How to Analyse the Model Uncertainties

Variations in the model parameters Inertia matrix, Coriolis matrix and

the gravity vector may be introduced by perturbations in masses,

lengths and etc. The next subsection gives the uncertainty analysis for

D-ILC which is an extended mathematical formulation of the earlier

work from Danwei Wang [103].

75

3.7.3 Formulation to Analyse Effects of Uncertainties

Consider following discrete-time nonlinear dynamic system with the

uncertainties and other disturbances lumped and denoted by (,)w i k

() ()(1,) (,), (,), (,) (,)x i k f x i k i B x i k i u i k w i k+ = + + (3.56)

and the output equation as

(,) () (,) (,)y i k C i x i k v i k= + (3.57)

where, k denotes the batch number having M number of samples in

each trial, [1,]i M∈ is the time index or sample number during each

batch, state vector nx ∈ ℝ , input (,) ru i k ∈ ℝ and output of the system

is (,) py i k ∈ ℝ .

The uncertainty (,)w i k is assumed bounded by
w
b so that (,)

w
w i k b≤

on the interval [1,]M . Similarly (,)v i k is bounded by
v
b such that

(,)
v

v i k b≤ .

The desired output * ()y k with initial state *(1)x , is considered

achievable, so there exists unique input * ()u k and state * ()x k which

correspond to the desired output.

The functions (,)f x i and (,)B x i are globally uniformly Lipschitz in x

on the interval 1,M such that () ()1 2 1 2
, ,

f
f x i f x i c x x− ≤ − and

() ()1 2 1 2
, ,

B
B x i B x i c x x− ≤ − are valid for positive constants

f
c

and
B
c . The matrices (,)B x i and (,)C x i are bounded as (,)

B
B x i b≤

and (,)
C

C x i b≤ . The product CB is full rank.

76

Every batch starts within the vicinity of desired initial state *(1)x such

that for a positive constant
0x

b , it satisfies *
0

(1) (1,)
x

x x k b− ≤ .

The input is updated using following ILC algorithm

{ }(, 1) (,) (1,) (,)du i k u i k K e i k e i k+ = + + − (3.58)

where dK is the learning gain matrix with bound
Kd
b , such that

d KdK b≤ for all i M∈ . (,)e i k is the error between desired and actual

output.

Assume that for the time-varying system in Eq. (3.56) and (3.57) with

ILC update algorithm in Eq. (3.58) under the assumptions presented, the

following inequality holds for all (,)x i

(1) (,) 1
d

I K C i B x i ρ− + ≤ < (3.59)

The α -norm with 1α ≥ , has been defined as under for a positive real

function :q N R→ ,

1
(.) sup ()

i

i N

q q i
α α∈

 =

When there are no state or modelling errors, i.e., 0
w
b = and

0
0

x
b = ,

the control input (,)u i k converges to the desired *()u i , the state (,)x i k

to *()x i such that output (,)y i k follows the desired output *()y i as

batch number k → ∞ . However, when there is uncertainty as state or

modelling errors, the convergence is achieved with error bounds as

given below:

The error in ILC update algorithm in Eq. (3.58) by denoting

*() (,) (,)u i u i k u i k− = ∆ can be written as

77

{ }

(, 1) (,) (1) (1,)

 + () (,) (1,) (,)

d

d d

u i k u i k K C i x i k

K C i x i k K v i k v i k

∆ + = ∆ − + ∆ +

∆ + + −
 (3.60)

and using Eq. (3.56) for desired dynamics with out disturbance as

() ()* * * *(1) (), (), ()x i f x i i B x i i u i+ = + (3.61)

then the Eq. (3.60) becomes

()

() (){ }* *

(, 1) (1) (,), (,)

 (1) (,) (1,) (,)

(1) (), (,), () () (,)

d

d

d d

u i k I K C i B x i k i u i k

K C i w i k v i k v i k

K C i f x i i f x i k i K C i x i x i k

 ∆ + = − + ∆
 + + + + −

 − + − + −

 (3.62)

Taking norms on both sides of Eq. (3.62),

1 2
(, 1) (,) (,)u i k u i k b h x i kρ∆ + ≤ ∆ + + ∆ (3.63)

where used inequality (3.59) and *
*u

u b≤ and

1
(2)

Kd C w v
b b b b b= + ,

1
1

f
h c= + and

2 1Kd C
h b b h=

Similarly, subtracting both sides of Eq. (3.56) from *(1)x i + and

denoting *(1) (1,) (1,)x i x i k x i k+ − + = ∆ + , it becomes

() ()

() () ()

*

* *

(1,) (), (,),

(), (,), () (,), (,) (,)

x i k f x i i f x i k i

B x i i B x i k i u i B x i k i u i k w i k

∆ + = −

 + − + ∆ −
 (3.64)

Taking norms on both sides of Eq. (3.64), to get as follows

*
(1,) (,) (,)

f u B B w
x i k c x i k b c b u i k b∆ + ≤ ∆ + + ∆ + (3.65)

Using lemma in Appendix-B, following inequality holds for Eq. (3.65)

1
1

* 0
0

(,) (,)
i

i j i

f B u B w f x

j

x i k c b u j k b c b c b
−

− −

=

 ∆ ≤ ∆ + + + ∑ (3.66)

78

Substitute, Eq. (3.66) into Eq. (3.63), to get

1 2 0

1
1

2 *
0

(, 1) (,)

 (,)

i

f x

i

i j

f B u B w
j

u i k u i k b h c b

h c b u j k b c b

ρ

−
− −

=

∆ + ≤ ∆ + +

 + ∆ + + ∑
 (3.67)

Multiply both sides of Eq. (3.67) by ()1
i

α
 such that

1
max 1,hα >

() () ()

() { }()

1 2 0

1
1

2
*

0

1 1 1(, 1) (,)

1 1 (,)

i
i i i

i f
f x

i j
i j j

f

B u B w
j

c
u i k u i k b h c b

ch
b u j k b c b

ρ
α α α α

α αα α

− −−

=

 ∆ + ≤ ∆ + +

 + ∆ + +
∑

 (3.68)

Since, the norm of a constant is also a constant, Eq. (3.68) becomes

{ }()
1 2 0

1
1

2 *

0

(, 1) (,)

(,)

i

f x

i j
i

B u B w f

j

u i k u i k b h c b

h b u i k b c b c

α α

α

ρ

α α

− −−

=

∆ + ≤ ∆ + +

 ∆ + + +
∑

 (3.69)

Evaluate the sum and simplify Eq. (3.69),

2
1

(, 1) (,)

n

f
B

f

c
h b

u i k u i k
cα α

α
ρ ε

α

 −
∆ + ≤ + ∆ +

 −

 (3.70)

where

{ }2 *

1 2 0
1

n

u B wi f
f x

f

h b c b c
b h c b

c
ε

αα

 + = + + − −
 (3.71)

For suitable values of α , so that

79

2
1

ˆ 1

n

f
B

f

c
h b

c

α
ρ ρ

α

 −
= + <

−
 (3.72)

This ensures that error norm (,)u i k
α

∆ decreases as batch no. k → ∞ ,

so the relation becomes

lim sup (,)
ˆ1k

u i k
α

ε

ρ→∞
∆ ≤

−
 (3.73)

Similarly for the states, multiply both sides of Eq. (3.66) by ()1
i

α
,

()

() { }()
1

1

* 0
0

1(,)

1 1 1(,)

i

i j ii j j
f f

B u B w x
j

x i k

c c
b u j k b c b b

α

α α αα α

− −−

=

∆

 ≤ ∆ + + +
∑

 (3.74)

Simplifying Eq. (3.74)

{ }*

0

1 1

(,) (,)

n n

f f
B u B w

x

f f

c c
b b c b

x i k u j k b
c cα α

α α

α α

 − + − ∆ ≤ ∆ + +
− −

 (3.75)

which implies

()()

{ }*

0

1 1

lim sup (,)
ˆ1

n n

f f
B u B w

x
k

ff

c c
b b c b

x i k b
ccα

ε
α α

αα ρ→∞

 − + − ∆ ≤ + +
−− −

 (3.76)

Subtracting *(,)y i k from both sides of output Eq. (3.57)

80

(,) (,) (,)y i k C x i k v i k∆ = ∆ − (3.77)

Taking norm on both sides of Eq. (3.77) and multiplying both sides

with ()1
i

α
, to get

() () ()1 1 1(,) (,)
i i i

g v
y i k c x i k b

α α α
∆ ≤ ∆ + (3.78)

where used () ()1 2 1 2
() , () ,

g
C i x i C i x i c x x− ≤ − . Further simplifying

Eq. (3.78), gives

(,) (,)
g v

y i k c x i k b
α α

∆ ≤ ∆ + (3.79)

Using Eq. (3.75) in Eq. (3.79), the limiting relation for the output error

becomes

()()

{ }*

0

1 1

lim sup (,)
ˆ1

n n

f f
g B g u B w

k
ff

g x v

c c
c b c b c b

y i k
cc

c b b

α

ε
α α

αα ρ→∞

 − + − ∆ ≤ +
−− −

+ +

 (3.80)

Remarks:

For the ideal case when there are no disturbances or uncertainty along

with identical initial conditions, the bounds are 0
w
b = , 0

v
b = ,

*
0

u
b =

and
0

0
x
b = , so that error bound 0ε = , as well and hence the input,

state and output errors tend to zero as per the inequalities in equations

(3.73), (3.76) and (3.80) respectively as:

(,) 0u i k
α

∆ → , (,) 0x i k
α

∆ → and (,) 0y i k
α

∆ →

81

3.7.4 Simulations with variable parameters

Here, we have analyzed the effects of a range of parameter variations

using phase portraits. The hip and leg masses have been changed from

+/- 20 % of that used in the nominal model of the compass gait robot.

The phase portraits for un-actuated compass gait robot on flat surface

are shown in Figure 3.9 and Figure 3.10 below

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
-3

-2

-1

0

1

2

3

Angle (rad)

A
n
g

u
la

r
V

e
lo

c
it
y
 (

ra
d

/s
)

--- hip mass = 8 kg
__ hip mass = 10 kg
.... hip mass = 12 kg

The changes in phase portraits point towards the effect of the

parameter variations on the walking gait of the robot.

Figure 3.9 Effects of +/- 20 % change in hip mass of CG robot

82

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
-3

-2

-1

0

1

2

3

Angle (rad)

A
n
g
u
la

r
V

e
lo

c
it
y
 (

ra
d
/s

)

---- leg mass = 4 kg
__ leg mass = 5 kg
.... leg mass = 6 kg

For stable walking gait the phase portraits have to stay inside a

permissible band.

3.8 Summary

The mathematical model for the compass gait bipedal walking robot

has been formulated. The dynamic relationship is represented by a

second order nonlinear equation which is further expressed as a state

space system. The linearised relationship has also been derived. Effects

of parameter uncertainty have been discussed.

Figure 3.10 Effects of +/- 20 % change in leg mass of CG robot

83

Chapter 4

4 Convergence Analysis - ILC with

Zero Initial Errors

This chapter deals with the rate of convergence of conventional ILC

algorithms with respect to control input. Discrete-time linear state

space representation of a linear time-invariant system has been

considered along with usual assumptions which ensure D-ILC algorithm

convergence in terms of output error as well. The relationship for the

rate of convergence of control input up to component level has been

formulated from the matrix controlling the evolution of batch to batch

input errors. Using this relationship gives the rate for any component

during earlier iterations as well rather than the usual asymptotic

analysis developed for output error case earlier [104, 105].

4.1 Discrete-time LTI System

A discrete-time LTI system is considered in Eq. (4.1) below.

(1,) (,) (,)

 (,) (,)

x i k Ax i k B u i k

y i k C x i k

+ = +

=
 (4.1)

where k denotes the batch number having M number of samples in

each trial, [1,]i M∈ is the time index or sample number during each

batch, state vector nx ∈ ℝ , input (,) ru i k ∈ ℝ and output of the system

84

is (,) py i k ∈ ℝ . , A B and C are the real-valued state, input, and output

matrices respectively having appropriate dimensions. The initial

condition 0(1,)x k x= is same at the start of each batch. 0(,1) ()u i u i= is

the control input vector for first batch which may be externally

specified or left to be zero [38, 71].

The additional assumptions made are as follows.

• Desired output * ()y i for the complete batch is known.

• The plant parameters , , A B C remain unchanged.

• Noise free cases are considered.

• Solution of the DT system is given in Eq.(4.1) [106, 107].

-1
- -1

0
0

(,) (,)
i

i i j

j

y i k CA x CA Bu j k
=

= + ∑ (4.2)

With the knowledge of the desired output * ()y k , the ILC searches the

desired input * ()u k . To find the vector of desired inputs is the

objective of any control algorithm. So, it is an inverse problem.

The difference between the desired and the actual outputs is the error

as given in Eq. (4.3).

 = − = … () * () () (1,), (2,), , (,)
T

e k y k y k e k e k e M k (4.3)

This error is the basis for formulation of performance index to update

the control input generated by the ILC.

85

4.2 D-ILC Control Input Update

Using D-ILC the control input is updated on the basis of the derivative

of error in the previous iteration at the given time index as given in Eq.

(4.4) below.

(, 1) (,) { (1,) (,)}du i k u i k K e i k e i k+ = + + − (4.4)

where dK is the real-valued learning gain matrix and the derivative of

error (,)e i kɺ has been approximated as forward difference given in Eq.

(4.5) below

= + −ɺ(,) (1,) (,)e i k e i k e i k (4.5)

with the identical initial conditions or same output * (1) (1,)y y k= at

the 1st time index for each batch, the initial error, (1,) 0e k = . The

objective of the D-ILC algorithm is to find the sequence (,)u i k which

matches the desired input sequence as shown in Eq. (4.6). Owing to linear

relationship between input u and output y of the LTI system, the

convergence of control input is equivalent to convergence of output.

Hence, (,)u i k converges under the same conditions as (,)y i k converges.

→∞
= ∀ = …lim (,) * () for 1, 2, ,

k
u i k u i i M (4.6)

It also ensures convergence of the output in Eq. (4.7) due to LTI

system as under.

lim (,) * () for 1, 2, ,
k

y i k y i i M
→∞

= ∀ = … (4.7)

86

In ILC domain, usually the convergence of algorithm has been

investigated in terms of output error and conditions for convergence

and monotonicity have been established as mentioned in next section.

4.3 Convergence of ILC in Terms of Output Error

Convergence of an ILC algorithm is generally stated as the minimisation

of the tracking error (,)e i k , so that the perfect tracking of ideal/desired

output * ()y i is achieved as k , the number of batches increases [108].

lim (,) * () for 1,2, ,
k

y i k y i i M
→∞

→ ∀ = … (4.8)

Or, equivalently

lim (,) 0 for 1,2, ,
k

e i k i M
→∞

→ ∀ = … (4.9)

The convergence of error has been analysed using various measures or

norms [32]. In the following sub-section, the relationship for the output

error evolution upto component level (i.e., for each time index) has been

formulated so that convergence of output error can be analysed.

4.3.1 Batch to Batch Output Error Evolution

The output at first sample time 1i = is fixed for each iteration due to the

reset to the same initial condition 0(1,)x k x= for each batch as follows:

*
0(1,) (1,) (1) y k Cx k Cx y k= = = ∀ (4.10)

Obviously, the error for first time index is always zero

87

(1,) 0 e k k= ∀ (4.11)

But, the errors at other time-indices need more investigation as follows.

As for the time index 2i = , the output at (1)thk + iteration is

(2, 1) (2, 1) (1,) (1, 1)y k Cx k CAx k CBu k+ = + = + + (4.12)

Subtracting both sides of Eq.(4.12) from the desired output *(2)y and

substituting (1, 1)u k + from Eq.(4.4) and using the fact that error for

the 1st time index (1,) 0e k = for all batches

* *

* *

* *

(2) (2, 1) (2) (1,) (1,) { (2,) (1,)}

(2, 1) (2) (2,) { (2) (2,)}

(2, 1) (2) (2,) (2) (2,)

d

d

d d

y y k y CAx k CBu k CBK e k e k

e k y Cx k CBK y y k

e k y y k CBK y CBK y k

− + = − − − −

⇒ + = − − −

⇒ + = − − +

 (4.13)

On further simplification, the output error evolution at the time index

2i = , is

()*(2, 1) (2) (2,)

(2, 1) (2,)
d

d

e k I CBK y y k

e k I CBK e k

 + = − −
 ∴ + = −

 (4.14)

For the (1)thk + iteration, the output at 3i = is

(3, 1) (2, 1) (2, 1)y k CAx k CBu k+ = + + + (4.15)

Subtracting both sides of Eq.(4.15) from the desired output *(3)y ,

substituting (2, 1)u k + from Eq.(4.4) and using same initial condition

(1, 1) (1,)x k x k+ = , the relationship becomes

88

* *

*

*

(3) (3, 1) (3) (2, 1) (2,) { (3,) (2,)}

 (3) { (1, 1) (1)} (2,) { (3,) (2,)}

 (3) { (1,) (1)} (2,) { (3,) (2,)}

d

d

d

y y k y CAx k CBu k CBK e k e k

y CA Ax k Bu k CBu k CBK e k e k

y CA Ax k Bu k CBu k CBK e k e k

− + = − + − − −

= − + + + − − −

= − + + − − −

 (4.16)

Re-arranging and further simplifying using the fact that error at 1st

time index (1,) 0 e k k= ∀

(){ }

{ }

* 2

*

(3, 1) (3) (1,) (1,) (2,) (1,)

 (2,) (2,) (3,)

 (3) (1,) (1,) (2,)

 (2,) (2,) (3,)

d

d d

d

d d

e k y CA x k CAB u k K e k e k

CBu k CBK e k CBK e k

y CA Ax k Bu k CABK e k

CBu k CBK e k CBK e k

+ = − − + −

− + −

= − + −

− + −
* (3) (2,) (2,) (3,)

 (2,) (2,)
d

d d

y CAx k CBu k CBK e k

CBK e k CABK e k

= − − −

+ −

(4.17)

Finally, the relationship for the output error evolution at time index

3i = is given by

(3, 1) (3,) (3,) () (2,)

(3, 1) (3,) () (2,)
d d

d d

e k e k CBK e k C I A BK e k

e k I CBK e k C I A BK e k

+ = − + −
 ∴ + = − + −

 (4.18)

The general relationship for output error evolution for time index

2, ,i M= … , is

1
(1)

2

(, 1) (,) () (,)
i

i j
d d

j

e i k I CBK e i k CA I A BK e j k
−

− +

=

 + = − + − ∑ (4.19)

Eq.(4.19) can be re-written in matrix form as follows

89

3 2

0 0(2, 1) (2,)

()(3, 1) (3,)

0

(, 1) (,)() ()

d

d d

M M

d d d

I CBKe k e k

C I A BK I CBKe k e k

e M k e M kCA I A BK CA I A BK I CBK− −

 −+
 − −+ =

 + − − −

⋯

⋱ ⋮

⋮ ⋱ ⋱⋮ ⋮

⋯

 (4.20)

Compactly, Eq.(4.20) is given as

(1) ()
e

e k L e k+ = (4.21)

where ()e k is the output error of the batch at the thk iteration with

corresponding output error (1)e k + at the (1)thk + iteration. The

matrix eL controls the output error evolution. Its spectral radius should

be less than one for output error convergence. Since eL is a Toeplitz

matrix whose diagonal entries are the eigenvalues, hence the output

error in Eq.(4.20) and Eq.(4.21) obtained using D-ILC algorithm in Eq.

(4.4) is convergent under following condition [8, 48, 109].

()max eig 1dI CBK− < (4.22)

The product ()dCBK has to be non-singular for Eq. (4.22) to be valid.

4.4 Convergence of Control Input at Component

Level Using D-ILC

In this section, the component-level relationship for (, 1)u i k + at the

(1)thk + batch is presented in terms of static and dynamic components

as well as the control input (,)u i k from previous batch k . Convergence

90

of control input (,)u i k approaching the desired input * () u i has been

investigated as well.

lim (,) * ()
k

u i k u i
→∞

= (4.23)

So that the desired output sequence * ()y i is generated when sequence

* () u i is applied to the system having transfer function ()G z as shown

below in Eq. (4.24)

=* () () * ()y i G z u i (4.24)

In following sections, convergence condition for control input and rate

of convergence for individual components of the control input have

been derived. Bounds of convergence rates have also been formulated.

4.4.1 Batch to Batch Control Input Sequence

The D-ILC algorithm generates the batch to batch control input

sequence, i.e., from 1,2, , , 1,k k +… … for each time index i . In this

section a recurrence relationship is derived to perform a convergence

analysis on (,)u i k . The control input sequences for individual time

indices are derived using Eq. (4.4).

For 1i = , we get

(1, 1) (1,) { (2,) (1,)}

(1, 1) (1,) { (2,)} since (1,) 0

d

d

u k u k K e k e k

u k u k K e k e k

+ = + −

+ = + = (4.25)

On further simplification, the Eq.(4.26) is obtained.

91

{ } { }

() { }

(1, 1) (1,) * (2) (1,) (1,)

(1, 1) (1,) * (2) (1,)

d d

d d d

u k u k K y K C Ax k Bu k

u k I K CB u k K y K CAx k

+ = + − +

+ = − + −
 (4.26)

Similarly, for 2i = , there is

() []

()

(2, 1) (2,) * (3) * (2)

 (2,)

d d

d

u k I K CB u k K y y

K C I A x k

+ = − + −

+ −
 (4.27)

The sequences in Eq. (4.25) can be generalised for thi component as.

()

()

(, 1) (,) * (1) * ()

 (,)

d d

d

u i k I K CB u i k K y i y i

K C I A x i k

 + = − + + −

+ −
 (4.28)

Solution for Eq. (4.28) is a recurrence relation in Eq.(4.29).

()

() { } ()

1

1
1

1

(,) (,1)

 * (1) * () (,)

k

d

k
k j

d d d
j

u i k I K CB u i

I K CB K y i y i K C I A x i k

−

−
− −

=

= − +

 − + − + − ∑

 (4.29)

For zero control input at first batch, i.e., (,1) 0u i = , the Eq. (4.29)

reduces to Eq. (4.30) below.

() { } ()
1

1

1

(,)

* (1) * () (,)
k

k j

d d d
j

u i k

I K CB K y i y i K C I A x i k

−
− −

=

 = − + − + − ∑

 (4.30)

As batch number k increases, the control input components achieve

convergence one after the other with increasing time index i inside a

92

batch. This can be observed from re-writing the sequences in Eq. (4.28)

to show the dependency of (, 1)u i k + on (,)u i k from the previous batch

including all the other previous control input components

(1,), (2,), , (1,)u i k u i k u k− − … occurring in the same batch as follows

() ()

() { }

(, 1) (,) (1,)

 (1,) * (1) * ()

d d

d d

u i k I K CB u i k K C I A Bu i k

K C I A Ax i k K y i y i

+ = − + − −

+ − − + + −
 (4.31)

From the expansion of (1,)x i k− down to (1,)x k using the dynamic

relationship in Eq.(4.1), the Eq. (4.31) can be expressed in terms of the

initial state and previous input terms from the same iteration k as

given below

() ()

() ()

{ }

− −

+ = − + − −

+ + − + −

+ + −

⋯ 2 1

(, 1) (,) (1,)

(1,) (1,)

 * (1) * ()

d d

i i
d d

d

u i k I K CB u i k K C I A Bu i k

K C I A A Bu k K C I A A x k

K y i y i

 (4.32)

The Eq. (4.32), has four groups of terms. 1st term shows the effect of

the input (,)u i k at same time index during previous iteration. To

obtain a stable and bounded sequence of control inputs, +(, 1)u i k , the

poles of the scaling factor()dI K CB− must lie inside unit circle, i.e.,

maximum absolute value of eigenvalue of ()dI K CB− also termed as

spectral radius, should be less than 1 as given in Eq. (4.33)below.

()− <max eig 1dI K CB (4.33)

2nd group of components consist of scaled input values which occurred

during earlier in the last iteration. All of these have a common term

93

()−I A which has magnitude less than one due to stable system with

eigenvalues of A less than one. These components shall always possess

finite values. The 3rd group is the scaled initial condition (1,)x k and 4th

is the scaled error { }+ −* (1) * ()y i y i between desired output values

at consecutive time indices. Both of these have finite values. Hence, if

the Eq. (4.33) is satisfied the sequence shall be bounded over the

iterations. So Eq. (4.33) gives the necessary condition for convergence

of D-ILC algorithm. It is clear that this condition does not depend on

the system matrix A , which implicitly points to the ability of ILC

algorithm to achieve convergence even when the model parameters are

unknown.

Owing to the presence of previous input components at all the earlier

time indices of the previous iteration in Eq. (4.32), it can be inferred

that first the convergence of the 1st input component → *(1,) (1)u k u

occurs, which causes the convergence for the 2nd output component

*(2,) (2)y k y→ . Then after one or few batches, 2nd input component

*(2,) (2)u k u→ convergence is achieved followed by 3rd output

component *(3,) (3)y k y→ . Similarly, the convergence of other inputs

(,)'su i k and corresponding outputs (1,)'sy i k+ occur in a sequential

manner in further batches. The process of batch to batch sequential

convergence of samples is shown in the Figure 4.1.

94

4.5 Rate of Convergence of Control Input Error

In this section, rate of convergence of input sequence for D-ILC has

been formulated at component level. Smallest singular value has also

been utilised by some researchers to formulate the upper bound for

convergence rate of the input sequence in case of norm optimal P-ILC

[104]. For noise-free systems, exponential rate of convergence for control

input sequence has been established in terms of infinity-norm [110]. The

rate of convergence up to component level has not been observed in

earlier works. The formulation of the evolution and rate of convergence

of D-ILC algorithm in terms of control errors at component level allows

the rate analysis for real applications having smaller batch numbers.

4.5.1 Input Error Evolution at Component Level - Formulation

Using D-ILC algorithm in Eq. (4.4), the component-wise control input

error between desired control input * ()u i and (, 1)u i k + is calculated

in Eq. (4.34) below.

Figure 4.1: Sequential convergence of samples

⊕ d
K

G

Time Index i

Iteration k Iteration k

Input Output

Time Index i

95

{ }

{ }

 − + = − + + −

 + − + = − −
 − −

* () (, 1) * () (,) { (1,) (,)}

* (1) (1,)
 * () (,)

 * () (,)

d

d

u i u i k u i u i k K e i k e i k

Cx i Cx i k
u i u i k K

y i y i k

 (4.34)

It can be re-arranged and further expressed as follows.

(){ } (){ }

− + =

− − + − −

*() (, 1)

 * () (,) * () (,)d d

u i u i k

I K CB u i u i k K C I A x i x i k
 (4.35)

Let’s denote.

* () (,) (,)

* () (, 1) (, 1)

u i u i k u i k

u i u i k u i k

− = ∆

− + = ∆ +
 (4.36)

The Eq. (4.35) can now be re-written as.

(){ }

(){ }

(, 1) (,)

 * () (,)

d

d

u i k I K CB u i k

K C I A x i x i k

∆ + = − ∆

+ − −
 (4.37)

Starting from time index 1i = , the relation for (1, 1)u k∆ + is given as

Eq. (4.38) below.

(){ }

(){ }

(1, 1) (1,)

 * (1) (1,)

d

d

u k I K CB u k

K C I A x x k

∆ + = − ∆

+ − −
 (4.38)

Since the initial conditions are preserved, hence, the initial error is zero,

i.e., * (1) (1,)x x k= . At first time index the input error is given by.

(){ }(1, 1) (1,)du k I K CB u k∆ + = − ∆ (4.39)

96

Continuing for further time indices, the general relation for thi time

index can be written as under.

() ()

()

()

1

2

(, 1) (,) (1,)

(2,)

(1,)

d d

i
d

i
d

u i k I K CB u i k K C I A B u i k

K CA I A B u k

K CA I A B u k

−

−

∆ + = − ∆ + − ∆ −

+ + − ∆

+ − ∆

… (4.40)

From the equations (4.39), and (4.40) assuming similar relations for

other time indices, these can be put in matrix form in Eq. (4.41) below

()

() ()

() () ()

() ()−

∆ + −

∆ + − −

∆ + − − −=

∆ + − −

⋯

⋯

⋱ ⋮

⋮ ⋮ ⋮ ⋱ ⋱

⋯ ⋯ ⋯
2

(1, 1) 0 0 0

(2, 1) 0 0

(3, 1)

0

(, 1)

d

d d

d d d

M

d d

u k I K CB

u k K C I A B I K CB

u k K CA I A B K C I A B I K CB

u M k K CA I A B I K CB

 ∆

 ∆

∆×

 ∆

⋮

(1,)

(2,)

(3,)

(,)

u k

u k

u k

u M k

 (4.41)

OR more compactly in matrix-vector notation as in Eq. (4.42) below.

(1) ()u k T u k∆ + = ∆ (4.42)

Here T is the operator matrix which controls the evolution of control

input errors from batch k to 1k + .

97

()

() ()

() () ()

() ()−

−

− −

− − −=

− −

⋯

⋯

⋱ ⋮

⋮ ⋮ ⋱ ⋱

⋯ ⋯ ⋯2

0 0 0

0 0

0

d

d d

d d d

M

d d

I K CB

K C I A B I K CB

K CA I A B K C I A B I K CBT

K CA I A B I K CB

 (4.43)

The solution of Eq. (4.42) is given by Eq. (4.44) below.

1() (1)ku k T u−∆ = ∆ (4.44)

4.5.2 Properties of Relation for Control Input Error Evolution

The properties of control input error evolution from Eq. (4.41) and

(4.42) are as follows:

• It is a 1st order homogeneous relationship along k .

• The matrix T has a lower Toeplitz structure, provided the

parameters , ,A B C and dK are time-invariant.

• The matrix T has M repeated eigenvalues, i.e.,

(), 1, ,i dI K CB i Mλ = − ∀ = …

• Constant diagonal elements show that each (, 1)u i k∆ + is

effected by the corresponding (,)u i k∆ from the previous batch in

the same manner, i.e. same scaling factor ()dI K CB− which is

independent of system matrix A .

• Each (, 1)u i k∆ + has additional coupling from other control

input errors which occurred in the previous batch k before the

98

time index i , such as (1,), (2,), , (1,)u k u k u M k∆ ∆ … ∆ − . Hence

(,)u M k∆ is the slowest component.

• The scaling factors ()2i
dK CA I A B− − are not independent of

system matrix A . Hence, although the ILC convergence

condition is independent of system matrix A , but the

convergence rate for the components

(2,), (3,), , (1,)u k u k u M k∆ ∆ … ∆ − except the 1st component

(1,)u k∆ does depend on matrix A .

• The asymptotic convergence condition is given as follows.

 max eig() 1dI K CB− < (4.45)

 which is similar to that for output error convergence.

But it has not been explored as to how the errors evolve in the initial

part of the learning curve which corresponds to initial iterations? What

is the relative rate of convergence? What factors affect? What is the

rate of the learning process here? Does it diverge? How much

divergence is acceptable?

4.5.3 Rate of Convergence for the Input Error at Component

Level

It was motivated by need to analyse the effects of errors at the end of

iteration upon initial state for next iteration. Additionally, the effect of

batch size needs to be investigated so as to ascertain how much slower

99

is the learning at later time indices. The Theorem 4.1 below gives the

relation for the rate of convergence for the input error at component

level.

Theorem 4.1

The D-ILC algorithm produces a sequence of bounded control inputs

which sequentially converge component-wise asymptotically to the

desired control input sequence at the rate equal to the magnitude of the

eigenvalue of the matrix relating the evolution of control input error

provided initial conditions are same and desired output matches with

the measured output at the beginning of each batch.

Proof

The evolution of control input errors follows relation.

(1) ()u k T u k∆ + = ∆ (4.46)

And its solution in terms of initial value (1)u△ in Eq. (4.44).

1() (1)ku k T u−∆ = ∆ (4.47)

Due to repeated eigenvalues, matrix T cannot be diagonalised using

eigen-decomposition or SVD because there are repeated eigenvectors

which make the matrix of eigenvectors singular. However, the rate of

convergence of each component (,)u i k∆ can be found if matrix T with

dimension ()M M× is decomposed into Jordan Normal form. For a

100

non-singular matrix Q i.e. -1Q Q I× = , Jordan Decomposition is given

by Eq. (4.48).

-1T Q D Q= (4.48)

where the matrix D has the eigenvalues of matrix T as its diagonal

elements along with a sub-diagonal containing all ones as in Eq. (4.49)

below.

0 0 0

1 0

0 1

0 0

0 0 1

D

λ

λ

λ

λ

 =

⋯

⋯ ⋮

⋱ ⋮

⋮ ⋱ ⋱

⋯

 (4.49)

To calculate the convergence rates of individual components of control

input error vector ()u k∆ at thk batch in Eq.(4.47), decompose as

1 1 1k kT Q D Q− − −= . Now, the matrix -1kD is given below in Eq. (4.50) .

()

()

-1

2 1

3 2 11

1

0 0 0

1 0

(1)(2)
1

2!

0

(1)(2) (1)

(1)!

k

k k

k k kk

k M k

k

k k
kD

k k k M

M

λ

λ λ

λ λ λ

λ λ

− −

− − −−

− −

 −

 − − −=

 − − … − +

−

⋯

⋯ ⋮

⋱ ⋮

⋮ ⋮ ⋱ ⋱

⋯ ⋯ ⋯

 (4.50)

The control input error in Eq. (4.47) can now be written as Eq. (4.51)

below

101

-1 -1 -1() (1) (1)k ku k T Du Q D Q u∆ = = ∆ (4.51)

The thi term (,)u i k∆ from the corresponding row in Eq. (4.51) is given

in Eq. (4.52) below.

[]1 1(,) (, :) (1,1), (2,1), , (,1) Tku i k Q D i Q u u u M− −∆ = × × × ∆ ∆ … ∆

 (4.52)

Where 1 (, :)kD i− represents the thi row of the matrix -1 kD . Similarly,

the thi term (, 1)u i k∆ − from the previous (1)th
k − batch is given below.

[]1 2(, 1) (, :) (1,1), (2,1), , (,1) Tku i k Q D i Q u u u M− −∆ − = × × × ∆ ∆ … ∆

 (4.53)

The rate of convergence (,)u i k∆Γ is the ratio of ∞ -norm of the control

input errors vector at batch k with respect to its ∞ -norm at batch

(1)k − as given in Eq. (4.54) below.

(,)

()

(1)

(1)(2)1 2 3(1)
2 !

(1) (1)

(- 1)!

(2)(3)2 3 4(2)
2 !

(2) (1 1) 1
(1)!

u i k

u k

u k

k kk k kk

k k i k i
i

k kk k kk

k k i k i
i

λ λ λ

λ

λ λ λ

λ

∞
∆

∞

∆
Γ =

∆ −

 − − − − −+ − +

 − … − + − + + =
 − − − − −+ − +

 − … − − + − − + + −

⋯

⋯

 (4.54)

102

After simplification of Eq. (4.54), the Eq. (4.55) below is obtained

() ()

()
() ()

()

(,)

21 (1)(2) 1
1 (1)

2!

1(1) (1) 1

(1)!

21 (2)(3) 1
1 (2)

2!

1(2) (1 1) 1

(1)!

u i k

k k
k

ik k i

i

k k
k

ik k i

i

λ λ

λ
λ

λ λ

λ

∆

 − − + − +

 −− … − + + + − Γ =
 − − + − +

 −− … − − + + + −

⋯

⋯

 (4.55)

More compact form for the rate of convergence is given by Eq. (4.56)

λ

λ
λ

λ

−

∆
= =

 − −
Γ = =

 − −−

∑ ∑
-1 1

(,)
0 0

1 1

 1

12 1

j

i i

u i k j
j j

k

j k

k jk

j

 (4.56)

where

()

1
(1)!

1) ! !

k
k

k j jj

− − = − −
 (4.57)

In the Eq. (4.56) there are as many terms inside summation as the

index number. For components higher in index number the rate of

convergence has more terms added thus they are slower as compared to

the components with smaller index number occurring earlier. For a

selected component, although the terms are same in number but at

smaller number of iterations, the ratio terms inside summation are

larger as compared to the corresponding terms at greater iteration

103

number. Thus, the rate is slower at smaller iteration number for a

given component. The component at 1st time index has same rate

throughout which equals the absolute eigenvalue of matrix T .

From Eq. (4.56) it is observed that in the limit k → ∞ , the ratio to

the right of summation is unity, so that every component (,)u i k∆ shall

have long term convergence rate equal to the magnitude of the

eigenvalue ()eig dI K CBλ = − . □

Corollary 4.2

The D-ILC algorithm produces a sequence of bounded control inputs

which converge to the desired control input sequence at the rate less

than or equal to the magnitude of the norm of matrix relating the

evolution of control input error under identical initial conditions such

that the desired output matches with the measured output at the

beginning of each batch.

Proof

Rate of convergence ur of the control input error vector is defined as

ratio between the norms of control input errors at ()1 thk + and thk

batches in Eq. (4.58) below.

(1)

()u

u k
r

u k

∆ +
∆

≜ (4.58)

Using Eq. (4.42) and the norm properties, the following inequality

results

104

() ()

() ()u

T u k T u k
r T

u k u k

∆ ∆
= ≤ ≤

∆ ∆
 (4.59)

Hence, the upper bound for the convergence rate is the norm of matrix

T which relates the control input error vector ()u k∆ to the vector

(1)u k∆ + in next batch. □

4.6 Case Study: 1st Order SISO System

A first order discrete-time plant is investigated for convergence of

control input errors using D-ILC algorithm. The state space description

of the plant is given in Eq. (4.60) below.

(1,) (,) (,)

 (,) (,)

x i k Ax i k Bu i k

y i k Cx i k

+ = +

=
 (4.60)

The 1st order SISO plant parameters have been chosen as

0.50, 0.50, 1A B C= = = . These values are selected to achieve a

normalized step response. For this system, the time constant is 2

samples. Hence the output within a batch shall converge in 6 to 8

samples. The batch size M of 20 samples have selected so that the

transient period is covered along with sufficient number of samples for

steady state period. While satisfying the assumptions and preserving

the initial conditions for each batch, the D-ILC algorithm in Eq. (4.4)

has been run for number of batches with the learning rate 0.5dK = .

The initial values of control input (,1)u i and output (,1)y i for the 1st

batch are all zeros. The matrix T relates the control input error vector

()u k∆ to the vector (1)u k∆ + as given below.

105

(1) ()u k T u k∆ + = ∆ (4.61)

The singular values and the eigenvalues of matrix T are less than 1 as

seen in Figure 4.2. Batch to batch evolution of the control input error

in Figure 4.3 shows that different components (,)u i k∆ start off at

different rates. The error for the 1st sample time, (1,)u k∆ has the

fastest rate.

2 4 6 8 10 12 14 16 18 20

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Batch Size i

M
a
g

n
it

u
d

e

 ←←←← Max Singular value = 0.9882 singular values

eigenvalues

Figure 4.2: Singular values and eigenvalues of matrix T

106

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Batch number k

C
o

n
tr

o
l

In
p

u
t

R
e
s
id

u
a
l

c
o
m

p
o

n
e
n

ts

∆ u (20,k)

∆ u (10,k)

∆ u (5,k)

∆ u (2,k)

∆ u (1,k)

0 5 10 15 20 25 30 35 40
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

Batch number k

C
o
n

tr
o

l
in

p
u

t
re

s
id

u
a
ls

:
L

o
g

 S
c
a
le

|| ∆ u (k) ||
inf

∆ u (20,k)

∆ u (10,k)

∆ u (5,k)

∆ u (2,k)

∆ u (1,k)

Figure 4.3: Evolution of components of control input errors

Figure 4.4: Short range evolution of control input errors

107

Figure 4.4 shows semi-log plot for short range, 2k M≤ , i.e., batch

number up to twice the batch size. All the control input error

components converge at different rates. (1,)u k∆ has rate 0.75 which

equals the eigenvalue of matrix T . The slope of the norm of error

vector ()u k∆ indicates that it is slower than all the individual

components. For medium range, i.e., 2 LARGEM k k< < an earlier

portion is shown in Figure 4.5. The components (2,)u k∆ to (20,)u k∆

achieve constant rates in succession. The convergence rate of vector

()u k∆ matches closely with last component (20,)u k∆ .

0 50 100 150 200 250 300 350 400
10

-50

10
-40

10
-30

10
-20

10
-10

10
0

10
10

Batch number k

C
o

n
tr

o
l

in
p

u
t

re
s
id

u
a
ls

:
L

o
g

 S
c
a
le

|| ∆ u (k) ||
inf

∆ u (20,k)

∆ u (10,k)

∆ u (5,k)

∆ u (2,k)

∆ u (1,k)

Figure 4.5: Medium range evolution of control input errors

108

2200 2300 2400 2500 2600 2700 2800 2900 3000

10
-320

10
-300

10
-280

10
-260

10
-240

C
o

n
tr

o
l

in
p

u
t

re
s
id

u
a
ls

:
L

o
g

 S
c
a
le

|| ∆ u (k) ||
inf

∆ u (20,k)

∆ u (10,k)

∆ u (5,k)

∆ u (2,k)

∆ u (1,k)

0 500 1000 1500 2000 2500

0.75

0.8

0.85

0.9

0.95

1

R
a
te

 o
f

C
o

n
v
e
rg

e
n

c
e
 o

f
C

o
n

tr
o

l
in

p
u

t
re

s
id

u
a
l

Batch number k

Rate ∆ u (20,k)

Rate ∆ u (10,k)

Rate ∆ u (5,k)

Rate ∆ u (2,k)

Rate ∆ u (1,k)

Figure 4.6: Long range evolution of control input errors

Figure 4.7: Convergence rates of control input components

109

The D-ILC algorithm achieves its limit at large batch numbers, i.e., at

2600LARGEk k≥ ≈ as shown in Figure 4.6. At this stage, just before

the control input errors are below the threshold for the minimum

number which can be represented numerically, all the individual

components (,)u i k∆ achieve the same rate 0.75. Overall batch to batch

convergence rates in Figure 4.7 has also confirmed that control input

error components (,)u i k∆ approach 0.75, the eigenvalue of T . This

proves the claim in Theorem 4.1 that long-term convergence rates of all

the individual components equals the eigenvalue of T .

0 500 1000 1500 2000 2500

0.75

0.8

0.85

0.9

0.95

1

B
o

u
n

d
s
 f

o
r

R
a
te

 o
f

C
o

n
v
e
rg

e
n

c
e
 o

f
C

o
n

tr
o

l
in

p
u

t
re

s
id

u
a
l

Batch number k

σmax
(T)

Rate ∆ u (k)

λ (T)

The bounds of convergence rate demonstrated in Figure 4.8 show that

overall convergence rate of the control input error vector ()u k∆ lies

between the two extremes. These extremes are the maximum singular

Figure 4.8: Bounds for rate of convergence

110

value of matrix T as the upper limit and eigenvalue of matrix T as the

lower limit. This demonstrates the observation in Corollary 3.2 that

rate is bounded by the maximum singular value and the eigenvalue of

matrix T .

4.7 Case Study: ILC Algorithm for a Damped

Pendulum

A damped pendulum in Figure 4.9 is an interesting control problem

which has been widely studied. The D-ILC algorithm is applied for

learning to track the desired angle and corresponding angular velocity

by generating the desired control signal at each sample time. The set of

desired control signal for a complete swing has been obtained from a

fine-tuned PD controller. The angle θ is measured anti-clockwise. The

control input torque u is considered positive in anti-clockwise direction.

The pendulum is at rest with initial position 0 /4θ π= radians at the

left side. The initial angular velocity is 0 0ω = rad/s. The state space

representation of the simple pendulum using state vector ,
T

x θ ω =

is given by Eq. (4.62) below

22

00 1

1

1 0

0 1

x x u
mLg L b mL

y x

 = + − −

 =

ɺ

 (4.62)

111

The pendulum has been simulated with the parameters in Table 4-1.

Length (L) 1 m

Mass (m) 0.5 Kg

Acceleration due to gravity (g) 9.81 m/s2

Damping co-efficient (b) 0.25 N-s/m

The linearised discrete space state matrices for the pendulum sampled

at 0.05 seconds are as follows

Figure 4.9: A damped pendulum

Table 4-1: Pendulum parameters

m

θ

b

u

θ=0

πθ

ω

0

0

=

=0

4
πθ

ω

0

0

=

=0

4

L

112

0.9879 0.0492 0.0012
,

0.4824 0.9633 0.0492

, 0

A B

C I D

 = =
 −

= =

 (4.63)

The time period for the pendulum is 2 seconds, so there are 40 samples

for each swing from right to left and back. Each swing is equivalent to

a batch or iteration as used in standard ILC literature.

Here three forms of gain matrices have been considered to analyse the

rate of convergence of the control inputs over a number of swings. The

identical initial conditions, i.e. 0 /4θ π= radians and 0 0ω = rad/s are

maintained for each repetition/swing. The control input during 1st

swing is assumed zero at all sampling instances.

4.7.1.1 Case I: Gain Matrix 0.5 [0,1]dK = ×

For ILC update, the error considered is the state error. The selected

gain matrix allows the forward difference error of the angular velocity

only to be used for updating the control inputs. The tracking of the

desired control input u , angle θ and angular velocity ω has been

monitored for 2500 swings. See Figure 4.10 and Figure 4.11. For the

first swing, there is zero control input and the pendulum exhibited as a

damped, un-forced pendulum as shown by dotted lines. In the later

swings the ILC learns to generate control input signals as shown by

dashed lines for 100th swing. Although the output is closer to the

required, but perfect tracking has not yet occurred. The 's× represent

the perfect tracking achieved after 2500 swings. The RMS error for the

113

control input and the corresponding angle and velocity exhibit

convergence as shown in Figure 4.12. The root mean squared values

have reached minima after 2000 iterations as shown in Figure 4.12. The

final RMS values have been given in Table 4-2 below. These values

show that limit of precision have been reached.

Errors in variable RMS values

Angle 1.2015e-015

Angular velocity 2.2210e-015

Control input 1.6876e-014

0 5 10 15 20 25 30 35 40
-3

-2

-1

0

1

2

3

4

Time

T
ra

c
k
in

g
 o

f
d

e
s
ir

e
d

 c
o

n
tr

o
l

in
p

u
t

u
s
in

g
 I

L
C

Desired Control input

1st Swing Control input

100th Swing Control input

2500th Swing Control input

Table 4-2: Final RMS values

Figure 4.10: Tracking control input with ILC algorithm

114

0 5 10 15 20 25 30 35 40
-1

-0.5

0

0.5

1

Time

A
n
g
le

Desired angle

1st Swing angle

100th Swing angle

2500th Swing angle

0 5 10 15 20 25 30 35 40
-4

-2

0

2

4

Time

A
n
g
u
la

r
v
e
lo

c
it
y

Desired velocity

1st Swing velocity

100th Swing angle

2500th Swing velocity

10
0

10
1

10
2

10
3

10
4

10
-20

10
-10

10
0

Iteration number

R
M

S
 a

n
g

le
 e

rr
o

r

10
0

10
1

10
2

10
3

10
4

10
-20

10
-10

10
0

Iteration number

R
M

S
 v

e
lo

c
it

y
 e

rr
o

r

10
0

10
1

10
2

10
3

10
4

10
-20

10
0

10
20

Iteration number

R
M

S
 i

n
p

u
t

e
rr

o
r

Figure 4.11: Tracking desired angle and velocity using ILC

Figure 4.12: RMS control input, angle and velocity errors

115

0 100 200 300 400 500 600
-1.5

-1

-0.5

0

0.5

1

1.5

2

Iteration number

E
v
o

lu
ti

o
n

 o
f

in
p

u
t

e
rr

o
r

u
s
in

g
 I

L
C

∆u(3,:)

∆u(20,:)

∆u(21,:)

∆u(27,:)

∆u(39,:)

The evolution of control input errors at selected time indices in Figure

4.13 shows how the D-ILC algorithm learns to minimise the error. For

the 1st and 2nd time indices, the control input matches the desired, since

there is no significant error in the angles and angular velocities until 3rd

time index due to identical initial conditions at each iteration. When

the error becomes significant for the 4th time index, the control input

for the 3rd time index starts learning due to forward difference in the

later swings/iterations. But due to minimal errors, it is quite close to

the desired input. The errors for other time indices go on increasing

because the damping effect increases with the angle and slows down the

pendulum. Hence the control input lags behind the desired and ILC

learns to catch up the difference in consecutive swings/iterations. The

convergence occurs sequentially as the control input for earlier time

Figure 4.13: Evolution of control input at selected indices

116

indices converge before the later ones. The rate of convergence varies in

the earlier swings. The semi-log plot in Figure 4.14 shows that near the

final convergence, all the slopes are almost parallel to each other

indicating same convergence rates. The absolute values of the control

input errors have been used to plot the convergence rates, because the

negative errors cannot be plotted on logarithmic scale along with the

positive errors simultaneously. The kinks in convergence rates for initial

swings in Figure 4.15 occur due to oscillations or zero-crossings of the

control input errors. Hence this portion is ignored for convergence rate

analysis. Only the medium and long-term convergence rates are valid

for the rate analysis as shown in Figure 4.16 and Figure 4.17.

0 500 1000 1500 2000 2500 3000 3500 4000
10

-15

10
-10

10
-5

10
0

Iteration number

S
lo

p
e
 s

h
o

w
in

g
 r

a
te

s
 o

f
in

p
u

t
e
rr

o
r

|∆u(3,:)|

|∆u(20,:)|

|∆u(21,:)|

|∆u(33,:)|

|∆u(39,:)|

Figure 4.14: Convergence rates for control input errors

117

0 100 200 300 400 500 600

10
-3

10
-2

10
-1

10
0

Iteration number

S
lo

p
e
 s

h
o

w
in

g
 r

a
te

s
 o

f
in

p
u

t
e
rr

o
r

|∆u(3,:)|

|∆u(20,:)|

|∆u(21,:)|

|∆u(33,:)|

|∆u(39,:)|

600 800 1000 1200 1400 1600 1800

10
-12

10
-10

10
-8

10
-6

10
-4

Iteration number

S
lo

p
e
 s

h
o

w
in

g
 r

a
te

s
 o

f
in

p
u

t
e
rr

o
r

|∆u(3,:)|

|∆u(20,:)|

|∆u(21,:)|

|∆u(33,:)|

|∆u(39,:)|

Figure 4.15: Short-term rates for control input errors

Figure 4.16: Medium-term rates for control input errors

118

1300 1400 1500 1600 1700 1800 1900 2000 2100 2200

10
-14

10
-12

10
-10

10
-8

Iteration number

S
lo

p
e
 s

h
o

w
in

g
 r

a
te

s
 o

f
in

p
u

t
e
rr

o
r

|∆u(3,:)|

|∆u(20,:)|

|∆u(21,:)|

|∆u(33,:)|

|∆u(39,:)|

It can been observed that the control input errors for all the time

indices finally converge at the rate equal to the eigenvalue (0.9754) of

matrix T . For the eigenvalue of 0.9754, single time constant

corresponds to 40 iterations. For 5 time constants equal to 200

iterations, the decay of 0.01 has been marked in Figure 4.17.

4.7.1.2 Case 2: Gain Matrix 0.5 [1,1]dK = ×

For Case 2, the gain matrix is selected so that derivative of the full

state error vector is employed. In this case, the performance is better

because the convergence has been achieved 200 swings earlier than Case

1. The root mean squared errors in angle, angular velocity and control

input errors reach minima around 1800th swing as shown in Figure 4.18.

Figure 4.17: Long-term rates for control input errors

119

10
0

10
1

10
2

10
3

10
4

10
-20

10
-10

10
0

Iteration number

R
M

S
 a

n
g

le
 e

rr
o

r

10
0

10
1

10
2

10
3

10
4

10
-20

10
-10

10
0

Iteration number

R
M

S
 v

e
lo

c
it

y
 e

rr
o
r

10
0

10
1

10
2

10
3

10
4

10
-20

10
0

10
20

Iteration number

R
M

S
 i
n

p
u
t

e
rr

o
r

0 100 200 300 400 500

-0.5

0

0.5

1

1.5

2

2.5

Iteration number

E
v
o

lu
ti

o
n
 o

f
in

p
u
t

e
rr

o
r

u
s
in

g
 I

L
C

∆u(3,:)

∆u(20,:)

∆u(21,:)

∆u(27,:)

∆u(39,:)

Figure 4.18: RMS errors in angle, velocity and control input

Figure 4.19: Evolution of input error at selected time indices

120

200 400 600 800 1000 1200 1400 1600 1800 2000

10
-14

10
-12

10
-10

10
-8

10
-6

Iteration number

S
lo

p
e
 s

h
o
w

in
g

 r
a
te

s
 o

f
in

p
u

t
e
rr

o
r

|∆u(3,:)|

|∆u(20,:)|

|∆u(21,:)|

|∆u(33,:)|

|∆u(39,:)|

Evolution of input errors is illustrated in Figure 4.19. The parallel

slopes in Figure 4.20 indicate that the long-term convergence rates for

control input errors at all the time indices have achieved same rate

which equals the eigenvalue (0.9748) of matrix T . One time constant

corresponds to 40 iterations. The decay of 0.01 for 5 time constants, i.e.

200 iterations has been marked in the Figure 4.20.

4.7.1.3 Case 3: Gain Matrix 0.5 [1,0]dK = ×

The gain matrix for Case 3 allows the use of forward difference error in

angle only. Here, the convergence occurs much slower as compared to

the earlier two cases. RMS of the errors reaches minima after 170000

iterations in Figure 4.21.

Figure 4.20: Long-term rates for control input errors

121

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
-20

10
-10

10
0

Iteration number

R
M

S
 a

n
g

le
 e

rr
o

r

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
-20

10
-10

10
0

Iteration number

R
M

S
 v

e
lo

c
it

y
 e

rr
o
r

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
-20

10
0

10
20

Iteration number

R
M

S
 i
n

p
u
t

e
rr

o
r

0 0.5 1 1.5 2

x 10
5

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

Iteration number

S
lo

p
e
 s

h
o
w

in
g

 r
a
te

s
 o

f
in

p
u

t
e
rr

o
r

|∆u(3,:)|

|∆u(20,:)|

|∆u(21,:)|

|∆u(33,:)|

|∆u(39,:)|

Figure 4.21: RMS values for D-ILC with zero initial conditions

Figure 4.22: Convergence rate for input error

122

The slopes in Figure 4.22 indicate that the long-term convergence rates

for control inputs achieve the rate which equals the eigenvalue (0.9994)

of matrix T . On comparing the eigenvalues for the above three cases, it

is observed that convergence is fastest for case 2 (using full state error)

for which the matrix T has smallest eigenvalue. Rate is slowest for the

case 3 for which matrix T has the greatest eigenvalue.

4.7.2 Controllability via D-ILC

The rank of product CB is 1, which points that the algorithm can only

control one output variable and achieve tracking for it. Since, the

desired values of inputs as well as outputs were obtained from a fine

tuned PD controller; the controller successfully tracked both the angle

and velocity. It has been a very specific mapping from input to the

output space. The algorithm in general can only track one variable,

namely the velocity.

4.7.3 Effect of Offset State Errors

With identical initial conditions the states have been perturbed with an

offset error. The D-ILC algorithm with gain matrix 0.5 [0,1]K = × has

converged for velocity only with same rate as noted for case 1. It has

been shown in Figure 4.23 under the limitation that only the velocity

error has been used to generate the control input update.

123

800 1000 1200 1400 1600 1800 2000

10
-14

10
-12

10
-10

10
-8

Iteration numberS
lo

p
e
 s

h
o
w

in
g

 r
a
te

s
 o

f
v
e
lo

c
it

y
 e

rr
o

rs
 f

o
r

s
a
m

e
 i

n
it

ia
l

c
o

n
d
it

io
n

s

|∆dθ(4,:)|

|∆dθ(21,:)|

|∆dθ(22,:)|

|∆dθ(34,:)|

|∆dθ(39,:)|

However, convergence in velocity has not been observed for the cases 2

and 3 with offset states. The input and angle errors have remained

bounded but have not converged over the iterations for any case.

4.8 Summary

In this chapter, mathematical formulation for conventional identical

initial condition ILC has been presented. The convergence of D-ILC

algorithm in terms of control input sequence has been formulated and

investigated with simulations. The convergence conditions similar to

the output sequence have been achieved. Moreover, rate of convergence

of control input up to component level has been formulated using the

eigenvalues of the operator matrix controlling the evolution of batch to

batch input errors. It has been demonstrated that components of the

Figure 4.23: Convergence of velocity errors with offset state errors

124

input sequence converge sequentially. The component at 1st sample has

fastest convergence rate. The remaining components initially converge

at lower rates. However, all the components later on acquire the same

rate equal to the eigenvalue of the operator matrix. The bounds of the

convergence rate have been established in terms of maximum singular

value and eigenvalue of the operator matrix. The theorems have been

stated and proved with mathematical reasoning about the convergence

rates and factors affecting the rate at the component level. The results

from simulations have supported these concepts presented in the

chapter. The rate of convergence analysis in this chapter shall be

expanded to non-zero initial condition Cyclic ILC in next chapter for

repetitive impacting systems such as walking robots where the gait is

sensitive to the errors at last time index of the previous step.

125

Chapter 5

5 Convergence Analysis for Cyclic

ILC

For impacting systems such as pendulums, walking robots, etc., the

identical initial conditions cannot be maintained. So, there are two

problems. Firstly, there is non-zero initial error at the start of the

batch. Secondly, the batch length or number of samples in an iteration

may not be same during each iteration. In this chapter, convergence of

the ILC algorithms has been analysed after removal of the identical

initial conditions constraint. The performance of Cyclic D-ILC and

Cyclic PD-ILC algorithms have been compared and analysed.

Specifically focus has been upon the Cyclic ILC for which the errors in

each batch are transferred to the beginning of next batch.

5.1 Control Input & Initial State Errors for Cyclic

D-ILC

The evolution of errors in Cyclic ILC is dependent on the state error

which is transferred from the end of the previous batch. The evolution

in terms of control input errors has been presented in following

sections.

126

5.1.1 Problem Formulation

A discrete-time MIMO LTI system is considered in Eq.(5.1) below.

+ = +

=

(1,) (,) (,)

 (,) (,)

x i k Ax i k Bu i k

y i k C x i k
 (5.1)

where k denotes the batch number having M number of samples in

each iteration, [1,]i M∈ is the time index or sample number during

each iteration. nx ∈ ℝ denotes the state vector. ∈ ℝ(,) pu i k and

∈ ℝ(,) my i k represent the inputs and outputs of the system,

respectively. n nA ×∈ ℝ is real-valued state matrix. The input matrix is

×∈ ℝn pB and ×∈ ℝm nC is the output matrix such that all states are

fully observable. (1,)u k is the control input for first batch which may

be externally specified or left to be zero. The system in Eq.(5.1) is

considered stable.

Control inputs for consecutive iterations are updated using D–ILC

algorithm as follows.

{ }+ = + + −(, 1) (,) (1,) (,)
d

u i k u i k K e i k e i k (5.2)

where (,)u i k is the vector of p inputs at thi time index in batch

number k , +(, 1)u i k is the vector of p inputs at the same thi time

index in next batch no. 1k + . ×∈ ℝm p
dK is the learning gain matrix,

{ }+ −(1,) (,)e i k e i k is the forward difference error vector used to

approximate the derivative of the output error vector of m outputs at

thi time index in thk batch.

127

5.1.2 Modelling Cyclic ILC

At the start of each batch k , the initial state vector (1,)x k with out re-

setting has been assumed to consider Cyclic ILC. The state error at the

last time index of each batch is retained and used as the state error for

the 1st time index of the next consecutive batch such that

∆ + = ∆(1, 1) (,)x k x M k . Since, the initial state errors also contribute in

the control input update, hence, these have to be accounted for in the

evolution of control input errors over the iterations. Hence, for the

analysis, the control input error ∆ ∈ ℝ() pMu k which constitutes the

input errors for the time indices →1 M during thk batch is augmented

with initial state error vector ∆ ∈ ℝ(1,) nx k . Thus a new augmented

error vector +∆ ∈ ℝ() n pM
augx k has been formulated as follows.

 ∆

 ∆

∆∆ =

 ∆

⋮

(1,)

(1,)

(2,)()

(,)

aug

x k

u k

u kx k

u M k

 (5.3)

where ∆ (1,)u k is the vector containing control input errors of all the p

inputs at first time index of thk batch. Likewise, ∆ (2,)u k represents

input errors at 2nd time index and so on until ∆ (,)u M k for M the last

time index.

128

5.1.3 Evolution of Control Input and Initial State Errors

The evolution of the augmented error vector ∆ ()augx k over batches has

been expressed in terms of the homogeneous relationship in Eq. (5.4)

below

∆ + = ∆(1) ()aug D augx k T x k (5.4)

where the augmented operator matrix DT which relates the errors in

the initial state and control input sequence at batch k with the next

consecutive batch 1k + is given below.

− −

− −

 − −

 = − − −

 − − −

⋯

⋯

⋱ ⋮

⋮ ⋮ ⋱ ⋱

⋯ ⋯

1 2

1 2

() 0 0

() ()

0

() ()

M M M

d d

D d d d

M M
d d d

A A B A B B

K C I A I K CB

T K CA I A K C I A B I K CB

K CA I A K CA I A B I K CB

 (5.5)

5.1.4 Comments on the Structure of Error Evolution Matrix

The matrix DT has four distinct blocks. The first block MA gives the

dynamic relationship of the initial state error vector ∆ (1,)x k over the

consecutive batches, i.e., as to how the initial state error is related to

itself depends on the system matrix A and specifically upon the size of

the batch M . As M gets larger for a given matrix A , the contribution

becomes lesser and vice versa. But since the term MA is independent of

129

index number i and batch number k , hence initial state error for every

iteration is connected to the consecutive in the same manner. Second

block consists of second element −1MA B to the last element B from the

first block row. This block gives the scaling factors for the input errors

which affect the initial state error vector ∆ +(1, 1)x k in the next batch.

The input errors (1,)u k∆ to (,)u M k∆ are multiplied by decreasing

powers of A from 1MA B− to B , respectively which means that input

error (,)u M k∆ at end of the batch has greatest contribution to

∆ +(1, 1)x k and lessens for each input error at previous time index

until the input error (1,)u k∆ at the 1st time index which has the least

contribution.

Third block consists of second element −()dK C I A to the last element

− −1()M
dK CA I A from the first block column. This block consists of the

scaling factors for the initial state error vector which determines the

contribution to the input error at each time index during next batch.

Fourth block constitutes the remaining M M× elements in the lower

right similar to the Toeplitz matrix T which describes the evolution of

the input errors obtained via D-ILC algorithm under the zero initial

state error condition as described in chapter 4.

5.1.5 Convergence of Error Evolution Matrix

For stable learning the error evolution matrix DT should have

eigenvalues having magnitude less than or equal to one. This differs

from the usual condition for zero-initial error case where only the

130

diagonal elements − dI K CB have eigenvalues less than unit magnitude

for stable learning. In case of Cyclic ILC case here, the eigenvalues

cannot be just obtained from the diagonals since DT is not a triangular

matrix. Eigen analysis has been utilized to verify the stability of matrix

DT . If there exists an eigenvector associated with unity eigenvalue then

it points towards the case when augmented error vector ∆ ()augx k does

not decrease to zero over batches rather it aligns with the eigenvector

associated with unity eigenvalue being the dominant one. This fact has

been stated and proved as Theorem 5.1 below.

Theorem 5.1

There exists an eigenvector of matrix DT in Eq.(5.4) such that

corresponding absolute eigenvalue equals one.

For proving the theorem, proceed by assuming that such an eigenvector

exists and shall construct it from the matrix DT .

Proof

Let us denote the augmented eigenvector of matrix DT associated with

absolute unit eigenvalue as * * *
0 ,

TT T
x uv v v = , where *

0xv is the initial

state error vector and = …* * * *
1 2, , ,

T
T T T

u u u uMv v v v is the vector of control

input error vectors *
1uv to *

uMv for each time index 1 to M . Each of the

 = …* * * *
1 1,1 1,2 1,, , ,

T

u u u u pv v v v to = …* * * *
,1 ,2 ,, , ,

T

uM uM uM uM pv v v v has p

elements for every input.

131

For unit eigenvalue, the eigenvalue equation of the matrix DT reduces

to Eq.(5.6) below.

() * 0DI T v− = . (5.6)

The Eq.(5.6) in expanded form as follows.

− −

− −

 − − − −

 − −

 =− − − −

 − − − −

⋯

⋯

⋱ ⋮

⋮⋮ ⋮ ⋱ ⋱ ⋮

⋯ ⋯

1 2 *
0

*
1

*
2

1 2 *

() 0 0

() ()

0

() ()

M M M
x

d d u

d d d u

M M
d d d uM

I A A B A B B v

K C I A K CB v

K CA I A K C I A B K CB v

K CA I A K CA I A B K CB v

0

0

0

0

 (5.7)

where each element of 1st block column in Eq. (5.7) is associated with

*
0xv which corresponds to the state errors at the start of each iteration.

Rest of the block columns are associated with each of the single

elements *
1uv to *

uMv which correspond to the errors in control input

sequence at each time index 1, ,i M∈ … . The elements of the

augmented eigenvector *v can be obtained from Eq.(5.7) by simplifying

the individual block rows.

Thus, from 2nd block row Eq. (5.8) is obtained as below.

* *
0 1() 0d x d uK C I A v K C Bv− − + = (5.8)

Under the assumption of full observability 0dK C ≠ , the relationship in

Eq.(5.8) holds if Eq.(5.9) holds.

* *
1 0() 0u xBv I A v− − = (5.9)

132

This gives the relationship between initial state errors *
0xv and the

control input error at first time index *
1uv as in Eq.(5.10) below.

−= −* 1 *
0 1()x uv I A Bv (5.10)

For non-zero initial state error vector *
0xv , a non-zero control input

error *
1uv is obtained from Eq.(5.10) if the term ()I A− is invertible. It

is valid due to ()max eig 1A < .

Further proceed to construct the full eigenvector *v as follows

From 3rd block row in Eq.(5.7), following relation is obtained.

* * *
0 1 2

* * *
0 1 2

() () 0

 () ()

d x d u d u

x u u

K CA I A v K C I A Bv K CBv

A I A v I A Bv Bv

− − − − + =

⇒ − + − =
 (5.11)

Putting −= −* 1 *
0 1()x uv I A Bv from Eq.(5.10) in to Eq. (5.11) and

simplifying under the fact that 0B ≠ , the Eq.(5.11) becomes.

()
* * *
1 1 2

* *
1 2

* *
2 1

()

0

u u u

u u

u u

ABv I A Bv Bv

B v v

v v

+ − =

⇒ − =

⇒ =

 (5.12)

Similarly, from 4th block row in Eq.(5.7), the relation is.

* *
3 1u uv v= (5.13)

Simplifying in the same way for other block rows until the last block

row of Eq.(5.7), relationship for the last element *
uMv is obtained as

under.

* *
1uM uv v= (5.14)

133

From Eqs. (5.10), (5.12), (5.13) and (5.14), and assuming under

symmetry for the elements which occur in between, finally the

eigenvector *v containing +n pM elements associated with unity

absolute eigenvalue in terms of only one element *
1uv is given as follows.

− = − … ×
* 1 *

1() ,1,1, ,1
T

uv I A B v (5.15)

The Eq.(5.15) gives *v , the eigenvector for the matrix DT associated

with unity eigenvalue.

To prove the validity of Eq.(5.15), there is need to check the 1st block

row also.

From 1st block row the relation is

() * 1 * 2 * * *
0 1 2 (1) 0M M M
x u u u M uMI A v A Bv A Bv ABv Bv− −

−− − − − − − =⋯

 (5.16)

Using −= −* 1 *
0 1()x uv I A Bv from Eq.(5.10) and

= = = =⋯* * * *
1 2 3u u u uMv v v v from Equations (5.12), (5.13) and (5.14),

write Eq.(5.16) in terms of *
1uv as follows.

() 1 * 1 * 2 *
1 1 1

* *
1 1

()

 0

M M M
u u u

u u

I A I A Bv A Bv A Bv

ABv Bv

− − −− − − − −

− − =

⋯
 (5.17)

Re-arranging and simplifying Eq.(5.17) as follows

() ()− − −− − = + + + +⋯1 1 2()M M MI A I A A A A I (5.18)

134

and employing the infinite geometric series
∞

=

=
− ∑

0

1

1
j

j

x
x

 for <1x to

matrix A such that
∞

−

=

− = ∑1

0

() j

j

I A A , and simplify L.H.S. of

Eq.(5.18) to find that it is equal to R.H.S. Hence, the Eq.(5.16) for 1st

block row has been validated.

Thus, it is proved that eigenvector *v corresponding to unit magnitude

eigenvalue exists for the matrix DT as given by Eq.(5.15).

 □

Corollary 5.2

The dominant eigenvector *v of matrix DT has the last M elements

*
1uv to *

uMv equal to each other which correspond to input errors. So, in

the long term, the corresponding output error terms from (1,)e k to

(,)e M k also converge such that they are equal to each other due to

linear relationship between input and output. A constant offset error in

the output shall be maintained over the long term.

Corollary 5.3

Further to corollary 4.2, as the consecutive output error terms from

(1,)e k to (,)e M k which are used to update the control input for Cyclic

D-ILC become equal to each other, the values of forward difference

(1,) (,)e i k e i k+ − become zero for consecutive time indices of the thk

iteration. Hence, no further update for control input can occur with

Cyclic D-ILC algorithm. Thus the learning process has ceased.

135

Remarks 5.4

It has been observed that matrix DT obtained from Cyclic D-ILC has

maximum absolute eigenvalue as unity, which means that learning

process is non-expanding. However, it cannot asymptotically reduce the

input errors to zero. Use of proportional error term in the input update

such as Cyclic PD-ILC can minimize the input errors asymptotically as

stated in Theorem 5.2 in section 5.3.

5.2 State Errors for Cyclic D-ILC

The state errors also evolve similar to the input error case. The

contribution of state error at last time index (,)x M k∆ to each time

sample in the next batch/swing has been incorporated through the

entries in the last column of the evolution matrix DL in Eq. (5.19)

below.

() ()

() ()

2

2 3 1

0 0 0

0d d

d dD

M M M
d d d

I

BK A I BK A

A BK A I A BK AL

A BK A A I A BK A I BK− − −

 − −

 − −=

 − − + −

⋯

⋯

⋱ ⋱

⋮ ⋮ ⋱ ⋱ ⋮

⋯ ⋯

 (5.19)

Use following matrix-vector notation for the evolution of state error.

(1) ()Dx k L x k∆ + = ∆ (5.20)

136

The matrix DL has dimension 2 2M M× . But it is important to note

that it is not a triangular matrix. Two eigenvalues of matrix DL are at

unity due to the identity matrix block as the last element of 1st block

row. Additionally, there are 2M − matrix blocks dI BK− at the

diagonal which also contribute 2M − eigenvalues at the stability

boundary which are of interest. Total number of eigenvalues at unity

equals the number of samples in each swing. So there are as many

dominant eigenvectors to which the state errors converge over the

batches. Since, the eigenvectors are non-zero, the resulting state errors

are non-zero as well. This also explains as to why the state errors do

not converge using the Cyclic D-ILC algorithm for different initial

conditions such as Cyclic D-ILC.

5.3 Convergence of Cyclic PD–ILC

To achieve convergence for the input and angle along with the velocity,

Cyclic PD–ILC is employed for which the control input update utilizes

both the state error and its derivative in Eq. (5.21).

{ }(, 1) (,) (,) (1,) (,)p du i k u i k K e i k K e i k e i k+ = + + + − (5.21)

Using PD–ILC the error evolution matrix DT for Cyclic D-ILC is

amended as PDT below

137

− −

− − − −

− − −

− − − − −

− − − − −

⋯

⋯

⋱ ⋮

⋮ ⋮ ⋱ ⋱ ⋮

⋯ ⋯

1 2

1 1 2 2

() 0 0

() ()

() ()

M M M

d d

d p d p d

M M M M

d p d p d

p

A A A B

I A K I

AI A K A I AB K B I

A I A K A A I AB K A I

B B

KC C KCB

KC C KC C KCB

KC C KC C B KCB

 (5.22)

Cyclic PD-ILC does not have an eigenvector associated with unit

magnitude eigenvalue as stated in the Theorem 5.2 below.

Theorem 5.2

There does not exist an eigenvector of matrix PDT such that

corresponding absolute eigenvalue equals one.

For proving the theorem, proceed by assuming that such an eigenvector

exists and shall try construct it from the matrix PDT .

Proof

Let us denote the augmented eigenvector of matrix PDT associated with

absolute unit eigenvalue as * * *
0 ,

TT T
x uv v v = . So there is

() * 0PDI T v− = (5.23)

Write Eq.(5.23) in expanded form as follows.

138

− −

− − − −

− − − −

− − +

− − + − − +

− − + − − +

⋯

⋯

⋱ ⋮

⋮ ⋮ ⋱ ⋱ ⋮

⋯ ⋯

⋮

⋮

1 2

1 1 2 2

*
0

*
1

*

() 0 0

() ()

() ()

p

p p

p p

M M M

d d

T

d d d

M M M M

d d d

x

u

uM

I A A A B

I A K

A I A K A k c I A B K B

A I A K A A I AB K A

B B v

KC C KCB v

KC C C KCB

KC C KC C KCB vB

 =

⋮

⋮

0

0

0

 (5.24)

The elements of the augmented eigenvector *v can be obtained from

Eq.(5.24) by simplifying the individual block rows. Thus, from 2nd block

row the relation is obtained as

{ }
{ }

* *
0 1

* * *
1 0 0

()

()

0

0
p

p

d x d u

d u x x

I A

I A

K C K C v K CBv

K C Bv v K Cv

− − +

−

+ =

− + =
 (5.25)

As 0dK C ≠ and 0pK C ≠ , the relationship in Eq.(5.25) holds if

*
0 0xv = along with the condition that following Eq.(5.26) holds.

* *
1 0
* 1 *
0 1

()

()

0u x

x u

I A

I A

Bv v

v B v−

−

−

− =

⇒ =
 (5.26)

Eq.(5.26) gives the relationship between initial state errors and the

control input error at first time index.

The additional requirement for validity of Eq.(5.25) that initial state

error *
0 0xv = , is contrary to the Cyclic ILC assumption except that

when the initial state error has converged to zero.

From 3rd block row of Eq.(5.24),

139

{ } { }
{ } { }

{ }{ } { }

* * *
0 1 2

* * * * *
2 1 0 0 1

* * * * * *
2 1 1 0 0 1

()

()

()

() 0

() 0

0

d p d p d

d p

d p

x u u

u u x x u

u u u x x u

K A I A K A K K K

K A I A K A

K I A K A

C C v C I A B CB v Cbv

C Bv I A Bv v C v Bv

C Bv Bv A Bv v C v Bv

− − +

⇒ −

⇒ −

− − + + =

− − − + − =

− + − + − =

 (5.27)

Since 0dK C ≠ and 0pK C ≠ , the Eq.(5.27) is valid if the following are

valid.

{ }* * * *
2 1 1 0() 0u u u xI ABv Bv A Bv v−− + − = (5.28)

* *
0 1 0x uAv Bv− = (5.29)

If Eq.(5.26) holds and using the fact that 0B ≠ then Eq.(5.28) reduces

to Eq.(5.30) below.

* *
2 1u uv v= (5.30)

Eq.(5.29) is simplified using −=* *
1 0()u xI ABv v from Eq.(5.26) as under.

* *
0 0

* *
0 0

()

2

0x x

x x

A I A

A

v v

v v

−− =

=
 (5.31)

Eq.(5.31) requires that 1
2A = , a fixed scalar quantity which is a

conservative requirement against the assumption that A is a matrix of

dimension n n× .

Likewise, checking for the remaining block rows, it is found that a valid

eigenvector associated with unity eigenvalue cannot be constructed

from matrix PDT . Thus, the Theorem 5.2 has been proved. □

140

Corollary 5.5

Since, there is no eigenvector associated with unity eigenvalue, hence

the dominant eigenvector as well as all the other eigenvectors are

associated with eigenvalues less than unity. As the batches proceed, the

contribution of all the eigenvectors to the overall augmented error

vector ()augx k∆ diminish to zero, asymptotically. Thus, the augmented

error vector ()augx k∆ converges to zero. In other words, with Cyclic

PD-ILC the errors in the control input converge to zero even under

non-zero initial state error assumption.

5.4 Evolution of State Errors for Cyclic PD-ILC

The state errors evolve for Cyclic PD-ILC under following relationship.

(1) ()PDx k L x k∆ + = ∆ (5.32)

where the state error evolution matrix PDL is given below.

()

() ()

() (){ } ()

2

2 3 1

0 0 0

0d p d

d d p d

d d p d p d
M M M

I

BK A I B K K A

A BK A BK AB K K A

A BK A A BK AB K K A I B K K
− − −

− +

+

+ + − +

 −

 − −

− −

⋯

⋯

⋱ ⋱

⋮ ⋮ ⋱ ⋱ ⋮

⋯ ⋯

 (5.33)

141

The matrix PDL has dimension 2 2M M× , and it has elements different

from DL matrix in Eq. (5.19) for the Cyclic D-ILC case. The

proportional gain pK has not only changed the state error evolution

matrix but the corresponding eigenvalues and eigenvectors have

changed as well. Now there are 2M − number ()p dI B K K− + block

matrices at the diagonal. Each of these block matrices contributes one

eigenvalue at unity.

5.5 Damped Pendulum with Cyclic ILC- Simulations

In this section, Cyclic D–ILC and Cyclic PD-ILC algorithms have been

simulated to analyse the rate of convergence of the initial state and

control input errors over a number of swings/batches for different

initial conditions of the damped pendulum discussed in Section 3.7.

Each swing consists of 20 samples. The initial conditions for the 1st

swing only are similar to the desired, i.e., 0 /4θ π= radians and 0 0ω =

rad/s and control input during 1st swing is zero for all time indices. The

formulation is based on the damped pendulum discussed in the previous

chapter. The angle and the angular velocity at the last sample time of

each swing are retained and used as the initial errors for the successive

swing. It can be mathematically described by the following Eq. (5.34)

142

(1, 1) (,)

(1, 1) (,)

k M k

k M k

θ θ

ω ω

∆ + ∆
 =
 ∆ + ∆

 (5.34)

The initial conditions correspond to the errors in initial angle

(1, 1)kθ∆ + and the angular velocity (1, 1)kω∆ + of the pendulum at

the start of a new swing/batch number 1k + .

5.5.1 CASE 1: Cyclic D-ILC

For gain matrix 0.5 [1,1]dK = × , both the root mean squared errors in

the initial state and input are minimised for the earlier 200 iterations,

but then stay constant at 0.0648 and 0.8984 respectively (Figure 5.1).

The velocity has converged (Figure 5.3). However, a constant off-set is

observed in the tracking for both the input and angle in Figure 5.2 and

Figure 5.3. This off-set occurs due to an eigenvalue at the stability

boundary, i.e., 1λ = . The response has not blown up which occurs as

none of the eigenvalues is outside the unit circle. The eigenvalue 1 is

thus the dominant one. The corresponding eigenvector is given in Eq.

(5.35). The 2nd element of the dominant eigenvector is

0.000000000000000 which corresponds to the angular velocity having

value equal to zero. Thus, elements of the dominant eigenvector satisfy

the Theorem 5.1.

143

*

 0.022787842232275

 -0.000000000000000

 0.223548732298625

 0.223548732298620

 0.223548732298620

 0.223548732298623

 0.223548732298618

 0.223548732298620

 0.223548732298619

 0.22354873

 v =

2298620

 0.223548732298620

 0.223548732298619

 0.223548732298621

 0.223548732298618

 0.223548732298619

 0.223548732298618

 0.223548732298620

 0.223548732298618

 0.223548732298620

 0.223548732298619

 0.223548732298617

 0.223548732298617

 (5.35)

For given A and B matrices of the pendulum and using

*
3 0.223548732298625v = , the values of components of the dominant

eigenvector *v are same as those given above. Specifically the values for

* *
1 2,v v are found as follows

144

* * 1 *
1 2 3

 0.022787842232275

, ()
 -0.000000000000000

T
v v I A Bv−

 = − =

 (5.36)

Eq. (5.36) is a mapping of *
3v to * *

1 2,v v . It is validated since it

corresponds to input to out put mapping under the condition that C is

an identity matrix and matrix 0D = . As the batches proceed, the

augmented error vector ()augx k∆ aligns with the dominant eigenvector

and the contribution to velocity goes to zero when the other

eigenvectors have diminished. The rate at which this convergence

occurs is 2 1λ λ where 1λ is the dominant eigenvalue and 2λ is the 2nd

dominant eigenvalue. This corresponds to about 200 batches. The RMS

values of the initial state and input errors (Figure 5.1) as well as input

error (Figure 5.4), angle error (Figure 5.6) and velocity error (Figure

5.7) converge to their approximate final values in 200 batches but do

not minimize to zero. Also the evolution of input and angle errors

indicates that these have not converged to zero using D–ILC algorithm

(See Figure 5.4 and Figure 5.6). Rather a certain amount of off-set is

maintained. Only the velocity has long-term convergence at a rate

which approximately equals the 2nd dominant eigenvalue 0.9749 (Figure

5.7 and Figure 5.8). This corresponds to 180 batches for the decay of

0.01 as marked in Figure 5.8.

145

300 400 500 600 700 800 900 1000 1100

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

Iteration number

S
lo

p
e
 s

h
o

w
in

g
 r

a
te

s
 o

f
v
e
lo

c
it

y
 e

rr
o

r

|∆dθ(1,:)|

|∆dθ(2,:)|

|∆dθ(10,:)|

|∆dθ(11,:)|

|∆dθ(20,:)|

10
0

10
1

10
2

10
3

10
4

10
-2

10
-1

10
0

Iteration number

R
M

S
 i
n

it
ia

l
s
ta

te
 e

rr
o
r

10
0

10
1

10
2

10
3

10
4

10
-0.04

10
0.01

10
0.06

Iteration number

R
M

S
 i
n

p
u
t

e
rr

o
r

Figure 5.8: Convergence rate for velocity error

Figure 5.1: Root mean squared initial state and input errors

146

0 2 4 6 8 10 12 14 16 18 20
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

Time

T
ra

c
k
in

g
 o

f
d

e
s
ir

e
d

 c
o

n
tr

o
l

in
p

u
t

u
s
in

g
 I

L
C

Desired input

1st Swing input

100th Swing input

10000th Swing input

0 2 4 6 8 10 12 14 16 18 20
-1

-0.5

0

0.5

1

Time

A
n

g
le

Desired angle

1st swing angle

100th swing angle

10000th swing angle

0 2 4 6 8 10 12 14 16 18 20
-3

-2

-1

0

1

Time

A
n

g
u

la
r

v
e
lo

c
it

y

Desired velocity

1st swing velocity

100th swing velocity

10000th swing velocity

Figure 5.2: Tracking of desired control input

Figure 5.3: Tracking of desired angle and velocity

147

0 20 40 60 80 100 120 140 160 180 200

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

Iteration number

E
v
o

lu
ti

o
n

 o
f

in
p

u
t

e
rr

o
r

∆u(1,:)

∆u(2,:)

∆u(10,:)

∆u(11,:)

∆u(20,:)

0 50 100 150 200

10
-1

10
0

Iteration number

S
lo

p
e
 s

h
o

w
in

g
 r

a
te

s
 o

f
in

p
u

t
e
rr

o
r

|∆u(1,:)|

|∆u(2,:)|

|∆u(10,:)|

|∆u(11,:)|

|∆u(20,:)|

Figure 5.4: Evolution of input error at selected time indices

Figure 5.5: Convergence rate of input error at selected indices

148

0 20 40 60 80 100 120 140 160 180 200

-0.115

-0.11

-0.105

-0.1

-0.095

-0.09

-0.085

-0.08

-0.075

-0.07

-0.065

Iteration number

E
v
o

lu
ti

o
n

 o
f

a
n

g
le

 e
rr

o
r

∆θ(1,:)

∆θ(2,:)

∆θ(10,:)

∆θ(11,:)

∆θ(20,:)

20 40 60 80 100 120 140 160 180 200

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Iteration number

E
v
o

lu
ti

o
n

 o
f

v
e
lo

c
it

y
 e

rr
o

r

∆dθ(1,:)

∆dθ(2,:)

∆dθ(10,:)

∆dθ(11,:)

∆dθ(20,:)

Figure 5.6: Evolution of angle error at selected time indices

Figure 5.7: Evolution of velocity error at selected time indices

149

300 400 500 600 700 800 900 1000 1100

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

Iteration number

S
lo

p
e
 s

h
o

w
in

g
 r

a
te

s
 o

f
v
e
lo

c
it

y
 e

rr
o

r

|∆dθ(1,:)|

|∆dθ(2,:)|

|∆dθ(10,:)|

|∆dθ(11,:)|

|∆dθ(20,:)|

The control input has not achieved convergence because Cyclic D-ILC

algorithm depends on the difference of error between two consecutive

time indices. The errors in angle become same for consecutive time

indices in Figure 5.6 instead of becoming zero while the error in

velocity goes to zero in Figure 5.7. The overall error vector becomes

constant after 180 batches/swings, hence further learning or control

input update has ceased. Thus, the learning algorithm requires update

which not only depends on derivative of error but also penalises the

error itself to handle different initial conditions. The constant off-set

error can be minimised by introducing the proportional part in the

Figure 5.8: Convergence rate for velocity error

150

Cyclic ILC algorithm. It is Cyclic PD–ILC which has been analysed in

next section 5.5.2.

5.5.2 CASE 2: Cyclic PD-ILC

Cyclic PD–ILC has successfully minimised constant off-set errors in the

input and angle as well as guaranteed convergence of angular velocity.

Using 0.5 [1,1]pK = × and 0.5 [1,1]dK = × , the initial state errors and

the input errors have been minimised to 1.6184e-016 and 3.8579e-015

respectively (Figure 5.9).

10
0

10
1

10
2

10
3

10
4

10
-20

10
-10

10
0

Iteration number

R
M

S
 i
n

it
ia

l
s
ta

te
 e

rr
o
r

10
0

10
1

10
2

10
3

10
4

10
-20

10
-10

10
0

10
10

Iteration number

R
M

S
 i
n

p
u
t

e
rr

o
r

Tracking performance using Cyclic PD-ILC has shown that desired

trajectories for all the three variables. i.e., control input, angle and

velocity have been successfully tracked (Figure 5.10 and Figure 5.11).

Figure 5.9: RMS initial state and input errors using Cyclic PD-ILC

151

2 4 6 8 10 12 14 16 18 20
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

Time

T
ra

c
k
in

g
 o

f
d

e
s
ir

e
d

 c
o

n
tr

o
l

in
p

u
t

u
s
in

g
 I
L

C

Desired Control input

1st Swing Control input

100th Swing Control input

Last Swing Control input

0 5 10 15 20
-1

-0.5

0

0.5

1

Time

A
n
g

le

Desired angle

1st swing angle

100th swing angle

10000th swing angle

0 5 10 15 20
-2.5

-2

-1.5

-1

-0.5

0

Time

A
n
g

u
la

r
v
e
lo

c
it

y

Desired velocity

1st swing velocity

100th swing angle

10000th swing velocity

Figure 5.10: Tracking of control input using Cyclic PD-ILC

Figure 5.11: Tracking of angle and velocity using Cyclic PD-ILC

152

0 100 200 300 400 500 600 700 800

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Iteration number

E
v
o

lu
ti

o
n
 o

f
in

p
u
t

e
rr

o
r

u
s
in

g
 I

L
C

∆u(1,:)

∆u(2,:)

∆u(10,:)

∆u(11,:)

∆u(20,:)

0 2000 4000 6000 8000 10000
10

-20

10
-15

10
-10

10
-5

10
0

10
5

Iteration number

S
lo

p
e
 s

h
o
w

in
g

 r
a
te

s
 o

f
in

p
u

t
e
rr

o
r

|∆u(1,:)|

|∆u(2,:)|

|∆u(10,:)|

|∆u(11,:)|

|∆u(20,:)|

Figure 5.12: Evolution of input error using Cyclic PD-ILC

Figure 5.13: Convergence rate of control input errors using Cyclic PD-ILC

153

The control input errors have evolved as shown in Figure 5.12. The

rates for these time indices in Figure 5.13 have reached the numerical

zero after 6000 batches. The maximum absolute eigenvalue of the

matrix has been 0.9944 which has indicated the maximum rate of

convergence. In Figure 5.13, it has been observed that slope consists of

innumerable kinks which occur due to oscillations of the control input

errors (Figure 5.12). To minimise these oscillations and hence the kinks

in slope, p dK K< has been employed in next section.

5.5.3 CASE 3: Cyclic PD-ILC Using P Gain Less Than D Gain

In this case, the gain matrices have been selected as

0.05 [1,1], 0.5 [1,1]p dK K= × = × such that p dK K<< .

10
0

10
1

10
2

10
3

10
4

10
-20

10
-10

10
0

Iteration number

R
M

S
 i

n
it

ia
l

s
ta

te
 e

rr
o

r

10
0

10
1

10
2

10
3

10
4

10
-20

10
-10

10
0

10
10

Iteration number

R
M

S
 i

n
p

u
t

e
rr

o
r

Figure 5.14: RMS initial state and input errors

154

0 5 10 15 20
-1

-0.5

0

0.5

1

Time

A
n
g

le

Desired angle

1st swing angle

100th swing angle

10000th swing angle

0 5 10 15 20
-2.5

-2

-1.5

-1

-0.5

0

Time

A
n
g

u
la

r
v
e
lo

c
it

y

Desired velocity

1st swing velocity

100th swing angle

10000th swing velocity

0 5 10 15 20
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

Time

T
ra

c
k
in

g
 o

f
d
e
s
ir

e
d
 c

o
n
tr

o
l
in

p
u
t
u
s
in

g
 I
L
C

Desired Control input

1st Swing Control input

100th Swing Control input

10000th Swing Control input

Figure 5.15: Tracking for different initial states with Cyclic PD-ILC

Figure 5.16: Tracking input for different initial states using Cyclic PD-ILC

155

0 200 400 600 800 1000

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

Iteration number

E
v
o

lu
ti

o
n
 o

f
in

p
u
t

e
rr

o
r

u
s
in

g
 I

L
C

∆u(1,:)

∆u(2,:)

∆u(10,:)

∆u(11,:)

∆u(20,:)

Final values of RMS for initial state and input errors are 1.6184e-016

and 4.4479e-015 respectively (Figure 5.14). The desired angle, velocity

and input have been tracked perfectly (Figure 5.15 and Figure 5.16).

Since, the input errors do not have oscillations/zero-crossings (Figure

5.17), the rate in Figure 5.18 is almost a straight line and input errors

for all the time indices converge at the same rate, i.e., 0.9949, equal to

magnitude of the maximum eigenvalue for matrix PDL . For the

eigenvalue 0.9949, one time constant corresponds to 195 iterations.

Decay of 0.01 corresponding to 4 to 5 time constants, i.e. 975 iterations

has been marked in Figure 5.18. The angle and velocity errors have

evolved with oscillating behaviour in the initial iterations (Figure 5.19

and Figure 5.20). This phenomenon has occurred due to complex

Figure 5.17: Input errors evolution with Cyclic PD-ILC

156

eigenvalues and corresponding complex eigenvectors. However, the 1st

and 2nd dominant eigenvalues have real values 0.9949 and 0.9762

respectively. The ratio 2 1λ λ gives the rate of convergence to the

dominant eigenvector which corresponds to about 260 iterations. The

dominant eigenvector has been given in Eq. (5.37).

*

 0.022851482876001

 -0.000115687661548

 0.224087250705004

 0.224030418650714

 0.223973601009918

 0.223916797778979

 0.223860008954231

 0.223803234532024

 0.223746474508705

 0.2236897288

PDv =

80617

 0.223632997644116

 0.223576280795552

 0.223519578331271

 0.223462890247629

 0.223406216540975

 0.223349557207666

 0.223292912244056

 0.223236281646501

 0.223179665411357

 0.223123063534982

 0.223066476013736

 0.223009902843975

 (5.37)

157

3000 3500 4000 4500 5000 5500 6000 6500 7000

10
-14

10
-12

10
-10

10
-8

10
-6

Iteration number

S
lo

p
e
 s

h
o

w
in

g
 r

a
te

s
 o

f
in

p
u

t
e
rr

o
r

|∆u(1,:)|

|∆u(2,:)|

|∆u(10,:)|

|∆u(11,:)|

|∆u(20,:)|

0 100 200 300 400 500 600 700 800 900 1000

-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

Iteration number

E
v
o

lu
ti

o
n

 o
f

a
n

g
le

 e
rr

o
r

∆θ(1,:)

∆θ(2,:)

∆θ(10,:)

∆θ(11,:)

∆θ(20,:)

Figure 5.18: Long-term rate of input error with Cyclic PD-ILC

Figure 5.19: Evolution of angle error using Cyclic PD-ILC

158

0 20 40 60 80 100 120 140 160 180 200

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Iteration number

E
v
o

lu
ti

o
n

 o
f

v
e
lo

c
it

y
 e

rr
o

r

∆dθ(1,:)

∆dθ(2,:)

∆dθ(10,:)

∆dθ(11,:)

∆dθ(20,:)

The dominant eigenvector has all real entries hence no oscillations have

been observed after 260 iterations for any of the input, angle and

velocity errors (See Figure 5.17,Figure 5.19 and Figure 5.20).

Remarks:

The forward difference employed in Cyclic D-ILC algorithm only

penalises the difference in the output/state error at consecutive sample

times. Thus, whenever the output has stabilised using an offset type

error in which consecutive errors have same magnitude, the Cyclic D–

ILC algorithm ceases updating the control input during further

repetitions/swings. The learning is therefore interrupted. This

phenomenon has been observed when the identical initial conditions are

not maintained for each repetition/swing. Additionally, the input at

Figure 5.20: Evolution of velocity error using Cyclic PD-ILC

159

last time index M does not contribute to generate the output, rather it

goes waste. Hence only the first 1M − eigenvalues are of interest. The

rank of the matrix product CB determines the number of output

variables/states which are controllable. For all outputs to be

controllable through Cyclic D-ILC the product CB should be full rank.

5.6 Parameters for Stable Cyclic PD-ILC Learning

The stability analysis has been carried out to identify the values of pK

and dK , for which the eigenvalues of the matrix PDL lie inside the unit

circle. The region inside Figure 5.21 shows the region inside which the

pair of values of pK and dK gives stable learning performance.

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K
d

K
p

Figure 5.21: Stability boundary for Cyclic PD-ILC

160

Any other pair of gains outside this sector shape would cause

divergence of the control input from desired. As a consequence out put

shall diverge as well.

5.7 Summary

In this chapter, the convergence analysis techniques developed in

previous chapter have been extended to handle the non-zero initial

error case for Cyclic D-ILC algorithm. The use of augmented operator

matrix facilitates the analysis. The eigen-analysis has been presented to

explain in detail the factors affecting the evolution, non-convergence to

zero and convergence rate of the state variables. Further, the use of

Cyclic PD-ILC algorithm has been used to solve the problem of offset

error faced with Cyclic D-ILC. But the selection of learning gain

matrices has to done very carefully so as to avoid lying outside the

stability region which causes divergence.

161

 Chapter 6

6 ILC for Robotics

In this chapter, the Cyclic D-ILC algorithm has been used to generate

the input torques for both the hip and ankle joints of compass gait

robot. The simulations indicate stable walking patterns for the compass

gait robot walking on flat surface as well as slopes. The Cyclic D-ILC

algorithm converges to desired values for the input torques resulting in

stable walking patterns.

6.1 Cyclic D-ILC for Actuated Compass Gait Robot

In this section, Cyclic D-ILC has been implemented to generate input

torques for the compass gait robot walking. Each step is considered as a

batch. Every step starts after the impact reset at which the Cyclic D-

ILC algorithm is used to calculate the control input update for the hip

and ankle torques as follows.

{ }(1) () (1) ()dk k K e k e kτ τ+ = + + − (6.1)

where τ is the vector of ankle and hip joint torques 1u and 2u , k is

the step number, dK is the gain matrix having appropriate dimensions.

The error between the desired and new state vectors has been defined

as under.

0() * ()e k x x k= − (6.2)

162

where 0()x k is the new state vector after impact and marks the

beginning of the thk new step.

The torque vector τ has been calculated using Cyclic D-ILC algorithm

and applied at the beginning of each step like an impulsive input rather

than during the whole step. Thus, Cyclic D-ILC provides an inverse-

kinematics solution of computing the joint torques from the knowledge

of joint motions and past inputs. However, explicit knowledge of the

robot dynamics is not required as Cyclic D-ILC algorithm learns to

generate the desired input torques. These torques further actuate the

joints to the desired joint angles.

6.1.1 Simulations of CG Robot Walking on Flat Surface

Actuated with Cyclic D-ILC Generated Torques

A compass gait robot having legs of unit length and point mass 5 kg

each at the centre of the legs is considered. The hip mass is 10 kg.

Starting from the selected initial conditions, i.e. 0 [0.2, -0.4, -0.8,2.1]x = ,

the Cyclic D-ILC as per Eq. (6.1) is employed to generate torques at

ankle and hip joint for 500 steps in Figure 6.1. The gain matrix dK in

Eq. (6.3) is selected so that torque update depends on the respective

joint angles and angular velocities only. It can be observed that Cyclic

D-ILC algorithm has achieved convergence after 20 steps as the torques

have reached steady state values.

0 00.25 -0.25

0 0.25 0 0.25
dK

 =

 (6.3)

163

0 50 100 150 200 250 300 350 400 450 500

-0.1

0

0.1

0.2

0.3

0.4

Step Number

ankle torque

hip torque

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-3

-2

-1

0

1

2

Angle (rad)

A
n
g
u
la

r
V

e
lo

c
it
y
 (

ra
d
/s

)

Figure 6.1: Torques generated using Cyclic D-ILC on flat surface

Figure 6.2: Phase portrait on flat surface using Cyclic D-ILC

164

The phase portrait of compass gait robot in Figure 6.2 shows that CG

robot has achieved a stable walking pattern or gait.

6.1.2 Simulations of CG Walking Downhill with Cyclic D-ILC

The downhill walking of a compass gait robot actuated by Cyclic D-

ILC is represented by the phase portrait in Figure 6.4. It has been

observed that the torques generated by Cyclic D-ILC have achieved

convergence in about 40 steps in Figure 6.3. The positive values of

ankle torque indicate that it acts against the downward motion of the

robot due to gravity. This way it prevents the robot from falling over.

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Step Number

ankle torque

hip torque

Figure 6.3: Torques using Cyclic D-ILC for CG robot walking downhill

165

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Angle (rad)

A
n
g
u
la

r
V

e
lo

c
it
y
 (

ra
d
/s

)

0 100 200 300 400 500

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Step Number

ankle torque

hip torque

Figure 6.4: Limit cycle - CG robot walking on slope

Figure 6.5: Cyclic D-ILC torques for CG using reduced dK

166

The oscillatory behaviour of Cyclic D-ILC generated ankle torque

during the few initial steps can be avoided by scaling down the gain

matrix dK . By lowering dK ten times, the torques have achieved

steady state values smoothly as shown in Figure 6.5.

6.2 Modified Cyclic PD-ILC for Bipedal Walk

Following update algorithm based on Cyclic PD-ILC has been

employed.

{ }

(, 1) (,) (1,)

 (1,) (,)

p

d

u i j u i j K e i j

K e i j e i j

+ = + +

+ + −
 (6.4)

6.3 Simulations for CG Walk Using Modified Cyclic

PD-ILC

The compass gait robot model has been discretized at sample time of

0.1 second. Reference trajectory for robot walking on flat surface has

been obtained via a carefully tuned PD controller. The compass gait

robot has been simulated for 4000 steps using gain matrices as follows.

=
0.1 0 0 0

0 0.1 0 0
pK and

1 1 1 1

1 1 1 1
dK

=

167

The gain matrix dK has structure such that it utilizes forward

difference errors of both the angle joints and their respective velocities.

Effectively, the acceleration term is also incorporated. The Cyclic ILC

learns to generate the desired values of the ankle and hip joint torques

as shown in Figure 6.6 and Figure 6.7 respectively. As the joint input

torques are tracked, the desired joint angles of the compass gait robot

are achieved which result in a steady gait as observed from the tracking

of angles of stance foot and hip joint in Figure 6.8 and Figure 6.9

respectively.

1 2 3 4 5 6 7 8 9

-2

-1.5

-1

-0.5

0

time index

A
n

k
le

 t
o

rq
u

e
s

desired

1st step

last step

Figure 6.6: Tracking ankle joint torque

168

1 2 3 4 5 6 7 8 9
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

time index

H
ip

 j
o

in
t

to
rq

u
e
s

desired

1st step

last step

1 2 3 4 5 6 7 8 9 10
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

time index

S
ta

n
c
e
 f

o
o

t
a
n

g
le

s

desired

1st step

last step

Figure 6.7: Tracking hip joint torque

Figure 6.8: Tracking stance foot angle

169

1 2 3 4 5 6 7 8 9 10
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

time index

H
ip

 j
o

in
t

a
n

g
le

s

desired

1st step

last step

Maximum eigenvalue for operator matrix for ankle input torque error is

0.9951 for which the time constant is about 204. So for 5 time

constants there are 1016 iterations or steps. The evolution of ankle

input error at component level is shown in Figure 6.10. Convergence

rate, although not well-defined as for the pendulum, has been

illustrated in Figure 6.11. Maximum eigenvalue of the operator matrix

for hip joint input errors is 0.9952. Hence, 5 time constants equal about

1040 iterations or steps. Log-log RMS values of the state, ankle and hip

joint input errors in Figure 6.14 show that these errors have minimized

after 1000 steps. The stable gait is validated from the phase portraits in

Figure 6.15 and Figure 6.16, respectively.

Figure 6.9: Tracking hip joint angle

170

0 100 200 300 400 500

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Iteration number

E
v
o

lu
ti

o
n

 o
f

a
n

k
le

 i
n

p
u

t
e
rr

o
r

∆u1(1,:)

∆u1(3,:)

∆u1(5,:)

∆u1(9,:)

0 500 1000 1500 2000 2500 3000 3500 4000
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

Iteration number

S
lo

p
e
 s

h
o

w
in

g
 r

a
te

s
 o

f
a
n

k
le

 i
n

p
u

t
e
rr

o
r

|∆u1(1,:)|

|∆u1(3,:)|

|∆u1(5,:)|

|∆u1(9,:)|

Figure 6.10: Evolution of ankle input torque error

Figure 6.11: Slopes showing rate of ankle input torque error

171

0 50 100 150 200 250 300 350
-0.8

-0.6

-0.4

-0.2

0

0.2

Iteration number

E
v
o

lu
ti

o
n

 o
f

h
ip

 j
o

in
t

in
p

u
t

e
rr

o
r

∆u2(1,:)

∆u2(3,:)

∆u2(5,:)

∆u2(9,:)

0 500 1000 1500 2000 2500 3000 3500 4000

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Iteration number

S
lo

p
e
 s

h
o

w
in

g
 r

a
te

s
 o

f
h

ip
 j

o
in

t
in

p
u

t
e
rr

o
r

|∆u2(1,:)|

|∆u2(3,:)|

|∆u2(5,:)|

|∆u2(9,:)|

Figure 6.12: Evolution of Hip Joint torque

Figure 6.13: Slopes showing rate of hip joint error

172

10
0

10
1

10
2

10
3

10
4

10
-10

10
-5

10
0

s
ta

te

10
0

10
1

10
2

10
3

10
4

10
-10

10
0

10
10

a
n

k
le

 i
n

p
u

t

10
0

10
1

10
2

10
3

10
4

10
-10

10
-5

10
0

h
ip

 j
o

in
t

in
p

u
t

Iteration number

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25
-0.85

-0.8

-0.75

-0.7

-0.65

-0.6

-0.55

-0.5

-0.45

-0.4

-0.35

d
q
1

q1

Figure 6.14: Log-log RMS values of state and input errors

Figure 6.15: Phase portrait of ankle joint at last step

173

-0.5 0 0.5
-1

-0.5

0

0.5

1

1.5

2

d
q
2

q2

10
0

10
1

10
2

10
3

10
4

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

lo
g

-l
o

g
 R

M
S

 i
n

it
ia

l
s
ta

te
 e

rr
o

r

Iteration number

Figure 6.16: Phase portrait of hip joint at last step

Figure 6.17: RMS values with modified Cyclic PD-ILC

174

6.4 Summary

In this chapter, introduced the model of CG robot and its motion under

the action of gravity only. Then the Cyclic D-ILC algorithm under has

been applied to the compass gait robot walking on a flat surface. Stable

gaits or symmetric walking patterns have been achieved for specific

initial conditions. Secondly, the modified Cyclic PD-ILC algorithm has

been applied to solve the biped walking problem where each step has

been treated as a new batch for the ILC operation. The encouraging

results can be extended to robots having higher number of joints and

links as well.

175

 Chapter 7

7 Conclusions

In the end, the thesis is concluded with some general overall comments

and remarks about the work presented in earlier Chapters. Some

suggestions for future work have been referred as well.

In this thesis, Iterative Learning algorithms have been studied with

focus on D-ILC, PD-ILC and Cyclic ILC. Rate of Convergence in terms

of input errors have been investigated with simulations showing the

long term relation with eigenvalues of the matrix which relates the

input error vectors which occur consecutively in time. The

mathematical frame-work to analyse the convergence rate has been

developed on the basis of conventional zero initial error for D-ILC

algorithm. It has been further developed to analyse the convergence

analysis of Cyclic PD-ILC algorithm and proved its superiority over

Cyclic D-ILC for higher order systems by eigen-analysis in detail.

Further, the framework has been extended to analyse the Cyclic ILC

scenario which has more complexity as compared to the conventional

zero-initial error constraint. Since, errors from the end of iteration are

inherited as initial errors for the next consecutive iteration in Cyclic

ILC. Zero-initial error constrain has to be relaxed to incorporate the

initial state errors. Although the convergence rate analysis has been

developed for linear time-invariant systems such as the linearised

176

damped pendulum, but it can be extended to nonlinear systems as well.

These algorithms have been employed to solve compass gait bipedal

robot walking problem modelled as a nonlinear system. The simulations

have indicated that stability in walking pattern or gait has been

achieved.

Recommendations for Future Work

• For future work, more elaborate higher order models of bipedal

robots can be investigated for walking using Cyclic ILC

algorithms.

• Implementation of Iterative Learning algorithms to kneed robot

model with feet and toe-off impulse.

• Optimality and energy analysis of the robot while using iterative

learning algorithms for bipedal walking.

• Development of optimal and robust learning algorithms for

walking as well as running over difficult terrains.

177

APPENDIX A

Swing Phase Dynamics of Compass gait robot

The equations of motion for the passive compass gait robot are derived

using Euler-Lagrange approach. Under the effect of gravity, the

difference between Kinetic Energy (KE) and Potential Energy (PE)

gives the relation for the Lagrangian below

(,) (,) ()L q q KE q q PE q= −ɺ ɺ (A.1)

For no external torques acting on the joints, the equations of motion

for the joint angles are obtained from the Lagrangian given in Eq. (A.1)

as follows

(,) (,)
0

d L q q L q q

dt q q

∂ ∂ − = ∂ ∂
ɺ ɺ

ɺ
 (A.2)

Using Eq. (A.1), the Lagrangian is substituted with KE and PE in Eq.

(A.2).

(,) (,) ()
0

d KE q q KE q q dPE q

dt q q dq

∂ ∂ − + = ∂ ∂
ɺ ɺ

ɺ
 (A.3)

The PE and KE for compass gait robot are found as

() 1 1 2() ()) cos() cos()hPE q m a l m l g q mgb q q= + + − + (A.4)

1
() ()

2
TKE q q M q q= ɺ ɺ (A.5)

where the inertia matrix ()M q is given below

178

() ()
()

2 2 2 2 2
2 2

2 2
2

()

2 cos() cos()

cos()

h

M q

m l m l a b bl q m b bl q

m b bl q mb

 + + + − − =
 −

 (A.6)

Here, the inertia matrix ()M q independent of 1q is a function of inter-

leg angle 2q and masses only. The derivatives of PE and KE for Euler-

Lagrange expression are as follows

() 1 1 2

1 2

() sin() sin()()

sin()

hm a l m l g q mgb q qdPE q

dq mgb q q

 − + + + + =
 +

 (A.7)

()()(,) (,) () 1
()

2

Tq M q qd KE q q KE q q dM q
M q q q

dt q q dt q

∂∂ ∂ − = + − ∂ ∂ ∂
ɺ ɺɺ ɺ

ɺɺ ɺ
ɺ

 (A.8)

The derivatives in Eq. (A.8) are shown expanded below

{ } { }

{ }

2 2 2 2

2 2

1
sin() sin()

2()

1
sin() 0

2

m q q m q q
dM q

dt
m q q

 =

ɺ ɺ

ɺ

 (A.9)

()
{ } ()

{ } { }

2
2 1 1 2

2 1 2 2

0()

sin() ()

0 0

sin() sin() 0

Tq M q q

q m q q q q

m q q m q q

 ∂ = ∂ × +

 = +

ɺ ɺ

ɺ ɺ ɺ

ɺ ɺ

 (A.10)

Substituting the derivatives from Eq. (A.7) and Eq. (A.8) in Euler-

Lagrange expression Eq. (A.3), the following 2nd order, nonlinear

equation describes the dynamics of the compass gait robot

179

() (,) () 0M q q C q q q G q+ + =ɺɺ ɺ ɺ (A.11)

where

2 2 2 2

1 2

() (,)
(,)

2 sin() sin()

sin() 0

dM q KE q q
C q q q

dt q

mblq q mblq q

mblq q

∂
= −

∂

 = −

ɺ
ɺ ɺ

ɺ ɺ

ɺ

 (A.12)

and

() 1 1 2

1 2

() sin() sin()
()

sin()
hm a l m l g q mgb q q

G q
mgb q q

 − + + + + = +
 (A.13)

Impact Reset during Stance Phase

At impact, the reference point for the robot changes to the new stance

foot. Use + and – superscripts to represent pre- and post- impact

conditions respectively. The relationships for both the pre- and post-

impacts are as follows

2 1

1 1

 2 q q

q q+ −

= −

= −
 (A.14)

The KE is decreased due to impact. However, assuming a perfect

impact, the angular momentum remains constant. The abrupt change

in joint velocities is calculated from the conservation of pre- and post-

impact momentums as follows

() ()M q q M q q− − + +=ɺ ɺ (A.15)

180

Using the relationships between joint angles given in Eq. (A.14) at

impact, Eq. (A.15) has angular momentums as functions of inter-leg

angle 2q only as given below

2 2() ()M q q M q q− − + +=ɺ ɺ (A.16)

The pre- and post-impact momentums are described as follows

{ }

{ }

{ }

2

2 2

2

2

2 2

0
4()

cos() 1 2 cos()
2 4

1 2 cos()
4 4()

3
cos() 1 2 cos()

2 4

h

h

m

M q
m m

m q q

m m
q

M q
m

m m q q

−

+

 −
 =
 − − −

 −
 = + − −

 (A.17)

The post-impact velocities are found from Eq. (A.16) as under

() 1
2 2() ()q M q M q q Rq

−+ + − − −= =ɺ ɺ ɺ (A.18)

where R , the reset matrix for joint angular velocities is given by

{ } ()

2

2

2 2 2

1

4 3 2 cos(2)

2(2)cos()

4() cos(2) cos() 1 2 cos()

h

h

h

R
m m m q

m m m q m

m m q q m q

=
+ −

 − + + − ×
 + − −

 (A.19)

181

APPENDIX B

For a difference inequality such as

(1) () ()z i i hz iβ+ ≤ + (B.1)

where (.)z and (.)β are scalar functions of 0i ≥ and h is a positive

constant. So, for 1i ≥ , the following relation holds:
1

1

0

() () (0)
i

i j i

j

z i h j h zβ
−

− −

=

≤ +∑ (B.2)

The Eq. (B.2) gives the upper bound.

182

REFERENCES

1. Grizzle, J.W., G. Abba, and F. Plestan, Asymptotically stable walking for

biped robots: analysis via systems with impulse effects. IEEE Transactions

on Automatic Control, 2001. 46(1): p. 51-64.

2. Keijzer, F., Representation in dynamical and embodied cognition.

Cognitive Systems Research, 2002. 3(3): p. 275-288.

3. Riegler, A., When is a cognitive system embodied? Cognitive Systems

Research, 2002. 3(3): p. 339-348.

4. Sharkey, N. and T. Ziemke, Life, Mind, and Robots, in Hybrid Neural

Systems, S. Wermter and R. Sun, Editors. 2000, Springer Berlin /

Heidelberg. p. 313-332.

5. Kawamura, S., et al., Realization of biped locomotion by motion pattern

learning. Journal of the Robotics Society of Japan, 1985. 3(3): p. 177–187.

6. Kiriazov, P., Learning Robots to Walk Dynamically: biological control

concepts, in 5th Int. Conf. on Climbing and Walking Robots (CLAWAR).

2002: Paris, France.

7. Kiriazov, P., Learning Robots to Move: Biological Control Concepts, in

4th Int. Conf. on Climbing and Walking Robots (CLAWAR). 2001:

Karlsruhe, Germany.

8. Ahn, H.-S., Y. Chen, and K.L. Moore, Iterative Learning Control: Brief

Survey and Categorization. IEEE Transactions on Systems, Man, and

Cybernetics, Part C: Applications and Reviews, 2007. 37(6): p. 1099-

1121.

9. Greenwald, A.G., Cognitive Learning, Cognitive Response to Persuasion,

and Attitude Change, in Psychological Foundations of Attitudes, A.G.

Greenwald, T.C. Brock, and T.M. Ostrom, Editors. 1968, Academic Press:

NY, USA.

10. Brooks, R.A., Intelligence without representation. Artificial Intelligence,

1991. 47(1â€“3): p. 139-159.

11. Shanahan, M. Consciousness, emotion, and imagination: A brain-inspired

architecture for cognitive robotics. in Proceedings of Next Generation

approaches to Machine Consciousness: Imagination, Development,

Intersubjectivity and Embodiment, AISB'05. 2005. Hatfield, UK.

12. Shaikh, I.U.H., H.H. Khalili, and M. Brown. Convergence Analysis of

Cyclic Iterative Learning Control Scheme. in Proc. 9th Int. Bhurban Conf.

on Applied Sciences and Technology (IBCAST). 2012. Islamabad,

Pakistan.

13. Fornasini, E. and G. Marchesini, Doubly-indexed dynamical systems:

State-space models and structural properties. Theory of Computing

Systems, 1978. 12(1): p. 59-72.

183

14. Roesser, R., A discrete state-space model for linear image processing.

IEEE Transactions on Automatic Control, 1975. 20(1): p. 1-10.

15. Kurek, J.E. and M.B. Zaremba, Iterative learning control synthesis based

on 2-D system theory. IEEE Transactions on Automatic Control, 1993.

38(1): p. 121-125.

16. McGeer, T., Passive Dynamic Walking. The International Journal of

Robotics Research, 1990. 9(2): p. 62-82.

17. Spong, M.W. Passivity Based Control Of The Compass Gait Biped. in

Proc. 14th IFAC World Congress. 1999. Beijing, China.

18. Duindam, V. and S. Stramigioli. Energy-based model-reduction of

nonholonomic mechanical systems. in Proc. 2004 IEEE Int. Conf. on

Robotics and Automation, ICRA '04. 2004. New Orleans, LA, USA.

19. Duindam, V., S. Stramigioli, and J.M.A. Scherpen, Passive compensation

of nonlinear robot dynamics. IEEE Transactions on Robotics and

Automation, 2004. 20(3): p. 480-488.

20. Collins, S., et al., Efficient Bipedal Robots Based on Passive-Dynamic

Walkers. Science, 2005. 307(5712): p. 1082-1085.

21. Spong, M.W., J.K. Holm, and L. Dongjun, Passivity-Based Control of

Bipedal Locomotion. IEEE Robotics & Automation Magazine, 2007.

14(2): p. 30-40.

22. Fallis, G.T., Walking toy. 1888: U.S. Patent No. 376588.

23. ASIMO. Honda Motor Co. 2000 [cited; Available from:

http://world.honda.com/ASIMO/.

24. AIST. Humanoid Research Group - Japan’s National Institute of Science

and Technology 2001 [cited; Available from:

http://unit.aist.go.jp/is/humanoid/index.html.

25. WABIAN. Biped humanoid robot group, University of Waseda. [cited;

Available from:

http://www.takanishi.mech.waseda.ac.jp/top/research/wabian/index.htm.

26. HUBO. Humanoid Robot Research Centre at Korea Advanced Institute of

Technology (KAIST). 2005 [cited; Available from:

http://hubolab.kaist.ac.kr/index.php.

27. IIT. Italian Institute of Technology. [cited; Available from:

http://www.iit.it/en/.

28. CICADA. Humanoid Robotics Research Group. [cited; Available from:

http://www.cicada.manchester.ac.uk/research/icub/.

29. Wisse, M. and R. van der Linde, Passive Dynamic Walking, in Delft

Pneumatic Bipeds, M. Wisse and R.Q.v.d. Linde, Editors. 2007, Springer

Berlin / Heidelberg. p. 7-24.

30. Dunn, E.R. and R.D. Howe. Foot placement and velocity control in

smooth bipedal walking. in Proc. 1996 IEEE Int. Conf. on Robotics and

Automation. 1996. Minneapolis, MN, USA.

31. Hobbelen, D.G.E. and M. Wisse, Limit Cycle Walking, in Limit Cycle

Walking, Humanoid Robots, Human-like Machines, M. Hackel, Editor.

2007, I-Tech Education and Publishing: Vienna, Austria.

184

32. Dallali, H., G.A. Medrano-Cerda, and M. Brown, A Comparison of

Multivariable Decentralized Control Strategies for Robust Humanoid

Walking in UKACC International Conference on CONTROL 2010. 2010:

Coventry, UK.

33. Vukobratovic, D.K.a.M., Humanoid Robots: New Developments, ed.

A.C.d.P. Filho. 2007, Vienna, Austria I-Tech Education and Publishing.

34. Arimoto, S., S. Kawamura, and F. Miyazaki, Bettering operation of

Robots by learning. Journal of Robotic Systems, 1984. 1(2): p. 123-140.

35. Satoh, S., K. Fujimoto, and S.H. Hyon, Gait Generation for Passive

Running via Iterative Learning Control, in 2006 IEEE/RSJ Int. Conf. on

Intelligent Robots and Systems. 2006: Beijing, China. p. 5907-5912.

36. Levesque, H. and G. Lakemeyer, Cognitive Robotics, in Handbook of

Knowledge Representation, F.v. Harmelen, V. Lifschitz, and B. Porter,

Editors. 2007, Elsevier B.V. p. 869–886.

37. Lucibello, P. Inversion of linear square systems by learning. in Proc. The

30th IEEE Conference on Decision and Control. 1991. Brighton, England.

38. Moore, K.L., Iterative Learning Control for Deterministic Systems.

Advances in Industrial Control, ed. M.J. Grimble and M.A. Johnson.

1993: Springer-Verlag London Ltd.

39. Moore, K.L. and J.-X. Xu, Editorial: Special issue on iterative learning

control. International journal of control, 2000. 73(10): p. 819 - 823.

40. Garden, M., Learning control of actuators in control systems. 1967:

United States Patent No. 3,555,252.

41. Chen, Y. and K.L. Moore. Comments on United States Patent 3,555,252 –

Learning control of actuators in control systems. in Proceedings of the

2000 International Conference on Automation, Robotics, and Control.

2000. Singapore.

42. Cryer, B.W., P.E. Nawrocki, and R.A. Lund, A road simulation system for

heavy duty vehicles, in Society of Automotive Engineers. 1976.

43. Uchiyama, M., Formation of high speed motion pattern of mechanical

arm by trial. Transactions of the Society of Instrumentation and Control

Engineers, 1978. 14(6): p. 706-712.

44. Owens, D. and S. Daley, Iterative Learning Control - Monotonicity and

Optimization. International Journal of Applied Mathematics and Computer

Science, 2008. 18(3): p. 279-293.

45. Craig, J.J., Adaptive control of manipulators through repeated trials, in

Proceedings of American Control Conference. 1984: San Diego, CA,

USA. p. 1566-1573.

46. Arimoto, S., S. Kawamura, and F. Miyazaki, Convergence, stability and

robustness of learning control schemes for robot manipulators, in The Int.

Symp. on Robot Manipulators on Recent trends in robotics: modeling,

control and education. 1986, Elsevier North-Holland, Inc.: Albuquerque,

New Mexico, United States. p. 307 - 316.

47. Owens, D.H. Iterative learning control - Convergence using high gain

feedback. in Proc. 31st IEEE Conf. on Decision and Control. 1992.

Tucson, AZ, USA.

185

48. Saab, S.S., A discrete-time learning control algorithm for a class of linear

time-invariant systems. IEEE Transactions on Automatic Control, 1995.

40(6): p. 1138-1142.

49. Saab, S.S., Robustness and convergence rate of a discrete-time learning

control algorithm for a class of nonlinear systems. International Journal of

Robust and Nonlinear Control, 1999. 9(9): p. 559-571.

50. Satoh, S., K. Fujimoto, and S.H. Hyon. A framework for optimal gait

generation via learning optimal control using virtual constraint. in

IEEE/RSJ International Conference on Intelligent Robots and Systems,

IROS. 2008. Nice, France.

51. Satoh, S., Optimal Gait Generation for Legged Robots Based on

Variational Symmetry of Hamiltonian Systems. 2007, Nagoya University:

Nagoya. p. 53.

52. Satoh, S., K. Fujimoto, and S.-H. Hyon, Gait Generation for a Hopping

Robot Via Iterative Learning Control Based on Variational Symmetry, in

Lagrangian and Hamiltonian Methods for Nonlinear Control, F. Bullo

and K. Fujimoto, Editors. 2007, Springer Berlin / Heidelberg. p. 197-208.

53. Satoh, S., K. Fujimoto, and S.H. Hyon, A framework for optimal gait

generation via learning optimal control using virtual constraint, in

IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, IROS 2008: Nice,

France. p. 3426-3432.

54. Duindam, V. and S. Stramigioli, Modeling and Control for Efficient

Bipedal Walking Robots - A Port-Based Approach. Springer Tracts in

Advanced Robotics, ed. B. Siciliano, O. Khatib, and F. Groen. Vol. 53.

2009: Springer Berlin / Heidelberg.

55. Zhang, Q.-Z., et al., Iterative learning control for biped walking, in

International Conference on Mechatronics and Automation, ICMA. 2010:

Xi'an, China. p. 237-241.

56. Shaikh, I.U.H., H.H. Khalili, and M. Brown, Convergence analysis of

cyclic Iterative Learning Control scheme, in 9th Int. Bhurban Conf. on

Applied Sciences and Technology (IBCAST). 2012: Islamabad, Pakistan. p.

1-7.

57. Goswami, A., B. Espiau, and A. Keramane, Limit cycles and their stability

in a passive bipedal gait, in Proc. 1996 IEEE Int. Conf. on Robotics and

Automation. 1996: Minneapolis, MN. p. 246-251.

58. Goswami, A., B. Thuilot, and B. Espiau, Compass-like biped robot Part 1

: Stability and bifurcation of passive gaits. 1996, Unite de Recherche

INRIA, Rhone-Alpes: Grenoble, France.

59. Goswami, A., B. Espiau, and A. Keramane, Limit Cycles in a Passive

Compass Gait Biped and Passivity-Mimicking Control Laws. Autonomous

Robots, 1997. 4(3): p. 273-286.

60. Chew, C.-M. and G.A. Pratt, Dynamic bipedal walking assisted by

learning. Robotica, 2002. 20(05): p. 477-491.

61. Harte, R., Invertibility and Singularity of Operator Matrices. Proceedings

of the Royal Irish Academy. Section A: Mathematical and Physical

Sciences, 1988. 88A(2): p. 103-118.

186

62. Bien, Z. and K.M. Huh, Higher-order iterative learning control algorithm.

IEE Proceedings D: Control Theory and Applications, 1989. 136(3): p.

105-112.

63. Amann, N., D.H. Owens, and E. Rogers, Iterative learning control for

discrete-time systems with exponential rate of convergence. IEE

Proceedings - Control Theory and Applications, 1996. 143(2): p. 217-224.

64. Chen, Y. and C. Wen, Iterative learning control: Convergence,

robustness, and applications. Lecture notes in control and information

sciences. Vol. 248. 1999, London: Springer Berlin / Heidelberg.

65. Phan, M.Q., R.W. Longman, and K.L. Moore, Unified Formulation of

Linear Iterative Learning Control, in AAS/AIAA Space Flight Mechanics

Meeting. 2000: Clearwater, FL.

66. Xu, J.-X. and Y. Tan, Linear and Nonlinear Iterative Learning Control.

Lecture Notes in Control and Information Sciences, ed. M. Thoma and M.

Morari. Vol. 291. 2003: Springer Berlin / Heidelberg.

67. Chen, Y. and K.L. Moore. PI-type iterative learning control revisited. in

Proc. The 2002 American Control Conference. 2002. Anchorage, AK,

USA.

68. Rogers, E., K. Galkowski, and D.H. Owens, Control Systems Theory and

Applications for Linear Repetitive Processes. Lecture Notes in Control

and Information Sciences, ed. M. Thoma and M. Morari. 2007, Berlin

Heidelberg: Springer-Verlag GmbH. digital.

69. Bristow, D.A., M. Tharayil, and A.G. Alleyne, A survey of iterative

learning control. Control Systems Magazine, IEEE, 2006. 26(3): p. 96-

114.

70. Wang, Y., F. Gao, and F.J. Doyle Iii, Survey on iterative learning control,

repetitive control, and run-to-run control. Journal of Process Control,

2009. 19(10): p. 1589-1600.

71. Hatzikos, V.E., et al. Robust analysis of a genetic algorithm based

optimization method for real-time iterative learning control applications.

in Proc. ETFA '03. 9th IEEE Conf. on Emerging Technologies and

Factory Automation. 2003. Lisbon, Portugal.

72. Wang, D., On D-type and P-type ILC designs and anticipatory approach.

International Journal of Control, 2000. 73(10): p. 890.

73. Saab, S.S., Optimal selection of the forgetting matrix into an iterative

learning control algorithm. IEEE Transactions on Automatic Control,

2005. 50(12): p. 2039-2043.

74. Lucibello, P. and S. Panzieri. Cyclic control of linear systems: theory and

experimental implementation on a flexible arm. in Proc. The 33rd IEEE

Conference on Decision and Control. 1994. Lake Buena Vista, FL, USA.

75. Heinzinger, G., et al. Robust learning control. in Proc. 28th IEEE Conf.

on Decision and Control. 1989. Tampa, FL, USA.

76. Ye, Y. and D. Wang, Learning more frequency components using P-type

ILC with negative learning gain. IEEE Transactions on Industrial

Electronics, 2006. 53(2): p. 712-716.

187

77. Moore, K.L., Iterative learning control - An expository overview in

Applied and computational control, signals, and circuits, B.N. Ditta,

Editor. 1999, Cambridge, MA,: Birkhaeuser Boston. p. 151-214.

78. Amann, N., Optimal Algorithms for iterative learning control, PhD

Thesis, in Faculty of Engineering. 1996, University of Exeter: Exeter.

79. Oriolo, G., S. Panzieri, and G. Ulivi. Cyclic learning control of chained-

form systems with application to car-like robots. in 13th IFAC World

Congress. 1996. San Francisco, CA, USA.

80. Sison, L.G. and E.K.P. Chong. No-reset iterative learning control. in

Proc. 35th IEEE Decision and Control. 1996. Kobe, Japan.

81. Moore, K.L., A non-standard iterative learning control approach to

tracking periodic signals in discrete-time non-linear systems. International

Journal of Control, 2000. 73(10): p. 955-967.

82. Sison, L.G. and E.K.P. Chong. No-reset iterative learning control. in

Proc. of the 35th IEEE Conf. on Decision and Control. 1996. Kobe, Japan.

83. Xu, J.-X., B. Viswanathan, and Z. Qu, Robust learning control for robotic

manipulators with an extension to a class of non-linear systems.

International Journal of Control, 2000. 73(10): p. 858-870.

84. Xu, J.-X. and R. Yan, On initial conditions in iterative learning control.

IEEE Transactions on Automatic Control, 2005. 50(9): p. 1349-1354.

85. Sun, M., S.S. Ge, and I.M.Y. Mareels, Adaptive repetitive learning control

of robotic manipulators without the requirement for initial repositioning.

IEEE Transactions on Robotics, 2006. 22(3): p. 563-568.

86. Yang, Z. and C.W. Chan, Conditional iterative learning control for non-

linear systems with non-parametric uncertainties under alignment

condition. IET Control Theory & Applications, 2009. 3(11): p. 1521-1527.

87. Bekey, G.A., Autonomous Robots - From Biological Inspiration to

Implementation and Control. Intelligent Robotics and Autonomous

Agents. 2005, Cambridge, MA: MIT Press.

88. Dillmann, R., et al., Biologically inspired walking machines: design,

control and perception. Philosophical Transactions of the Royal Society

A: Mathematical, Physical and Engineering Sciences, 2007. 365(1850): p.

133-151.

89. Manoonpong, P., F. Pasemann, and H. Roth, Modular Reactive

Neurocontrol for Biologically Inspired Walking Machines. The

International Journal of Robotics Research, 2007. 26(3): p. 301-331.

90. Pfeifer, R., M. Lungarella, and F. Iida, Self-Organization, Embodiment,

and Biologically Inspired Robotics. Science, 2007. 318(5853): p. 1088-

1093.

91. Oriolo, G., S. Panzieri, and G. Ulivi, An Iterative Learning Controller for

Nonholonomic Mobile Robots. The International Journal of Robotics

Research, 1998. 17(9): p. 954-970.

92. Lee, K.H. and Z. Bien, Initial condition problem of learning control. IEE

Proceedings D Control Theory and Applications 1991. 138(6): p. 525-528.

188

93. Heinzinger, G., et al., Stability of learning control with disturbances and

uncertain initial conditions. IEEE Transactions on Automatic Control,

1992. 37(1): p. 110-114.

94. Chen, Y., et al., An iterative learning controller with initial state learning.

IEEE Transactions on Automatic Control, 1999. 44(2): p. 371-376.

95. Xu, J.-X., et al., Terminal iterative learning control with an application to

RTPCVD thickness control. Automatica, 1999. 35(9): p. 1535-1542.

96. Sun, M. and D. Wang, Closed-loop iterative learning control for non-

linear systems with initial shifts. International Journal of Adaptive Control

and Signal Processing, 2002. 16(7): p. 515-538.

97. Xu, J.-X. and D. Huang, Initial state iterative learning for final state

control in motion systems. Automatica, 2008. 44(12): p. 3162-3169.

98. Yang, Z. and C.W. Chan. An Iterative Learning Control with Alignment

Initial Condition for a Class of Nonlinear Systems. in Proc. 26th Chinese

Control Conference CCC. 2007. Hunan, China.

99. Espiau, B. and A. Goswami, Compass gait revisited. 1994, INRIA,

Rhone-Alpes: Grenoble, France.

100. Thuilot, B., A. Goswami, and B. Espiau, Bifurcation and chaos in a

simple passive bipedal gait, in Proc. 1997 IEEE Int. Conf. on Robotics

and Automation. 1997: Albuquerque, NM. p. 792-798.

101. Goswami, A., B. Thuilot, and B. Espiau, A Study of the Passive Gait of a

Compass-Like Biped Robot. The International Journal of Robotics

Research, 1998. 17(12): p. 1282-1301.

102. Goswami, A., B. Thuilot, and B. Espiau, Compass-like biped robot Part 1:

Stability and bifurcation of passive gaits. 1996, Unite de Recherche

INRIA, Rhone-Alpes: Grenoble, France.

103. Wang, D., Convergence and Robustness of Discrete Time Nonlinear

Systems with Iterative Learning Control. Automatica, 1998. 34: p. 1445-

1448.

104. Hätönen, J., Issues of algebra and optimality in Iterative Learning

Control, in Department of Process and Environmental Engineering. 2004,

University of Oulu: Finland. p. 157.

105. J. J, H., D.H. Owens, and K.L. Moore, An algebraic approach to iterative

learning control. International journal of control, 2004. 77: p. 45-54.

106. Chen, Y. and K.L. Moore. On D^alpha - type iterative learning control. in

Decision and Control, 2001. Proceedings of the 40th IEEE Conference on.

2001. Orlando, FL, USA.

107. Wang, D. and Y. Yongqiang, Design and experiments of anticipatory

learning control: frequency-domain approach. IEEE/ASME Transactions

on Mechatronics, 2005. 10(3): p. 305-313.

108. Shores, T., Applied Linear Algebra and Matrix Analysis. Undergraduate

Texts in Mathematics, ed. S. Axler and K.A. Ribet. 2007, New York,

USA: Springer Science+Business Media, LLC.

109. Rogers, E., K. Galkowski, and D. Owens, Application to Iterative

Learning Control, in Control Systems Theory and Applications for Linear

189

Repetitive Processes. 2007, Springer-Verlag Berlin Heidelberg. p. 369-

426.

110. Hätönen, J., D.H. Owens, and K.L. Moore, An algebraic approach to

iterative learning control. International journal of control, 2004. 77: p. 45-

54.

