154 research outputs found

    Modeling and control of an anthropomorphic robotic hand

    Get PDF
    Mención Europea en el título de doctorThis thesis presents methods and tools for enabling the successful use of robotic hands. For highly dexterous and/or anthropomorphic robotic hands, these methods have to share some common goals, such as overcoming the potential complexity of the mechanical design and the ability of performing accurate tasks with low and efficient computational cost. A prerequisite for dexterity is to increase the workspace of the robotic hand. For this purpose, the robotic hand must be considered as a single multibody system. Solving the inverse kinematics problem of the whole robotic hand is an arduous task due to the high number of degrees of freedom involved and the possible mechanical limitations, singularities and other possible constraints. The redundancy has proven to be of a great usefulness for dealing with potential constraints. To be able to exploit the redundancy for dealing with constraints, the adopted method for solving the inverse kinematics must be robust and extendable. Obviously, addressing such complex problem, the method will certainly be computationally heavy. Thus, one of the aims of this thesis is to resolve the inverse kinematics problem of the whole robotic hand under constraints, taking into account the computational cost. To this end, this thesis extends and reduces the most recent Selectively Damped Least Squares method which is based on the computation of all singular values, to deal with constraints with a minimum computational cost. New estimation algorithm of singular values and their corresponding singular vectors is proposed to reduce the computational cost. The reduced extended selectively damped least squares method is simulated and experimentally evaluated using an anthropomorphic robotic hand as a test bed. On the other hand, dexterity depends not only on the accuracy of the position control, but also on the exerted forces. The tendon driven modern robotic hands, like the one used in this work, are strongly nonlinear dynamic systems, where motions and forces are transmitted remotely to the finger joints. The problem of modeling and control of position and force simultaneously at low level control is then considered. A new hybrid control structure based on the succession of two sliding mode controllers is proposed. The force is controlled by its own controller which does not need a contact model. The performance of the proposed controller is evaluated by performing the force control directly using the force sensor information of the fingertip, and indirectly using the torque control of the actuator. Finally, we expect that the applications of the methods presented in this thesis can be extended to cover different issues and research fields and in particular they can be used in a variety of algorithm that require the estimation of singular values.This work was partially supported by the European project HANDLE, FP7-231640, and by the Spanish ministry MICINN through FPI scholarship within the project DPI-2005-04302.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Anis Sahbani.- Secretario: Fares Jawad Moh D Abu-Dakka.- Vocal: Claudio Ross

    Design, analysis, and control of a cable-driven parallel platform with a pneumatic muscle active support

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The neck is an important part of the body that connects the head to the torso, supporting the weight and generating the movement of the head. In this paper, a cable-driven parallel platform with a pneumatic muscle active support (CPPPMS) is presented for imitating human necks, where cable actuators imitate neck muscles and a pneumatic muscle actuator imitates spinal muscles, respectively. Analyzing the stiffness of the mechanism is carried out based on screw theory, and this mechanism is optimized according to the stiffness characteristics. While taking the dynamics of the pneumatic muscle active support into consideration as well as the cable dynamics and the dynamics of the Up-platform, a dynamic modeling approach to the CPPPMS is established. In order to overcome the flexibility and uncertainties amid the dynamic model, a sliding mode controller is investigated for trajectory tracking, and the stability of the control system is verified by a Lyapunov function. Moreover, a PD controller is proposed for a comparative study. The results of the simulation indicate that the sliding mode controller is more effective than the PD controller for the CPPPMS, and the CPPPMS provides feasible performances for operations under the sliding mode control

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    Redundant Unilaterally Actuated Kinematic Chains: Modeling and Analysis

    Get PDF
    Unilaterally Actuated Robots (UAR)s are a class of robots defined by an actuation that is constrained to a single sign. Cable robots, grasping, fixturing and tensegrity systems are certain applications of UARs. In recent years, there has been increasing interest in robotic and other mechanical systems actuated or constrained by cables. In such systems, an individual constraint is applied to a body of the mechanism in the form of a pure force which can change its magnitude but cannot reverse its direction. This uni-directional actuation complicates the design of cable-driven robots and can result in limited performance. Cable Driven Parallel Robot (CDPR)s are a class of parallel mechanisms where the actuating legs are replaced by cables. CDPRs benefit from the higher payload to weight ratio and increased rigidity. There is growing interest in the cable actuation of multibody systems. There are potential applications for such mechanisms where low moving inertia is required. Cable-driven serial kinematic chain (CDSKC) are mechanisms where the rigid links form a serial kinematic chain and the cables are arranged in a parallel configuration. CDSKC benefits from the dexterity of the serial mechanisms and the actuation advantages of cable-driven manipulators. Firstly, the kinematic modeling of CDSKC is presented, with a focus on different types of cable routings. A geometric approach based on convex cones is utilized to develop novel cable actuation schemes. The cable routing scheme and architecture have a significant effect on the performance of the robot resulting in a limited workspace and high cable forces required to perform a desired task. A novel cable routing scheme is proposed to reduce the number of actuating cables. The internal routing scheme is where, in addition to being externally routed, the cable can be re-routed internally within the link. This type of routing can be considered as the most generalized form of the multi-segment pass-through routing scheme where a cable segment can be attached within the same link. Secondly, the analysis for CDSKCs require extensions from single link CDPRs to consider different routings. The conditions to satisfy wrench-closure and the workspace analysis of different multi-link unilateral manipulators are investigated. Due to redundant and constrained actuation, it is possible for a motion to be either infeasible or the desired motion can be produced by an infinite number of different actuation profiles. The motion generation of the CDSKCs with a minimal number of actuating cables is studied. The static stiffness evaluation of CDSKCs with different routing topologies and isotropic stiffness conditions were investigated. The dexterity and wrench-based metrics were evaluated throughout the mechanism's workspace. Through this thesis, the fundamental tools required in studying cable-driven serial kinematic chains have been presented. The results of this work highlight the potential of using CDSKCs in bio-inspired systems and tensegrity robots

    자동형 가변 동력전달장치를 이용한 로봇손의 개발

    Get PDF
    학위논문 (석사)-- 서울대학교 대학원 : 기계항공공학부, 2014. 8. 조규진.This paper presents a way to improve performance of a tendon driven robotic hand using Passive Variable Transmission. The concept of research was inspired by the human pulley mechanism which changes the moment arm of tendon by pulleys, which makes it possible for a human hand to rapidly and powerfully grasp an object. To mimic the pulley mechanism of the human hand, Passive Variable Transmission is applied, which changes the path of the tendon wire passively as the human hand pulleys do. This PVT Mechanism is a transmission for a tendon driven mechanism, which varies a moment arm of a tendon wire by changing the lengths of compliant material when the tension of the tendon wire is changing. If the tension of the tendon wire is small, the moment arm remains short. As the tension gets bigger, the moment arm increases. Thus, when the joint rotates without load, the moment arm is short and the joint rotates rapidly. On the other hand, if the joint is blocked by an obstacle, the tension increases, which increases the moment arm, and the joint generates a bigger moment. The goal of this research was to develop a suitable PVT design for a small finger structure. After trying a number of concept designs, the spring type PVT was chosen. This spring type PVT has been tested to certificate that this PVT can change the tendon wire moment arm passively. Before fabricating the robotic hand, the parametric study was conducted. Based on the results of the parametric study, parameters of the spring type PVT was decided, and a robotic hand was fabricated. By comparing with an existing tendon driven robotic hand, H2 hand from Meka, it was confirmed that the fabricated robotic hand used 20% rated output and showed 40% grasping performance. There has been a structural limitation on robotic hands in mimicking the grasping performance of human hands. This paper will show prospective view of using the Passive Variable Transmission Mechanism to improve the grasping performance of robotic hands.Abstract i Contents iii List of Tables v List of Figures vi Chapter 1 Introduction 1 Chapter 2 Passive Variable Transmission 3 2.1 Concept of PVT 3 2.2 PVT Concept Test 5 2.2.1 Rotation speed test 6 2.2.2 Fingertip force test 6 Chapter 3 Spring Type PVT 8 3.1 Concept Designs of PVT 8 3.2 Design Modifications for Performance 10 3.3 Spring Type PVT 12 3.3.1 Mechanism of the Spring Type PVT 12 3.3.2 Test for the spring type PVT 14 Chapter 4 Parametric Study 17 4.1 Design Parameters of Spring Type PVT 17 4.1.1 Design Parameters of the Spring Type PVT 17 4.1.2 Moment by Design Parameters 21 4.2 Kinematic Properties of PVT 24 4.2.1 Kinematic properties for a spring constant 24 4.2.2 Kinematic properties for initial deformation 26 4.2.3 Result of parametric study 27 Chapter 5 Robotic Hand 28 5.1 Finger Design of Robotic hand 28 5.2 Fabrication of Robotic hand 31 Chapter 6 Grasping performance 34 Chapter 7 Conclusion 35 Bibliography 37 국문 초록 41Maste

    Analysis of the Workspace of Tendon-based Stewart Platforms

    Get PDF
    Tendon-based Stewart platforms are a concept for innovative manipulators where the load to move almost coincides with the payload. After an overview over the state of research and some concepts of kinematics (singularity and redundancy), the thesis discusses aspects of the technically usable workspace (positive tendon forces, limits of tension, singularity, stiffness, collisions between tendens). A representation of the controllablwe workspace by means of polynomial inequalities is developed. Optimal solutions are provided to the problem of finding appropriate force distributions in the tendons. These solutions can be discontinuous in time, but they can be approximated with continuous ones. An algorithm is given for this. From these results, a quality measure for workspace is derived and used to state design rules which help achieving good workspaces. For some systems, sample trajectories are simulated.</p

    New concepts for parallel kinematic mechanisms using fluid actuation

    Get PDF
    Belgium Herbarium image of Meise Botanic Garden

    Kinematics and Robot Design IV, KaRD2021

    Get PDF
    This volume collects the papers published on the special issue “Kinematics and Robot Design IV, KaRD2021” (https://www.mdpi.com/journal/robotics/special_issues/KaRD2021), which is the forth edition of the KaRD special-issue series, hosted by the open-access journal “MDPI Robotics”. KaRD series is an open environment where researchers can present their works and discuss all the topics focused on the many aspects that involve kinematics in the design of robotic/automatic systems. Kinematics is so intimately related to the design of robotic/automatic systems that the admitted topics of the KaRD series practically cover all the subjects normally present in well-established international conferences on “mechanisms and robotics”. KaRD2021, after the peer-review process, accepted 12 papers. The accepted papers cover some theoretical and many design/applicative aspects
    corecore