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SUMMARY
The neck is an important part of the body that connects the head to the torso, supporting the weight
and generating the movement of the head. In this paper, a cable-driven parallel platform with a
pneumatic muscle active support (CPPPMS) is presented for imitating human necks, where cable
actuators imitate neck muscles and a pneumatic muscle actuator imitates spinal muscles, respectively.
Analyzing the stiffness of the mechanism is carried out based on screw theory, and this mechanism
is optimized according to the stiffness characteristics. While taking the dynamics of the pneumatic
muscle active support into consideration as well as the cable dynamics and the dynamics of the
Up-platform, a dynamic modeling approach to the CPPPMS is established. In order to overcome
the flexibility and uncertainties amid the dynamic model, a sliding mode controller is investigated
for trajectory tracking, and the stability of the control system is verified by a Lyapunov function.
Moreover, a PD controller is proposed for a comparative study. The results of the simulation indicate
that the sliding mode controller is more effective than the PD controller for the CPPPMS, and the
CPPPMS provides feasible performances for operations under the sliding mode control.

KEYWORDS: Neck; Cable-driven parallel platform; Pneumatic muscle; Stiffness; Dynamics; Sliding
mode control.

1. Introduction
Currently, there is a great deal of interest in investigations of the structure of the human body.1,2

The neck is an important part of the human body that connects the head to the torso, supporting
the weight and generating movements of the head. Clinical studies show that the head motion relies
on the cervical portion of the human spine which consists of seven cervical vertebraes.3 Although
each vertebra has six-degrees-of-freedom (DOF), the neck is usually treated as a 3-DOF mechanism
(i.e. pitch, roll, and yaw). Over the past decade, many mechanisms for simulating the neck’s motion
have been designed, which can be classified into two categories: the serial structure and the parallel
structure.

The mechanism belonging to the serial structure is easier to control, since each DOF of the neck
is actuated independently. The robots such as Honda ASIMO,4 HRP-3,5 and BHR6 have serial necks
with 2-DOF in terms of pitch and roll. LOLA,7 Dav,8 and Robota9 have serial necks with 3-DOF
in terms of pitch, roll, and yaw. ARMAR-III10 and WABIANRIV11 have serial necks with 4-DOF,
where an additional DOF for nodding is considered.
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However, it is necessary to note that the mechanisms that use the serial structure have different
biological structures compared to that of the human neck. In the light of the biological structure of
the human body, more and more humanoid necks have been designed with the parallel structure.
An anthropomimetic robot was proposed by Holland.12 The neck of the robot is made up of four
vertebraes driven by shock cords. However, the vertebraes in the robot are much longer than the
vertebrases in humans so that the robot vertebraes can accommodate all of the motors and the
tendons. A human-like tendon-driven neck was proposed by Nori et al.13,14 The neck bone of the
mechanism is composed of a steel spring surrounded by steel tendons, but this structure has only
2-DOF in terms of pitch and roll. A cable-driven flexible parallel robot with low motion noise to
mimic a human neck was presented by Gao et al.15 which is similar to the human-like tendon-driven
neck in ref. [13]. Lee16 introduced a biomechanical model of the human head-neck system, which
consists of 7 cervical vertebraes coupled with 3-DOF joints and 72 neck muscles arranged in 3 muscle
layers. However, this biomechanical model is difficult to construct in reality due to the complexity
of the structure. Furthermore, Liem et al.17 presented a Hexaspine by using the parallel structure to
imitate the human spine, in which only one vertebra was concerned. From the literature mentioned
above, great efforts have been made with regards to designing the humanoid neck. However, there
is still a demand for a novel structure to imitate the human neck, which will facilitate the in-depth
understanding of the motion of the neck.

In this paper, a CPPPMS is proposed as an optimal mechanism for imitating the human neck.
The CPPPMS is a parallel mechanism with 4-DOF, in terms of pitch, roll, yaw, and has one
additional translation DOF that describes the length of the pneumatic muscle active support. The
pitch, roll, and yaw motion represent the head nod, head twisting, and head shaking, respectively.
The additional translation DOF is used for absorbing the vertical vibration of the head. The major
innovation within this mechanism is that the cable actuators and the pneumatic muscle actuator are
utilized simultaneously. The cables driven system has a simple and lightweight structure, a large
reachable workspace, and a high acceleration capability;18–21 while the pneumatic muscle has a
high mass/weight ratio, a high flexibility, and has similarities to biological muscles.22–27 Therefore,
the cable actuators imitate neck muscles due to the demand of the large length change, and the
pneumatic muscle actuator imitates spinal muscles because of the large force requirement. In the
author’s previous work,22 a pneumatic muscle driven parallel mechanism for imitating human pelvis
was investigated, where four pneumatic muscles are used to drive 4-DOF. However, this mechanism
can only be fully controlled with a help of gravity. Its workspace, stiffness, and maximum acceleration
are limited in small region. This mechanism can be utilized for rehabilitation of human pelvis but
is not suitable for imitating the neck motion. Therefore, in order to make sure that the CPPPMS is
controllable during required postures as well as with certain stiffness, five cables are used to control
three rotary DOF and a pneumatic muscle controls one translation DOF, and the CPPPMS is thus a
redundant drive system.21

As the CPPPMS is driven by flexible actuators, some uncertainties can be brought into the
dynamics. Therefore, a sliding mode controller, which has advantages in attacking the uncertainties
of a system,28 is used to control the CPPPMS. In this paper, a sliding mode controller is redesigned
to adapt to the CPPPMS, which has a redundant drive system and has flexible actuators. Yong et al.29

proposed a non-singular terminal sliding mode control for rigid manipulators. This control is suitable
for a second-order nonlinear dynamic system with parameters uncertainties and external disturbances,
but the author did not mention the way to deal with flexible manipulators. A sliding mode control
of a pneumatic muscle actuated servo system was proposed by Shen.30 A hybrid control combining
both a sliding mode control and an adaptive fuzzy CMAC uncertainty compensator was presented by
Shi and Shen,31 where a parallel platform based on pneumatic muscles is controlled. However, the
systems shown in refs. [30, 31] are non-redundant systems, how to use a sliding mode control for a
redundant system needs to be further studied and accounted for.

The rest of the paper is organized as follows: Section 2 describes the design model of the
mechanism. In Section 3, the stiffness characteristics of the mechanism are analyzed based on
screw theory. By using the stiffness characteristics as index, the dimensions of the mechanism
are optimized and the boundary of the real workspace is constructed. Subsequently, by taking the
dynamics of the Up-platform, the cable dynamics, and the dynamics of the pneumatic muscle active
support into consideration, a dynamic modeling approach to the mechanism is established in Section 4.
A sliding mode controller is presented and its stability is verified by a Lyapunov function in Section 5.
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746 Design, analysis, and control of a cable-driven parallel platform

Fig. 1. Structure of the human neck.

Fig. 2. Structure of the CPPPMS.

Meanwhile, a PD controller is proposed for a comparison to the study. In Section 6, the effectiveness
of the sliding mode controller is compared with the PD controller by numerical simulations before
the conclusions are drawn in Section 7.

2. System Description
The human neck is flexible and allows the head to turn and to flex in all directions. It consists of the
cervical spine and muscles. The cervical spine comprises seven bony segments, typically referred to
C1 to C7. When viewed from the side, an adult spine has a natural S-shaped curve. The curve works
like a coiled spring to absorb shock, maintain balance, and allow range of motion throughout the
spinal column. There are more than twenty types of muscles in a neck, and individual muscles often
have multiple origins and insertions. Since it would be difficult to model all the muscles accurately,
we are motivated to reduce the number of modeled muscles and consider only major muscles, which
are the sternohyoid muscles, the sternocleidomastoid muscles, and the trapezius muscles, as shown
in Fig. 1.

The structure of the CPPPMS is presented in Fig. 2. The Bottom-platform imitates the torso;
whereas the Up-platform represented the head. The pneumatic muscle, spring, and slide rail form
a pneumatic muscle active support, which imitates a neck spine with the S-shaped curve and the
muscles. The five cables serve as neck muscles, where the cables Nr. 1 and Nr. 2 represent the right
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Fig. 3. Mechanism scheme of the CPPPMS (P represents a prismatic joint, S represents a spherical joint, U
represents a universal joint).

and left sternocleidomastoid muscles, the cables Nr. 3 and Nr. 4 represent the right and left trapezius
muscles, and the cable Nr. 5 represents the sternohyoid muscles, respectively.

3. Stiffness Analysis and Dimensions Optimization
In this section, the stiffness characteristics of the CPPPMS are analyzed. As a redundant driven
mechanism, the index based on algebraic characteristics of Jacobian matrix is no more suitable for
dimension optimization, because Jacobian matrix is not a square matrix. Therefore, the index based
on stiffness characteristics is utilized for the dimensions optimization of the CPPPMS, which can
identify singular positions as well as estimate the stiffness of the redundant driven mechanism under
each configuration.

3.1. Stiffness analysis
The mechanism scheme of the CPPPMS is shown in Fig. 3. The pneumatic muscle active support
can be treated as a PS-chain (P represents a prismatic joint, S represents a spherical joint), where two
translation DOF are restrained. Each cable can be treated as a UPS-chain (U represents a universal
joint) and no DOF is restricted. Therefore, the Up-platform has 4-DOF in terms of one translation
and three rotations. There are five cables driven by motors and one pneumatic muscle driven by
compressed air. In conclusion, the CPPPMS is a redundant driven mechanism with 4-DOF.

In order to describe the mechanism conveniently, some labels for each joint and the center of mass
are given as follows. One side of the Nr. ith (i = 1, 2, 3, 4, 5) cable is connected to the ith roller and
passes through the Bottom-platform at the point Ai . The other side of the ith cable is connected to
the Up-platform at the point Bi . The pneumatic muscle active support is located between the center
of the Bottom-platform O and the center of the Up-platform C. A global coordinate KO is attached to
the Bottom-platform, with its origin at the point O. Its x-axis is along the vector OA5, and its z-axis is
along the vector OC. In this paper, all coordinates are right hand coordinates and the y-axis is unique
determined according to the right hand law. A coordinate KC is attached to the Up-platform, with its
origin at the point C. Its x-axis is along the vector CB5, and its z-axis is along the vector CE. The
end-effector of the Up-platform is labeled as E, where a coordinate KE is set. KE is parallel with KC .

In order to ensure enough space for assembling electric motors, five motors are equally spaced at
72 degree on the Bottom-platform. Therefore, the points of the intersection between the cables and
the Bottom-platform Ai (i = 1, 2, 3, 4, 5) in coordinate Ko are described by vector rOAi,

rOAi = [Ra cos φi, Ra sin φi, 0]T , (1)

where Ra is the radius of the Bottom-platform, and φi are given as

φ1 = 72◦, φ2 = −72◦, φ3 = 144◦, φ4 = −144◦, φ5 = 0◦.
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748 Design, analysis, and control of a cable-driven parallel platform

From Fig. 1 one can see that the connected points between the muscles and the head are not equally
but symmetrically spaced. One of the reasons is that the neck needs to avoid singular positions in its
workspace. The locations of the joints between the cables and the Up-platform Bi (i = 1, 2, 3, 4, 5)
in coordinate Kc are described by the vector rCBi ,

rCBi = [Rb cos ψi, Rb sin ψi, 0]T , (2)

where Rb is the radius of the Up-platform, and ψi is given by

ψ1 = −ψ2 = υ1, ψ3 = −ψ4 = υ2, ψ5 = 0◦,

where υ1 and υ2 are two unknown variables which will be optimized later.
The vector rOC from the point O to C, which describes the vector of pneumatic muscle active

support in the coordinate KO , is given as

rOC = [
0 0 h1

]T
, (3)

where h1 is the length of the pneumatic muscle active support. Unless otherwise specified, hereafter
the subscripts of all the variables are described in the coordinate KO .

The vector rABi which describes the ith cables in coordinate Ko is given as

rABi = −rOAi + rOC + R · rCBi, i = 1, 2, 3, 4, 5, (4)

where R is the orientation matrix of the Up-platform by introducing yaw, pitch, and roll angles
(α, β, γ ),

R =
⎡
⎣CαCβ CαSβSγ − SαCγ CαSβCγ + SαSγ

SαCβ SαSβSγ + CαCγ SαSβCγ − CαSγ

−Sβ CβSγ CβCγ

⎤
⎦ , (5)

where C denotes cosine and S denotes sine.
The length of the ith cable is

SABi = |rABi | . (6)

The unit vectors along the direction of rABi and rOC are given as

sABi = rABi/ |rABi | , sOC = rOC/ |rOC | . (7)

The stiffness characteristics of the CPPPMS are analyzed by screw theory. Compared with other
methods, screw theory is simple and brief for stiffness modeling.32,33 The pneumatic muscle active
support is a PS-chain, which provides two restrained wrenches $̂wc1 and $̂wc2 representing the forces
on the x- and y- direction and one driven wrench $̂wap representing the force on the z- direction. Each
cable offers one driven wrench $̂wai (i = 1, 2, 3, 4, 5) representing the force along each axis of the
cables. Ignoring gravity and friction, the wrench $̂w acting on the Up-platform is provided by each
chain. Therefore, the base space of the wrench W based on screw theory is

W = [
$̂wa1 $̂wa2 $̂wa3 $̂wa4 $̂wa5 $̂wap $̂wc1 $̂wc2

]
, (8)

here

$̂wa1 =
[

sABi

rCBi × sABi

]
, i = 1, 2, 3, 4, 5

$̂wap = [0, 0, 1, 0, 0, 0]T , $̂wc1 = [1, 0, 0, 0, 0, 0]T , $̂wc2 = [0, 1, 0, 0, 0, 0]T .
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Table I. Algorithm to calculate the stiffness characteristics.

Algorithm: Part I Algorithm: Part II

1: K = W × diag(ki) × WT 1: F = inv(K )

2: K =
[

K 11 K 12

K 21 K 22

]
2: F =

[
F11 F12

F21 F22

]
3: [Sl , k] = eig(K 11) 3: [Sr , f ] = eig(F22)
4: for i = 1 to 3 4: for i = 1 to 3
5: kli = k(i, i) 5: kri = 1/ f (i, i)
6: Sli = Sl(:, i) 6: $̂wri = [zero(3, 1); Sr (:, i)]
7: Sloi = K 21 × Sli/kli 7: End
8: $̂wli = [Sli ; Sloi] 8: kE = diag

(
kl1 kl2 kl3 kr1 kr2 kr3

)
9: End 9: WE = [

$̂wl1 $̂wl2 $̂wl3 $̂wr1 $̂wr2 $̂wr3

]

The stiffness of the cables is assumed as ka , whose calculation approach is proposed in Section 4.2.
The stiffness of the pneumatic muscle active support is approximately equivalent to the stiffness of
the spring ks . Compared with the cables and the pneumatic muscle, the stiffness of constraint joint is
approaching to infinite, which is assumed as kc. The stiffness of each chain is written in the form of
diagonal matrix,

k = diag( ka1 ka2 ka3 ka4 ka5 ks kc1 kc2), (9)

Once the wrench and stiffness of each chain are known, the stiffness characteristics of the CPPPMS
can be analyzed by the decomposition of eigen-twists and eigen-wrenches,34,35

WE kEW T
E = WkWT, (10)

here

WE =
[
$̂wl1 $̂wl2 $̂wl3 $̂wr1 $̂wr2 $̂wr3

]
,

kE = diag (kl1 kl2 kl3 kr1 kr2 kr3) ,

where WE is the matrix of eigen-wrenches; $̂wli (i = 1, 2, 3) are three eigen-forces in three orthogonal
directions and kli are their linear stiffness; $̂wri (i = 1, 2, 3) are three eigen-moments in three
orthogonal directions and kri are their torsional stiffness; kE is the stiffness characteristics matrix of
the CPPPMS. The algorithm to calculate the stiffness characteristics is given in Table I.

It should be noted that the linear stiffness in the x- and y-axes is equal to infinity and the linear
stiffness in the z-axis is equal to ks . Therefore, we only concentrate on the three torsional stiffness
kri (i = 1, 2, 3). When one of kri is approaching to zero, the torsional stiffness in the direction of
$̂wri is small and a small extend moment causes an infinite deformation in this direction. That is to
say, the motion in the direction of $̂wri is uncontrollable, i.e. there is a singularity in this direction.33

Therefore, the minimum kri can be used to identify the stiffness characteristics as well as singularity
of the CPPPMS.

3.2. Dimensions optimization
Two dimensions of the mechanism are still unknown and will be optimized in this section.
The designed variables υ1 and υ2 represent the locations of the joints between the cables and
the Up-platform. For the optimization of the kinematic design, one may be interested in an
index that represents a global property of the mechanism. If we assume that the workspace is
α ∈ [−π/2, π/2] , β ∈ [−π/3, π/3] , γ ∈ [−π/3, π/3] , and h1 = 0.4 (the variable h1 is given
as constant, since in real application the change of h1 is small), we call k̄r the global minimum
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Fig. 4. Variation tendency of k̄r over υ1 and υ2, the red line means υ1 = υ2.

torsional stiffness, and the definition of k̄r is given as36,37

k̄r =

∫
W

kr,min ||J r || dW∫
W

||J r || dW
=

∫ π/3

−π/3

∫ π/3

−π/3

∫ π/2

−π/2
kr,min ||J r || dαdβdγ

∫ π/3

−π/3

∫ π/3

−π/3

∫ π/2

−π/2
||J r || dαdβdγ

kr,min = min ([kr1, kr2, kr3]) ||J r || = cos(β), (11)

in which kr,min is the minimum torsional stiffness at a particular point of the mechanism workspace
W, ||J r || is the absolute value of the Jacobian determinant. k̄r is used as an index to optimize the
dimensions of the mechanism. If k̄r is large, the global minimum torsional stiffness of the CPPPMS
is large, and vice versa. There is a limitation of v1 and v2, which is v1 ≤ v2. It means that the cables
cannot be intersected with each other, because the undersigned dynamics can be caused by the cables
intersection. Figure 4 shows the variation tendency of k̄r over v1 and v2. The red line is the limitation
condition which means v1 = v2. Even though the mean stiffness k̄r reaches the maximum value on
the right side of the red line, the optimal values of the dimensions is chosen as v1 = v2 = 1.9 to avoid
cables intersection. We use these values for afterward analysis.

Once the dimensions are obtained, we can analyze the real workspace and the stiffness map of
the CPPPMS. The real workspace is the workspace without singularity. Figure 5 shows the real
workspace of β and γ when α = 0, and the kr,min throughout the real workspace. The real workspace
is symmetrical with γ , and the stiffness near the center of the workspace is larger than that near the
boundary. The real workspace of β and γ changes with α. Figure 6 shows the real workspace when
α = 90◦, which is asymmetrical and the peak of the stiffness is shifted to lower right corner of the
figure. Figure 7 shows the complete real workspace of α, β, and γ which is axial symmetrical with α.
As a conclusion, the CPPPMS has high stiffness on its workspace which is larger than 100 Nm/rad.
Compared with Figs. 1 and 2, the structure of the CPPPMS is partly similar to the muscle distribution
of human neck, and the CPPPMS has similar real workspace with the human neck.

4. Dynamic Model
The dynamic model of the CPPPMS consists of three parts, which are the dynamic model of the
Up-platform, the dynamic model of the cables, and the dynamic model of the pneumatic muscle
active support.

4.1. The dynamic model of the pneumatic muscle active support
A pneumatic muscle is made by a rubber tube surrounded by braided shells. When the tube is pressured,
the pneumatic muscle is expanded, which leads to the contraction of the pneumatic muscle.22,23 The
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Fig. 5. Minimum kri throughout the real workspace when α = 0.

Fig. 6. Minimum kri throughout the real workspace when α = 90◦ .

Fig. 7. The complete real workspace of the CPPPMS.
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Fig. 8. Structure of the pneumatic muscle active support and the fast switching valve.

force is generated by the inner pressure of the pneumatic muscle. The pressure-force transformation
model is first proposed by Chou and Hannaford23 with the principle of the virtual work. The input
work of the pneumatic muscle is generated by the pressurized gas inside the bladder, and the output
work is the external force multiplied by the contraction of the pneumatic muscle,

dWI = (P − P0)dV, (12)

dWO = −FdS, (13)

F = −(P − P0)
dV

dS
, (14)

where P is the absolute pressure, and P0 is the atmospheric pressure, F is the axial force provided
by the pneumatic muscle, S is the length of the pneumatic muscle. To estimate dV/dS, it is assumed
that the threads in the braided mesh are inextensible. According to,22 the volume of the pneumatic
muscle is expressed as

V = aS3 + bS, a = − 1

4πn2
, b = T 2

d

4πn2
, (15)

dV

dS
= 3aS2 + b, (16)

where n is the number of turns of the thread, Td is the thread length. Substituting Eqs. (16) into (14),
the pressure-force transformation model is obtained as

F = −(3aS2 + b)(P − P0). (17)

In addition, a spring connects to the both sides of the pneumatic muscle, which compose a
pneumatic muscle active support shown in Fig. 8. The main function of the active support is absorbing
the impact from outside. The force provided by the pneumatic muscle active support is

fp = −(3aS2 + b)(P − P0) + 	Sks, if 3aS2 + b < 0, (18)

fp = 	Sks, if 3aS2 + b ≥ 0, (19)

where ks is the stiffness of the spring. It should be noticed that the pneumatic muscle can only provide
tension but not thrust, when the pneumatic muscle is compressed, the force of the pneumatic muscle
active support is equal to the force of the spring.

The force of the pneumatic muscle is converted by the inner pressure of the pneumatic muscle,
which can be calculated by the gas dynamics. By assuming that the air is ideal gas undergoing an
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adiabatic process

PV = mgRgTg, P −λ
ρ = const, (20)

Ṗ = λ
RgTg

V
ṁg − λ

P

V
V̇ , (21)

V̇ = 3aS2Ṡ + bṠ, (22)

where ρ is the density of air; λ is the ratio of specific heats; Rg is the gas constant; Tg is the
thermodynamic temperature inside the pneumatic muscle; V is the pneumatic muscle’s inner volume
as a function of S; mg is the mass of air; ṁg is the mass flow.

Substituting Eqs. (15) and (22) into (21), the pressure change rate can be expressed as

Ṗ = λ
RgTg

aS3 + bS
ṁg − λ

(3aS2 + b)Ṡ

aS3 + bS
P, (23)

ṁg = Km(P, sign(Ṗ ))UP , (24)

Km

(
P, sign(Ṗ )

) =

⎧⎪⎨
⎪⎩

Ae

(
Pu/

√
RT

)√
λ

(
2

λ+1

) λ+1
λ−1 if Pd

Pu
< 0.528

Ae

(
Pu/

√
RT

)√
2λ

λ−1

[(
Pd
Pu

) 2
λ − (

Pd
Pu

) λ+1
λ

]
if Pd

Pu
≥ 0.528

, (25)

where ṁg is controlled by a fast switching valve, the input value of the fast switching valve is the
voltage UP , Km(P, sign(Ṗ )) is a nonlinear flow gain function given by,25 Ae is the effective orifice
area of the fast switching valve, Pu is the upstream pressure, and Pd is the downstream pressure.

Therefore, the dynamics of the pneumatic muscle active support can be written as{
fp = −(3aS2 + b)(P − P0) + 	Sks, if 3aS2 + b < 0
fp = 	Sks, if 3aS2 + b ≥ 0

, (26)

Ṗ = λ
RgTg

aS3 + bS
ṁg − λ

(
3aS2 + b

)
Ṡ

aS3 + bS
P

ṁg = Km(P, sign(Ṗ ))UP ,

4.2. The dynamic model of the cables
The elastic cable modeling is shown in Fig. 9.19–21 The tension within the cable T acting along the
cable axial direction is

T = ka	S, ka = EAa

S
, 	S = Rθ − S, (27)

where ka is the stiffness of the cable; 	S is the stretched length; S is the unstretched length; Aa is the
cross section area of the cable; E is its effective Young’s modulus; θ is the rotary angle of the pulley;
and R is its radius.

The friction is along the axes of the cables

Fd = μ
(
Rθ̇ − Ṡ

)
, (28)

where μ is the damping coefficient of the cable. In order to insure certain tension, θ̇ cannot be too
big due to the limited power of the servo motor. Therefore, we assume that Rθ̇ � Ṡ and Eq. (28)
can be simplified to

Fd ≈ μṠ. (29)
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Fig. 9. Schematic of elastic cable modeling.

Compared with other parts of the CPPPMS, the mass of the cables is negligible. Therefore, the
gravity and the acceleration force of the cables can be ignored. The dynamic equation of the cable
can be written as

fa = −μṠ + EAa

S
(Rθ − S) , if Rθ − S > 0, (30)

fa = 0, if Rθ − S ≤ 0 (31)

where the cable can only provide tension but not thrust. When the cable is compressed, it cannot
provide force.

4.3. The dynamic model of the Up-platform
The dynamic model of the Up-platform is solved by Newton–Euler method. The center of mass of
the Up-platform is assumed to be located at point E, which can be represented as

rOE =

⎡
⎢⎣

h2 (CαSβCγ + SαSγ )

h2 (SαSβCγ − CαSγ )

h1 + h2CβCγ

⎤
⎥⎦ , (32)

where h2 is the distance between the point C and E. The velocity of the center of mass is

ṙOE = J t q̇, (33)

where q = [α, β, γ, h1], which is the state variable of the system, and q̇ is the time derivative of q.
The acceleration of the center of mass is

r̈OE = J t q̈ + J̇ t q̇, (34)

where J̇ t is the time derivative of J t . The angle velocity of the Up-platform is

δ̇ = J r q̇. (35)

The angle acceleration of the Up-platform is

δ̈ = J r q̈ + J̇ r q̇, (36)

where J̇ r is the time derivative of J r . Using Newton–Euler method based on virtual work principle,
the dynamics of the Up-platform is

JT
t (mu J t q̈ + mu J̇ t q̇) + JT

r (Iu J r q̈ + Iu J̇ r q̇) = JT
t (G + Fs) + JT

r Ms, (37)

where mu is the mass of the Up-platform; Iu is moment of inertia of the Up-platform respected to
the coordinate KE; Fs and Ms are the external force and the moment imposed on the Up-platform,
respectively; G is the vector represented as gravity. Reforming the Eq. (37), the dynamics of the
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Up-platform is

J q̈ + η = H[fa1 fa2 fa3 fa4 fa5 fp]T, (38)

where fp is the force generated by the pneumatic muscle active support, which is analyzed in
Section 4.1; fai (i = 1, 2, 3, 4, 5) are tensions generated by the cables, which are given in Section 4.2;
J , η and H are given in Appendix A.

4.4. The dynamic model of the CPPPMS
Based on aforementioned analysis, the whole dynamic model consists of the pneumatic muscle active
support model, the cables model, and the Up-platform model. The unstretched length of the ith cable
in the CPPPMS is approximately equal to SABi ; the length of the pneumatic muscle active support is
h1; the unstretched length of the spring is h10. Then the dynamics of the CPPPMS is expressed as

J q̈ + η + ηf = Hf τ , (39)

τ = [θa1, θa2, θa3, θa4, θa5, P ]T ,

Ṗ = λ
RgTg

aS3 + bS
Km

(
P, sign

(
Ṗ

))
Up − λ

(
3aS2 + b

)
Ṡ

aS3 + bS
P,

where J and η are given in Appendix A; ηf and Hf are the flexible terms, given in Appendix
B. One can see that there are flexible terms in the dynamics due to the flexible actuators. Due to
the flexible terms, the solution of the dynamic equation may not exit for some conditions. (If one
or more cables are compressed, the system will lose one or more actuators.) Therefore, redundant
actuators are required to ensure that the dynamic equation has at least one solution in the designed
workspace. Moreover, the redundant actuators make the inverse dynamic equation of the CPPPMS to
be an underdetermined equation, and an optimized method is proposed later to obtain the best driven
strategy.

5. Control for the CPPPMS
In this section, a sliding mode control is proposed for trajectory tracking of the CPPPMS, which
is a redundant driven system with the flexibility and uncertainties of the dynamics. The stability of
the control system is verified by a Lyapunov function. In addition, a PD control is presented for a
comparative study.

5.1. Sliding mode control for the flexible dynamic model
Modeling uncertainties and unmodeled dynamics exist in the CPPPMS system. For example, there
are obvious hysteresis phenomena in the dynamic feature of the pneumatic muscle,27 which seems
impossible to be described accurately by the mathematic method. The mass and the gravity of the
cables are ignored in the dynamic modeling, which results in the uncertainties of the dynamic model.
The uncertain terms of the CPPPMS are expressed as

J(q) = J0(q) + �J (q)

η(q, q̇) = η0(q, q̇) + �η(q, q̇), (40)

where J0(q) and η0(q, q̇) are estimated terms, which are given in Appendix A, and �J(q) and
�η(q, q̇) are uncertain terms, which are unknown but bounded. �J(q) includes the ignored mass
of the cables and the pneumatic muscle, and �η(q, q̇) includes the error of damping of the system,
the hysteresis phenomena of the pneumatic muscle, and the ignored gravity of the cables. Then, the
dynamic equation of the CPPPMS is written in the following form

J0(q)q̈ + η0(q, q̇) + ηf (q) = Hf τ + ρ

ρ = −�J (q)q̈ − �η(q, q̇).
(41)
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Compared with the whole system, the uncertain terms are small and limited in a certain range.
Therefore, it is reasonable to make following assumptions

‖ρ‖ < nb0 + nb1 ‖q‖ + nb2 ‖q̇‖2 , (42)

where nb0, nb1, nb2 are positive constants, the values of them can be identified by experiment.

Theorem 1. It is supposing that qr is the desired input of the CPPPMS and q̇r is the derivative of
qr , then the error is ε = q − qr , and ε̇ is the derivative of ε. For the CPPPMS, if the manifold of the
sliding mode control is chosen as

s = ε + C1ε̇
p, (43)

where C1 = diag[C11, ..., C14] is a design matrix, and p is a control parameter, and the control input
τ satisfies the following relationship

Hf τ = τ 0 + u0 + u1, (44)

here

τ 0 = η0(q, q̇) + ηf (q) + J0(q)q̈, (45)

u0 = − 1

p
J0(q)C−1

1 ε̇2−p, (46)

u1 = − 1

p

[
sTC1diag(ε̇p−1) J−1

0 (q)
]T∥∥sTC1diag(ε̇p−1) J−1

0 (q)
∥∥

× [‖s‖ ∥∥sTC1diag(ε̇p−1) J−1
0 (q)

∥∥ (nb0 + nb1 ‖q‖ + nb2 ‖q̇‖2)
]
, (47)

the system tracking error ε(t) will be converged to zero for infinite time.28,29

Equation (44) is an underdetermined equation, which has an infinitude of solutions. In order to
obtain an unique solution, a performance index has to be optimized and be used as a constraint.38 The
conditions of optimization are given as follows:

1. The tension of the cables has to be stronger than the minimum force fa,min to ensure that the
cables are tightened; meanwhile, the tension has to be weaker than the maximum force fa,max

which is the maximum force generated by the servo motor;
2. The force of the cables should be close to f̄a , which is the mean force between fa,min and fa,max.

The advantage of using the mean force as the objective is that it has the same variation range of
increase and decrease in force;

3. The pressure of the pneumatic muscle has to be higher than the ambient pressure as 1e5 Pa, and
lower than 5e5 Pa which is the maximum pressure of pneumatic muscle allowed;22

4. The pressure of the pneumatic muscle should be close to 3e5 Pa, which is the mean pressure
between the minimum and maximum amount of pressure.

According to the above conditions, the performance index is given as

min
∑N=6

i
σi, σi =

∥∥∥∥(Rθi − SABi)
EAa

SABi

− f̄ai

∥∥∥∥ , (i = 1, 2, 3, 4, 5) and σ6 = ‖P − 3e5‖ ,

subject to

Hf τ = τ 0 + u0 + u1,
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and

(
fa,minSABi

EAa

+ SABi

)/
R ≤ θi ≤

(
fa,maxSABi

EAa

+ SABi

)/
R, (i = 1, 2, 3, 4, 5) ,

and 1e5 ≤ P ≤ 5e5,

where σi is the performance index. Mathematically, this problem is known as quadratic programming.
Efficient iterative algorithms for the resolution of quadratic programs can be easily found in general
optimization packages of Matlab.

Proof. The Theorem 1 can be proved by Lyapunov theory. By considering the following Lyapunov
function,

L = 1

2
sTs. (48)

We assume that Eq. (44) has a valid solution. By differentiating L with time and substituting Eqs.
(42)–(47) into L̇, yields,

L̇ = sT ṡ = sT(ε̇ + pC1diag(εp−1)ε̈)

= sT(ε̇ + pC1diag(εp−1) J−1
0 (q)( J0(q)q̈r − η(q, q̇) − ηf (q) + ρ + τ 0 + u0 + u1))

= −p ‖s‖ ∥∥C1diag(εp−1) J−1
0 (q)

∥∥ × (nb0 + nb1 ‖q‖ + nb2 ‖q̇‖2) + psTC1diag(εp−1) J−1
0 (q)ρ

< −p ‖s‖ ∥∥C1diag(εp−1) J−1
0 (q)

∥∥ × (nb0 + nb1 ‖q‖ + nb2 ‖q̇‖2)

+ p ‖s‖ ∥∥C1diag(εp−1) J−1
0 (q)

∥∥ ‖ρ‖
= −p ‖s‖ ∥∥C1diag(εp−1) J−1

0 (q)
∥∥ × (nb0 + nb1 ‖q‖ + nb2 ‖q̇‖2 − ‖ρ‖) ‖s‖ . (49)

That is

L̇ ≤ − Q ‖s‖ < 0, (50)

where

Q = p ‖s‖ ∥∥C1diag(εp−1) J−1
0 (q)

∥∥ × (b0+nb1 ‖q‖ +b2 ‖q̇‖2 − ‖ρ‖) > 0. (51)

Therefore, according to Lyapunov stability criterion,29 the manifold s in (43) converges to zero in
finite time, and the error converges to zero along s = 0 in finite time.

5.2. P-control for the inner pressure of the pneumatic muscle
The pressure control can be realized by a P-control. The input voltage of the fast switching valve is
given as

UP =
{

k1(Pr − P ), ifPr − P ≤ 0
k2(Pr − P ), ifPr − P > 0 , (52)

where k1 and k2 are the P-gain; Pr is the required pressure calculated with Eq. (44), and P is the
measured pressure. Combining the P-control and the sliding mode control, the posture control of the
CPPPMS is given in Fig. 10. In the CPPPMS, the cables are driven by the servo motors, which can
output the rotary angle of the pulley. The pressure is controlled by a fast switching valve. Therefore,
the control variables are the five rotary angles of the pulleys and the voltage of the fast switching
valve. The state variables are the posture of the CPPPMS.
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Table II. System parameters of the CPPPMS and the control parameters.

System parameters Value Control parameters Value

mu 2 kg p 25/23
h2 0.1 m C1 1.2
Ra 0.2 m C2 1.2
Rb 0.2 m C3 1.2
E 1 GPa C4 1.2
Aa 10−5 m2 k1 2e−4

μ 0.1 k2 1.5e−4

a −0.003 nb1 150
b 0.00075 m2 nb2 1
ks 10 N/mm nb3 1

Fig. 10. Schematic diagram of the posture controller using a sliding mode control.

5.3. Comparison study
A PD control is proposed for the comparison study. The sliding mode control is replaced with the PD
control. The control input of the PD control is given as

Hf τ = τ 0 + Kpε + K d ε̇, (53)

where τ 0 is given in Eq. (45), Kp and K d are the positive definite gain matrices. In the simulation
study, the gain matrices were selected as Kp = 20I and K d = 20I , with I as a identity matrix,
respectively. The stability of a PD control can be proved in refs. [39, 40]. Equation (53) is an
underdetermined equation, its unique solution can be obtained by using the performance index σi as
a constraint.

6. Numerical Results and Discussion
In this section, the simulation investigation is carried out to detect the control performances of the
CPPPMS. All simulations are performed with MATLAB 2010. The simulated time is 10 s with the
step size of 0.01 s. The parameters of the CPPPMS are given in Table II.

The designed trajectory is given as a typical motion deriving from a neck exercise, which is the
head moving along a circle. The function of the trajectory is,

α = 0, β = π/6 sin(π/5t), γ = π/6 cos(π/5t), h1 = 0.4. (54)

The uncertainties of the model are assumed as

�J (q) = rand × 0.05 × J0(q), �η(q) = rand × 0.05 × η0(q), (55)

where “rand” is a pseudorandom scalar drawn from the distribution of open interval (0,1). Two control
methods in terms of a sliding mode control and a PD control are used to impose the CPPPMS moving
along a designed trajectory.

The simulation results of both controls are given as follows: The trajectory tracking as the end-
effector of the Up-platform is given in Fig. 11, and the simulation trajectory is closer to the designed
trajectory for the sliding mode controller than the PD controller. The angle error and the angle velocity
error for both controllers are proposed in Figs. 12 and 13, while the length and the velocity error
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Fig. 11. Trajectory tracking of the end effector. (a) Sliding mode control. (b) PD control.

Fig. 12. Error of the angle α,β,γ . (a) Sliding mode control. (b) PD control.

Fig. 13. Error of angle velocity α̇,β̇,γ̇ . (a) Sliding mode control. (b) PD control.
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Fig. 14. Error of the length of the pneumatic muscle active support. (a) Sliding mode control. (b) PD control.

Fig. 15. Error of the length change rate of the pneumatic muscle active support. (a) Sliding mode control.
(b) PD control.

are shown in Figs. 14 and 15. For the angle control and length control, the slide mode controller
has a better overall performance than that of the PD controller. However, for the velocity control,
the errors in the sliding mode controller have two jumps in 2s and 6.5s shown in Figs. 13a and 15a,
and the errors are larger than that in the PD controller at that moment. The working principle of
the slide mode control is that it converts the dynamic behavior of the system to the dynamics of the
designed manifold and overcomes the model uncertainty of the system. The jumps appear when the
state variables go across the sliding manifold and the control input u1 changes its sign. In contrast,
the velocity error of the PD control is smooth, but the model uncertainty of the CPPPMS makes it
difficult to track the designed trajectory precisely.

Figures 16–18 show the input angle of ith pulley, the absolute pressure in the pneumatic muscle,
and the input voltages for both controllers, respectively. Figure 19 shows the poses of the CPPPMS at
different instants when it is controlled by the sliding mode controller. One can see that the CPPPMS
has the ability to finish the typical motion of human necks.

Table III shows the comparison between both controllers in the sense of the control performance.
The maximum angle error for the sliding mode control is 54.17% smaller than the PD control, and the
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Fig. 16. Angle of ith pulleys (i = 1, 2, 3, 4, 5). (a) Sliding mode control. (b) PD control.

Fig. 17. Absolute pressure in the pneumatic muscle. (a) Sliding mode control. (b) PD control.

Fig. 18. Input voltage of the fast switching valve. (a) Sliding mode control. (b) PD control.
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Table III. Comparison in control performance of both controllers.

Type Sliding mode control (es) PD control (ep) (es–ep)/ep

Maximum angle error 5.5e−4 (rad) 1.2e−3 (rad) 54.17%
Maximum angle velocity error 5.85e−4 (rad/s) 8.2e−4 (rad/s) 28.66%
Maximum length error 5e−4 (m) 1e−3 (m) 50%
Maximum length change rate error 5.7e−4 (m/s) 8.4e−4 (m/s) 43.14%

Fig. 19. Poses of the CPPPMS at different instants. t = 1.6s. t = 3.3s. t = 6.6s. t = 8.3s.

maximum length error for the sliding mode control is 50% smaller than the PD control. In conclusion,
the sliding model controller is more effective for the CPPPMS than that of the PD controller.

7. Conclusion
In this paper, a CPPPMS has been presented as an approach to imitating the ways in which the human
neck works. According to the analysis, the following conclusions can be drawn:

1. The CPPPMS is a redundant driven mechanism with 4-DOF in terms of three rotations and one
translation. Five cables and a pneumatic muscle are used to imitate neck muscles and spinal
muscles, respectively. The CPPPMS can imitate the motion of human necks and can facilitate the
in-depth understanding of this motion.

2. The CPPPMS has been optimized by carrying out the stiffness analysis. The optimized structure
is similar to that of a human neck structure, which shows the effectiveness of the index based
on the stiffness characteristics. The advantage of the index is that it can evaluate the mechanism
with redundant actuators. Subsequently, the real workspace of the mechanism has been plotted
by identifying the singular position, and shows that the real workspace of the CPPPMS is similar
to that of a human neck.

3. The dynamic model of the CPPPMS consists of the dynamics of the Up-platform, the cables, and
the pneumatic muscle active support. The inverse dynamics of the CPPPMS is an underdetermined
equation due to the actuator redundancy. In order to obtain a unique solution to the equation, a
performance index needs to be optimized and used as a constraint.

4. A sliding mode controller has been investigated to control the CPPPMS, and a PD controller has
been proposed to provide a comparative study. The sliding mode controller is more effective in
attacking mode uncertainties; however, jumps appear when the state variables go across the sliding
manifold. In contrast, the PD controller cannot control the mechanism tracking the designed
trajectory precisely due to the model uncertainties. Therefore, the sliding mode controller is more
effective than the PD controller for the CPPPMS, and the CPPPMS provides feasible operation
performances for operations under the sliding mode control.

5. The prototype verification of the designed CPPPMS and the installation of the control hardware
are the topics for further research and are currently under investigation.
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Appendix A

J t =

⎡
⎢⎣

(−SαSβCγ + CαSγ )h2 CαCβCγh2 (−CαSβSγ + SαCγ )h2 0

(CαSβCγ + SαSγ )h2 SαCβCγh2 (−SαSβSγ − CαCγ )h2 0

0 −SβCγh2 −CβSγh2 1

⎤
⎥⎦ ,

J τ =

⎡
⎢⎣

0 −Sα CαCβ 0

0 Cα SαCβ 0

1 0 −Sβ 0

⎤
⎥⎦ ,

where S denotes sine and C denotes cosine.

J = JT
t mu J t + JT

r Iu J r ,

η = JT
t mu J̇ t Ẏ + JT

r Iu J̇ r Ẏ − JT
t G,

H = JT
t

[
sAB1 sAB2 sAB3 sAB4 sAB5 sOC

]
+JT

r

[
sAB1 × rCB1 sAB2 × rCB2 sAB3 × rCB3 sAB4 × rCB4 sAB5 × rCB5

]
,

where J is the mass matrix, includes the mass and moment of inertia of the Up-platform, η includes
the damping and the Coriolis acceleration of system, and H is a direction matrix, which indicates the
direction of each external force and moment. All the matrices are described under the state variables
coordinates.

Appendix B

ηf = −H
[
. . . , ηf i, ηfp

]T
, i = 1, 2, 3, 4, 5

Hf = Hdiag
(
. . . , H fai, . . . , Hfp

)
, i = 1, 2, 3, 4, 5,

where

ηf i =
{

−μṠABi − EAa if Rθi − SABi > 0

0 if Rθi − SABi ≤ 0

ηfp =
{

(3ah2
1 + b)P0 + (h1 − h0)ks if 3ah2

1 + b < 0

(h1 − h10) ks if 3ah2
1 + b ≥ 0

,

Hfai =
{

EAa

SABi
R if − SABi + Rθi > 0

0 if − SABi + Rθi ≤ 0

Hfp =
{−(3h2

1 + b) if 3ah2
1 + b < 0

0 if 3ah2
1 + b ≥ 0
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