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ABSTRACT 

At an early age, i.e., up to about 1-2 years the humans learn to walk and 

subsequently develop a robust and flexible gait. This is learned by 

repetitively taking similar steps and the experience is stored in the 

muscle/reflexive memory. Over the last 30 years, a variety of humanoid 

bipedal robots have been developed to copy the human gait. However, 

walking/locomotion is still a relatively difficult control problem due to its 

complex hybrid nature because of non-smooth dynamics. Although, simple 

walking comprises of single support in which one leg swings forward, then 

it impacts with ground for a brief double support phase and further 

transition of the other support leg to start a new swing. The steps are 

repeated again and again in a similar manner for walking over an even 

surface. As the swinging leg strikes the ground, it is a non-linear impact 

which poses a challenge since it causes non-zero initial state errors for 

each step which depend on the error in the gait at last moment for 

previous step. The usual bipedal control relies on complex techniques 

based on inverse kinematics, ZMP (Zero-Moment Pole) and COP (Centre 

Of Pressure) to generate the required control inputs for the joints. 

However, a basic cognitive assumption is that walking is a relatively 

simple task which can be learned and the biological systems have achieved 

it by simple repetitions. This has been over-looked in these control 

techniques. 

In the past, ILC has been proposed to solve the repetitive learning 

problems. The Iterative Learning Controller learns to generate the desired 

set of input signals to compensate for the output tracking errors in a 
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sequential manner such that in the initial iterations, the signals values at 

earlier time indices have faster rate than the later ones. So, at the last 

time index the convergence is achieved after all the earlier ones. ILC 

learns/adapts the joint control for repetitive gaits. In this thesis it has 

been proposed to be used as a muscle memory where control signals are 

learnt for a repetitive batch. Thus, ILC equates to “learning a sequence of 

action by muscles”. Due to the transfer of state error in a cyclic manner 

from the end of a previous step/repetition to the recent step/repetition, 

the convergence has to be established in joint control and state space. 

Similar is the case of continuous walking where the ground impacts 

transfer part of the error in the gait to the start of a new step 

representing an impacting Cyclic ILC scenario. Hence, the ILC problem is 

changed from finite to an infinite horizon. The second problem occurs 

with the non-constant length of the iteration due to change in step size. 

The two scenarios have been considered: Firstly, when the control input is 

updated using ILC with identical initial conditions at the start of each 

repetition. Secondly, control input update under varying initial conditions 

leading to Cyclic ILC. The batch to batch evolution of control inputs at 

each sample time within a batch is formulated. The sequential 

convergence of control input generated by ILC algorithms has been 

investigated. The exact relationship for the rate of convergence of the 

control input has been formulated down to the sample-time level. This 

provides deeper insight about the ILC algorithms and hence exact factors 

affecting the convergence could be established. Limits of the learning 

process have been clearly demonstrated as well. Although, simpler D-ILC 

converges for zero initial error but for cyclic non-zero initial errors, it has 
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offset error which corresponds to the initial state error. With proportional 

part, the PD-ILC algorithm has eliminated the offset error which has been 

illustrated for a damped pendulum and further implemented to bipedal 

locomotion. For reasons of energy efficiency, passive dynamics has been 

chosen for the compass gait model of the biped. The walking problem for 

the compass gait robot has been solved using the modified PD-ILC which 

utilizes the acceleration error term as well. The steady gait has been 

achieved for the compass gait robot on flat surface which has been verified 

by the phase portraits. 
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    Chapter 1 

1 Introduction 

To design a humanoid robot which can successfully demonstrate 

bipedal locomotion is a complex, hybrid control problem [1]. Most of 

the previous approaches use conventional feedback control based on 

inverse kinematics with some form of trajectory generation based on 

ZMP (Zero Moment Point). However, these are typically complex, 

require a lot of design effort and even then usually end up producing 

un-natural walking gaits and high energy consumption. But in real life 

humans learn to walk at a relatively early age. Aspects of balance are 

learnt using aids such as frames or furniture, then repetitive trials/steps 

are performed by infants and unsuccessful attempts/inefficient gaits are 

continuously improved. It is hypothesized that equipping a humanoid 

robot with such cognitive/learning abilities would produce robust 

walking gaits with a minimal amount of prior design as well as enabling 

the study of cognitive/learning algorithms in robots, the so-called 

embodiment principle [2-4]. There has been dire need to search of 

learning control algorithms for bipedal walking robot which do not 

require complex inverse kinematics and are closer to the human 

learning [5]. Iterative Learning Control (ILC) appears to be suitable to 

use for a bipedal walking robot due to its repetitive/batch learning 
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formulation and ILC techniques have previously been proposed for 

bipedal robot locomotion, but no results demonstrated [6, 7]. 

ILC is a Learning Control System which evolved in 1970-80’s. It 

improves the tracking performance of systems which operate in a 

repetitive manner. These repetitions occur after fixed intervals of time. 

ILC has helped to improve the performance of repetitive control 

systems especially when dealing with uncertain systems [8]. 

This chapter presents an overview of the research, i.e., background 

motivation, problem formulation, contributions, achievements and the 

brief outline of the thesis. 

1.1 Motivation 

The human brain has the capability to acquire new knowledge or 

modify existing knowledge on the basis of recent experience. This is 

termed as cognitive learning [9-11]. In other words learning involves the 

transformation of information in the environment into knowledge that 

is stored in the mind. This has opened the door for the development of 

Learning Control Systems which learn from their past experience, in a 

manner similar to the human brain. The attractive features such as 

learning capability, model-free control design, simple architecture, etc., 

have led to the work described in this thesis which applies and analyses 

ILC algorithms to the problem of designing bipedal gaits in humanoid 

robots. 



25 

The aim is to replicate the reflexive/muscle memory feature of humans 

which allows certain physical actions to become easier so that 

eventually the actions are performed without conscious thought. This 

learning process occurs through repetition of a particular action over 

and over again as walking, running, athletics and other physical games. 

Whilst, this repetition or practice of movement is carried out, new 

neural pathways within the brain are likely created that allow the 

action to be performed with less and less conscious effort on the part of 

a person. After sufficient time, the long-term muscle memory develops 

and future actions can be performed easily and accurately without 

conscious effort. The biological systems thus achieve maximum 

efficiency within the motor and memory systems. 

Designing a bipedal walking robot is a complex, hybrid control problem 

due to non-linear effects such as stiction, the difficulty in estimating 

important parameters and the problem with modelling impacts, 

amongst others. Similarly, trajectories designed using ZMP (Zero 

Moment Point) often have an unnatural gait and high energy 

consumption. There is, therefore, a need to investigate how learning 

control algorithms can be applied to bipedal walking robots in order to 

reduce the design effort and also to inform ideas about cognitive 

learning [5]. In this research, simple ILC techniques have been 

successfully applied to compass gait model of the bipedal robot 

locomotion [12]. 
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1.2 Problem Formulation 

The learning control for bipedal robots can not be directly implemented 

as a conventional ILC problem due to non-zero initial state errors at 

the start of each step. Each step is considered as one batch. For 

continuous walking the error in the gait at last moment just before the 

swinging leg strikes the ground affects the initial state at the start of 

next step so the ILC horizon becomes infinite, unlike conventional 

Cyclic ILC which assumes a finite, horizon. Moreover, the fixed length 

assumption for each step can not be fulfilled in many cases such as 

when the foot impacts with ground occur earlier or later in consecutive 

steps due to variations in speed or step length. Moreover, the learning 

problem should not just be analysed in terms of its asymptotic 

behaviour. Humans learn to walk in hundreds or thousands of trials.  

Efficient learning, especially during the initial stages of learning is 

required, it is not enough to simply establish asymptotic convergence 

results. So, in this research, the rate of convergence of conventional ILC 

systems across the batch (i.e., for each time index) has been analysed. 

It has been further extended to non-zero initial condition Cyclic ILC so 

as to handle the impacting systems. 

ILC is typically used for controlling stable systems or it may be 

incorporated along with a stabilizing controller which keeps the system 

with in the required stability region. The ILC iteratively improves the 

tracking performance and in the long run would be able to compensate 

for parameter variations in the plant. However, although establishing 
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convergence of the ILC algorithm is model-free, the rates of 

convergence depend on the system dynamics. Hence, to address the 

convergence rate problem, the general statement is given as follows: 

“How to analyse the convergence rate of ILC generated control input 

up to component level and apply for the impacting systems having 

nonzero initial errors from previous iterations such as bipedal walking 

robots?” 

The general problem stated above covers mathematical formulation, 

verification and simulation analysis of LTI and nonlinear impulsive 

hybrid dynamic systems such as bipedal walking robot. 

1.3 Thesis Contributions and Achievements 

The casting of walking problem in terms of Cyclic ILC required 

mathematical formulation which has been achieved by relaxing the 

conventional fixed length, zero initial error assumptions. For this the 

effect of initial state error on each of the time index inside a batch has 

to be formulated until the end so as to analyse how does it effect the 

initial state for the next consecutive iteration. Following is the brief 

about thesis contributions during this research: 

• Development of a homogeneous two-dimensional input error 

evolution relationship at component level instead of conventional 

two dimensional models [13-15]. (Section 4.5) 

• Derived the relationship for component-wise input error 

convergence rate and proved that long-term rate at all time 
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indices equals the eigenvalue of the matrix which relates the 

evolution from one iteration to the other in line with 

conventional asymptotic analysis. (Theorem 4.1) 

• Extension of homogeneous two-dimensional input error evolution 

at component level and the convergence analysis for non-zero 

initial error ILC and impacting Cyclic ILC (Section 5.1). 

• While analysing the simple D-ILC algorithm for impacting Cyclic 

ILC it was observed that initial error caused constant offset error 

which pointed towards existence of a dominant eigenvector 

associated with unit magnitude eigenvalue. It has been stated 

and proved as Theorem 5.1. 

• The input error reduced to zero on adding proportional error 

term to D-ILC, i.e., using PD-ILC algorithm for Cyclic ILC. 

Hence stated and proved that for the input error evolution 

matrix that there does not exist eigenvector associated with unit 

magnitude eigenvalue (Theorem 5.2)  

• Implementation of simple D-ILC algorithm to generate impulse-

type torques for both the ankle and hip joints at the start of 

each step for compass gait robot to achieve stable walking gait of 

the robot (Section 6.1).  

• Implementation of a modified PD-ILC algorithm under Cyclic 

ILC scheme to generate torques for both the ankle and hip joints 

at each sample time during the steps for stable biped walk 

(Sections 6.2 and 6.3). 
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1.4 Thesis Outline 

This introductory chapter is followed by literature review of ILC in 

chapter 2. Its properties and features which distinguish it form 

conventional feedback (classical as well as modern) control systems 

have been elaborated. Various types of ILC update rules have been 

mentioned. Bipedal walking robot has been discussed including the 

efforts to use ILC algorithms to generate a stable walking gait. 

In chapter 3, passive compass gait robot dynamics have been modelled 

for stable walking over a flat surface as well as on a slope. The passive 

dynamic compass gait robot has been chosen due to reasons of energy 

efficiency [16-21]. From the un-actuated passive walking downhill under 

the action of gravity considered as reference, the model for actuated 

compass gait has been achieved. Linearised version of the biped model 

has been presented along with analysis for uncertain parameters. 

Convergence issues for the D-ILC algorithm have been covered in 4th  

chapter. A linear discrete-time system is considered with no initial state 

error. For control input update, D-ILC algorithm has been employed. 

Component-wise input error evolution from iteration to iteration has been 

formulated. Convergence analysis has been based on the operator matrix 

which relates the input error evolution. 

In chapter 5, the case for non-zero initial states at the start of each 

repetition has been presented. The Cyclic ILC case where state errors 

are transferred from the end of one iteration to the start of next 
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iteration has been investigated. D-ILC has been unable to provide a 

satisfactory solution. It has been mathematically proven in Theorem 

5.1. However, PD-ILC algorithm has achieved convergence for the 

variable initial states. Component-wise input error evolution for PD-

ILC has been developed which has been implemented to generate the 

control inputs for damped pendulum. 

In chapter 6, the ILC techniques have been applied to bi-pedal 

locomotion. The D-ILC algorithm has been applied to generate input 

torques for the hip and ankle joints at the start of each step for bipedal 

walk on a flat surface. These torques are applied at the start of each 

step. During the whole step, the robot legs move passively. This has led 

to a stable walking pattern learned by the compass gait robot while 

employing the minimum amount of torques. Secondly, using a reference 

trajectory from a fine-tuned feedback type PD controller, a modified 

Cyclic ILC algorithm for biped locomotion has been formulated to 

generate the set of control inputs for both the ankle and hip joints for 

stable gait of robot. 

In chapter 7 the conclusions have been drawn about this research 

reflecting the overall summary of the thesis along with directions for 

future research. 
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Chapter 2 

2 ILC and Bipedal Walking - 

Literature Review 

In this chapter, efforts to achieve stable walking gait for biped robot 

and the importance of learning for the robots have been elaborated. 

This has led to use of ILC algorithms to solve the biped walking 

problem. What is ILC, the difference from traditional feedback control 

and how has ILC evolved, the brief history of the ILC and the various 

commonly employed ILC update rules have been discussed. The Cyclic 

ILC and the corresponding research have been reviewed which has been 

employed in this research to solve the walking problem of the biped 

robot. 

2.1 Bipedal Humanoid Robots 

The interest in 2-legged (bipedal) humanoid robots as autonomous 

walking machines has been quite old [22]. The ability of walking over 

difficult uneven terrains, running, climbing up stairs and most 

important the ability for compliance in a human environment to work 

as servants or developing the prosthetic limbs for handicapped people 

are the main objectives. Recent trend focuses on the optimal 
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performance in which a robot can extract knowledge from the 

surroundings and learn to interact in an optimal manner. 

Few notable bipedal humanoid robots are ASIMO (Advanced Step in 

Innovative MObility) developed by Honda, Japan. It has 34 DOFs with 

the ability to walk and run as well [23]. The Humanoid Research Group 

of Japan’s National Institute of Advanced Industrial Science and 

Technology (AIST) has come up with a series of human-sized robots as 

HRP-2, HRP-3, HRP-4C and HRP-4, the human co-operative robot. 

These robots have impressive capabilities of running, walking and even 

dancing [24]. WABIAN (WAseda BIpedal humANoid) and WABIAN-

2R with 41 and 43 degrees of freedom (DOFs) respectively, have been 

developed by Biped Humanoid Robot Group at University of Waseda, 

Japan  [25]. Humanoid Robot Research Centre at Korea Advanced 

Institute of Technology (KAIST) have developed HUBO (41 DOFs) 

and later HUBO2 (40 DOFs) which consumes lesser energy due to 

stretched-leg walking instead of traditional ZMP [26].  Under the 

European Commission funded RobotCub project, cognitive robots iCub 

and C-Cub with 53 DOFs have been developed to implement and 

explore the learning behaviour in humanoid walking robots similar to a 

human child of about 3 years of age. It is an open system platform 

licensed under Free Software Foundation GNU licences to allow its free 

use for research. First iCub prototype was developed at The Italian 

Institute of Technology (IIT) in Genoa, Italy [27]. The Humanoid 
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Robotics Research Group at The University of Manchester is also 

actively involved in the bipedal walking research [28]. 

2.2 Passive Dynamics for Walking Robots 

Dynamics of the un-actuated passive walking robots were pioneered by 

Ted McGeer who showed that for gentle slopes, stable bipedal walking 

can be achieved where the necessary force is applied by the gravity [16] 

Later on by many others for energy efficient steady walking patterns on 

slopes under the action of gravity only [29]. The passive dynamics have 

been extended for active energy inputs to create stable human-like 

walking [17, 30]. Limit Cycle Walking patterns called gaits have been 

developed which ensure stability of the passive walking [31]. Effects 

such as bifurcations and chaos were investigated which occur because of 

the parameter variations [24, 25]. For compass-like biped robot, 

passivity mimicking control laws were formulated for the hip and ankle 

joints to obtain a robust and efficient walking pattern [32]. Foot 

placement and velocity control of the biped robot have been further 

employed to eliminate problem of walking on rough terrains [33]. ILC 

has been employed to generate the stable walking gait for the bipedal 

humanoid robot using variational symmetry [34]. Instead of 

decentralized PID controllers, a centralized LQR multivariable 

controller has been successfully implemented for the stable and robust 

humanoid walking using iterative scheme [35]. The research is still 

under way to develop a biped robot with capability of learning to walk 
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properly having same Degrees of Freedom (DOF), weight and length as 

a human. Research also focuses on the locomotion of the biped robots 

on unseen terrains along with energy efficiency during walking. 

2.3 Importance of Learning for Bipedal Walking 

Robots 

There has been a lot of progress in terms of development of hardware 

for bipedal robots and advanced control techniques for walking. But 

still there are unsolved issues such as robustness, energy efficiency, 

complete autonomy, safety and user-friendliness for the bipedal robots. 

Bipedal robots cannot cope with large movements, variable speeds and 

many other constraints. Due to these discrepancies, the current bipedal 

robots lack the level of robustness, versatility and adaptability that 

biological systems have and use them for efficient walking. 

To address the stability and periodic walking issues, centre of pressure 

(COP) and zero moment point (ZMP) concepts have been previously 

implemented. However, biped robot needs to act like a human, so that 

they must be capable of learning new gaits in the case of moving in 

unknown terrains. Therefore, these force control techniques should be 

combined with learning strategies, because learning ability allows the 

bipedal robot to modify its dynamic walking pattern to the changing 

conditions that is necessary for autonomous walking. The control 

techniques for bipedal robot have been based on kinematic and 

dynamic modelling of the mechanism which requires complete state 
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measurement and interaction between feet and ground. This requires 

heavy computation and optimization. Intelligent control techniques are 

capable to overcome these constraints [29, 30]. Cognitive Robotics 

includes the representation of experience and reasoning problems 

handled by an autonomous robot in a dynamic and incompletely known 

environment [36]. 

2.4 What is ILC 

There are many real life applications where same sequence of actions is 

repeated again and again such as assembly lines, robot manipulators, 

rolling mills, chemical batch processes, etc. The conventional feedback 

controllers cannot utilize the information from successive repetitions. 

Learning Control techniques such as ILC incorporate the intelligence to 

modify the performance on the basis of previous repetition. Iterative 

Learning Controllers provide an adaptive solution. The controller 

utilizes the error information of each batch and updates the control 

input accordingly for the next batch or batches. The control input 

signal using ILC converges to the desired value of the control input 

which is the inverse solution. Owing to this property, it is also termed 

as Iteration Inversion Process [37]. The error information at each time 

index can be used in a variety of ways to generate the update for 

control input. Hence, there are D, PD, PI, PID, etc many types of ILC 

controllers in which the output error, its derivative, integral or some 

combination of these is added to the current control input to generate 
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input for the same time instant in next batch. Learning occurs through 

pre-determined repetitions at hardware level [8]. These repetitions 

provide experience to the mental level [38, 39]. The experience is stored 

as data [34]. 

2.5 History of ILC 

ILC evolved in 1970-80s, as one of the learning control systems. 

However, earliest use of the term learning control was reported in a 

1967 US patent No. 3,555,252 by Murray Garden [40] as presented and 

compared with conventional ILC in [41]. The contributions of Cryer 

[42], Uchiyama [43] and Arimoto [34] are considered to be the initial 

works of ILC [44]. ILC improves the transient performance of systems 

which operate in a repetitive manner. These repetitions occur after 

fixed intervals of time. ILC has helped to achieve better performance of 

control systems especially when dealing with uncertain/stochastic 

systems [8]. The concept of learning through repeated trials evolved for 

improving the motion control of mechanical arms [34, 45]. The D-ILC 

algorithm based on the derivative of the output error for linear time-

varying systems with application to robotic manipulators were 

developed [34, 46]. However, the D-ILC suffered with the problem of 

differentiation of high frequency noise. Later, the P-ILC improved upon 

by using only the error instead of its derivative [47]. The Current 

Iteration Tracking Error (CITE) was then introduced to formulate ILC 

in line with feedback control paradigm and helped to overcome large 
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overshoot thus convergence could be accelerated [48]. The discrete-time 

version of D-ILC was formulated for MIMO linear systems which 

possessed global robustness against state disturbances, measurement 

noise and re-initialisation error at the beginning of each iteration [49]. 

The ILC law has been formulated for non-linear time varying systems 

having affine input and linear output. Uniform convergence of input 

and state was achieved when there were no disturbances [8]. 

Robot manipulators have replaced the humans at many places in 

industrial environment such as manufacturing, assembly lines, tooling, 

palleting, machining and painting etc. The use of ILC has improved the 

motion control in time-invariant robot manipulators [24, 25]. For such 

robotics applications, D and PD type ILC were initially proposed and 

gave successful results [50]. But these could not be directly applied to 

bipedal walking due to zero-initial error constrain. 

2.6 ILC for Bipedal Robots 

The humans learn many physical actions by repetition such as walking 

at their early age. The experience is stored as muscle memory so that 

after few repetitions the humans are able to do these actions without 

conscious effort. It is achieved due to cognitive learning ability of the 

humans. So there are two important aspects that learning is achieved 

via a simple and repetitive process. Since, ILC has both the features 

hence it has been considered as a suitable candidate for learning the 

bipedal locomotion [6, 7]. 
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Walking with two feet consists of swinging motion by one leg while the 

other rotates around the ankle but its foot remains fixed. Then, impact 

of swing leg occurs when it touches the ground associated with the 

change over to the other leg which again swings and impacts. Each 

cycle/repetition constitutes a step for the biped. Thus it is a special 

case for Cyclic ILC in which the state at start of new step/repetition is 

a function of the state at the end of the previous step/repetition.  

Use of ILC to solve walking problem of the robot is relatively a new 

application area. ILC was initially employed to generate optimal 

passive gait trajectories for a one-legged hopping robot which required 

zero input for passive running [35]. ILC along with virtual constraints 

has produced optimal gait which resulted in constant speed walking 

patterns achieved for compass gait robot modelled as a Hamiltonian 

system [51]. Satoh et al. has used ILC to generate optimal gaits for one-

legged hopping robot and extended to biped on the basis of variational 

symmetry of the Hamiltonian systems using virtual constraints [52, 53]. 

Iterative Feedback Tuning (IFT) has been used in conjunction with 

ILC using virtual constraint to generate stable gait for compass gait 

robot [54]. Zhang et al. have proposed impulsive toe-off push generated 

with ILC which is applied to the biped just before the heel strikes 

(ground impact of swing leg). However, there is no actuation during the 

entire swing phase and the swing leg moves passively [6, 55]. Keeping in 

view the impact based dynamics, a control strategy based on Receding 

Horizon Control was also suggested to stabilize the compass gait robot 
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against initial states in [56]. But even here the swing phase has been 

left un-actuated.  

However, the bipedal walk using actuation for both the ankle and hip-

joint together has not been solved using ILC/RC techniques until now 

[16, 29, 57-60]. So, in this research, a mathematical frame work for the 

two-dimensional evolution of input and state errors for Cyclic ILC has 

been developed for the evolution of initial state errors for D- and PD-

ILC on the basis of the rate of convergence analysis for zero initial 

errors [41-44]. This allowed casting the walking problem as a 

continuous process from one step to the other. The ground impacts 

could be modelled as well as the non-uniform step length has been 

accommodated. Further, simple PD-ILC algorithm modified with the 

acceleration error term has been used to generate input torques at 

ankle and hip joint for the steady gait generation of compass gait model 

of the biped. The hybrid dynamics of compass gait biped locomotion 

have been handled with the proposed scheme [61]. Compass gait model 

for biped robot based on Lagrangian dynamics has been used for the 

analysis in this thesis [9, 21, 23, 40, 41, 43]. 

2.7 Iterative Learning Control - Architecture 

In ‘Iterative Learning Control’ Iterative points to the repetitive or 

recursive operation of the plant/system. Starting from identical initial 

conditions for each batch, it was observed that such systems exhibit 

similar errors in the output response. This motivated to record these 
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errors and modify/update the control input signal for the subsequent 

repetitions, i.e. learning from past experience [34]. Learning Systems 

can adapt and change their behaviour on the basis of input-output 

observations. 

ILC can be defined as follows. “It’s a learning control technique where 

the controller learns to generate the desired set of control inputs over 

the iterations so as to minimize the tracking error between the output 

and the reference signal in a sequential manner” [38, 46, 62-65].  

The Figure 2.1 below shows the basic ILC scheme in which current 

input ( , )u i k  is applied to the system to generate output ( , )y i k  at the 

thi  time index during the thk  batch. These values are stored in memory 

and used off-line to calculate values of control input ( , 1)u i k +  for the 

next ( 1)thk +  iteration such that the desired output *( )y i  is tracked 

over the iterations. 

 

          

 

Figure 2.1: Basic ILC scheme 
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ILC differs from conventional feedback control where only the current 

error is used to correct or update the control input for the next time 

instant as shown by yellow block arrow on top row in Figure 2.2. Since 

there is no mechanism to utilize the results of one batch to improve the 

output of the other batches, the same errors are repeated over different 

iterations [38]. However, in case of ILC the tracking error information 

of each iteration is utilized to improve the output for next consecutive 

iteration/s as shown by blue block arrow in Figure 2.2. 

 

        

The system response to control input at each instant of time within the 

batch is memorized and the error information is used to correct/update 

Figure 2.2: Feedback versus learning 
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the control input for the next iteration. This updated input minimizes 

the performance error during the next iteration [39]. In ILC the 

parameters of the controller are not changed so it can be distinguished 

from Adaptive Control in which the parameters of the controller itself 

are changed for performance improvement. Likewise, ILC is different 

from Optimal Control since exact model parameters are not required to 

be known [66]. 

2.8 ILC Notation and Assumptions 

ILC has been established for continuous-time as well as discrete-time 

systems. It is being utilized for both linear and non-linear systems 

successfully. In this research ILC for discrete-time systems has been 

considered.  

2.8.1 Assumptions 

Following assumptions usually hold for conventional zero-initial error 

ILC algorithms [67-70]. 

• Initial conditions are reset at the start of each batch. 

• The error converges after every iteration. Although there may be 

uncertainties/un-modelled dynamics, i.e., minimal knowledge 

about the exact system parameters. 

• The length of a batch is fixed. 

The ILC learns to produce the best possible control signal without 

changing its own configuration or parameters. This distinguishes it 
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from Adaptive Controller. The control signal update for the next 

iteration is computed off-line, i.e., at the end of the current iteration. 

However, in this research some of the assumptions have been relaxed to 

accommodate the walking problem of the bipedal robot such as zero 

initial error. It is required because the initial state error for each 

iteration/step is inherited from the end of the previous iteration/step. 

It thus represents a specific class of non-zero initial error ILC called 

Cyclic ILC. It still needs further enhancement because ground impacts 

introduce a specific relation for the state transformation. The next 

assumption relaxed is the batch size which may not remain same for 

each iteration/step due to variations in speed or step size. 

2.8.2 Discrete-time System and Input-output Relationship 

The discrete-time state space description of the system is used with two 

indices 1,i M ∈    and k  which stand for the time index inside a batch 

and the batch number respectively as follows. 

( 1, ) ( , ) ( , )x i k Ax i k B u i k+ = +  (2.1) 

     ( , ) ( , )y i k C x i k=   (2.2) 

where state vector is nx ∈ ℝ , input ∈ ℝ( , ) pu i k  and output of the 

system is ∈ ℝ( , ) my i k . ,  A B  and C  are the real-valued state, input and 

output matrices respectively having appropriate dimensions. ( ,1)u i  is 

the control input vector for first batch which may be externally 
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specified or left to be zero [38, 71]. The input-output relation for a LTI 

system is described in Eq. (2.3) below. 

=( ) ( )y k H u k   (2.3) 

where the vectors ( )y k , *y , ( )u k  and ( )e k  are the actual output, desired 

output, input and errors respectively, given as follows. 

 = … ( ) (1, ), (3, ), , ( , )
T

y k y k y k y M k  (2.4) 

 = …  
* * * *(1), (2), , ( )

T
y y y y M  (2.5) 

 = … ( ) (1, ), (2, ), , ( , )
T

u k u k u k u M k  (2.6) 

 = − = … 
*( ) ( ) (1, ), (2, ), , ( , )

T
e k y y k e k e k e M k  (2.7) 

Matrix H  in lifted form has elements which are impulse response 

coefficients or the Markov parameters of the plant ( )G z  in Eq. (2.8). 
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The Markov parameters are generally given by 1i

i
h CA B−= . 

2.9 ILC Update Rules 

The researchers have introduced many variants of ILC. The more 

common have been briefly discussed below. 
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2.9.1 D-ILC 

The generic form of ILC is D-ILC. It updates the control input for next 

iteration using the derivative of the output error of the current iteartion 

[8]. For a deterministic system, which is initialised after each iteration, the 

D-ILC update mechanism is given in Eq. (2.9) below. 

( , 1) ( , ) ( , )du i k u i k K e i k+ = + ɺ  (2.9) 

where ( , ) * ( ) ( , )e i k y i y i k= −ɺ ɺɺ  is the derivative of the output or state 

error and gain matrix dK  is  the learning gain parameter. For identical 

initial conditions, the initial error is zero at the start of each iteration, 

i.e., (1, ) 0e k =  or (1, ) * (1)y k y= . The asymptotic convergence of 

output 
→∞

=lim  ( , ) * ( )
k

y i k y i  is achieved for all time indices [ ]0,i T∈  

under the following condition in Eq. (2.10). 

( )− <max eig 1dI K CB  (2.10) 

For monotonic convergence, the norm condition is specified as under  

[67]. 

1d pI K CB− <   (2.11) 

where Eq. (2.11) is the thp  operator norm, such that {1,2, , }p ∈ ∞… . If 

p  is not mentioned, it is assume that it is 2-norm. The product 0CB ≠  

is 1h , the 1st. Markov parameter in the matrix of Markov parameters as 

given in Eq. (2.8). Since, the above condition is independent of the 

system matrix A , it points towards the ability of ILC to generate 
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desired control input even when the plant parameters are not fully 

known [72-75]. 

D-ILC has the capability to capture the trend similar to derivative part 

in conventional PD or PID controller design. The negative factor about 

D-ILC is that it requires derivative of the output error which may not 

be measurable or obtained through numerical differentiation. It may 

contain noise which can degrade effectiveness and accuracy. This is usually 

avoided by using forward difference error as an alterantive to the 

derivative of the output error. 

2.9.2 P-ILC 

In P-ILC, the input is updated using the error itself which is multiplied 

with learning gain pK . Hence, its simpler as compared to D-ILC as there 

are no derivative or integral components [76]. 

( , 1) ( , ) ( , )pu i k u i k K e i k+ = +  (2.12) 

However, the use of P-ILC algorithm ensures convergence only if the 

uncertainties or disturbances are absent. Robustness against uncertainties 

is achieved when scalar forgetting factor γ  is used. Then P-ILC is 

modified as given in Eq. (2.13) [72]. 

( , 1) (1 ) ( , ) ( , 0) ( , )pu i k u i k u i K e i kγ γ+ = − + +  (2.13) 

The forgetting factor γ  may be either fixed or variable from iteration to 

iteration. The bias term ( , 0)u iγ  constrains so that input generated for 

next iteration does not vary extra-ordinarily. Thus, use of forgetting factor 
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reduces variance of the output in the early iterations [67]. Another 

option has been to use both positive and negative learning gains. It has 

achieved learning of more frequency components as compared to 

conventional P-ILC [8, 38]. However, still some gaps in frequency could 

not be learned by this scheme. It has been overcome by using 

anticipatory ILC discussed later in Section 2.9.6. 

2.9.3 PD-ILC 

The PD-ILC update has both the proportional and derivative of the 

error term as given in Eq. (2.14) below. 

( , 1) ( , ) ( , ) ( , )d pu i k u i k K e i k K e i k+ = + +ɺ  (2.14) 

Use of proportional (P) and derivative (D) components together in ILC 

helps to achieve better convergence of tracking errors [77]. In this work it 

has been observed to acquire faster rate of convergence as compared to D-

ILC and given in detail in chapter 4. The convergence achieved for the 

Cyclic PD-ILC case has been given in chapter 5. 

2.9.4 PI-ILC 

PI-ILC has input update based on proportional and integral 

components of the error as given below.  

( , 1) ( , ) ( , ) ( , )p iu i k u i k K e i k K e i k dt+ = + + ∫  (2.15) 

The added advantage is that PI-ILC achieves monotonic convergence for 

discrete-time LTI systems in the sense of any norm besides the 
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exponentially weighted sup-norm. As compared to P-ILC, better 

performance of the PI-ILC has been shown in terms of convergence rate. 

However, if the time instants are large for each batch, then the integral 

component of PI-ILC does not give any significant advantage [72]. 

2.9.5 PID-ILC 

In line with PID algorithm for conventional feedback, the PID-ILC has 

been formulated as shown below [78]. 

( , 1) ( , ) ( , ) ( , ) ( , )p d iu i k u i k K e i k K e i k K e i k di+ = + + + ∫ɺ  (2.16) 

PID-ILC update algorithm uses the error information ( , )e i k  from the 

previous iteration and possesses linear effect of the past input ( , )u i k  as 

well [79]. 

2.9.6 Anticipatory ILC 

The Anticipatory ILC avoids the use of derivative ( )ky tɺ  to capture the 

trend. Usually, the time delayed version of the derivative, i.e. ( , )y i k+ ∆  is 

used as given below [80]. 

( , 1) ( , ) ()[ * ( ) ( , )]u i k u i k L y i y i k+ = + ⋅ + ∆ − + ∆  (2.17) 

Use of time-delayed version of derivative ensures that causal pair of input 

and output ( , ), ( , )u i k y i k + ∆    from thk  iteration are utilised for the next 

iteration. 
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2.9.7 Optimal ILC 

For using ILC in an optimized manner, control input is updated so as 

to minimize a specific cost function. Different cost functions have been 

formulated, such as the controller which minimizes a weighted cost 

function as given in Eq. (2.18) [44, 81]. 

{ }

1,

21 2

1

( ( , 1))

        || ( , 1) || ( 1, ) ( , 1)

k M

M
i

i

J u i k

e i k u i k u i kλ

+

−

=

+ =

+ + + − +∑
 (2.18) 

where λ  is the weight selected such as to minimize the cost function J  

for each successive iteration. 

2.9.8 Cyclic ILC and Use for Robotics 

In ILC literature, the initial states which are the final states of the last 

repetition have been termed as “Cyclic learning control”[79], “No-reset 

ILC (NRILC)” [82], ‘continuous’ ILC [81] or “alignment condition” [83, 

84]. In case of both the reference and the output trajectory following 

the “alignment condition”, robust ILC algorithm based on the inverse 

dynamics of robotic manipulator was employed to achieve convergence 

[83]. Conditions for monotonic convergence were further formulated 

using PD-ILC with selective learning under restrictive assumptions for 

non-linear systems [85] and systems with non-parametric 

uncertainties[86]. The bipedal walking has been posed as impacting 

Cyclic ILC scenario where each step constitutes an iteration whose 



50 

state at the last moment does effect the initial state of the next 

consecutive step/iteration.  

2.9.8.1 Cyclic D-ILC for CG walking robot 

It has been argued that motions such as walking, running etc are 

perfected by humans using simple repetitive learning rules and do not 

require deep conscious involvement. Keeping in view the biological 

plausibility, the cognitive robotics need to be developed around simple 

learning rules [36, 87-90]. The Cyclic D-ILC algorithm has been used 

for car-like mobile robots by transforming the systems in chained form 

via feedback. However, the techniques were not further implemented to 

solve the walking problem [91]. For non-zero initial errors, the initial 

state learning has been an active research area [84, 92-96]. Using only 

the final state to generate initial state to be used as necessary control 

action has been proposed [97]. In this research we have employed initial 

state learning in Cyclic ILC scenario for a CG (compass gait) robot for 

which the ankle and hip actuation has been generated using Cyclic D-

ILC. During the swing phase the robot is un-actuated and moves under 

the action of gravity only. With carefully selected initial states for the 

1st step, stable walking gait could be realized as illustrated by phase 

portraits in chapter 6. 

2.9.8.2 Modified Cyclic PD-ILC for CG walking  

The length of iteration or time period of a step cannot be fixed due to 

variation in step size and/or speed. For this the non-standard approach 
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of non-uniform repetition length as proposed in conjunction with Cyclic 

PD-ILC to track periodic signals in non-linear systems has been utilized 

in which shorter of two consecutive step lengths is considered and if the 

ground impacts occurs earlier so that last time index is missed, then it 

is calculated from the dynamics so that error signal could be generated 

from it [98]. The standard Cyclic PD-ILC could not give successful 

results for the CG walking. But using a modified Cyclic PD-ILC which 

allowed using the acceleration term has been shown to achieve the 

stable gait for CG walking after few hundred steps as demonstrated in 

chapter 6. 

2.10 Summary 

In this chapter, a review of the bipedal locomotion has been presented 

with emphasis on the learning techniques with a discussion of the 

research using ILC schemes. The common ILC schemes have been 

presented. The conventional zero-initial error ILC techniques and the 

related research have been briefly summarized. Further, the efforts to 

relax the zero-initial error condition have been discussed. These were 

later extended to the Cyclic ILC scheme in which the state errors from 

the end of iteration are transferred to the beginning of the next 

iteration as required in the legged locomotion of the bipedal robot. 
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Chapter 3 

3 Modelling the Dynamics of 

Bipedal Walking Robot 

In this chapter, the compass gait robot dynamics for (un-actuated) 

passive and actuated modes have been modelled using Lagrangian 

dynamics. In particular, a linearised dynamic model is formulated 

which will be central to the Cyclic ILC convergence presented in 

chapter 6. While walking over a flat surface, at every heel strike, the 

angular momentum of the robot is conserved but the energy is lost. 

Hence, some actuation is required to keep it in walking mode. Ted 

McGeer had proposed un-actuated bipedal robot walking downhill 

which works under the action of gravity only [16]. These passive 

dynamic walkers have been further augmented with joint actuation to 

achieve stable walking on flat surface [17, 59]. Humans learn to walk 

with a stable gait from an early age of 12 to 18 months. The simple and 

repetitive nature of walking makes it a suitable candidate for 

realization with ILC schemes [6, 7, 35].  

3.1 Two-Legged Human Locomotion 

Human walking is a complex bipedal locomotion since it lacks static 

equilibrium of the moving body. It’s an extensively studied research 
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area. There are various phases in walking such as the nonlinear swing 

phase during single support, the impact with ground which resets the 

state, the double support phase in which the two feet are switched and 

the transition to single support phase where an “impulsive toe-off” 

occurs. Therefore, walking is modelled as a hybrid system for which the 

control system has to be designed so that desired dynamic performance 

i.e., stable walking is achieved along with safety and reliability. A 

passive compass gait robot provides the simplest model to study the 

biped walking dynamics as discussed in the next section. The periodic 

motion of the robot link mechanism and its interactions with the 

ground produces a displacement on the ground which is called biped 

walking gait. This is also known as “limit cycle walking” [31, 54].  

3.1.1 Compass Gait Model for Biped Robot 

A compass gait robot is a simple model in sagittal plane which can be 

used to study the nonlinear dynamics of the biped locomotion. The two 

legs of the compass gait have no knees or feet and are connected with 

each other by a friction-less hip joint. It has been named due to its 

similarity to a pair of compasses. It is a rigid body system having two 

links only, as shown in Figure 3.1. The whole robot rotates around the 

fixed reference point 0p  which acts as pointed “stance or support foot”. 

The “swing leg” is the free leg which moves forward (left to right) and 

is swapped with the stance leg on impact with the ground [16, 21, 58]. 
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The joint angles 1q  and 2q  are measured anti-clockwise. 1q  is the angle 

between vertical axis and the stance leg. The inter-leg angle 2q  for 

swing leg is measured with reference to the stance leg. Legs are 

assumed symmetric and mass-less except that each leg has equal point 

mass m. Each leg has equal length l a b= + . The hip mass 
h

m  

summarizes the upper body mass. 

3.1.2 Assumptions for Compass Gait Model 

Following assumptions have been used in modelling the compass gait 

robot [19, 58, 99-101] 

• No knees so the legs are straight rigid links. 

• Retractable lower legs to prevent foot scuffing. 

• Hip mass represents the upper body. 

Figure 3.1 The 2-link compass gait robot 
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• Feet are pointed having no mass. 

• Pointed feet do not slip. 

• Friction-less joints. 

• Walking is only in two-dimensional plane, i.e. no swaying. 

• Both feet touch the ground instantaneously during double 

support phase. 

• Motor dynamics are ignored for actuated walking. 

The joint angles and respective velocities constitute the state of the 

compass gait robot. Hence, the state vector x  is defined as follows. 

,
T

x q q =   ɺ   (3.1) 

where, vectors 1 2,
T

q q q =     and 1 2,
T

q q q =   ɺ ɺ ɺ  represent the joint angles 

and the angular velocities respectively. 

3.2 Dynamics of Compass Gait Robot 

When the robot is in contact with the ground with only one foot, it is 

said to have single support and the other leg swings freely hence called 

the swing phase. During the swing phase, the dynamics are similar to 

the 2nd order non-linear differential of an inverted pendulum coupled 

with a normal pendulum. The equations of motion for the swing phase 

can be obtained using Euler-Lagrange approach. The Lagrangian (L) is 

defined as the difference between the Kinetic (KE) and Potential (PE) 

energies of the robot. 

( , ) ( , ) ( )L q q KE q q PE q= −ɺ ɺ  (3.2) 
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The equations of motion for the joint angles are obtained from the 

Lagrangian given in Eq.(3.2) as follows. 

1

2

( , ) ( , ) ud L q q L q q
udt q q

τ
  ∂  ∂  − = =    ∂ ∂  

ɺ ɺ

ɺ
 (3.3) 

where τ  represents the vector of applied torques. The ankle joint 

torque 1u  causes the stance leg to rotate around it so that robot moves 

forward. The hip torque 2u  rotates the swing leg anti-clockwise to 

move it forward. Using Eq.(3.2), the Lagrangian (L) is substituted with 

KE and PE in Eq.(3.3), so that  

( , ) ( , ) ( )d KE q q KE q q dPE q

dt q q dq
τ

∂  ∂ − + =  ∂ ∂
ɺ ɺ

ɺ
 (3.4) 

The PE for the compass gait can be easily calculated using 

trigonometry to give 

( ) 1 1 2( ) ( ) ) cos( ) cos( )hPE q m a l m l g q mgb q q= + + − +  (3.5) 

The instantaneous KEs of the individual point masses are added to give 

the total KE as follows. 

2 2 2

1 2 32 2 2

1 1 1

2 2 2h
KE m p m p m p= + +ɺ ɺ ɺ  (3.6) 

The velocities for each point mass are given by 

1

1 1
1

cos( )

sin( )

q
p aq

q

 
 = −    

ɺ ɺ   (3.7) 

1

2 1
1

cos( )

sin( )

q
p lq

q

 
 = −    

ɺ ɺ  (3.8) 
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1 1 2

3 1 1 2
1 1 2

cos( ) cos( )1
( )

sin( ) sin( )2

q q q
p lq b q q

q q q

   +   = − + +   +      
ɺ ɺ ɺ ɺ  (3.9) 

Substituting the point mass velocities in Eq. (3.6) and after 

simplification using trigonometric identities gives the total KE for the 

compass gait robot. 

( )

( )

2 2 2 2 2
2 1

2 2 2
2 2 1 2

1 1
2 cos( )

2 2

1 1
             cos( ) 2

2 2

h
KE m l m l a b bl q q

mb q m b bl q q q

 
 = + + + −
  

+ + −

ɺ

ɺ ɺ ɺ

  

  (3.10) 

The relation in Eq.(3.10) can be converted to the familiar form of KE 

using the velocity vector qɺ  as 

1
( , ) ( )

2
TKE q q q M q q=ɺ ɺ ɺ   (3.11) 

where 

( ) ( )
( )

2 2 2 2 2
2 2

2 2
2

( )

2 cos( ) cos( )

cos( )

h

M q

m l m l a b bl q m b bl q

m b bl q mb

 + + + − − =  
 − 

 (3.12) 

( )M q  is known as the inertia matrix which is independent of stance leg 

angle 1q  and only a function of the masses, lengths and inter-leg angle 

2q . 

Substituting the derivatives from Appendix A in Euler-Lagrange 

Eq.(3.4) and further simplification, the following 2nd order, nonlinear 

equation describes the dynamics of the compass gait robot 
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( ) ( , ) ( )M q q C q q q G q τ+ + =ɺɺ ɺ ɺ  (3.13) 

where, ( , )C q qɺ  is the centripetal/coriolis matrix 

2 2 2 2

1 2

( ) ( , )
( , )

2 sin( ) sin( )
         

sin( ) 0

dM q KE q q
C q q q

dt q

mblq q mblq q

mblq q

∂
= −

∂
 
 =  −  

ɺ
ɺ ɺ

ɺ ɺ

ɺ

 (3.14) 

and ( )G q  represents the gravity vector as follows. 

( ) 1 1 2

1 2

( )
( )

( ) sin( ) sin( )
      

sin( )
h

dPE q
G q

dq

m a l m l g q mgb q q

mgb q q

=

 − + + + + =  +  

 (3.15) 

The swing phase continues until the swing leg strikes the ground and 

robot enters the double support phase followed by another swing action 

for the previously stance leg [54]. 

3.2.1 Swing Phase Dynamics in State Space Form 

To simulate the 2nd order nonlinear equation of motion for the swing 

phase in Eq.(3.13), it has to be represented in general nonlinear form as 

( , )x f x u=ɺ   (3.16) 

The state vector x  is 4-dimensional and given as 

1 2 1 2
, , ,

Tq
x q q q q

q

 
   = =     

ɺ ɺ
ɺ

  (3.17) 

Hence, the nonlinear dynamics of the actuated compass gait robot 

during swing phase in state-space form is given by 
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( ) 1
( ) ( , ) ( )

q
x

M q C q q q G qτ
−

 
 =    − −   

ɺ
ɺ

ɺ ɺ
 (3.18) 

The output is given by output equation as follows. 

q
y Cx I

q

 
 = =    ɺ

  (3.19) 

In this research, the Eq.(3.18) has been implemented using ODE solvers 

from MATLAB®. 

3.2.2 Impact Reset During Stance Phase 

For an appropriate initial condition, the compass gait robot moves 

forward such that the stance leg rotates around the stance foot and the 

other free leg swings left to right until it touches the ground surface. In 

the double support phase both feet are on the ground. This is modelled 

as an instantaneous event and swapping of feet occurs, i.e., the 

previously swinging leg becomes stance leg as new reference point and 

vice versa as shown in Figure 3.2. The coordinates are re-labelled at 

impact using + and – superscripts to represent pre- and post- impact 

conditions, respectively as  

1 1 2 2  and  q q q q+ − + −= − = −  (3.20) 

Eq.(3.20) gives the relationship for both the transformed pre- and post-

impact joint. 
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The transformed angles in vector-matrix notation are as follows 

1 0

0 1
q q+ −

 − =  −  
  (3.21) 

The geometry at the impact has determined that the inter-leg angle is 

twice the stance leg angle as below 

2 1 2q q= −   (3.22) 

However, the joint velocities have changed abruptly at impact. The KE 

is decreased due to energy loss at impact. Assuming a perfect impact, 

the angular momentum remains constant as under 

( ) ( )M q q M q q− − + +=ɺ ɺ   (3.23) 

The pre- and post-impact inertia matrices are calculated in Appendix A 

to find the transformed joint velocities at impact as follows 

q Rq+ −=ɺ ɺ   (3.24) 

Figure 3.2 Pre-impact and post-impact during double support phase 
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where reset matrix R describes the switch over at impact for the 

angular velocities. Hence, the state vector update at impact after 

combining Eq.(3.21) and Eq.(3.24) is given below 

0

0

I
x x

R
+ −

 − =    
  (3.25) 

Since the derivation of angular momentum for even a simple compass 

gait model is quite complex, the models with higher DOFs require 

symbolic tools to simplify the process. 

3.3 Simulations of Passive Compass Gait Robot 

A passive compass gait robot has no input torques applied upon it. 

Hence, it represents the unforced homogeneous model of the robot 

which can be studied to analyse the natural response as under 

( ) ( , ) ( ) 0M q q C q q q G q+ + =ɺɺ ɺ ɺ  (3.26) 

The natural unforced dynamics of compass gait have been analysed 

with suitable initial states walking over a flat surface. 

3.3.1 Simulations for Passive CG Walking Over Flat Surface 

The passive compass gait robot is simulated with parameters given in 

Table 3-1 from the initial state vector [ ]0 0.2,  0.4,  0.8,  2.1 Tx = − − . 
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Parameter Value Units 

Leg mass (m ) 5 kg 

Hip mass (
h

m ) 10 kg 

Half leg lengths (a b= ) 0.5 m 

 

A stick diagram shows multiple snap shots for ten steps of the passive 

compass gait robot walking on a flat surface in Figure 3.3. Stance and 

swing legs are represented by solid and the dotted lines, respectively. 
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The corresponding phase portrait in Figure 3.4 is used to show the 

relationship between joint angles and respective angular velocities of a 

leg during all phases of walking, such as swing phase (I-II) to impact 

Table 3-1 Compass gait robot parameters 

Figure 3.3 Stick diagram of CG robot walking on flat surface 
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reset (II-III), then stance phase (III-IV) followed by impact for the 

other swing leg  (IV-I) leading to swing phase to start the next step. 

 

                             

The contraction in limit cycles shows that the un-actuated passive 

compass gait robot is losing energy [31, 57]. The steps of compass gait 

robot are getting smaller and smaller along with decreasing angular 

velocities until it comes to a stand still or either falls down. If torques 

are applied to the joints of the robot, it can continue to move forward 

and may achieve stable walking gait as discussed in next section. 

3.4 Compass Gait Robot on Slope 

When a passive compass gait walks down a slope having angle γ  with 

respect to the horizontal axis, as shown in Figure 3.5, gravity acts upon 

Figure 3.4 Phase portrait of a selected leg of CG robot for 10 steps 
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it and can provide the necessary actuation to keep it walking in a 

stable fashion. 

 

         

Using suitable initial values of the joint angles and angular velocities, 

sustained periodic walking patterns/gaits can be obtained for slopes 

having suitable shallow gradients, for example, up to 5 degrees [57, 

102]. 

3.4.1 Equations of Motion for Down-hill Walking CG 

The KE in Eq.(3.11) of the compass gait robot is not affected by 

downhill walking. Only the PE in Eq.(3.5) changes depending on the 

slope γ  as shown below 

( ) 1 1 2( ) cos( ) cos( )hPE m a l m l g q mgb q qγ γ= + + + − + +  (3.27) 

This change in PE only changes the gravity vector ( )G q  in Eq.(3.27) as 

Figure 3.5 Compass gait robot walking down a slope 
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( ) 1 1 2

1 2

( ) sin( ) sin( )
( )

sin( )

hm a l m l g q mgb q q
G q

mgb q q

γ γ

γ

 − + + + + + + =  
 + + 

 (3.28) 

The other two matrices ( )M q  and ( , )C q qɺ  remain same as for the 

compass gait on flat surface in Eq.(3.12) and Eq.(3.14), respectively. 

The gravity acts as external torque acting on the joints to keep the 

compass gait robot to continue walking downhill. 

3.4.2 Simulations of Passive CG Robot Walking on Slope 

A passive compass gait robot is allowed to walk down a slope having 

gradient of -3 degrees under the force of gravity. The stick diagram in 

Figure 3.6 shows the symmetric walking pattern for compass gait robot 

walking down hill where the initial values for the state vector have 

been chosen as [ ]0 0.2,  0.4,  0.8,  2.1 Tx = − − . The corresponding phase 

portrait of a selected leg in Figure 3.7 shows that down hill walker has 

achieved symmetric gait since it has converged to a stable limit cycle. 

Thus, the gravity has compensated for the loss of energy due to 

impacts. The compass gait under the action of gravity is sensitive to 

initial conditions as well as to external disturbances. 
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Figure 3.6 Stick diagram of CG robot walking down hill 

Figure 3.7 Stable limit cycle for CG walking on slope 
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3.5 The Actuated Compass Gait Robot 

To realize flexible walking on a flat surface, the compass gait robot 

needs to be actuated instead of just relying on gravity as discussed in 

the previous section. After adding the actuating torques at stance foot 

(ankle) and the hip joint, the two torque inputs are collectively called 

“hip and ankle joint actuation”. The ankle joint actuator provides 

rotational motion for the stance leg and hip joint actuator causes the 

free leg to swing forward [17, 20, 59]. 

In this research, the actuated compass gait robot have been 

implemented using D-ILC and modified PD-ILC algorithms to generate 

the input torques τ  for stable walking gait as given in chapter 6 [12]. 

3.6 Linearised Model of the Compass Gait Robot 

The nonlinear equation for the compass gait robot can be linearised 

using a Taylors Series to obtain the linear equation of the unit leg 

length robot during swing phase [31, 57, 59]. The Eq. (3.13) is re-

written as two separate unforced differential equations as under 

( )1 2 1 2 2 2 1 2

2
2 2 1 1 2 1

3
cos( ) 1 2 cos( ) sin( )

2 4

3 1
sin( )( ) sin( ) sin( ) sin( ) 0

2 2 2

h

h

m
m q m q q q q m q q q

m
q q mg q mg q q m q

 + − + − +  

+ − + + − =

ɺɺ ɺɺ ɺɺ ɺ ɺ

ɺ

 (3.29) 

and 

( ) 2
2 1 2 2 1 1 2

1 1 1 1
1 2 cos( ) sin( )( ) sin( ) 0

4 4 2 2
m q q mq m q q mg q q− + − + + =ɺɺ ɺɺ ɺ   

  (3.30) 
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Re-arrange Eq. (3.29) as under 

1 2 1 2 2 2 2 1 2

2
2 2 1 1 2

3 1 1
cos( ) cos( ) sin( )

2 4 2

1 3 1
sin( )( ) sin( ) sin( ) 0

2 2 2

h

h h

m m q m q q mq m q q m q q q

m q q m m g q m g q q

  + − + − +  

 + − + + + =  

ɺɺ ɺɺ ɺɺ ɺɺ ɺ ɺ

ɺ

 (3.31) 

To find equilibrium points, set all derivatives to zero 

1 1 2

3 1
sin( ) sin( ) 0

2 2h h
m m g q m g q q

  + + + =  
 (3.32) 

For the above Eq. (3.32), to be valid, it is required that 

1 1 2
sin( ) 0   and   sin( ) 0q q q= + =  (3.33) 

The solution of Eq.(3.33) 
1 2

0q q= = , provides suitable equilibrium 

points as 
1

0q =  and 
2

0q = . 

Similarly, re-arranging Eq.(3.30), gives 

2
1 2 1 2 2 1 1 2

1 1 1 1 1
cos( ) sin( )( ) sin( ) 0

4 4 4 2 2
mq m q q mq m q q mg q q− + − + + =ɺɺ ɺɺ ɺɺ ɺ   

  (3.34) 

To find the equilibrium points, put all derivatives to zero in Eq.(3.34) 

1 2

1
sin( ) 0

2
mg q q+ =   (3.35) 

For Eq.(3.35), to be valid 
1 2

0q q+ = , and again provides suitable 

equilibrium points as 
1

0q =  and 
2

0q = . 
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Hence, the suitable equilibrium condition occurs when the compass gait 

is in straight standing position with no movement. Hence, equilibrium 

occurs when joint angles are zero as under 

1 2
0q q= =   (3.36) 

and the respective angular velocities are zero as 

1 2
0q q= =ɺ ɺ   (3.37) 

Hence, the equilibrium state 
eq
x  is given by 

1 2 1 2
, , , , 0, 0, 0, 0

T T

eq eq eq eq eq
x q q q q   = =   ɺ ɺ  (3.38) 

The first-order Taylors series expansion for a function of several 

variables 
1

( , , )
n

f x x…  around equilibrium points 
1
, ,

eq neq
x x…  is given as 

follows 

1

1 1
1

( , , )
( , , ) ( , , ) ( )

n
eq neq

n eq neq j jeq
j j

f x x
T x x f x x x x

x=

∂
= + −

∂∑
…

… …  (3.39) 

Applying the expansion in Eq. (3.39) to the Eq. (3.31) for biped robot 

to linearise around the chosen equilibrium point 
eq
x  while using 

1 1 1eq
q q q− = ∆ , 

2 2 2eq
q q q− = ∆ , 

1 1 1eq
q q q− = ∆ɺ ɺ ɺ , 

2 2 2eq
q q q− = ∆ɺ ɺ ɺ , 
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( ) ( )

1

1

2

1 2 2

1 1

1 2 1 1 10
1 0

02 1 2 1 2 2 1 1
0 0 02 1

0 0

2 2

3 1 3
sin( ) sin( )

2 4 2

cos( ) cos( ) cos( )

1
cos( )

2

h h q
q

q
q q q

q q

d
m m q mq m m g q q q

dq

m q q q q q q q q
q q

m q q

=
=

=
= = =

= =

        + + − + + ∆             
 
 ∂ ∂

−  + ∆ + ∆ 
 ∂ ∂
  

−

ɺɺ

ɺɺ ɺɺ

ɺɺ ɺɺ

ɺɺ ɺɺ ɺɺ ɺɺ
ɺɺ

ɺɺ ( ) ( )

( ) ( )

2

2 2 2

2 2

2 2

1 1 2
2 2 1

2

0 2 2 2 2 2 2
0 0 02 2

0 0

0 0
2 1 2 2 1 2 2 2 1 2 10 0 0

0 02 1 0
0

2

2

cos( ) cos( )

sin( ) sin( ) sin( )

sin( )

q
q q q

q q

q q
q q q
q q q

q

q q q q q q
q q

q q q q q q q q q q q
q q

m

q q
q

=
= = =

= =

= =
= = =
= = =

=

 
 ∂ ∂
 + ∆ + ∆ 
 ∂ ∂
  

∂ ∂
+ ∆ + ∆

∂ ∂

+
∂

+
∂

ɺɺ

ɺɺ ɺɺ

ɺ ɺ
ɺ ɺ ɺ

ɺ

ɺɺ ɺɺ ɺɺ
ɺɺ

ɺ ɺ ɺ ɺ ɺ ɺ ɺ
ɺ

ɺ
ɺ

( )

( ) ( )

2

1

2

2 2 2

2 2 2

1 1

2 2

1 2 20
0
0

2 2 2
0 0 02 2 2 2 2 2 2 2
0 0 0

2 2

0 01 2 1 2 1
0 0

1 2

1
sin( )( ) sin( )( ) sin( )( )

2

1
sin( ) sin( ) sin

2

q
q
q

q q q
q q q

q q
q q

q q

m q q q q q q q q
q q

mg q q q q q
q q

=
=
=

= = =
= = =

= =
= =

 
 
 
 
 
 
 

∆ 
 
  

 ∂ ∂ + + ∆ + ∆
 ∂ ∂ 

∂ ∂
+ + + + ∆ +

∂ ∂

ɺ
ɺ

ɺɺ ɺɺ ɺɺ

ɺ ɺ

ɺ ɺ ɺ ɺ
ɺ

1

2

01 2 2
0

( )

                                                                                          0

q
q

q q q=
=

 
 + ∆  

=
  

  (3.40) 

On evaluating the differentials and putting the values 

1 2 1 1

2

1 2

3 1 3
0 0

2 4 2

1 1
0 0 0 0 0 0 0 0 0

2 2

1
0 0

2

h h
m m q m q m m g q m q

m q m m

mg q q

       + ∆ + ∆ − + ∆ − − + ∆          

     − + + ∆ + + + + + + +     

 + + ∆ + ∆ = 

ɺɺ ɺɺ ɺɺ

ɺɺ   

  (3.41) 

Further simplification of Eq. (3.41) gives 

( )1 2 1 2

1 1 1
0

2 4 2h h
m m q m q m m g q mg q

  + ∆ − ∆ − + ∆ + ∆ =  
ɺɺ ɺɺ  (3.42) 
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Similarly, Eq.(3.34) is linearised around equilibrium point as under 

( )

( )

( )

2 2

1 1

2

1

2 2

1 1

0 02 1 2 1 2
0 0

2

1

02 1 1
0

1

2 2
0 02 1 2 1 2
0 0

2

2

2 1

1

cos( ).( ) cos( )( )
1 1

4 2
cos( )( )

sin( )( ) sin( )( )
1 1

4 2
sin( )( )

q q
q q

q
q

q q
q q

q q q q q
q

mq m

q q q
q

q q q q q
q

mq m

q q
q

= =
= =

=
=

= =
= =

 ∂ + ∆
 ∂ −  ∂ + ∆ ∂  

∂
+ ∆

∂
−

∂
+

∂

ɺɺ ɺɺ

ɺɺ

ɺ ɺ

ɺɺ ɺɺ

ɺɺ

ɺɺ ɺɺ
ɺɺ

ɺ ɺ

ɺɺ

ɺ
ɺ
( )

2

1

1 1

2 2

1

2

2
0 1
0

0 01 2 1 2 1
0 0

1

01 2 2
0

2

sin( ) sin( )
1

0
2

sin( )

q
q

q q
q q

q
q

q

q q q q q
q

mg

q q q
q

=
=

= =
= =

=
=

 
 
 
 
 
 ∆ 
  

 ∂ + + + ∆
 ∂  = ∂ + + ∆ ∂  

ɺ

ɺ

 (3.43) 

On evaluating the differentials and putting values 

1 1 2

1 2

1 1 1 1
0 0 0 0 0

4 2 4 2

1
0 0

2

m q m q m q m

mg q q

   ∆ − + + ∆ + ∆ − + +   

 + + ∆ + ∆ = 

ɺɺ ɺɺ ɺɺ

 (3.44) 

Further simplification of Eq. (3.44) gives 

1 2 1 2

1 1 1 1
0

4 4 2 2
m q m q mg q mg q− ∆ + ∆ + ∆ + ∆ =ɺɺ ɺɺ  (3.45) 

The equations (3.42) and (3.45) can be written in matrix form as below 

1 1

2 2

1 1
( ) 0

4 2
1 1 1 1 0

4 4 2 2

h h
m m m m m mgq q

q q
m m mg mg

   
   + − − +     ∆ ∆        + =        ∆ ∆             − −      

ɺɺ

ɺɺ
 (3.46) 

The ∆  can be removed for simplicity, so Eq.(3.46) can be compactly 

written as 
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0 0
0M q G q+ =ɺɺ   (3.47) 

where, the 
0

M is the inertia matrix for the linearised model as 

0
2 4

4 4

h

m m
m

M
m m

 
 + −
 =  
 −  

  (3.48) 

and 
0

G  is the gravity matrix below 

0

( )
2

2 2

h

mg
m m g

G
mg mg

 
 − +
 =  
 
  

 (3.49) 

Similarly, the linearised equation of motion for actuated compass gait 

robot is given by 

0 0
M q G q τ+ =ɺɺ   (3.50) 

The linearised state space description for the actuated compass gait 

robot from Eq. (3.50) can be formulated further as 

2 2 2 2 2 2

1 1
0 0 2 2 0

0 0

0

Iq q

q qM G M
τ

× × ×
− −

×

      
      = +      −            

ɺ

ɺɺ ɺ
 (3.51) 

The Eq. (3.51) can be written in standard form as under 

x Ax Bu= +ɺ   (3.52) 

for the state vector x  chosen as 

1 2 1 2
, , ,

Tq
x q q q q

q

 
   = =     

ɺ ɺ
ɺ

  (3.53) 
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and, the matrices A  and B  are given by 

2 2 2 2

1
0 0 2 2

0

0

I
A

M G

× ×
−

×

 
 =  −  

  (3.54) 

2 2

1
0

0
B

M

×
−

 
 =  
  

  (3.55) 

The linearised model needs to be a reasonable approximation of the 

nonlinear model. This can be achieved since the average values of joint 

angles are within 0.3±  radians which can be safely approximated as 

zero for linear model. The average values for the joint angular velocities 

lie within 1±  rad/s. The effect of the velocity needs further analysis for 

which the linear model is also simulated with same parameters as used 

for nonlinear compass gait robot.  
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The comparison given in Figure 3.8 shows that the performance of the 

linearised model is close to the nonlinear model. Hence it can be safely 

Figure 3.8 Comparison between nonlinear and linear models of CG
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assumed that for normal walking of compass gait the chosen linear 

model is a reasonable approximation of the nonlinear model and hence 

can be used for the ILC analysis. 

3.7 Model Uncertainties in Compass Gait Robot 

Following reasons cause the uncertainty in the mathematical model of 

the robot: 

Linearization, point mass assumption, neglecting the hardware such as 

electrical wiring cables, the centres of gravity may also change from 

original ones and other simplifying assumptions. 

3.7.1 Effects of Model Uncertainties 

The output may not match with the real robot, phase portraits can also 

differ and stable walking gait may not be achieved over a real robot. 

3.7.2 How to Analyse the Model Uncertainties 

Variations in the model parameters Inertia matrix, Coriolis matrix and 

the gravity vector may be introduced by perturbations in masses, 

lengths and etc. The next subsection gives the uncertainty analysis for 

D-ILC which is an extended mathematical formulation of the earlier 

work from Danwei Wang [103]. 
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3.7.3 Formulation to Analyse Effects of Uncertainties 

Consider following discrete-time nonlinear dynamic system with the 

uncertainties and other disturbances lumped and denoted by ( , )w i k  

( ) ( )( 1, ) ( , ), ( , ), ( , ) ( , )x i k f x i k i B x i k i u i k w i k+ = + +  (3.56) 

and the output equation as 

( , ) ( ) ( , ) ( , )y i k C i x i k v i k= +  (3.57) 

where, k  denotes the batch number having M  number of samples in 

each trial, [1, ]i M∈  is the time index or sample number during each 

batch, state vector nx ∈ ℝ , input ( , ) ru i k ∈ ℝ  and output of the system 

is ( , ) py i k ∈ ℝ . 

The uncertainty ( , )w i k  is assumed bounded by 
w
b  so that ( , )

w
w i k b≤  

on the interval [1, ]M . Similarly ( , )v i k  is bounded by 
v
b  such that 

( , )
v

v i k b≤ . 

The desired output * ( )y k  with initial state *(1)x , is considered 

achievable, so there exists unique input * ( )u k  and state * ( )x k  which 

correspond to the desired output.  

The functions ( , )f x i  and ( , )B x i  are globally uniformly Lipschitz in x  

on the interval 1,M    such that ( ) ( )1 2 1 2
, ,

f
f x i f x i c x x− ≤ −  and 

( ) ( )1 2 1 2
, ,

B
B x i B x i c x x− ≤ −  are valid for positive constants 

f
c  

and 
B
c . The matrices ( , )B x i  and ( , )C x i  are bounded as ( , )

B
B x i b≤   

and ( , )
C

C x i b≤  . The product CB  is full rank. 
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Every batch starts within the vicinity of desired initial state *(1)x  such 

that for a positive constant 
0x

b , it satisfies *
0

(1) (1, )
x

x x k b− ≤ . 

The input is updated using following ILC algorithm 

{ }( , 1) ( , ) ( 1, ) ( , )du i k u i k K e i k e i k+ = + + −  (3.58) 

where dK  is the learning gain matrix with bound 
Kd
b , such that 

d KdK b≤  for all i M∈ . ( , )e i k  is the error between desired and actual 

output. 

Assume that for the time-varying system in Eq. (3.56) and (3.57) with 

ILC update algorithm in Eq. (3.58) under the assumptions presented, the 

following inequality holds for all ( , )x i  

( 1) ( , ) 1
d

I K C i B x i ρ− + ≤ <  (3.59) 

The α -norm with 1α ≥ , has been defined as under for a positive real 

function :q N R→ , 

1
(.) sup ( )

i

i N

q q i
α α∈

 =   
 

When there are no state or modelling errors, i.e., 0
w
b =  and 

0
0

x
b = , 

the control input ( , )u i k  converges to the desired *( )u i , the state ( , )x i k  

to *( )x i  such that output ( , )y i k  follows the desired output *( )y i  as 

batch number k → ∞ . However, when there is uncertainty as state or 

modelling errors, the convergence is achieved with error bounds as 

given below: 

The error in ILC update algorithm in Eq. (3.58) by denoting 

*( ) ( , ) ( , )u i u i k u i k− = ∆  can be written as 
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{ }

( , 1) ( , ) ( 1) ( 1, )

                + ( ) ( , ) ( 1, ) ( , )

d

d d

u i k u i k K C i x i k

K C i x i k K v i k v i k

∆ + = ∆ − + ∆ +

∆ + + −
 (3.60) 

and using Eq. (3.56) for desired dynamics with out disturbance as 

( ) ( )* * * *( 1) ( ), ( ), ( )x i f x i i B x i i u i+ = +  (3.61) 

then the Eq. (3.60) becomes 

( )

( ) ( ){ }* *

( , 1) ( 1) ( , ), ( , )

          ( 1) ( , ) ( 1, ) ( , )

( 1) ( ), ( , ), ( ) ( ) ( , )

d

d

d d

u i k I K C i B x i k i u i k

K C i w i k v i k v i k

K C i f x i i f x i k i K C i x i x i k

 ∆ + = − + ∆ 
 + + + + − 

   − + − + −   

 (3.62) 

Taking norms on both sides of Eq. (3.62),  

1 2
( , 1) ( , ) ( , )u i k u i k b h x i kρ∆ + ≤ ∆ + + ∆  (3.63) 

where used inequality (3.59) and *
*u

u b≤  and 

1
( 2 )

Kd C w v
b b b b b= + , 

1
1

f
h c= +  and  

2 1Kd C
h b b h=  

Similarly, subtracting both sides of Eq. (3.56) from *( 1)x i +  and 

denoting *( 1) ( 1, ) ( 1, )x i x i k x i k+ − + = ∆ + , it becomes 

( ) ( )

( ) ( ) ( )

*

* *

( 1, ) ( ), ( , ),

( ), ( , ), ( ) ( , ), ( , ) ( , )

x i k f x i i f x i k i

B x i i B x i k i u i B x i k i u i k w i k

∆ + = −

 + − + ∆ − 
 (3.64) 

Taking norms on both sides of Eq. (3.64), to get as follows 

*
( 1, ) ( , ) ( , )

f u B B w
x i k c x i k b c b u i k b∆ + ≤ ∆ + + ∆ +  (3.65) 

Using lemma in Appendix-B, following inequality holds for Eq. (3.65) 

1
1

* 0
0

( , ) ( , )
i

i j i

f B u B w f x

j

x i k c b u j k b c b c b
−

− −

=

 ∆ ≤ ∆ + + + ∑  (3.66) 
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Substitute, Eq. (3.66) into Eq. (3.63), to get 

1 2 0

1
1

2 *
0

( , 1) ( , )

               ( , )

i

f x

i

i j

f B u B w
j

u i k u i k b h c b

h c b u j k b c b

ρ

−
− −

=

∆ + ≤ ∆ + +

 + ∆ + + ∑
 (3.67) 

Multiply both sides of Eq. (3.67) by ( )1
i

α
 such that 

1
max 1,hα  >    

( ) ( ) ( )

( ) { }( )

1 2 0

1
1

2
*

0

1 1 1( , 1) ( , )

1 1                  ( , )

i
i i i

i f
f x

i j
i j j

f

B u B w
j

c
u i k u i k b h c b

ch
b u j k b c b

ρ
α α α α

α αα α

− −−

=

 ∆ + ≤ ∆ + +    

    +  ∆ + +        
∑

  

  (3.68) 

Since, the norm of a constant is also a constant, Eq. (3.68) becomes 

{ }( )
1 2 0

1
1

2 *

0

( , 1) ( , )

( , )
           

i

f x

i j
i

B u B w f

j

u i k u i k b h c b

h b u i k b c b c

α α

α

ρ

α α

− −−

=

∆ + ≤ ∆ + +

 ∆ + +  +    
∑

 (3.69) 

Evaluate the sum and simplify Eq. (3.69), 

2
1

( , 1) ( , )

n

f
B

f

c
h b

u i k u i k
cα α

α
ρ ε

α

        −          
∆ + ≤ + ∆ + 

 −
 
 
  

 (3.70) 

where  

{ }2 *

1 2 0
1

n

u B wi f
f x

f

h b c b c
b h c b

c
ε

αα

  +   = + + −     −    
 (3.71) 

For suitable values of α , so that 
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2
1

ˆ 1

n

f
B

f

c
h b

c

α
ρ ρ

α

      −         
= + <

−
 (3.72) 

This ensures that error norm ( , )u i k
α

∆  decreases as batch no. k → ∞ , 

so the relation becomes 

lim sup ( , )
ˆ1k

u i k
α

ε

ρ→∞
∆ ≤

−
 (3.73) 

Similarly for the states, multiply both sides of Eq. (3.66) by ( )1
i

α
, 

( )

( ) { }( )
1

1

* 0
0

1( , )

1 1 1( , )

i

i j ii j j
f f

B u B w x
j

x i k

c c
b u j k b c b b

α

α α αα α

− −−

=

∆

     ≤  ∆ + +  +            
∑

 

          (3.74) 

Simplifying Eq. (3.74) 

{ }*

0

1 1

( , ) ( , )

n n

f f
B u B w

x

f f

c c
b b c b

x i k u j k b
c cα α

α α

α α

           −  + −                 ∆ ≤ ∆ + +
− −

 

  (3.75) 

which implies 

( )( )

{ }*

0

1 1

lim sup ( , )
ˆ1

n n

f f
B u B w

x
k

ff

c c
b b c b

x i k b
ccα

ε
α α

αα ρ→∞

           −  + −                 ∆ ≤ + +
−− −

  

  (3.76) 

Subtracting *( , )y i k  from both sides of output Eq. (3.57)  
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( , ) ( , ) ( , )y i k C x i k v i k∆ = ∆ −  (3.77) 

Taking norm on both sides of Eq. (3.77) and multiplying both sides 

with ( )1
i

α
, to get 

( ) ( ) ( )1 1 1( , ) ( , )
i i i

g v
y i k c x i k b

α α α
∆ ≤ ∆ +  (3.78) 

where used ( ) ( )1 2 1 2
( ) , ( ) ,

g
C i x i C i x i c x x− ≤ − .  Further simplifying 

Eq. (3.78), gives 

( , ) ( , )
g v

y i k c x i k b
α α

∆ ≤ ∆ +  (3.79) 

Using Eq. (3.75) in Eq. (3.79), the limiting relation for the output error 

becomes 

( )( )

{ }*

0

1 1

lim sup ( , )
ˆ1

                                        

n n

f f
g B g u B w

k
ff

g x v

c c
c b c b c b

y i k
cc

c b b

α

ε
α α

αα ρ→∞

           −  + −                 ∆ ≤ +
−− −

+ +

  

  (3.80) 

Remarks: 

For the ideal case when there are no disturbances or uncertainty along 

with identical initial conditions, the bounds are 0
w
b = , 0

v
b = ,

*
0

u
b =  

and 
0

0
x
b = , so that error bound 0ε = , as well and hence the input, 

state and output errors tend to zero as per the inequalities in equations 

(3.73), (3.76) and (3.80) respectively as: 

( , ) 0u i k
α

∆ → , ( , ) 0x i k
α

∆ →  and ( , ) 0y i k
α

∆ →  
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3.7.4 Simulations with variable parameters 

Here, we have analyzed the effects of a range of parameter variations 

using phase portraits. The hip and leg masses have been changed from 

+/- 20 % of that used in the nominal model of the compass gait robot. 

The phase portraits for un-actuated compass gait robot on flat surface 

are shown in Figure 3.9 and Figure 3.10 below 
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The changes in phase portraits point towards the effect of the 

parameter variations on the walking gait of the robot. 

Figure 3.9 Effects of +/- 20 % change in hip mass of CG robot 
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For stable walking gait the phase portraits have to stay inside a 

permissible band. 

3.8 Summary 

The mathematical model for the compass gait bipedal walking robot 

has been formulated. The dynamic relationship is represented by a 

second order nonlinear equation which is further expressed as a state 

space system. The linearised relationship has also been derived. Effects 

of parameter uncertainty have been discussed.  

Figure 3.10 Effects of +/- 20 % change in leg mass of CG robot 
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Chapter 4 

4 Convergence Analysis - ILC with 

Zero Initial Errors  

This chapter deals with the rate of convergence of conventional ILC 

algorithms with respect to control input. Discrete-time linear state 

space representation of a linear time-invariant system has been 

considered along with usual assumptions which ensure D-ILC algorithm 

convergence in terms of output error as well. The relationship for the 

rate of convergence of control input up to component level has been 

formulated from the matrix controlling the evolution of batch to batch 

input errors. Using this relationship gives the rate for any component 

during earlier iterations as well rather than the usual asymptotic 

analysis developed for output error case earlier [104, 105]. 

4.1 Discrete-time LTI System 

A discrete-time LTI system is considered in Eq. (4.1) below. 

( 1, ) ( , ) ( , )

    ( , ) ( , )

x i k Ax i k B u i k

y i k C x i k

+ = +

=
 (4.1) 

where k  denotes the batch number having M number of samples in 

each trial, [1, ]i M∈  is the time index or sample number during each 

batch, state vector nx ∈ ℝ , input ( , ) ru i k ∈ ℝ  and output of the system 
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is ( , ) py i k ∈ ℝ . ,  A B  and C  are the real-valued state, input, and output 

matrices respectively having appropriate dimensions. The initial 

condition 0(1, )x k x=  is same at the start of each batch. 0( ,1) ( )u i u i=  is 

the control input vector for first batch which may be externally 

specified or left to be zero [38, 71]. 

The additional assumptions made are as follows. 

• Desired output * ( )y i  for the complete batch is known. 

• The plant parameters ,  ,  A B C  remain unchanged. 

• Noise free cases are considered. 

• Solution of the DT system is given in Eq.(4.1) [106, 107]. 

-1
- -1

0
0

( , ) ( , )
i

i i j

j

y i k CA x CA Bu j k
=

= + ∑  (4.2) 

With the knowledge of the desired output * ( )y k , the ILC searches the 

desired input * ( )u k . To find the vector of desired inputs is the 

objective of any control algorithm. So, it is an inverse problem. 

The difference between the desired and the actual outputs is the error 

as given in Eq. (4.3). 

 = − = … ( ) * ( ) ( ) (1, ), (2, ), , ( , )
T

e k y k y k e k e k e M k  (4.3) 

This error is the basis for formulation of performance index to update 

the control input generated by the ILC. 
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4.2  D-ILC Control Input Update 

Using D-ILC the control input is updated on the basis of the derivative 

of error in the previous iteration at the given time index as given in Eq. 

(4.4) below. 

( , 1) ( , ) { ( 1, ) ( , )}du i k u i k K e i k e i k+ = + + −  (4.4) 

where dK  is the real-valued learning gain matrix and the derivative of 

error ( , )e i kɺ  has been approximated as forward difference given in Eq. 

(4.5) below 

= + −ɺ( , ) ( 1, ) ( , )e i k e i k e i k  (4.5) 

with the identical initial conditions or same output * (1) (1, )y y k=  at 

the 1st time index for each batch, the initial error, (1, ) 0e k = . The 

objective of the D-ILC algorithm is to find the sequence ( , )u i k  which 

matches the desired input sequence as shown in Eq. (4.6). Owing to linear 

relationship between input u  and output y  of the LTI system, the 

convergence of control input is equivalent to convergence of output. 

Hence, ( , )u i k  converges under the same conditions as ( , )y i k  converges. 

→∞
= ∀ = …lim ( , ) * ( )   for 1, 2, ,

k
u i k u i i M  (4.6) 

It also ensures convergence of the output in Eq. (4.7) due to LTI 

system as under. 

lim ( , ) * ( )   for 1, 2, ,
k

y i k y i i M
→∞

= ∀ = …  (4.7) 

 



86 

 

In ILC domain, usually the convergence of algorithm has been 

investigated in terms of output error and conditions for convergence 

and monotonicity have been established as mentioned in next section. 

4.3 Convergence of ILC in Terms of Output Error 

Convergence of an ILC algorithm is generally stated as the minimisation 

of the tracking error ( , )e i k , so that the perfect tracking of ideal/desired 

output * ( )y i  is achieved as k , the number of batches increases [108]. 

lim ( , )  * ( )    for 1,2, ,
k

y i k y i i M
→∞

→ ∀ = …  (4.8) 

Or, equivalently  

lim ( , )  0   for 1,2, ,
k

e i k i M
→∞

→ ∀ = …  (4.9) 

The convergence of error has been analysed using various measures or 

norms [32]. In the following sub-section, the relationship for the output 

error evolution upto component level (i.e., for each time index) has been 

formulated so that convergence of output error can be analysed. 

4.3.1 Batch to Batch Output Error Evolution 

The output at first sample time 1i =  is fixed for each iteration due to the 

reset to the same initial condition 0(1, )x k x=  for each batch as follows: 

*
0(1, ) (1, ) (1)   y k Cx k Cx y k= = = ∀  (4.10) 

Obviously, the error for first time index is always zero 
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(1, ) 0   e k k= ∀   (4.11) 

But, the errors at other time-indices need more investigation as follows. 

As for the time index 2i = , the output at ( 1)thk +  iteration is 

(2, 1) (2, 1) (1, ) (1, 1)y k Cx k CAx k CBu k+ = + = + +  (4.12) 

Subtracting both sides of Eq.(4.12) from the desired output *(2)y  and 

substituting (1, 1)u k +  from Eq.(4.4) and using the fact that error for 

the 1st time index (1, ) 0e k =  for all batches 

* *

* *

* *

(2) (2, 1) (2) (1, ) (1, ) { (2, ) (1, )}

(2, 1) (2) (2, ) { (2) (2, )}

(2, 1) (2) (2, ) (2) (2, )

d

d

d d

y y k y CAx k CBu k CBK e k e k

e k y Cx k CBK y y k

e k y y k CBK y CBK y k

− + = − − − −

⇒ + = − − −

⇒ + = − − +

  

  (4.13) 

On further simplification, the output error evolution at the time index 

2i = , is  

( )*(2, 1) (2) (2, )

(2, 1) (2, )
d

d

e k I CBK y y k

e k I CBK e k

 + = − − 
 ∴ + = − 

 (4.14) 

For the ( 1)thk +  iteration, the output at 3i =  is 

(3, 1) (2, 1) (2, 1)y k CAx k CBu k+ = + + +  (4.15) 

Subtracting both sides of Eq.(4.15) from the desired output *(3)y , 

substituting (2, 1)u k +  from Eq.(4.4) and using same initial condition 

(1, 1) (1, )x k x k+ = , the relationship becomes 



88 

* *

*

*

(3) (3, 1) (3) (2, 1) (2, ) { (3, ) (2, )}

  (3) { (1, 1) ( 1)} (2, ) { (3, ) (2, )}

  (3) { (1, ) ( 1)} (2, ) { (3, ) (2, )}

d

d

d

y y k y CAx k CBu k CBK e k e k

y CA Ax k Bu k CBu k CBK e k e k

y CA Ax k Bu k CBu k CBK e k e k

− + = − + − − −

= − + + + − − −

= − + + − − −

  (4.16) 

Re-arranging and further simplifying using the fact that error at 1st 

time index (1, ) 0   e k k= ∀  

( ){ }

{ }

* 2

*

(3, 1) (3) (1, ) (1, ) (2, ) (1, )

               (2, ) (2, ) (3, )

            (3) (1, ) (1, ) (2, )

               (2, ) (2, ) (3, ) 

         

d

d d

d

d d

e k y CA x k CAB u k K e k e k

CBu k CBK e k CBK e k

y CA Ax k Bu k CABK e k

CBu k CBK e k CBK e k

+ = − − + −

− + −

= − + −

− + −
*   (3) (2, ) (2, ) (3, )

               (2, ) (2, )
d

d d

y CAx k CBu k CBK e k

CBK e k CABK e k

= − − −

+ −

(4.17) 

Finally, the relationship for the output error evolution at time index 

3i =  is given by 

(3, 1) (3, ) (3, ) ( ) (2, )

(3, 1) (3, ) ( ) (2, )
d d

d d

e k e k CBK e k C I A BK e k

e k I CBK e k C I A BK e k

+ = − + −
 ∴ + = − + − 

 (4.18) 

The general relationship for output error evolution for time index 

2, ,i M= … , is 

1
( 1)

2

( , 1) ( , ) ( ) ( , )
i

i j
d d

j

e i k I CBK e i k CA I A BK e j k
−

− +

=

 + = − + −  ∑  (4.19) 

Eq.(4.19) can be re-written in matrix form as follows 
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3 2

0 0(2, 1) (2, )

( )(3, 1) (3, )

0

( , 1) ( , )( ) ( )

d

d d

M M

d d d

I CBKe k e k

C I A BK I CBKe k e k

e M k e M kCA I A BK CA I A BK I CBK− −

    −+     
    − −+     =     
    
    + − − −        

⋯

⋱ ⋮

⋮ ⋱ ⋱⋮ ⋮

⋯

  (4.20) 

Compactly, Eq.(4.20) is given as 

( 1) ( )
e

e k L e k+ =   (4.21) 

where ( )e k  is the output error of the batch at the thk  iteration with 

corresponding output error ( 1)e k +  at the ( 1)thk +  iteration. The 

matrix eL  controls the output error evolution. Its spectral radius should 

be less than one for output error convergence. Since eL  is a Toeplitz 

matrix whose diagonal entries are the eigenvalues, hence the output 

error in Eq.(4.20) and Eq.(4.21) obtained using D-ILC algorithm in Eq. 

(4.4) is convergent under following condition [8, 48, 109]. 

( )max eig 1dI CBK− <  (4.22) 

The product ( )dCBK  has to be non-singular for Eq. (4.22) to be valid. 

4.4 Convergence of Control Input at Component 

Level Using D-ILC 

In this section, the component-level relationship for ( , 1)u i k +  at the 

( 1)thk +  batch is presented in terms of static and dynamic components 

as well as the control input ( , )u i k  from previous batch k . Convergence 
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of control input ( , )u i k  approaching the desired input * ( ) u i  has been 

investigated as well. 

lim ( , ) * ( )
k

u i k u i
→∞

=   (4.23) 

So that the desired output sequence * ( )y i  is generated when sequence 

* ( ) u i is applied to the system having transfer function ( )G z  as shown 

below in Eq. (4.24) 

=* ( ) ( ) * ( )y i G z u i   (4.24) 

In following sections, convergence condition for control input and rate 

of convergence for individual components of the control input have 

been derived. Bounds of convergence rates have also been formulated. 

4.4.1 Batch to Batch Control Input Sequence 

The D-ILC algorithm generates the batch to batch control input 

sequence, i.e., from 1,2, , , 1,k k +… … for each time index i . In this 

section a recurrence relationship is derived to perform a convergence 

analysis on ( , )u i k . The control input sequences for individual time 

indices are derived using Eq. (4.4). 

For 1i = , we get 

(1, 1) (1, ) { (2, ) (1, )}

(1, 1) (1, ) { (2, )}   since  (1, ) 0

d

d

u k u k K e k e k

u k u k K e k e k

+ = + −

+ = + =  (4.25) 

On further simplification, the Eq.(4.26) is obtained. 
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{ } { }

( ) { }

(1, 1) (1, ) * (2) (1, ) (1, )

(1, 1) (1, ) * (2) (1, )

d d

d d d

u k u k K y K C Ax k Bu k

u k I K CB u k K y K CAx k

+ = + − +

+ = − + −
 (4.26) 

Similarly, for 2i = , there is 

( ) [ ]

( )

(2, 1) (2, ) * (3) * (2)

                   (2, )

d d

d

u k I K CB u k K y y

K C I A x k

+ = − + −

+ −
 (4.27) 

The sequences in Eq. (4.25) can be generalised for  thi component as. 

( )

( )

( , 1) ( , ) * ( 1) * ( )

                        ( , )

d d

d

u i k I K CB u i k K y i y i

K C I A x i k

 + = − + + − 

+ −
 (4.28) 

Solution for Eq. (4.28) is a recurrence relation in Eq.(4.29). 

( )

( ) { } ( )

1

1
1

1

( , ) ( ,1)

 * ( 1) * ( )   ( , )

k

d

k
k j

d d d
j

u i k I K CB u i

I K CB K y i y i K C I A x i k

−

−
− −

=

= − +

 − + − + − ∑
  

  (4.29) 

For zero control input at first batch, i.e., ( ,1) 0u i = , the Eq. (4.29) 

reduces to Eq. (4.30) below. 

( ) { } ( )
1

1

1

( , )

* ( 1) * ( )  ( , )
k

k j

d d d
j

u i k

I K CB K y i y i K C I A x i k

−
− −

=

 = − + − + − ∑
  

  (4.30) 

As batch number k  increases, the control input components achieve 

convergence one after the other with increasing time index i  inside a 
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batch. This can be observed from re-writing the sequences in Eq. (4.28) 

to show the dependency of ( , 1)u i k +  on ( , )u i k  from the previous batch 

including all the other previous control input components 

( 1, ), ( 2, ), , (1, )u i k u i k u k− − …  occurring in the same batch as follows 

( ) ( )

( ) { }

( , 1) ( , )  ( 1, )

           ( 1, ) * ( 1) * ( )

d d

d d

u i k I K CB u i k K C I A Bu i k

K C I A Ax i k K y i y i

+ = − + − −

+ − − + + −
 (4.31) 

From the expansion of ( 1, )x i k−  down to (1, )x k  using the dynamic 

relationship in Eq.(4.1), the Eq. (4.31) can be expressed in terms of the 

initial state and previous input terms from the same iteration k  as 

given below 

( ) ( )

( ) ( )

{ }

− −

+ = − + − −

+ + − + −

+ + −

⋯ 2 1

( , 1) ( , )  ( 1, )

(1, ) (1, )

            * ( 1) * ( )

d d

i i
d d

d

u i k I K CB u i k K C I A Bu i k

K C I A A Bu k K C I A A x k

K y i y i

 (4.32) 

The Eq. (4.32), has four groups of terms. 1st term shows the effect of 

the input ( , )u i k  at same time index during previous iteration. To 

obtain a stable and bounded sequence of control inputs, +( , 1)u i k , the 

poles of the scaling factor( )dI K CB−  must lie inside unit circle, i.e., 

maximum absolute value of eigenvalue of ( )dI K CB−  also termed as 

spectral radius, should be less than 1 as given in Eq. (4.33)below. 

( )− <max eig 1dI K CB  (4.33) 

2nd group of components consist of scaled input values which occurred 

during earlier in the last iteration. All of these have a common term 
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( )−I A  which has magnitude less than one due to stable system with 

eigenvalues of A  less than one. These components shall always possess 

finite values. The 3rd group is the scaled initial condition (1, )x k  and 4th 

is the scaled error { }+ −* ( 1) * ( )y i y i  between desired output values 

at consecutive time indices. Both of these have finite values. Hence, if 

the Eq. (4.33) is satisfied the sequence shall be bounded over the 

iterations. So Eq. (4.33) gives the necessary condition for convergence 

of D-ILC algorithm. It is clear that this condition does not depend on 

the system matrix A , which implicitly points to the ability of ILC 

algorithm to achieve convergence even when the model parameters are 

unknown. 

Owing to the presence of previous input components at all the earlier 

time indices of the previous iteration in Eq. (4.32), it can be inferred 

that first the convergence of the 1st input component → *(1, ) (1)u k u  

occurs, which causes the convergence for the 2nd output component 

*(2, ) (2)y k y→ . Then after one or few batches, 2nd input component 

*(2, ) (2)u k u→  convergence is achieved followed by 3rd output 

component *(3, ) (3)y k y→ . Similarly, the convergence of other inputs 

( , )'su i k  and corresponding outputs ( 1, )'sy i k+  occur in a sequential 

manner in further batches. The process of batch to batch sequential 

convergence of samples is shown in the Figure 4.1. 
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4.5 Rate of Convergence of Control Input Error  

In this section, rate of convergence of input sequence for D-ILC has 

been formulated at component level. Smallest singular value has also 

been utilised by some researchers to formulate the upper bound for 

convergence rate of the input sequence in case of norm optimal P-ILC 

[104]. For noise-free systems, exponential rate of convergence for control 

input sequence has been established in terms of infinity-norm [110]. The 

rate of convergence up to component level has not been observed in 

earlier works. The formulation of the evolution and rate of convergence 

of D-ILC algorithm in terms of control errors at component level allows 

the rate analysis for real applications having smaller batch numbers. 

4.5.1 Input Error Evolution at Component Level - Formulation 

Using D-ILC algorithm in Eq. (4.4), the component-wise control input 

error between desired control input * ( )u i  and ( , 1)u i k +  is calculated 

in Eq. (4.34) below. 

Figure 4.1: Sequential convergence of samples 

⊕ d
K

G

Time Index i 

Iteration k Iteration k 

Input Output 

Time Index i 
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{ }

{ }

 − + = − + + − 

 + − + = − −  
 − − 

* ( ) ( , 1) * ( ) ( , ) { ( 1, ) ( , )}

* ( 1) ( 1, )
                 * ( ) ( , )

   * ( ) ( , )

d

d

u i u i k u i u i k K e i k e i k

Cx i Cx i k
u i u i k K

y i y i k

  

  (4.34) 

It can be re-arranged and further expressed as follows. 

( ){ } ( ){ }

− + =

− − + − −

*( ) ( , 1)

 * ( ) ( , ) * ( ) ( , )d d

u i u i k

I K CB u i u i k K C I A x i x i k
 (4.35) 

Let’s denote. 

* ( ) ( , ) ( , )

* ( ) ( , 1) ( , 1)

u i u i k u i k

u i u i k u i k

− = ∆

− + = ∆ +
 (4.36) 

The Eq. (4.35) can now be re-written as. 

( ){ }

( ){ }

( , 1) ( , )

             * ( ) ( , )

d

d

u i k I K CB u i k

K C I A x i x i k

∆ + = − ∆

+ − −
 (4.37) 

Starting from time index 1i = , the relation for (1, 1)u k∆ +  is given as 

Eq. (4.38) below. 

( ){ }

( ){ }

(1, 1) (1, )

              * (1) (1, )

d

d

u k I K CB u k

K C I A x x k

∆ + = − ∆

+ − −
 (4.38) 

Since the initial conditions are preserved, hence, the initial error is zero, 

i.e., * (1) (1, )x x k= . At first time index the input error is given by. 

( ){ }(1, 1) (1, )du k I K CB u k∆ + = − ∆  (4.39) 
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Continuing for further time indices, the general relation for thi  time 

index can be written as under. 

( ) ( )

( )

( )

1

2

( , 1) ( , ) ( 1, )

(2, )

(1, )

d d

i
d

i
d

u i k I K CB u i k K C I A B u i k

K CA I A B u k

K CA I A B u k

−

−

∆ + = − ∆ + − ∆ −

+ + − ∆

+ − ∆

…  (4.40) 

From the equations (4.39), and (4.40) assuming similar relations for 

other time indices, these can be put in matrix form in Eq. (4.41) below 

( )

( ) ( )

( ) ( ) ( )

( ) ( )−

∆ + −

∆ + − −

∆ + − − −=

∆ + − −

   
   
   
   
   
   
   
   
   
   
   
   
      

⋯

⋯

⋱ ⋮

⋮ ⋮ ⋮ ⋱ ⋱

⋯ ⋯ ⋯
2

(1, 1) 0 0 0

(2, 1) 0 0

(3, 1)

0

( , 1)

                                

d

d d

d d d

M

d d

u k I K CB

u k K C I A B I K CB

u k K CA I A B K C I A B I K CB

u M k K CA I A B I K CB

 ∆ 
 
 ∆
 
 
∆×  

 
 
 
 
 ∆  

⋮

(1, )

(2, )

(3, )     

( , )

u k

u k

u k

u M k

  (4.41) 

OR more compactly in matrix-vector notation as in Eq. (4.42) below. 

( 1) ( )u k T u k∆ + = ∆   (4.42) 

Here T  is the operator matrix which controls the evolution of control 

input errors from batch k  to 1k + . 
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( )

( ) ( )

( ) ( ) ( )

( ) ( )−

−

− −

− − −=

− −

 
 
 
 
 
 
 
 
 
 
 
 
  

⋯

⋯

⋱ ⋮

⋮ ⋮ ⋱ ⋱

⋯ ⋯ ⋯2

0 0 0

0 0

0

d

d d

d d d

M

d d

I K CB

K C I A B I K CB

K CA I A B K C I A B I K CBT

K CA I A B I K CB

  

  (4.43) 

The solution of Eq. (4.42) is given by Eq. (4.44) below. 

1( ) (1)ku k T u−∆ = ∆   (4.44) 

4.5.2 Properties of Relation for Control Input Error Evolution 

The properties of control input error evolution from Eq. (4.41) and 

(4.42) are as follows: 

• It is a 1st order homogeneous relationship along k . 

• The matrix T  has a lower Toeplitz structure, provided the 

parameters , ,A B C  and dK  are time-invariant. 

• The matrix T  has M repeated eigenvalues, i.e.,      

( ), 1, ,i dI K CB i Mλ = − ∀ = …   

• Constant diagonal elements show that each ( , 1)u i k∆ +  is 

effected by the corresponding ( , )u i k∆  from the previous batch in 

the same manner, i.e. same scaling factor ( )dI K CB−  which is 

independent of system matrix A . 

• Each ( , 1)u i k∆ +  has additional coupling from other control 

input errors which occurred in the previous batch k  before the 
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time index i , such as (1, ), (2, ), , ( 1, )u k u k u M k∆ ∆ … ∆ − . Hence 

( , )u M k∆  is the slowest component.  

• The scaling factors ( )2i
dK CA I A B− −  are not independent of 

system matrix A . Hence, although the ILC convergence 

condition is independent of system matrix A , but the 

convergence rate for the components 

(2, ), (3, ), , ( 1, )u k u k u M k∆ ∆ … ∆ −  except the 1st component 

(1, )u k∆  does depend on matrix A . 

• The asymptotic convergence condition is given as follows. 

         max eig( ) 1dI K CB− <  (4.45) 

         which is similar to that for output error convergence. 

 

But it has not been explored as to how the errors evolve in the initial 

part of the learning curve which corresponds to initial iterations? What 

is the relative rate of convergence? What factors affect? What is the 

rate of the learning process here? Does it diverge? How much 

divergence is acceptable? 

4.5.3 Rate of Convergence for the Input Error at Component 

Level 

It was motivated by need to analyse the effects of errors at the end of 

iteration upon initial state for next iteration. Additionally, the effect of 

batch size needs to be investigated so as to ascertain how much slower 
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is the learning at later time indices. The Theorem 4.1 below gives the 

relation for the rate of convergence for the input error at component 

level. 

Theorem 4.1 

The D-ILC algorithm produces a sequence of bounded control inputs 

which sequentially converge component-wise asymptotically to the 

desired control input sequence at the rate equal to the magnitude of the 

eigenvalue of the matrix relating the evolution of control input error 

provided initial conditions are same and desired output matches with 

the measured output at the beginning of each batch. 

Proof 

The evolution of control input errors follows relation. 

( 1) ( )u k T u k∆ + = ∆   (4.46) 

And its solution in terms of initial value (1)u△  in Eq. (4.44). 

1( ) (1)ku k T u−∆ = ∆   (4.47) 

Due to repeated eigenvalues, matrix T  cannot be diagonalised using 

eigen-decomposition or SVD because there are repeated eigenvectors 

which make the matrix of eigenvectors singular. However, the rate of 

convergence of each component ( , )u i k∆  can be found if matrix T  with 

dimension ( )M M×  is decomposed into Jordan Normal form. For a 
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non-singular matrix Q  i.e. -1Q Q I× = , Jordan Decomposition is given 

by Eq. (4.48). 

-1T Q D Q=   (4.48) 

where the matrix D  has the eigenvalues of matrix T  as its diagonal 

elements along with a sub-diagonal containing all ones as in Eq. (4.49) 

below. 

0 0 0

1 0

0 1

0 0

0 0 1

D

λ

λ

λ

λ

 
 
 
 
 
 =  
 
 
 
 
 
 

⋯

⋯ ⋮

⋱ ⋮

⋮ ⋱ ⋱

⋯

  (4.49) 

To calculate the convergence rates of individual components of control 

input error vector ( )u k∆  at thk  batch in Eq.(4.47), decompose as 

1 1 1k kT Q D Q− − −= . Now, the matrix -1kD  is given below in Eq. (4.50) . 

( )

( )

-1

2 1

3 2 11

1

0 0 0

1 0

( 1)( 2)
1

2!

0

( 1)( 2) ( 1)

( 1)!

k

k k

k k kk

k M k

k

k k
kD

k k k M

M

λ

λ λ

λ λ λ

λ λ

− −

− − −−

− −

 
 
 
 −
 
 
 − − −=  
 
 
 
 
 − − … − +
 

−  

⋯

⋯ ⋮

⋱ ⋮

⋮ ⋮ ⋱ ⋱

⋯ ⋯ ⋯

  

  (4.50) 

The control input error in Eq. (4.47) can now be written as Eq. (4.51) 

below 
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-1 -1 -1( ) (1) (1)k ku k T Du Q D Q u∆ = = ∆  (4.51) 

The thi  term ( , )u i k∆  from the corresponding row in Eq. (4.51) is given 

in Eq. (4.52) below. 

[ ]1 1( , )  ( , :) (1,1), (2,1), , ( ,1) Tku i k Q D i Q u u u M− −∆ = × × × ∆ ∆ … ∆   

  (4.52) 

Where 1 ( , :)kD i−  represents the thi  row of the matrix -1 kD . Similarly, 

the thi  term ( , 1)u i k∆ −  from the previous ( 1)th
k −  batch is given below. 

[ ]1 2( , 1)  ( , :) (1,1), (2,1), , ( ,1) Tku i k Q D i Q u u u M− −∆ − = × × × ∆ ∆ … ∆  

  (4.53) 

The rate of convergence ( , )u i k∆Γ  is the ratio of ∞ -norm of the control 

input errors vector at batch k  with respect to its ∞ -norm at batch 

( 1)k −  as given in Eq. (4.54) below. 

( , )

( )

( 1)

( 1)( 2)1 2 3( 1)
2 !

( 1) ( 1)

( - 1)!
 

( 2)( 3)2 3 4( 2)
2 !

( 2) ( 1 1) 1
( 1)!

        

u i k

u k

u k

k kk k kk

k k i k i
i

k kk k kk

k k i k i
i

λ λ λ

λ

λ λ λ

λ

∞
∆

∞

∆
Γ =

∆ −

 − − − − −+ − + 
 
 
 − … − + − + +  =
 − − − − −+ − + 
 
 
 − … − − + − − + + − 

⋯

⋯

 (4.54) 
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After simplification of Eq. (4.54), the Eq. (4.55) below is obtained 

( ) ( )

( )
( ) ( )

( )

( , )

21 ( 1)( 2) 1
1 ( 1)

2!

1( 1) ( 1) 1

( 1)!

21 ( 2)( 3) 1
1 ( 2)

2!

1( 2) ( 1 1) 1

( 1)!

u i k

k k
k

ik k i

i

k k
k

ik k i

i

λ λ

λ
λ

λ λ

λ

∆

 − − + − + 
 
 
 −− … − + + + −  Γ =
 − − + − + 
 
 
 −− … − − + + + −  

⋯

⋯

 (4.55) 

More compact form for the rate of convergence is given by Eq. (4.56) 

λ

λ
λ

λ

−

∆
= =

 −            − 
Γ = =

  − −−            

∑ ∑
-1 1

( , )
0 0

1 1

  1

12 1

  

j

i i

u i k j
j j

k

j k

k jk

j

 (4.56) 

where 

( )

1
( 1)!

1 ) ! !  

k
k

k j jj

−  − =  − − 
 (4.57) 

In the Eq. (4.56) there are as many terms inside summation as the 

index number. For components higher in index number the rate of 

convergence has more terms added thus they are slower as compared to 

the components with smaller index number occurring earlier. For a 

selected component, although the terms are same in number but at 

smaller number of iterations, the ratio terms inside summation are 

larger as compared to the corresponding terms at greater iteration 
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number. Thus, the rate is slower at smaller iteration number for a 

given component. The component at 1st time index has same rate 

throughout which equals the absolute eigenvalue of matrix T . 

From Eq. (4.56) it is observed that in the limit k → ∞ , the ratio to 

the right of summation is unity, so that every component ( , )u i k∆  shall 

have long term convergence rate equal to the magnitude of the 

eigenvalue ( )eig dI K CBλ = − .                                                □  

Corollary 4.2 

The D-ILC algorithm produces a sequence of bounded control inputs 

which converge to the desired control input sequence at the rate less 

than or equal to the magnitude of the norm of matrix relating the 

evolution of control input error under identical initial conditions such 

that the desired output matches with the measured output at the 

beginning of each batch. 

Proof 

Rate of convergence ur  of the control input error vector is defined as 

ratio between the norms of control input errors at ( )1 thk +  and thk  

batches in Eq. (4.58) below. 

( 1)
   

( )u

u k
r

u k

∆ +
∆

≜   (4.58) 

Using Eq. (4.42) and the norm properties, the following inequality 

results 
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( ) ( )
 

( ) ( )u

T u k T u k
r T

u k u k

∆ ∆
= ≤ ≤

∆ ∆
 (4.59) 

Hence, the upper bound for the convergence rate is the norm of matrix 

T  which relates the control input error vector ( )u k∆  to the vector 

( 1)u k∆ +  in next batch.                                                           □  

4.6 Case Study: 1st Order SISO System 

A first order discrete-time plant is investigated for convergence of 

control input errors using D-ILC algorithm. The state space description 

of the plant is given in Eq. (4.60) below. 

( 1, ) ( , ) ( , )

     ( , ) ( , )

x i k Ax i k Bu i k

y i k Cx i k

+ = +

=
 (4.60) 

The 1st order SISO plant parameters have been chosen as 

0.50, 0.50,   1A B C= = = . These values are selected to achieve a 

normalized step response. For this system, the time constant is 2 

samples. Hence the output within a batch shall converge in 6 to 8 

samples. The batch size M  of 20 samples have selected so that the 

transient period is covered along with sufficient number of samples for 

steady state period. While satisfying the assumptions and preserving 

the initial conditions for each batch, the D-ILC algorithm in Eq. (4.4) 

has been run for number of batches with the learning rate 0.5dK = . 

The initial values of control input ( ,1)u i  and output ( ,1)y i  for the 1st 

batch are all zeros. The matrix T  relates the control input error vector 

( )u k∆  to the vector ( 1)u k∆ +  as given below. 
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( 1) ( )u k T u k∆ + = ∆   (4.61) 

The singular values and the eigenvalues of matrix T  are less than 1 as 

seen in Figure 4.2. Batch to batch evolution of the control input error 

in Figure 4.3 shows that different components ( , )u i k∆  start off at 

different rates. The error for the 1st sample time, (1, )u k∆  has the 

fastest rate.  
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Figure 4.2:  Singular values and eigenvalues of matrix T  
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Figure 4.3: Evolution of components of control input errors 

Figure 4.4: Short range evolution of control input errors 
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Figure 4.4 shows semi-log plot for short range, 2k M≤ , i.e., batch 

number up to twice the batch size. All the control input error 

components converge at different rates. (1, )u k∆  has rate 0.75 which 

equals the eigenvalue of matrix T . The slope of the norm of error 

vector ( )u k∆  indicates that it is slower than all the individual 

components. For medium range, i.e., 2 LARGEM k k< <  an earlier 

portion is shown in Figure 4.5. The components (2, )u k∆  to (20, )u k∆  

achieve constant rates in succession. The convergence rate of vector 

( )u k∆  matches closely with last component (20, )u k∆ .  
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Figure 4.5: Medium range evolution of control input errors 
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Figure 4.6: Long range evolution of control input errors  

Figure 4.7: Convergence rates of control input components  
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The D-ILC algorithm achieves its limit at large batch numbers, i.e., at 

2600LARGEk k≥ ≈  as shown in Figure 4.6. At this stage, just before 

the control input errors are below the threshold for the minimum 

number which can be represented numerically, all the individual 

components ( , )u i k∆  achieve the same rate 0.75. Overall batch to batch 

convergence rates in Figure 4.7 has also confirmed that control input 

error components ( , )u i k∆  approach 0.75, the eigenvalue of T . This 

proves the claim in Theorem 4.1 that long-term convergence rates of all 

the individual components equals the eigenvalue of T . 
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The bounds of convergence rate demonstrated in Figure 4.8 show that 

overall convergence rate of the control input error vector ( )u k∆  lies 

between the two extremes. These extremes are the maximum singular 

Figure 4.8: Bounds for rate of convergence 
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value of matrix T  as the upper limit and eigenvalue of matrix T  as the 

lower limit. This demonstrates the observation in Corollary 3.2 that 

rate is bounded by the maximum singular value and the eigenvalue of 

matrix T . 

4.7 Case Study: ILC Algorithm for a Damped 

Pendulum 

A damped pendulum in Figure 4.9 is an interesting control problem 

which has been widely studied. The D-ILC algorithm is applied for 

learning to track the desired angle and corresponding angular velocity 

by generating the desired control signal at each sample time. The set of 

desired control signal for a complete swing has been obtained from a 

fine-tuned PD controller. The angle θ  is measured anti-clockwise. The 

control input torque u  is considered positive in anti-clockwise direction. 

The pendulum is at rest with initial position 0 /4θ π=  radians at the 

left side. The initial angular velocity is 0 0ω =  rad/s. The state space 

representation of the simple pendulum using state vector ,
T

x θ ω =     

is given by Eq. (4.62) below 

22

00 1

1

1 0

0 1

x x u
mLg L b mL

y x

   
   = +   − −     

 
 =  
  

ɺ

 (4.62) 
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The pendulum has been simulated with the parameters in Table 4-1. 

 

Length ( L ) 1 m 

Mass (m ) 0.5 Kg 

Acceleration due to gravity ( g ) 9.81 m/s2   

Damping co-efficient (b ) 0.25 N-s/m 

 

The linearised discrete space state matrices for the pendulum sampled 

at 0.05 seconds are as follows 

Figure 4.9: A damped pendulum 

Table 4-1: Pendulum parameters 

m

θ

b

u

θ=0

πθ

ω

0

0

=

=0

4
πθ

ω

0

0

=

=0

4

L
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0.9879 0.0492 0.0012
,

0.4824 0.9633 0.0492

, 0

A B

C I D

  
  = =   
  −   

= =

 (4.63) 

The time period for the pendulum is 2 seconds, so there are 40 samples 

for each swing from right to left and back. Each swing is equivalent to 

a batch or iteration as used in standard ILC literature.  

Here three forms of gain matrices have been considered to analyse the 

rate of convergence of the control inputs over a number of swings. The 

identical initial conditions, i.e. 0 /4θ π=  radians and 0 0ω =  rad/s are 

maintained for each repetition/swing. The control input during 1st 

swing is assumed zero at all sampling instances. 

4.7.1.1 Case I: Gain Matrix 0.5 [0,1]dK = ×  

For ILC update, the error considered is the state error. The selected 

gain matrix allows the forward difference error of the angular velocity 

only to be used for updating the control inputs. The tracking of the 

desired control input u , angle θ  and angular velocity ω  has been 

monitored for 2500 swings. See Figure 4.10 and Figure 4.11. For the 

first swing, there is zero control input and the pendulum exhibited as a 

damped, un-forced pendulum as shown by dotted lines. In the later 

swings the ILC learns to generate control input signals as shown by 

dashed lines for 100th swing. Although the output is closer to the 

required, but perfect tracking has not yet occurred. The 's×  represent 

the perfect tracking achieved after 2500 swings. The RMS error for the 
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control input and the corresponding angle and velocity exhibit 

convergence as shown in Figure 4.12. The root mean squared values 

have reached minima after 2000 iterations as shown in Figure 4.12. The 

final RMS values have been given in Table 4-2 below. These values 

show that limit of precision have been reached.  

 

Errors in variable RMS values 

Angle 1.2015e-015 

Angular velocity 2.2210e-015 

Control input 1.6876e-014 
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Table 4-2: Final RMS values 

Figure 4.10: Tracking control input with ILC algorithm 
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Figure 4.11: Tracking desired angle and velocity using ILC 

Figure 4.12: RMS control input, angle and velocity errors 
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The evolution of control input errors at selected time indices in Figure 

4.13 shows how the D-ILC algorithm learns to minimise the error. For 

the 1st and 2nd time indices, the control input matches the desired, since 

there is no significant error in the angles and angular velocities until 3rd 

time index due to identical initial conditions at each iteration. When 

the error becomes significant for the 4th time index, the control input 

for the 3rd time index starts learning due to forward difference in the 

later swings/iterations. But due to minimal errors, it is quite close to 

the desired input. The errors for other time indices go on increasing 

because the damping effect increases with the angle and slows down the 

pendulum. Hence the control input lags behind the desired and ILC 

learns to catch up the difference in consecutive swings/iterations. The 

convergence occurs sequentially as the control input for earlier time 

Figure 4.13: Evolution of control input at selected indices 
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indices converge before the later ones. The rate of convergence varies in 

the earlier swings. The semi-log plot in Figure 4.14 shows that near the 

final convergence, all the slopes are almost parallel to each other 

indicating same convergence rates. The absolute values of the control 

input errors have been used to plot the convergence rates, because the 

negative errors cannot be plotted on logarithmic scale along with the 

positive errors simultaneously. The kinks in convergence rates for initial 

swings in Figure 4.15 occur due to oscillations or zero-crossings of the 

control input errors. Hence this portion is ignored for convergence rate 

analysis. Only the medium and long-term convergence rates are valid 

for the rate analysis as shown in Figure 4.16 and Figure 4.17. 
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Figure 4.14: Convergence rates for control input errors  
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Figure 4.15: Short-term rates for control input errors 

Figure 4.16: Medium-term rates for control input errors 
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It can been observed that the control input errors for all the time 

indices finally converge at the rate equal to the eigenvalue (0.9754) of 

matrix T . For the eigenvalue of 0.9754, single time constant 

corresponds to 40 iterations. For 5 time constants equal to 200 

iterations, the decay of 0.01 has been marked in Figure 4.17. 

4.7.1.2 Case 2: Gain Matrix 0.5 [1,1]dK = ×  

For Case 2, the gain matrix is selected so that derivative of the full 

state error vector is employed. In this case, the performance is better 

because the convergence has been achieved 200 swings earlier than Case 

1. The root mean squared errors in angle, angular velocity and control 

input errors reach minima around 1800th swing as shown in Figure 4.18. 

Figure 4.17: Long-term rates for control input errors 
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Figure 4.18: RMS errors in angle, velocity and control input 

Figure 4.19: Evolution of input error at selected time indices 
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Evolution of input errors is illustrated in Figure 4.19. The parallel 

slopes in Figure 4.20 indicate that the long-term convergence rates for 

control input errors at all the time indices have achieved same rate 

which equals the eigenvalue (0.9748) of matrix T . One time constant 

corresponds to 40 iterations. The decay of 0.01 for 5 time constants, i.e. 

200 iterations has been marked in the Figure 4.20. 

4.7.1.3 Case 3: Gain Matrix 0.5 [1,0]dK = ×  

The gain matrix for Case 3 allows the use of forward difference error in 

angle only. Here, the convergence occurs much slower as compared to 

the earlier two cases. RMS of the errors reaches minima after 170000 

iterations in Figure 4.21. 

Figure 4.20: Long-term rates for control input errors 
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Figure 4.21: RMS values for D-ILC with zero initial conditions 

Figure 4.22: Convergence rate for input error 
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The slopes in Figure 4.22 indicate that the long-term convergence rates 

for control inputs achieve the rate which equals the eigenvalue (0.9994) 

of matrix T . On comparing the eigenvalues for the above three cases, it 

is observed that convergence is fastest for case 2 (using full state error) 

for which the matrix T  has smallest eigenvalue. Rate is slowest for the 

case 3 for which matrix T  has the greatest eigenvalue. 

4.7.2 Controllability via D-ILC 

The rank of product CB  is 1, which points that the algorithm can only 

control one output variable and achieve tracking for it. Since, the 

desired values of inputs as well as outputs were obtained from a fine 

tuned PD controller; the controller successfully tracked both the angle 

and velocity. It has been a very specific mapping from input to the 

output space. The algorithm in general can only track one variable, 

namely the velocity. 

4.7.3 Effect of Offset State Errors 

With identical initial conditions the states have been perturbed with an 

offset error. The D-ILC algorithm with gain matrix 0.5 [0,1]K = ×  has 

converged for velocity only with same rate as noted for case 1. It has 

been shown in Figure 4.23 under the limitation that only the velocity 

error has been used to generate the control input update. 
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However, convergence in velocity has not been observed for the cases 2 

and 3 with offset states. The input and angle errors have remained 

bounded but have not converged over the iterations for any case. 

4.8 Summary 

In this chapter, mathematical formulation for conventional identical 

initial condition ILC has been presented. The convergence of D-ILC 

algorithm in terms of control input sequence has been formulated and 

investigated with simulations. The convergence conditions similar to 

the output sequence have been achieved. Moreover, rate of convergence 

of control input up to component level has been formulated using the 

eigenvalues of the operator matrix controlling the evolution of batch to 

batch input errors. It has been demonstrated that components of the 

Figure 4.23: Convergence of velocity errors with offset state errors 
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input sequence converge sequentially. The component at 1st sample has 

fastest convergence rate. The remaining components initially converge 

at lower rates. However, all the components later on acquire the same 

rate equal to the eigenvalue of the operator matrix. The bounds of the 

convergence rate have been established in terms of maximum singular 

value and eigenvalue of the operator matrix. The theorems have been 

stated and proved with mathematical reasoning about the convergence 

rates and factors affecting the rate at the component level. The results 

from simulations have supported these concepts presented in the 

chapter. The rate of convergence analysis in this chapter shall be 

expanded to non-zero initial condition Cyclic ILC in next chapter for 

repetitive impacting systems such as walking robots where the gait is 

sensitive to the errors at last time index of the previous step. 
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Chapter 5 

5 Convergence Analysis for Cyclic 

ILC 

For impacting systems such as pendulums, walking robots, etc., the 

identical initial conditions cannot be maintained. So, there are two 

problems. Firstly, there is non-zero initial error at the start of the 

batch. Secondly, the batch length or number of samples in an iteration 

may not be same during each iteration. In this chapter, convergence of 

the ILC algorithms has been analysed after removal of the identical 

initial conditions constraint. The performance of Cyclic D-ILC and 

Cyclic PD-ILC algorithms have been compared and analysed. 

Specifically focus has been upon the Cyclic ILC for which the errors in 

each batch are transferred to the beginning of next batch. 

5.1 Control Input & Initial State Errors for Cyclic 

D-ILC 

The evolution of errors in Cyclic ILC is dependent on the state error 

which is transferred from the end of the previous batch. The evolution 

in terms of control input errors has been presented in following 

sections. 
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5.1.1 Problem Formulation 

A discrete-time MIMO LTI system is considered in Eq.(5.1) below. 

+ = +

=

( 1, ) ( , ) ( , )

    ( , ) ( , )

x i k Ax i k Bu i k

y i k C x i k
 (5.1) 

where k  denotes the batch number having M  number of samples in 

each iteration, [1, ]i M∈  is the time index or sample number during 

each iteration. nx ∈ ℝ  denotes the state vector. ∈ ℝ( , ) pu i k  and 

∈ ℝ( , ) my i k  represent the inputs and outputs of the system, 

respectively. n nA ×∈ ℝ  is real-valued state matrix. The input matrix is 

×∈ ℝn pB  and ×∈ ℝm nC  is the output matrix such that all states are 

fully observable. (1, )u k  is the control input for first batch which may 

be externally specified or left to be zero. The system in Eq.(5.1) is 

considered stable. 

Control inputs for consecutive iterations are updated using D–ILC 

algorithm as follows. 

{ }+ = + + −( , 1) ( , ) ( 1, ) ( , )
d

u i k u i k K e i k e i k  (5.2) 

where ( , )u i k  is the vector of p  inputs at thi  time index in batch 

number k , +( , 1)u i k  is the vector of p  inputs at the same thi  time 

index in next batch no. 1k + . ×∈ ℝm p
dK  is the learning gain matrix, 

{ }+ −( 1, ) ( , )e i k e i k  is the forward difference error vector used to 

approximate the derivative of the output error vector of m  outputs at 

thi  time index in thk  batch. 
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5.1.2 Modelling Cyclic ILC 

At the start of each batch k , the initial state vector (1, )x k  with out re-

setting has been assumed to consider Cyclic ILC. The state error at the 

last time index of each batch is retained and used as the state error for 

the 1st time index of the next consecutive batch such that 

∆ + = ∆(1, 1) ( , )x k x M k . Since, the initial state errors also contribute in 

the control input update, hence, these have to be accounted for in the 

evolution of control input errors over the iterations. Hence, for the 

analysis, the control input error ∆ ∈ ℝ( ) pMu k  which constitutes the 

input errors for the time indices →1 M  during thk  batch is augmented 

with initial state error vector ∆ ∈ ℝ(1, ) nx k . Thus a new augmented 

error vector +∆ ∈ ℝ( ) n pM
augx k  has been formulated as follows. 

 ∆ 
 
 ∆
 
 
∆∆ =  

 
 
 
 
 ∆  

⋮

(1, )

(1, )

(2, )( )

( , )

aug

x k

u k

u kx k

u M k

  (5.3) 

where ∆ (1, )u k  is the vector containing control input errors of all the p  

inputs at first time index of thk  batch. Likewise, ∆ (2, )u k  represents 

input errors at 2nd time index and so on until ∆ ( , )u M k  for M  the last 

time index. 
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5.1.3 Evolution of Control Input and Initial State Errors 

The evolution of the augmented error vector ∆ ( )augx k  over batches has 

been expressed in terms of the homogeneous relationship in Eq. (5.4) 

below 

∆ + = ∆( 1) ( )aug D augx k T x k  (5.4) 

where the augmented operator matrix DT  which relates the errors in 

the initial state and control input sequence at batch k  with the next 

consecutive batch 1k +  is given below. 

 

− −

− −

 
 
 
 − − 
 
 = − − −
 
 
 
 
 − − −  

⋯

⋯

⋱ ⋮

⋮ ⋮ ⋱ ⋱

⋯ ⋯

1 2

1 2

( ) 0 0

( ) ( )

0

( ) ( )

M M M

d d

D d d d

M M
d d d

A A B A B B

K C I A I K CB

T K CA I A K C I A B I K CB

K CA I A K CA I A B I K CB

 

  (5.5) 

5.1.4 Comments on the Structure of Error Evolution Matrix 

The matrix DT  has four distinct blocks. The first block MA  gives the 

dynamic relationship of the initial state error vector ∆ (1, )x k  over the 

consecutive batches, i.e., as to how the initial state error is related to 

itself depends on the system matrix A  and specifically upon the size of 

the batch M . As M  gets larger for a given matrix A , the contribution 

becomes lesser and vice versa. But since the term MA  is independent of 
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index number i  and batch number k , hence initial state error for every 

iteration is connected to the consecutive in the same manner.  Second 

block consists of second element −1MA B  to the last element B  from the 

first block row. This block gives the scaling factors for the input errors 

which affect the initial state error vector ∆ +(1, 1)x k  in the next batch. 

The input errors (1, )u k∆  to ( , )u M k∆  are multiplied by decreasing 

powers of A  from 1MA B−  to B , respectively which means that input 

error ( , )u M k∆  at end of the batch has greatest contribution to 

∆ +(1, 1)x k  and lessens for each input error at previous time index 

until the input error (1, )u k∆  at the 1st time index which has the least 

contribution. 

Third block consists of second element −( )dK C I A  to the last element 

− −1( )M
dK CA I A  from the first block column. This block consists of the 

scaling factors for the initial state error vector which determines the 

contribution to the input error at each time index during next batch. 

Fourth block constitutes the remaining M M×  elements in the lower 

right similar to the Toeplitz matrix T  which describes the evolution of 

the input errors obtained via D-ILC algorithm under the zero initial 

state error condition as described in chapter 4.  

5.1.5 Convergence of Error Evolution Matrix 

For stable learning the error evolution matrix DT  should have 

eigenvalues having magnitude less than or equal to one. This differs 

from the usual condition for zero-initial error case where only the 
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diagonal elements − dI K CB  have eigenvalues less than unit magnitude 

for stable learning. In case of Cyclic ILC case here, the eigenvalues 

cannot be just obtained from the diagonals since DT  is not a triangular 

matrix. Eigen analysis has been utilized to verify the stability of matrix 

DT . If there exists an eigenvector associated with unity eigenvalue then 

it points towards the case when augmented error vector ∆ ( )augx k  does 

not decrease to zero over batches rather it aligns with the eigenvector 

associated with unity eigenvalue being the dominant one. This fact has 

been stated and proved as Theorem 5.1 below. 

Theorem 5.1 

There exists an eigenvector of matrix DT  in Eq.(5.4) such that 

corresponding absolute eigenvalue equals one. 

For proving the theorem, proceed by assuming that such an eigenvector 

exists and shall construct it from the matrix DT . 

Proof 

Let us denote the augmented eigenvector of matrix DT  associated with 

absolute unit eigenvalue as * * *
0 ,

TT T
x uv v v =   , where *

0xv  is the initial 

state error vector and  =   …* * * *
1 2, , ,

T
T T T

u u u uMv v v v  is the vector of control 

input error vectors *
1uv  to *

uMv  for each time index 1  to M . Each of the 

 =   …* * * *
1 1,1 1,2 1,, , ,

T

u u u u pv v v v  to  =   …* * * *
,1 ,2 ,, , ,

T

uM uM uM uM pv v v v  has p  

elements for every input. 
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For unit eigenvalue, the eigenvalue equation of the matrix DT  reduces 

to Eq.(5.6) below. 

( ) * 0DI T v− = .  (5.6) 

The Eq.(5.6) in expanded form as follows. 

− −

− −

     − − − −     
     
     − −     
     
    =− − − −  
    
    
    
    
    − − − −        

⋯

⋯

⋱ ⋮

⋮⋮ ⋮ ⋱ ⋱ ⋮

⋯ ⋯

1 2 *
0

*
1

*
2

1 2 *

( ) 0 0

( ) ( )

0

( ) ( )

M M M
x

d d u

d d d u

M M
d d d uM

I A A B A B B v

K C I A K CB v

K CA I A K C I A B K CB v

K CA I A K CA I A B K CB v

0

0

0

0








 

  (5.7) 

where each element of 1st block column in Eq. (5.7) is associated with 

*
0xv  which corresponds to the state errors at the start of each iteration. 

Rest of the block columns are associated with each of the single 

elements *
1uv  to *

uMv  which correspond to the errors in control input 

sequence at each time index 1, ,i M∈ … . The elements of the 

augmented eigenvector *v  can be obtained from Eq.(5.7) by simplifying 

the individual block rows.  

Thus, from 2nd block row Eq. (5.8) is obtained as below. 

* *
0 1( ) 0d x d uK C I A v K C Bv− − + =  (5.8) 

Under the assumption of full observability 0dK C ≠ , the relationship in 

Eq.(5.8) holds if Eq.(5.9) holds. 

* *
1 0( ) 0u xBv I A v− − =   (5.9) 
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This gives the relationship between initial state errors *
0xv  and the 

control input error at first time index *
1uv  as in Eq.(5.10) below. 

−= −* 1 *
0 1( )x uv I A Bv   (5.10) 

For non-zero initial state error vector *
0xv , a non-zero control input 

error *
1uv  is obtained from Eq.(5.10) if the term ( )I A−  is invertible. It 

is valid due to ( )max eig 1A < . 

Further proceed to construct the full eigenvector *v  as follows 

From 3rd block row in Eq.(5.7), following relation is obtained. 

* * *
0 1 2

* * *
0 1 2

( ) ( ) 0

   ( ) ( )

d x d u d u

x u u

K CA I A v K C I A Bv K CBv

A I A v I A Bv Bv

− − − − + =

⇒ − + − =
 (5.11) 

Putting −= −* 1 *
0 1( )x uv I A Bv  from Eq.(5.10) in to Eq. (5.11) and 

simplifying under the fact that 0B ≠ , the Eq.(5.11) becomes. 

( )
* * *
1 1 2

* *
1 2

* *
2 1

( )

0

u u u

u u

u u

ABv I A Bv Bv

B v v

v v

+ − =

⇒ − =

⇒ =

 (5.12) 

Similarly, from 4th block row in Eq.(5.7), the relation is. 

* *
3 1u uv v=   (5.13) 

Simplifying in the same way for other block rows until the last block 

row of Eq.(5.7), relationship for the last element *
uMv  is obtained as 

under. 

* *
1uM uv v=   (5.14) 
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From Eqs. (5.10), (5.12), (5.13) and (5.14), and assuming under 

symmetry for the elements which occur in between, finally the 

eigenvector *v  containing +n pM  elements associated with unity 

absolute eigenvalue in terms of only one element *
1uv  is given as follows. 

− = − … ×  
* 1 *

1( ) ,1,1, ,1
T

uv I A B v  (5.15) 

The Eq.(5.15) gives *v , the eigenvector for the matrix DT  associated 

with unity eigenvalue. 

To prove the validity of Eq.(5.15), there is need to check the 1st block 

row also. 

From 1st block row the relation is 

( ) * 1 * 2 * * *
0 1 2 ( 1) 0M M M
x u u u M uMI A v A Bv A Bv ABv Bv− −

−− − − − − − =⋯  

  (5.16) 

Using −= −* 1 *
0 1( )x uv I A Bv  from Eq.(5.10) and  

= = = =⋯* * * *
1 2 3u u u uMv v v v  from Equations (5.12), (5.13) and (5.14), 

write Eq.(5.16) in terms of *
1uv  as follows. 

( ) 1 * 1 * 2 *
1 1 1

* *
1 1

( )

                                       0

M M M
u u u

u u

I A I A Bv A Bv A Bv

ABv Bv

− − −− − − − −

− − =

⋯
 (5.17) 

Re-arranging and simplifying Eq.(5.17) as follows 

( ) ( )− − −− − = + + + +⋯1 1 2( )M M MI A I A A A A I  (5.18) 
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and employing the infinite geometric series 
∞

=

=
− ∑

0

1

1
j

j

x
x

 for <1x  to 

matrix A  such that 
∞

−

=

− = ∑1

0

( ) j

j

I A A , and simplify L.H.S. of 

Eq.(5.18) to find that it is equal to R.H.S. Hence, the Eq.(5.16) for 1st 

block row has been validated. 

Thus, it is proved that eigenvector *v  corresponding to unit magnitude 

eigenvalue exists for the matrix DT  as given by Eq.(5.15). 

                                                                                       □  

Corollary 5.2 

The dominant eigenvector *v  of matrix DT  has the last M  elements 

*
1uv  to *

uMv  equal to each other which correspond to input errors. So, in 

the long term, the corresponding output error terms from (1, )e k  to 

( , )e M k  also converge such that they are equal to each other due to 

linear relationship between input and output. A constant offset error in 

the output shall be maintained over the long term. 

  

Corollary 5.3 

Further to corollary 4.2, as the consecutive output error terms from 

(1, )e k  to ( , )e M k  which are used to update the control input for Cyclic 

D-ILC become equal to each other, the values of forward difference 

( 1, ) ( , )e i k e i k+ −  become zero for consecutive time indices of the thk  

iteration. Hence, no further update for control input can occur with 

Cyclic D-ILC algorithm. Thus the learning process has ceased. 

 



135 

Remarks 5.4 

It has been observed that matrix DT  obtained from Cyclic D-ILC has 

maximum absolute eigenvalue as unity, which means that learning 

process is non-expanding. However, it cannot asymptotically reduce the 

input errors to zero. Use of proportional error term in the input update 

such as Cyclic PD-ILC can minimize the input errors asymptotically as 

stated in Theorem 5.2 in section 5.3. 

5.2 State Errors for Cyclic D-ILC 

The state errors also evolve similar to the input error case. The 

contribution of state error at last time index ( , )x M k∆  to each time 

sample in the next batch/swing has been incorporated through the 

entries in the last column of the evolution matrix DL  in Eq. (5.19) 

below. 

( ) ( )

( ) ( )

2

2 3 1

0 0 0

0d d

d dD

M M M
d d d

I

BK A I BK A

A BK A I A BK AL

A BK A A I A BK A I BK− − −

 
 
 − − 
 
 − −=  
 
 
 
 
 − − + − 

⋯

⋯

⋱ ⋱

⋮ ⋮ ⋱ ⋱ ⋮

⋯ ⋯

  

  (5.19) 

Use following matrix-vector notation for the evolution of state error. 

( 1) ( )Dx k L x k∆ + = ∆   (5.20) 
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The matrix DL  has dimension 2 2M M× . But it is important to note 

that it is not a triangular matrix. Two eigenvalues of matrix DL  are at 

unity due to the identity matrix block as the last element of 1st block 

row. Additionally, there are 2M −  matrix blocks dI BK−  at the 

diagonal which also contribute 2M −  eigenvalues at the stability 

boundary which are of interest. Total number of eigenvalues at unity 

equals the number of samples in each swing. So there are as many 

dominant eigenvectors to which the state errors converge over the 

batches. Since, the eigenvectors are non-zero, the resulting state errors 

are non-zero as well. This also explains as to why the state errors do 

not converge using the Cyclic D-ILC algorithm for different initial 

conditions such as Cyclic D-ILC. 

5.3 Convergence of Cyclic PD–ILC  

To achieve convergence for the input and angle along with the velocity, 

Cyclic PD–ILC is employed for which the control input update utilizes 

both the state error and its derivative in Eq. (5.21). 

{ }( , 1) ( , ) ( , ) ( 1, ) ( , )p du i k u i k K e i k K e i k e i k+ = + + + −  (5.21) 

Using PD–ILC the error evolution matrix DT  for Cyclic D-ILC is 

amended as PDT  below 
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− −

− − − −

− − −

− − − − −

− − − − −

 
 
 
 
 
 
 
 
 
  

⋯

⋯

⋱ ⋮

⋮ ⋮ ⋱ ⋱ ⋮

⋯ ⋯

1 2

1 1 2 2

( ) 0 0

( ) ( )

( ) ( )

M M M

d d

d p d p d

M M M M

d p d p d

p

A A A B

I A K I

AI A K A I AB K B I

A I A K A A I AB K A I

B B

KC C KCB

KC C KC C KCB

KC C KC C B KCB

  

  (5.22) 

Cyclic PD-ILC does not have an eigenvector associated with unit 

magnitude eigenvalue as stated in the Theorem 5.2 below. 

Theorem 5.2 

There does not exist an eigenvector of matrix PDT  such that 

corresponding absolute eigenvalue equals one. 

For proving the theorem, proceed by assuming that such an eigenvector 

exists and shall try construct it from the matrix PDT . 

Proof 

Let us denote the augmented eigenvector of matrix PDT  associated with 

absolute unit eigenvalue as * * *
0 ,

TT T
x uv v v =   . So there is 

( ) * 0PDI T v− =   (5.23) 

Write Eq.(5.23) in expanded form as follows. 
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− − − −

− − − −

− − +

− − + − − +

− − + − − +

  
  
  
  
  
  
  
  
  
     

⋯

⋯
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⋮

⋮
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1 1 2 2

*
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*
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*

( ) 0 0

( ) ( )

( ) ( )

           

p

p p

p p

M M M

d d

T

d d d

M M M M

d d d

x

u

uM

I A A A B

I A K

A I A K A k c I A B K B

A I A K A A I AB K A

B B v

KC C KCB v

KC C C KCB

KC C KC C KCB vB

 
 
 
 
 =  
 
 
 
  

⋮

⋮

0

0

                                                    

0

  (5.24) 

The elements of the augmented eigenvector *v  can be obtained from 

Eq.(5.24) by simplifying the individual block rows. Thus, from 2nd block 

row the relation is obtained as 

{ }
{ }

* *
0 1

* * *
1 0 0

( )

( )

0

0
p

p

d x d u

d u x x

I A

I A

K C K C v K CBv

K C Bv v K Cv

− − +

−

+ =

− + =
 (5.25) 

As 0dK C ≠  and 0pK C ≠ , the relationship in Eq.(5.25) holds if 

*
0 0xv =  along with the condition that following Eq.(5.26) holds. 

* *
1 0
* 1 *
0 1

( )

( )

0u x

x u

I A

I A

Bv v

v B v−

−

−

− =

⇒ =
 (5.26) 

Eq.(5.26) gives the relationship between initial state errors and the 

control input error at first time index. 

The additional requirement for validity of Eq.(5.25) that initial state 

error *
0 0xv = , is contrary to the Cyclic ILC assumption except that 

when the initial state error has converged to zero.  

From 3rd block row of Eq.(5.24), 
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{ } { }
{ } { }

{ }{ } { }

* * *
0 1 2

* * * * *
2 1 0 0 1

* * * * * *
2 1 1 0 0 1

( )

( )

( )

( ) 0

( ) 0

0

d p d p d

d p

d p

x u u

u u x x u

u u u x x u

K A I A K A K K K

K A I A K A

K I A K A

C C v C I A B CB v Cbv

C Bv I A Bv v C v Bv

C Bv Bv A Bv v C v Bv

− − +

⇒ −

⇒ −

− − + + =

− − − + − =

− + − + − =

  (5.27) 

Since 0dK C ≠  and 0pK C ≠ , the Eq.(5.27) is valid if the following are 

valid. 

{ }* * * *
2 1 1 0( ) 0u u u xI ABv Bv A Bv v−− + − =  (5.28) 

* *
0 1 0x uAv Bv− =   (5.29) 

If Eq.(5.26) holds and using the fact that 0B ≠  then Eq.(5.28) reduces 

to Eq.(5.30) below. 

* *
2 1u uv v=   (5.30) 

Eq.(5.29) is simplified using −=* *
1 0( )u xI ABv v  from Eq.(5.26) as under. 

* *
0 0

* *
0 0

( )

2

0x x

x x

A I A

A

v v

v v

−− =

=
  (5.31) 

Eq.(5.31) requires that 1
2A = , a fixed scalar quantity which is a 

conservative requirement against the assumption that A  is a matrix of 

dimension n n× . 

Likewise, checking for the remaining block rows, it is found that a valid 

eigenvector associated with unity eigenvalue cannot be constructed 

from matrix PDT . Thus, the Theorem 5.2 has been proved.              □  
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Corollary 5.5 

Since, there is no eigenvector associated with unity eigenvalue, hence 

the dominant eigenvector as well as all the other eigenvectors are 

associated with eigenvalues less than unity. As the batches proceed, the 

contribution of all the eigenvectors to the overall augmented error 

vector ( )augx k∆  diminish to zero, asymptotically. Thus, the augmented 

error vector ( )augx k∆  converges to zero. In other words, with Cyclic 

PD-ILC the errors in the control input converge to zero even under 

non-zero initial state error assumption. 

5.4 Evolution of State Errors for Cyclic PD-ILC 

The state errors evolve for Cyclic PD-ILC under following relationship. 

( 1) ( )PDx k L x k∆ + = ∆  (5.32) 

where the state error evolution matrix PDL  is given below. 

 

( )

( ) ( )

( ) ( ){ } ( )

2

2 3 1

0 0 0

0d p d

d d p d

d d p d p d
M M M

I

BK A I B K K A

A BK A BK AB K K A

A BK A A BK AB K K A I B K K
− − −

− +

+

+ + − +

 
 
 − 
 
 − − 
 
 
 
 

− −  

⋯

⋯

⋱ ⋱

⋮ ⋮ ⋱ ⋱ ⋮

⋯ ⋯

 

  (5.33) 
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The matrix PDL  has dimension 2 2M M× , and it has elements different 

from DL  matrix in Eq. (5.19) for the Cyclic D-ILC case. The 

proportional gain pK  has not only changed the state error evolution 

matrix but the corresponding eigenvalues and eigenvectors have 

changed as well. Now there are 2M −  number ( )p dI B K K− +  block 

matrices at the diagonal. Each of these block matrices contributes one 

eigenvalue at unity.  

5.5 Damped Pendulum with Cyclic ILC- Simulations 

In this section, Cyclic D–ILC and Cyclic PD-ILC algorithms have been 

simulated to analyse the rate of convergence of the initial state and 

control input errors over a number of swings/batches for different 

initial conditions of the damped pendulum discussed in Section 3.7. 

Each swing consists of 20 samples. The initial conditions for the 1st 

swing only are similar to the desired, i.e., 0 /4θ π= radians and 0 0ω =  

rad/s and control input during 1st swing is zero for all time indices. The 

formulation is based on the damped pendulum discussed in the previous 

chapter. The angle and the angular velocity at the last sample time of 

each swing are retained and used as the initial errors for the successive 

swing. It can be mathematically described by the following Eq. (5.34) 
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(1, 1) ( , )

(1, 1) ( , )

k M k

k M k

θ θ

ω ω

∆ +  ∆ 
   =   
   ∆ + ∆   

 (5.34) 

The initial conditions correspond to the errors in initial angle 

(1, 1)kθ∆ +  and the angular velocity (1, 1)kω∆ +  of the pendulum at 

the start of a new swing/batch number 1k + . 

5.5.1 CASE 1: Cyclic D-ILC 

For gain matrix 0.5 [1,1]dK = × , both the root mean squared errors in 

the initial state and input are minimised for the earlier 200 iterations, 

but then stay constant at 0.0648 and 0.8984 respectively (Figure 5.1). 

The velocity has converged (Figure 5.3). However, a constant off-set is 

observed in the tracking for both the input and angle in Figure 5.2 and 

Figure 5.3. This off-set occurs due to an eigenvalue at the stability 

boundary, i.e., 1λ = . The response has not blown up which occurs as 

none of the eigenvalues is outside the unit circle. The eigenvalue 1 is 

thus the dominant one. The corresponding eigenvector is given in Eq. 

(5.35). The 2nd element of the dominant eigenvector is 

0.000000000000000 which corresponds to the angular velocity having 

value equal to zero. Thus, elements of the dominant eigenvector satisfy 

the Theorem 5.1. 
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*

   0.022787842232275

   -0.000000000000000

   0.223548732298625

   0.223548732298620

   0.223548732298620

   0.223548732298623

   0.223548732298618

   0.223548732298620

   0.223548732298619

   0.22354873

   v =

2298620

   0.223548732298620

   0.223548732298619

   0.223548732298621

   0.223548732298618

   0.223548732298619

   0.223548732298618

   0.223548732298620

   0.223548732298618

   0.223548732298620

   0.223548732298619

   0.223548732298617

   0.223548732298617

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 (5.35) 

For given A  and B  matrices of the pendulum and using 

*
3 0.223548732298625v = , the values of components of the dominant 

eigenvector *v  are same as those given above. Specifically the values for 

* *
1 2,v v  are found as follows 
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* * 1 *
1 2 3

    0.022787842232275

, ( )
   -0.000000000000000

T
v v I A Bv−

 
   = − =      

 (5.36) 

Eq. (5.36) is a mapping of *
3v  to * *

1 2,v v . It is validated since it 

corresponds to input to out put mapping under the condition that C  is 

an identity matrix and matrix 0D = . As the batches proceed, the 

augmented error vector ( )augx k∆  aligns with the dominant eigenvector 

and the contribution to velocity goes to zero when the other 

eigenvectors have diminished. The rate at which this convergence 

occurs is 2 1λ λ  where 1λ  is the dominant eigenvalue and 2λ  is the 2nd 

dominant eigenvalue. This corresponds to about 200 batches. The RMS 

values of the initial state and input errors (Figure 5.1) as well as input 

error (Figure 5.4), angle error (Figure 5.6) and velocity error (Figure 

5.7) converge to their approximate final values in 200 batches but do 

not minimize to zero. Also the evolution of input and angle errors 

indicates that these have not converged to zero using D–ILC algorithm 

(See Figure 5.4 and Figure 5.6). Rather a certain amount of off-set is 

maintained. Only the velocity has long-term convergence at a rate 

which approximately equals the 2nd dominant eigenvalue 0.9749 (Figure 

5.7 and Figure 5.8). This corresponds to 180 batches for the decay of 

0.01 as marked in Figure 5.8. 
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Figure 5.8: Convergence rate for velocity error 

Figure 5.1: Root mean squared initial state and input errors 
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Figure 5.2: Tracking of desired control input 

Figure 5.3: Tracking of desired angle and velocity 
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Figure 5.4: Evolution of input error at selected time indices 

Figure 5.5: Convergence rate of input error at selected indices 
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Figure 5.6: Evolution of angle error at selected time indices 

Figure 5.7: Evolution of velocity error at selected time indices 
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The control input has not achieved convergence because Cyclic D-ILC 

algorithm depends on the difference of error between two consecutive 

time indices. The errors in angle become same for consecutive time 

indices in Figure 5.6 instead of becoming zero while the error in 

velocity goes to zero in Figure 5.7. The overall error vector becomes 

constant after 180 batches/swings, hence further learning or control 

input update has ceased. Thus, the learning algorithm requires update 

which not only depends on derivative of error but also penalises the 

error itself to handle different initial conditions. The constant off-set 

error can be minimised by introducing the proportional part in the 

Figure 5.8: Convergence rate for velocity error 
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Cyclic ILC algorithm. It is Cyclic PD–ILC which has been analysed in 

next section 5.5.2. 

5.5.2 CASE 2: Cyclic PD-ILC 

Cyclic PD–ILC has successfully minimised constant off-set errors in the 

input and angle as well as guaranteed convergence of angular velocity. 

Using 0.5 [1,1]pK = ×  and 0.5 [1,1]dK = × , the initial state errors and 

the input errors have been minimised to 1.6184e-016 and 3.8579e-015 

respectively (Figure 5.9). 
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Tracking performance using Cyclic PD-ILC has shown that desired 

trajectories for all the three variables. i.e., control input, angle and 

velocity have been successfully tracked (Figure 5.10 and Figure 5.11).  

Figure 5.9: RMS initial state and input errors using Cyclic PD-ILC
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Figure 5.10: Tracking of control input using Cyclic PD-ILC 

Figure 5.11: Tracking of angle and velocity using Cyclic PD-ILC 
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Figure 5.12: Evolution of input error using Cyclic PD-ILC 

Figure 5.13: Convergence rate of control input errors using Cyclic PD-ILC 
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The control input errors have evolved as shown in Figure 5.12. The 

rates for these time indices in Figure 5.13 have reached the numerical 

zero after 6000 batches. The maximum absolute eigenvalue of the 

matrix has been 0.9944 which has indicated the maximum rate of 

convergence. In Figure 5.13, it has been observed that slope consists of 

innumerable kinks which occur due to oscillations of the control input 

errors (Figure 5.12). To minimise these oscillations and hence the kinks 

in slope, p dK K<  has been employed in next section.  

5.5.3 CASE 3: Cyclic PD-ILC Using P Gain Less Than D Gain 

In this case, the gain matrices have been selected as 

0.05 [1,1], 0.5 [1,1]p dK K= × = ×  such that p dK K<< .  
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Figure 5.14: RMS initial state and input errors 
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Figure 5.15: Tracking for different initial states with Cyclic PD-ILC 

Figure 5.16: Tracking input for different initial states using Cyclic PD-ILC
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Final values of RMS for initial state and input errors are 1.6184e-016 

and 4.4479e-015 respectively (Figure 5.14). The desired angle, velocity 

and input have been tracked perfectly (Figure 5.15 and Figure 5.16). 

Since, the input errors do not have oscillations/zero-crossings (Figure 

5.17), the rate in Figure 5.18 is almost a straight line and input errors 

for all the time indices converge at the same rate, i.e., 0.9949, equal to 

magnitude of the maximum eigenvalue for matrix PDL . For the 

eigenvalue 0.9949, one time constant corresponds to 195 iterations. 

Decay of 0.01 corresponding to 4 to 5 time constants, i.e. 975 iterations 

has been marked in Figure 5.18. The angle and velocity errors have 

evolved with oscillating behaviour in the initial iterations (Figure 5.19 

and Figure 5.20). This phenomenon has occurred due to complex 

Figure 5.17: Input errors evolution with Cyclic PD-ILC 
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eigenvalues and corresponding complex eigenvectors. However, the 1st 

and 2nd dominant eigenvalues have real values 0.9949 and 0.9762 

respectively. The ratio 2 1λ λ  gives the rate of convergence to the 

dominant eigenvector which corresponds to about 260 iterations. The 

dominant eigenvector has been given in Eq. (5.37).  

 

*

   0.022851482876001

  -0.000115687661548

   0.224087250705004

   0.224030418650714

   0.223973601009918

   0.223916797778979

   0.223860008954231

   0.223803234532024

   0.223746474508705

   0.2236897288

PDv =

80617

   0.223632997644116

   0.223576280795552

   0.223519578331271

   0.223462890247629

   0.223406216540975

   0.223349557207666

   0.223292912244056

   0.223236281646501

   0.223179665411357

   0.223123063534982

   0.223066476013736

   0.223009902843975

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 (5.37) 
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Figure 5.18: Long-term rate of input error with Cyclic PD-ILC 

Figure 5.19: Evolution of angle error using Cyclic PD-ILC 
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The dominant eigenvector has all real entries hence no oscillations have 

been observed after 260 iterations for any of the input, angle and 

velocity errors (See Figure 5.17,Figure 5.19 and Figure 5.20). 

Remarks: 

The forward difference employed in Cyclic D-ILC algorithm only 

penalises the difference in the output/state error at consecutive sample 

times. Thus, whenever the output has stabilised using an offset type 

error in which consecutive errors have same magnitude, the Cyclic D–

ILC algorithm ceases updating the control input during further 

repetitions/swings. The learning is therefore interrupted. This 

phenomenon has been observed when the identical initial conditions are 

not maintained for each repetition/swing. Additionally, the input at 

Figure 5.20: Evolution of velocity error using Cyclic PD-ILC 
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last time index M  does not contribute to generate the output, rather it 

goes waste. Hence only the first 1M −  eigenvalues are of interest. The 

rank of the matrix product CB  determines the number of output 

variables/states which are controllable. For all outputs to be 

controllable through Cyclic D-ILC the product CB  should be full rank. 

5.6 Parameters for Stable Cyclic PD-ILC Learning 

The stability analysis has been carried out to identify the values of pK  

and dK , for which the eigenvalues of the matrix PDL  lie inside the unit 

circle. The region inside Figure 5.21 shows the region inside which the 

pair of values of pK  and dK  gives stable learning performance. 
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Figure 5.21: Stability boundary for Cyclic PD-ILC 
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Any other pair of gains outside this sector shape would cause 

divergence of the control input from desired. As a consequence out put 

shall diverge as well. 

5.7 Summary 

In this chapter, the convergence analysis techniques developed in 

previous chapter have been extended to handle the non-zero initial 

error case for Cyclic D-ILC algorithm. The use of augmented operator 

matrix facilitates the analysis. The eigen-analysis has been presented to 

explain in detail the factors affecting the evolution, non-convergence to 

zero and convergence rate of the state variables. Further, the use of 

Cyclic PD-ILC algorithm has been used to solve the problem of offset 

error faced with Cyclic D-ILC. But the selection of learning gain 

matrices has to done very carefully so as to avoid lying outside the 

stability region which causes divergence. 
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   Chapter 6 

6 ILC for Robotics 

In this chapter, the Cyclic D-ILC algorithm has been used to generate 

the input torques for both the hip and ankle joints of compass gait 

robot. The simulations indicate stable walking patterns for the compass 

gait robot walking on flat surface as well as slopes. The Cyclic D-ILC 

algorithm converges to desired values for the input torques resulting in 

stable walking patterns. 

6.1 Cyclic D-ILC for Actuated Compass Gait Robot 

In this section, Cyclic D-ILC has been implemented to generate input 

torques for the compass gait robot walking. Each step is considered as a 

batch. Every step starts after the impact reset at which the Cyclic D-

ILC algorithm is used to calculate the control input update for the hip 

and ankle torques as follows. 

{ }( 1) ( ) ( 1) ( )dk k K e k e kτ τ+ = + + −  (6.1) 

where τ  is the vector of ankle and hip joint torques 1u  and 2u , k  is 

the step number, dK  is the gain matrix having appropriate dimensions. 

The error between the desired and new state vectors has been defined 

as under. 

0( ) *  ( )e k x x k= −   (6.2) 
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where 0( )x k  is the new state vector after impact and marks the 

beginning of the thk  new step. 

The torque vector τ  has been calculated using Cyclic D-ILC algorithm 

and applied at the beginning of each step like an impulsive input rather 

than during the whole step. Thus, Cyclic D-ILC provides an inverse-

kinematics solution of computing the joint torques from the knowledge 

of joint motions and past inputs. However, explicit knowledge of the 

robot dynamics is not required as Cyclic D-ILC algorithm learns to 

generate the desired input torques. These torques further actuate the 

joints to the desired joint angles. 

6.1.1 Simulations of CG Robot Walking on Flat Surface 

Actuated with Cyclic D-ILC Generated Torques 

A compass gait robot having legs of unit length and point mass 5 kg 

each at the centre of the legs is considered. The hip mass is 10 kg. 

Starting from the selected initial conditions, i.e. 0 [0.2, -0.4, -0.8,2.1]x = , 

the Cyclic D-ILC as per Eq. (6.1) is employed to generate torques at 

ankle and hip joint for 500 steps in Figure 6.1. The gain matrix dK  in 

Eq. (6.3) is selected so that torque update depends on the respective 

joint angles and angular velocities only. It can be observed that Cyclic 

D-ILC algorithm has achieved convergence after 20 steps as the torques 

have reached steady state values. 

0 00.25 -0.25

0 0.25 0 0.25
dK

 
 =  
  

 (6.3) 
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Figure 6.1: Torques generated using Cyclic D-ILC on flat surface 

Figure 6.2: Phase portrait on flat surface using Cyclic D-ILC 
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The phase portrait of compass gait robot in Figure 6.2 shows that CG 

robot has achieved a stable walking pattern or gait. 

6.1.2 Simulations of CG Walking Downhill with Cyclic D-ILC  

The downhill walking of a compass gait robot actuated by Cyclic D-

ILC is represented by the phase portrait in Figure 6.4. It has been 

observed that the torques generated by Cyclic D-ILC have achieved 

convergence in about 40 steps in Figure 6.3. The positive values of 

ankle torque indicate that it acts against the downward motion of the 

robot due to gravity. This way it prevents the robot from falling over.  
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Figure 6.3: Torques using Cyclic D-ILC for CG robot walking downhill 
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Figure 6.4: Limit cycle - CG robot walking on slope 

Figure 6.5: Cyclic D-ILC torques for CG using reduced dK  
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The oscillatory behaviour of Cyclic D-ILC generated ankle torque 

during the few initial steps can be avoided by scaling down the gain 

matrix dK . By lowering dK  ten times, the torques have achieved 

steady state values smoothly as shown in Figure 6.5. 

6.2 Modified Cyclic PD-ILC for Bipedal Walk 

Following update algorithm based on Cyclic PD-ILC has been 

employed. 

{ }

( , 1) ( , ) ( 1, )

            ( 1, ) ( , )

p

d

u i j u i j K e i j

K e i j e i j

+ = + +

+ + −
 (6.4) 

 

6.3 Simulations for CG Walk Using Modified Cyclic 

PD-ILC 

The compass gait robot model has been discretized at sample time of 

0.1 second. Reference trajectory for robot walking on flat surface has 

been obtained via a carefully tuned PD controller. The compass gait 

robot has been simulated for 4000 steps using gain matrices as follows. 

 

 
 
 
   

=
0.1 0 0 0

0 0.1 0 0
pK  and 

1 1 1 1

1 1 1 1
dK

 
 
 
  

=   
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The gain matrix dK  has structure such that it utilizes forward 

difference errors of both the angle joints and their respective velocities. 

Effectively, the acceleration term is also incorporated. The Cyclic ILC 

learns to generate the desired values of the ankle and hip joint torques 

as shown in Figure 6.6 and Figure 6.7 respectively. As the joint input 

torques are tracked, the desired joint angles of the  compass gait robot 

are achieved which result in a steady gait as observed from the tracking 

of angles of stance foot and hip joint in Figure 6.8 and Figure 6.9 

respectively. 
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Figure 6.6: Tracking ankle joint torque 
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Figure 6.7: Tracking hip joint torque 

Figure 6.8: Tracking stance foot angle 
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Maximum eigenvalue for operator matrix for ankle input torque error is 

0.9951 for which the time constant is about 204. So for 5 time 

constants there are 1016 iterations or steps. The evolution of ankle 

input error at component level is shown in Figure 6.10. Convergence 

rate, although not well-defined as for the pendulum, has been 

illustrated in Figure 6.11. Maximum eigenvalue of the operator matrix 

for hip joint input errors is 0.9952. Hence, 5 time constants equal about 

1040 iterations or steps. Log-log RMS values of the state, ankle and hip 

joint input errors in Figure 6.14 show that these errors have minimized 

after 1000 steps. The stable gait is validated from the phase portraits in 

Figure 6.15 and Figure 6.16, respectively. 

Figure 6.9: Tracking hip joint angle 
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Figure 6.10: Evolution of ankle input torque error 

Figure 6.11: Slopes showing rate of ankle input torque error 
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Figure 6.12: Evolution of Hip Joint torque 

Figure 6.13: Slopes showing rate of hip joint error 
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Figure 6.14: Log-log RMS values of state and input errors 

Figure 6.15: Phase portrait of ankle joint at last step 



173 

-0.5 0 0.5
-1

-0.5

0

0.5

1

1.5

2

d
q
2

q2
 

10
0

10
1

10
2

10
3

10
4

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

lo
g

-l
o

g
 R

M
S

 i
n

it
ia

l 
s
ta

te
 e

rr
o

r

Iteration number

 

Figure 6.16: Phase portrait of hip joint at last step 

Figure 6.17: RMS values with modified Cyclic PD-ILC 
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6.4 Summary 

In this chapter, introduced the model of CG robot and its motion under 

the action of gravity only. Then the Cyclic D-ILC algorithm under has 

been applied to the compass gait robot walking on a flat surface. Stable 

gaits or symmetric walking patterns have been achieved for specific 

initial conditions. Secondly, the modified Cyclic PD-ILC algorithm has 

been applied to solve the biped walking problem where each step has 

been treated as a new batch for the ILC operation. The encouraging 

results can be extended to robots having higher number of joints and 

links as well. 
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    Chapter 7 

7 Conclusions 

In the end, the thesis is concluded with some general overall comments 

and remarks about the work presented in earlier Chapters. Some 

suggestions for future work have been referred as well. 

In this thesis, Iterative Learning algorithms have been studied with 

focus on D-ILC, PD-ILC and Cyclic ILC. Rate of Convergence in terms 

of input errors have been investigated with simulations showing the 

long term relation with eigenvalues of the matrix which relates the 

input error vectors which occur consecutively in time. The 

mathematical frame-work to analyse the convergence rate has been 

developed on the basis of conventional zero initial error for D-ILC 

algorithm. It has been further developed to analyse the convergence 

analysis of Cyclic PD-ILC algorithm and proved its superiority over 

Cyclic D-ILC for higher order systems by eigen-analysis in detail. 

Further, the framework has been extended to analyse the Cyclic ILC 

scenario which has more complexity as compared to the conventional 

zero-initial error constraint. Since, errors from the end of iteration are 

inherited as initial errors for the next consecutive iteration in Cyclic 

ILC. Zero-initial error constrain has to be relaxed to incorporate the 

initial state errors. Although the convergence rate analysis has been 

developed for linear time-invariant systems such as the linearised 
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damped pendulum, but it can be extended to nonlinear systems as well. 

These algorithms have been employed to solve compass gait bipedal 

robot walking problem modelled as a nonlinear system. The simulations 

have indicated that stability in walking pattern or gait has been 

achieved. 

Recommendations for Future Work 

• For future work, more elaborate higher order models of bipedal 

robots can be investigated for walking using Cyclic ILC 

algorithms. 

• Implementation of Iterative Learning algorithms to kneed robot 

model with feet and toe-off impulse. 

• Optimality and energy analysis of the robot while using iterative 

learning algorithms for bipedal walking. 

• Development of optimal and robust learning algorithms for 

walking as well as running over difficult terrains. 
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APPENDIX A 

Swing Phase Dynamics of Compass gait robot 

The equations of motion for the passive compass gait robot are derived 

using Euler-Lagrange approach. Under the effect of gravity, the 

difference between Kinetic Energy (KE) and Potential Energy (PE) 

gives the relation for the Lagrangian below 

( , ) ( , ) ( )L q q KE q q PE q= −ɺ ɺ  (A.1) 

For no external torques acting on the joints, the equations of motion 

for the joint angles are obtained from the Lagrangian given in Eq. (A.1) 

as follows 

( , ) ( , )
0

d L q q L q q

dt q q

∂  ∂ − =  ∂ ∂
ɺ ɺ

ɺ
 (A.2) 

Using Eq. (A.1), the Lagrangian is substituted with KE and PE in Eq. 

(A.2). 

( , ) ( , ) ( )
0

d KE q q KE q q dPE q

dt q q dq

∂  ∂ − + =  ∂ ∂
ɺ ɺ

ɺ
 (A.3) 

The PE and KE for compass gait robot are found as 

( ) 1 1 2( ) ( ) ) cos( ) cos( )hPE q m a l m l g q mgb q q= + + − +  (A.4) 

1
( ) ( )

2
TKE q q M q q= ɺ ɺ   (A.5) 

where the  inertia matrix ( )M q  is given below 
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( ) ( )
( )

2 2 2 2 2
2 2

2 2
2

( )

2 cos( ) cos( )

cos( )

h

M q

m l m l a b bl q m b bl q

m b bl q mb

 + + + − − =  
 − 

 (A.6) 

Here, the inertia matrix ( )M q  independent of 1q  is a function of inter-

leg angle 2q  and masses only. The derivatives of PE and KE for Euler-

Lagrange expression are as follows 

( ) 1 1 2

1 2

( ) sin( ) sin( )( )

sin( )

hm a l m l g q mgb q qdPE q

dq mgb q q

 − + + + + =  
 + 

 (A.7) 

 

( )( )( , ) ( , ) ( ) 1
( )

2

Tq M q qd KE q q KE q q dM q
M q q q

dt q q dt q

∂∂  ∂ − = + −  ∂ ∂ ∂
ɺ ɺɺ ɺ

ɺɺ ɺ
ɺ

 (A.8) 

The derivatives in Eq. (A.8) are shown expanded below 

{ } { }

{ }

2 2 2 2

2 2

1
sin( ) sin( )

2( )

1
sin( ) 0

2

m q q m q q
dM q

dt
m q q

 
 
 =  
 
  

ɺ ɺ

ɺ

 (A.9) 

 

( )
{ } ( )

{ } { }

2
2 1 1 2

2 1 2 2

0( )

sin( ) ( )

0 0

sin( ) sin( ) 0

Tq M q q

q m q q q q

m q q m q q

 ∂  =  ∂ × +  

 
 =  +  

ɺ ɺ

ɺ ɺ ɺ

ɺ ɺ

 (A.10) 

Substituting the derivatives from Eq. (A.7) and Eq. (A.8) in Euler-

Lagrange expression Eq. (A.3), the following 2nd order, nonlinear 

equation describes the dynamics of the compass gait robot 
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( ) ( , ) ( ) 0M q q C q q q G q+ + =ɺɺ ɺ ɺ  (A.11) 

where 

2 2 2 2

1 2

( ) ( , )
( , )

2 sin( ) sin( )
         

sin( ) 0

dM q KE q q
C q q q

dt q

mblq q mblq q

mblq q

∂
= −

∂
 
 =  −  

ɺ
ɺ ɺ

ɺ ɺ

ɺ

     (A.12) 

and 

( ) 1 1 2

1 2

( ) sin( ) sin( )
( )

sin( )
hm a l m l g q mgb q q

G q
mgb q q

 − + + + + =  +  
  (A.13) 

 

Impact Reset during Stance Phase 

At impact, the reference point for the robot changes to the new stance 

foot. Use + and – superscripts to represent pre- and post- impact 

conditions respectively. The relationships for both the pre- and post-

impacts are as follows 

2 1

1 1

 2  q q

q q+ −

= −

= −
  (A.14) 

The KE is decreased due to impact. However, assuming a perfect 

impact, the angular momentum remains constant. The abrupt change 

in joint velocities is calculated from the conservation of pre- and post-

impact momentums as follows 

( ) ( )M q q M q q− − + +=ɺ ɺ   (A.15) 
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Using the relationships between joint angles given in Eq. (A.14) at 

impact, Eq. (A.15) has angular momentums as functions of inter-leg 

angle 2q  only as given below 

2 2( ) ( )M q q M q q− − + +=ɺ ɺ   (A.16) 

The pre- and post-impact momentums are described as follows 

{ }

{ }

{ }

2

2 2

2

2

2 2

0
4( )

cos( ) 1 2 cos( )
2 4

1 2 cos( )
4 4( )

3
cos( ) 1 2 cos( )

2 4

h

h

m

M q
m m

m q q

m m
q

M q
m

m m q q

−

+

 
 −
 =  
 − − −  
 
 −
 =    + − −   

 (A.17) 

The post-impact velocities are found from Eq. (A.16) as under 

( ) 1
2 2( ) ( )q M q M q q Rq

−+ + − − −= =ɺ ɺ ɺ  (A.18) 

where R , the reset matrix for joint angular velocities is given by 

{ } ( )

2

2

2 2 2

1

4 3 2 cos(2 )

2( 2 )cos( )
     

4( ) cos(2 ) cos( ) 1 2 cos( )

h

h

h

R
m m m q

m m m q m

m m q q m q

=
+ −

 − + + − ×  
 + − − 

 (A.19) 
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APPENDIX B 

For a difference inequality such as 

( 1) ( ) ( )z i i hz iβ+ ≤ +        (B.1) 

where (.)z  and (.)β  are scalar functions of 0i ≥  and h  is a positive 

constant. So, for 1i ≥ , the following relation holds: 
1

1

0

( ) ( ) (0)
i

i j i

j

z i h j h zβ
−

− −

=

≤ +∑       (B.2) 

The Eq. (B.2) gives the upper bound. 
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