747 research outputs found

    A scientific information extraction dataset for nature inspired engineering

    Get PDF
    Nature has inspired various ground-breaking technological developments in applications ranging from robotics to aerospace engineering and the manufacturing of medical devices. However, accessing the information captured in scientific biology texts is a time-consuming and hard task that requires domain-specific knowledge. Improving access for outsiders can help interdisciplinary research like Nature Inspired Engineering. This paper describes a dataset of 1,500 manually-annotated sentences that express domain-independent relations between central concepts in a scientific biology text, such as trade-offs and correlations. The arguments of these relations can be Multi Word Expressions and have been annotated with modifying phrases to form non-projective graphs. The dataset allows for training and evaluating Relation Extraction algorithms that aim for coarse-grained typing of scientific biological documents, enabling a high-level filter for engineers.Comment: Published in Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020). Updated dataset statistics, results unchange

    Towards a design process for computer-aided biomimetics

    Get PDF
    Computer-Aided Biomimetics (CAB) tools aim to support the integration of relevant biological knowledge into biomimetic problem-solving processes. Specific steps of biomimetic processes that require support include the identification, selection and abstraction of relevant biological analogies. Existing CAB tools usually aim to support these steps by describing biological systems in terms of functions, although engineering functions do not map naturally to biological functions. Consequentially, the resulting static, functional view provides an incomplete understanding of biological processes, which are dynamic, cyclic and self-organizing. This paper proposes an alternative approach that revolves around the concept of trade-offs. The aim is to include the biological context, such as environmental characteristics, that may provide information crucial to the transfer of biological information to an engineering application. The proposed design process is exemplified by an illustrative case study

    Patent Data for Engineering Design: A Critical Review and Future Directions

    Full text link
    Patent data have long been used for engineering design research because of its large and expanding size, and widely varying massive amount of design information contained in patents. Recent advances in artificial intelligence and data science present unprecedented opportunities to develop data-driven design methods and tools, as well as advance design science, using the patent database. Herein, we survey and categorize the patent-for-design literature based on its contributions to design theories, methods, tools, and strategies, as well as the types of patent data and data-driven methods used in respective studies. Our review highlights promising future research directions in patent data-driven design research and practice.Comment: Accepted by JCIS

    Interactive analogical retrieval: practice, theory and technology

    Get PDF
    Analogy is ubiquitous in human cognition. One of the important questions related to understanding the situated nature of analogy-making is how people retrieve source analogues via their interactions with external environments. This dissertation studies interactive analogical retrieval in the context of biologically inspired design (BID). BID involves creative use of analogies to biological systems to develop solutions for complex design problems (e.g., designing a device for acquiring water in desert environments based on the analogous fog-harvesting abilities of the Namibian Beetle). Finding the right biological analogues is one of the critical first steps in BID. Designers routinely search online in order to find their biological sources of inspiration. But this task of online bio-inspiration seeking represents an instance of interactive analogical retrieval that is extremely time consuming and challenging to accomplish. This dissertation focuses on understanding and supporting the task of online bio-inspiration seeking. Through a series of field studies, this dissertation uncovered the salient characteristics and challenges of online bio-inspiration seeking. An information-processing model of interactive analogical retrieval was developed in order to explain those challenges and to identify the underlying causes. A set of measures were put forth to ameliorate those challenges by targeting the identified causes. These measures were then implemented in an online information-seeking technology designed to specifically support the task of online bio-inspiration seeking. Finally, the validity of the proposed measures was investigated through a series of experimental studies and a deployment study. The trends are encouraging and suggest that the proposed measures has the potential to change the dynamics of online bio-inspiration seeking in favor of ameliorating the identified challenges of online bio-inspiration seeking.PhDCommittee Chair: Goel, Ashok; Committee Member: Kolodner, Janet; Committee Member: Maher, Mary Lou; Committee Member: Nersessian, Nancy; Committee Member: Yen, Jeannett

    Natural Language Processing in-and-for Design Research

    Full text link
    We review the scholarly contributions that utilise Natural Language Processing (NLP) methods to support the design process. Using a heuristic approach, we collected 223 articles published in 32 journals and within the period 1991-present. We present state-of-the-art NLP in-and-for design research by reviewing these articles according to the type of natural language text sources: internal reports, design concepts, discourse transcripts, technical publications, consumer opinions, and others. Upon summarizing and identifying the gaps in these contributions, we utilise an existing design innovation framework to identify the applications that are currently being supported by NLP. We then propose a few methodological and theoretical directions for future NLP in-and-for design research

    Ontology Alignment using Biologically-inspired Optimisation Algorithms

    Get PDF
    It is investigated how biologically-inspired optimisation methods can be used to compute alignments between ontologies. Independent of particular similarity metrics, the developed techniques demonstrate anytime behaviour and high scalability. Due to the inherent parallelisability of these population-based algorithms it is possible to exploit dynamically scalable cloud infrastructures - a step towards the provisioning of Alignment-as-a-Service solutions for future semantic applications

    Application of Common Sense Computing for the Development of a Novel Knowledge-Based Opinion Mining Engine

    Get PDF
    The ways people express their opinions and sentiments have radically changed in the past few years thanks to the advent of social networks, web communities, blogs, wikis and other online collaborative media. The distillation of knowledge from this huge amount of unstructured information can be a key factor for marketers who want to create an image or identity in the minds of their customers for their product, brand, or organisation. These online social data, however, remain hardly accessible to computers, as they are specifically meant for human consumption. The automatic analysis of online opinions, in fact, involves a deep understanding of natural language text by machines, from which we are still very far. Hitherto, online information retrieval has been mainly based on algorithms relying on the textual representation of web-pages. Such algorithms are very good at retrieving texts, splitting them into parts, checking the spelling and counting their words. But when it comes to interpreting sentences and extracting meaningful information, their capabilities are known to be very limited. Existing approaches to opinion mining and sentiment analysis, in particular, can be grouped into three main categories: keyword spotting, in which text is classified into categories based on the presence of fairly unambiguous affect words; lexical affinity, which assigns arbitrary words a probabilistic affinity for a particular emotion; statistical methods, which calculate the valence of affective keywords and word co-occurrence frequencies on the base of a large training corpus. Early works aimed to classify entire documents as containing overall positive or negative polarity, or rating scores of reviews. Such systems were mainly based on supervised approaches relying on manually labelled samples, such as movie or product reviews where the opinionist’s overall positive or negative attitude was explicitly indicated. However, opinions and sentiments do not occur only at document level, nor they are limited to a single valence or target. Contrary or complementary attitudes toward the same topic or multiple topics can be present across the span of a document. In more recent works, text analysis granularity has been taken down to segment and sentence level, e.g., by using presence of opinion-bearing lexical items (single words or n-grams) to detect subjective sentences, or by exploiting association rule mining for a feature-based analysis of product reviews. These approaches, however, are still far from being able to infer the cognitive and affective information associated with natural language as they mainly rely on knowledge bases that are still too limited to efficiently process text at sentence level. In this thesis, common sense computing techniques are further developed and applied to bridge the semantic gap between word-level natural language data and the concept-level opinions conveyed by these. In particular, the ensemble application of graph mining and multi-dimensionality reduction techniques on two common sense knowledge bases was exploited to develop a novel intelligent engine for open-domain opinion mining and sentiment analysis. The proposed approach, termed sentic computing, performs a clause-level semantic analysis of text, which allows the inference of both the conceptual and emotional information associated with natural language opinions and, hence, a more efficient passage from (unstructured) textual information to (structured) machine-processable data. The engine was tested on three different resources, namely a Twitter hashtag repository, a LiveJournal database and a PatientOpinion dataset, and its performance compared both with results obtained using standard sentiment analysis techniques and using different state-of-the-art knowledge bases such as Princeton’s WordNet, MIT’s ConceptNet and Microsoft’s Probase. Differently from most currently available opinion mining services, the developed engine does not base its analysis on a limited set of affect words and their co-occurrence frequencies, but rather on common sense concepts and the cognitive and affective valence conveyed by these. This allows the engine to be domain-independent and, hence, to be embedded in any opinion mining system for the development of intelligent applications in multiple fields such as Social Web, HCI and e-health. Looking ahead, the combined novel use of different knowledge bases and of common sense reasoning techniques for opinion mining proposed in this work, will, eventually, pave the way for development of more bio-inspired approaches to the design of natural language processing systems capable of handling knowledge, retrieving it when necessary, making analogies and learning from experience
    • …
    corecore