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Chapter 1

Introduction

Section 1.1 provides a motivation why tendon-based Stewart platforms are
interesting for applications and lists the main challenges for research. Sec-
tion 1.2 presents a brief overview of the current state of research in relevant
fields. Objectives and structure of this dissertation are summarized in Sec-
tion 1.3.

1.1. Why Tendon-based Stewart Platforms?

One of the fundamental issues in robotics is the design of mechanical systems
to manipulate loads. While there is a large and rapidly increasing variety of ap-
plications of robotic manipulators, the key requirements are mostly the same and
typically include some of the following:

The mechanical system should have a simple structure such that it is easy to
manufacture at low cost. As electronic components are becoming cheaper
and cheaper, while the price of mechanical parts does not change consid-
erably, there is a general trend towards systems which are mechanically
simple but computationally demanding.

The system’s behavior should be sufficiently predictable such that it can be
controlled by a computer with little or no manual user interaction.

In the past researchers used to investigate the limits of what is technically
possible, paying little attention to economic aspects. In that context high
precision positioning was often a main requirement for manipulators. Due
to a general paradigm shift in science, nowadays the objective is to develop
solutions satisfying the needs of a specific application at the lowest possible
cost. In that sense there is an increasing interest in robots of low price but
with limited precision.

The system should consume little energy, especially when employed in mo-
bile robots or when handling very heavy loads.

For some applications a high load capacity is required.

The end-effector should achieve high velocities and/or high accelerations.

1



2 CHAPTER 1. INTRODUCTION

The concept should be appropriate for micro-scale and/or large-scale ap-
plications.

There are many different concepts for manipulators, each of them has a specific
profile with respect to these requirements. We briefly present the characteristics
of some of them.

Serial Manipulators are currently the most common type of manipulators used
in robotics. From a manufacturing point of view, they can be more or less sim-
ple, depending on how the joints are actuated. Common solutions include hy-
draulic/pneumatic cylinders or motors acting directly (or through gears) on the
joint axis. Computation of the load’s posture from the joint variables (the so-
called forward kinematics problem) is straightforward, while the problem of inverse
kinematics is more complicated. The most general case was resolved only after
many years of research [104, 142]. The limited computational effort and the good
predictability of motion have led to many applications in manufacturing.

The energy consumption is rather high because each actuated joint has to
carry not only the load, but also all the subsequent links with their actuators.
As heavy loads require strong links and this increases energy consumption fur-
ther, the capability of handling large masses is limited. In fact, in most manu-
facturing applications the payload is quite small when compared to the mass of
the whole manipulator. High velocities and accelerations can be achieved easily,
especially when revolute joints are employed. Links act as levers and therefore
the end-effector generally moves faster than the joints. High precision operation
is possible, especially in small-scale applications (with workspaces up to about
1 m).

Figure 1.1: Skywash manipulator
photo c© Putzmeister AG

Large-scale operation presents a number of problems: the leverage effect of
long links increases very much the torque on actuated joints and one must take
into account the bending of links and vibrations of large amplitude for automa-
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tized/precise motions. (Indeed, Fig. 1.1 shows an application where high preci-
sion is not required.) These problems can be managed to a certain degree [85],
but they are quite demanding in terms of control technology. Energy consump-
tion remains high anyway.
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a) Tendon-driven serial system b) Parallel system

Figure 1.2: Manipulator concepts

Tendon-driven serial manipulators (Fig. 1.2a) are considerably more energy effi-
cient because the actuators are fixed, i. e. they do not need to be moved.1 How-
ever, in three-dimensional applications it is very difficult to guide the tendons
around joints. Therefore, this concept is used in practice mainly for planar sys-
tems.

Figure 1.3: Boom crane
photo c© Kranservice Rheinberg GmbH

Cranes (Fig. 1.3) where a load is suspended from a single tendon were already
in use millenia ago. Their mechanical system is not that simple because the pulley
carrying the load must be movable at least in one or two directions of translation.
Therefore it is usually combined with a serial manipulator having two degrees of
freedom (DOFs). As the end-effector is kinematically underconstrained, motion
prediction requires very good models of sway motion together with sophisticated

1Clearly, the advantage of fixed actuators can also be achieved in other ways, e. g. with gear-
trains or tie-rod linkages. So this does not apply exclusively to tendon-driven systems.
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sensor technology. Consequently, there are no crane applications which are 100%
automatized.

Figure 1.4: Container crane
photo c© Kranservice Rheinberg GmbH

Energy consumption depends on the design of the serial subsystem: typically
this provides a planar translation where actuators need energy to accelerate a
trolley, but not to carry its weight (Fig. 1.4). Cranes are currently the only avail-
able technology that can handle very heavy loads with a reasonable amount of
energy. Accelerations generate sway motions and must be limited therefore: in-
deed, cranes are most appropriate for quasistatic motions. This limits velocity
in curved paths. Control with high precision is basically impossible, although
a controller predicting/measuring sway motions can improve such capabilities.
Cranes require a minimum load to hold the tendons in the pulleys, so they are
not appropriate for very small loads and hence are not suitable for micro-scale
applications. On the other hand, they are quite good for large-scale tasks: with
serial subsystems based on trolleys, workspace diameters of about 20 m can be
obtained.

Parallel robots (also known as Parallel Kinematic Machines, Stewart platforms
or Gough platforms; Fig. 1.2b) have attracted increasing attention in the past two
decades. Here each actuated leg has to carry only part of the payload: this is quite
energy efficient and allows to handle heavy loads. The parallel structure typically
implies that the end-effector moves slower than the actuated joints. Nevertheless,
appropriate actuator technology can reach highly dynamic motions. Control is
a nontrivial issue because the forward kinematics problem may have up to 40
solutions [40] and in general it cannot be computed in real time. A major problem
in practice is the need for spherical joints with a very large angular range and a
sufficient stiffness at the same time. This is crucial when the system is subject
to large contact forces (e. g. in milling applications). Although some industrial
applications exist (Fig. 1.5), it is now fair to say that much of the initial enthusiasm
has given way to disappointment, because the practical problems just turned out
to be more difficult than they were expected to be.
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Figure 1.5: HexabotTM 5-axis CNC machine
photo c© Hexel Corporation
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Figure 1.6: Tendon-based Stewart platform



6 CHAPTER 1. INTRODUCTION

Tendon-based Stewart platforms2 are the subject of this dissertation: here, a mov-
able platform is connected to the fixed base by a number of tendons, as in Fig. 1.6.
Typically, the tendons are rolled up on winches attached to the base, hence the
only moving parts are the tendons and the platform (and some mechanical parts
inside the winches).

Figure 1.7: C-MISPP prototype
photo c©North Carolina State University

This approach was first proposed about fifteen years ago3 [33]. Tendon-based
Stewart platforms can be considered as a synthesis of the concepts explained be-
fore: they inherit some advantage from each of them. Indeed, they are very en-
ergy efficient because the actuators are fixed and the payload is subdivided be-
tween actuators. Therefore they are appropriate to handle very heavy loads, like
cranes [105, 145] (Fig. 1.7) and can achieve very high accelerations and veloci-
ties. They can be designed in extremely large scale (up to about 100 m, e. g. the
SkycamTM in Fig. 1.8 [167], or even several km as the aerostat in Fig. 1.11 [130]) as
well as in micro-scale applications. Unlike in the case of cranes, motion is highly
predictable and can be controlled without manual interaction. In a paper on force
redundancy in parallel manipulators [35], the authors state that «the primary ob-
jective of a serial manipulator is to move an object, while that of a parallel one
is to support a load». In some sense, it can be said that tendon-based Stewart
platforms can serve both purposes.

Unlike conventional Stewart platforms, they do not need spherical joints, but
construction of the connection points in tendon-based systems is still a challenge:

2The concept has various names in different geographical regions. Americans speak of «ca-
bles» while Japanese write «wires». This thesis has adopted the term «tendons» from the papers
about tendon-driven serial systems. The term «tendon-based» is used instead of «tendon-driven»
because the latter could be confused with Stewart platforms with rigid links having tendons for
force transmission only.

3Actually, systems like that in Fig. 1.4 already implemented the idea, probably even before the
term «parallel manipulator» was invented. However, the concept was never subject of systematic
research.
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Figure 1.8: SkycamTM tendon-suspended camera
photo c© CF InFlight

the point where a tendon leaves a winch should be well-defined and point-
shaped; at the same time, the tendon should be able to take any direction with
low friction. Another major problem in design concerns precise control of the
tendon length. To achieve this, the tendon can be rolled up on a cylinder or screw
in a regular, well-defined manner. An alternative solution is to connect the ten-
don to a linear direct drive. Regarding these questions, there is a strong connec-
tion between the desired precision in positioning and the necessary complexity
in mechanical design. When precision is not an issue, the mechanical design can
be simple.

On the other hand, tendon-based Stewart platforms lead to theoretical ques-
tions, some of which are completely new and do not apply to other concepts:

The workspace is restricted mainly by the requirement to have positive but
limited tension in all tendons. This controllable workspace has a complicated
shape and its closed form description is extremely complex.

A related problem is to find an optimal distribution of tension between ten-
dons, especially in highly redundant systems.

In many cases, for n end-effector-DOFs, we use at least n + 1 tendons. Such
systems are actuation redundant and this can be used to reduce singulari-
ties.

As tendons are much more compliant than rigid links, stiffness becomes an
important issue.

Collision of tendons with each other, with the load or with the framework
is an important problem in spatial redundant systems.

The present thesis deals with these questions. For completeness, we also mention
some other points which are being investigated at the laboratory at Duisburg but
will not be covered here:

The forward kinematics problem is difficult as in all parallel systems. The
actuation redundancy can be used to reduce multiplicity of solutions. But
surprisingly, there exist designs where additional legs do not change kine-
matics at all [65, 66, 122].
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Due to the nonconvex controllable workspace, even a simple point-to-point
motion requires a complex algorithm to find a trajectory which lies inside
the controllable workspace and optimizes time or energy [57].

Research on tendon-based Stewart platforms has developed only in the last
years, mainly in Japan and the USA. To the author’s knowledge, the Universities
of Rostock and Duisburg were the first places in Europe to study such systems
(since 1996). Up to now, much work was done on experimental setups and prac-
tical questions, especially in Japan, while there is relatively little literature on
theoretical aspects. One objective of the present dissertation is to help filling this
gap.

1.2. Current State of Research

1.2.1. Tendon-driven Serial Robots

All tendon-driven robots, whether they are serial or parallel, share the prop-
erty that tendons support tension but not compression. Thus, for n DOFs, at least
n + 1 tendons are required. In several publications by Tsai et al. [137, 138, 139,
168] this is examined in the context of isotropic configurations of serial systems.
The authors explain that it is important to distinguish between actuator space (the
tendon lengths/forces) and joint space (the angles/torques of the revolute joints).
The matrix transforming actuator forces in joint torques is called «structure ma-
trix». It turns out that isotropic configurations are obtained if either n + 1 or 2n
tendons are used. In the 2n case, each joint is then driven by two antagonistic
actuators. This result is interesting because it shows us a fundamental difference
between tendon-driven serial systems and tendon-based parallel ones: in the lat-
ter, joint space and actuator space coincide. In that sense, tendon-based parallel
systems are directly driven.4

Several basic issues regarding tendon-driven serial systems are discussed in
a paper by Kobayashi et al. from 1998 [84], summarizing almost ten years of
research in this field. The authors point out that a tendon-driven system must
be force redundant, and that the basic problem is to solve the redundancy so
that a vector of positive tensions is obtained. A system is defined as «tendon
controllable» if this is possible for any set of joint torques. This is the case if and
only if the structure matrix has full rank and there is a vector of positive tendon
forces that generates a zero torque in all joints. These results are exactly the same
as for tendon-based parallel systems (cf. Section 2.2.1, p. 23 ff.).

Furthermore Kobayashi et al. examine whether a system is still controllable
when a number of tendons is removed. They supply an irreducible description
of tendons which are redundant in that sense. Then their paper describes how
redundancy can be used to adjust stiffness. These results could also be applied to
tendon-based parallel systems because the structure of the equations is the same.

4Nevertheless, the term «structure matrix» was adopted in the current thesis for the matrix
transforming tendon forces into end-effector wrenches. This is appropriate because the mathe-
matical structure of the equations is the same and the term «transpose of the Jacobian» – which
could also be used – may be misunderstood (see the discussion after Eq. (2.3), p. 19).
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In parallel manipulators, though, these problems are secondary due to another
fundamental difference between the serial and the parallel case: the structure
matrix in the serial case is constant, so a design is either always or never control-
lable, independently of the end-effector posture. In parallel systems, instead, the
structure matrix strongly depends on the posture, so that the main problem is al-
ways to find a solution with positive tensions. Any other question is subordinate
to this.

Several prototypes of tendon-driven serial manipulators were built, especially
for articulated fingers or arms, see e. g. [59, 67, 73, 101, 106, 133, 146]. Here, the
tendon-driven mechanisms have the main advantage of low weight and small
size of the movable parts. Most of the existing systems are planar. It seems that the
difficulty of tendon routing discourages researchers from extending the concept
to spatial applications. However, one can build spatial parallel systems where the
legs are serial tendon-driven subsystems [20].

1.2.2. Parallel Robots

Parallel robots were proposed for the first time in the 1950s [52] and 60s [155],
but at the beginning there was little response from the scientific world. From
the 1980s on, increasing attention has been paid to the idea. This might be due
to the fact that investigation of certain aspects of parallel robots requires either
sophisticated computer algebra systems for symbolic calculation or high-speed
computers for numerical solutions. Both of them became available during that
period.

One of these aspects is forward kinematics, i. e. the problem of determining
the posture of the platform given the leg lengths. At the beginning, even the
number of possible solutions was unknown and early works gave upper bounds
of hundreds of solutions. After several years of research, Lazard proved in 1993
[100] an upper bound of at most 40 solutions, and Raghavan [141] could provide
a numerical example having actually 40 (partly complex) solutions. Five years
later, Dietmaier [40] supplied the first example with 40 real postures. The maxi-
mum number of real solutions for systems with planar base and planar platform
is still unknown, up to now only examples with 36 real postures were found [41].

In the meantime, much work was done on special geometries where some
connection points on basis or platform coincide. Faugère and Lazard [47] gave
an exhaustive combinatorial classification of spatial geometries and listed the
maximum number of solutions for each of them. Gosselin and Merlet [51] sup-
plied similar results for planar systems. After several papers on special cases
[69, 70, 71], Innocenti and Parenti-Castelli [72] developed a closed-form solution
for the spatial 5− 5 case (the relatively general situation where at least two plat-
form connection points and at least two basis connection points coincide). Other
particular situations were analyzed by Merlet [120]. These results are interesting
in the context of tendon-based robots because such special geometries are ad-
vantageous because they tend to have larger workspaces and less problems with
tendon collisions (see Section 3.5, p. 54 ff.).

The problem of forward kinematics has led scientists to rediscover the theory
of kinematic mapping [156], which allows to transform the forward kinematics
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problem (which in common representations involves transcendental functions)
into a system of algebraic equations in a projective space [64]. The research team
at Duisburg has found kinematic mapping a most useful tool to analyze forward
kinematics of kinematically overconstrained systems [122], which is the normal
case in tendon-based manipulators.

Another important task is the examination of singularities, which in parallel
robots are of different nature than in serial ones (cf. Section 2.1, p. 17 ff.). Ana-
lytical studies [178] have clarified the connection between assembly modes, so-
lutions of the forward kinematics problem and singularities. The study of sys-
tems which are singular in every posture has proven a complex problem of its
own [76, 77, 78, 164]. Recipes to find singularities were proposed for the spa-
tial [113, 121] and the planar case [149, 150, 151]. Other authors proposed algo-
rithms for singularity-free path-planning [22, 34]. It turns out that singularities
are both a real problem in practice because they tend to go through the center of
the workspace, much more than they usually do in serial systems and a theoreti-
cal challenge because it is very difficult to give an exhaustive description of their
occurrence. Therefore, the author found it worthwhile to include in this thesis
a method of building singularity-free redundant manipulators, which is trivial
(and maybe expensive) but efficient (Section 3.3, p. 43 ff.).

Redundant parallel robots are subject to inner forces which have to be con-
trolled carefully in order to avoid damage. Maybe due to this difficulty, they
were not considered much. Several authors [54, 89, 90, 143] provide contributions
about spherical joints redundantly driven by prismatic actuators. [132] presents
a detailed analysis of a particular redundant prototype. Other research was de-
voted to arrays of binary actuators [43, 102, 176]. A remarkable result is reported
by Dasgupta and Mruthyunjaya [35]: while redundancy in serial robots can only
change the location of the singularity manifold, redundancy in parallel ones can
reduce its dimension and can even make it vanish completely.

Originally, parallel robots were proposed for flight simulators. Nowadays,
there are applications, among others, in manipulation [114, 115] high-speed mill-
ing (Fig. 1.5). The latter suffers considerably from the above mentioned joint stiff-
ness problem.

Several variations of the concept were proposed, e. g. the Hexaglide [63],
where the legs have fixed length but the winches can be moved along a rail; ma-
nipulators where legs have more than one actuated joint [4, 152, 169]; the DELTA
robot [31, 124], which is a purely translational parallel robot with three degrees
of freedom. Such designs do not have a tendon-based analog.

An overall review on parallel mechanisms was published recently [36], but the
included bibliography is not that useful because all references are given without
title. There is also a very comprehensive web resource about parallel robots [23].

1.2.3. Tendon-based Parallel Robots

The idea of tendon-based parallel robots for motion with six DOFs was pro-
posed for the first time in 1989 in the USA [33], in order to replace cranes in
shipbuilding by systems that can be computerized. That was the beginning of
ROBOCRANE, a prototype which was used for about ten years [3, 24, 25, 26,
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27, 28, 29] and had some follow-up projects in other institutions [42, 105, 145]
(Fig. 1.7). Before that, the SkycamTM (Fig. 1.8 [167]) had been developed as a par-
allel tendon-based system moving a camera in three DOFs of translation.

Still earlier a slightly different concept had been patented, where a platform
is attached to the base by one leg containing a passive spring [97, 98, 99], with a
number of actuated tendons that provide a pulling force balanced by the pushing
force of the spring. There are recent works based on similar concepts [86, 87, 131],
also combining tendons with rigid links [83]. From an analytical viewpoint, these
mechanisms are rather different from normal tendon-based Stewart platforms,
and therefore are not covered by the present thesis.

Figure 1.9: Cablev prototype at Rostock
photo c© University of Rostock

At about the same time (since 1988), similar ideas became popular in Japan
[56] and prototypes with extremely high acceleration capabilities where built
[79, 81]. One of the few theoretical publications on the subject was written by
Ming and Higuchi [125], who provided the fundamental classification into «com-
pletely restrained positioning mechanisms» (CRPMs), which are kinematically
redundant, and «incompletely restrained positioning mechanisms» (IRPMs),
which require additional forces (e. g. gravity) for stabilization. (The present the-
sis, unlike that publication, distinguishes further between CRPMs – with exactly
n + 1 tendons – and «redundantly restrained positioning mechanisms» (RRPMs)
with even more tendons.) The same authors also built a planar prototype [126].
Much research on workspace optimization [107, 161], prototypes and control
[162] has then been done at Kobe, mainly for RRPMs.

After early works on IRPMs in Japan [8, 60, 61, 62, 134, 135, 136] which often
included serial subsystems, a main center of research on IRPMs was established
at Rostock, Germany. There a prototype named Cablev (Fig. 1.9) was built and
much effort has been devoted to control issues [55, 108, 109, 110, 111, 112]. At
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Figure 1.10: SEGESTA prototype at Duisburg

the same time, the research project SEGESTA5 [44, 48, 58, 123] was established at
the mechatronics laboratory at the University of Duisburg, focusing on CRPMs
and RRPMs. Besides the results presented in this dissertation, the project includes
research on forward kinematics and trajectory planning (cf. Section 1.1). A pro-
totype was built recently (Fig. 1.10). In the last years, research groups developed
in several countries [49, 145, 177, 180], working on various types of tendon-based
parallel systems. The author has prepared a list of web links to related projects
[170].

As mentioned above, tendon-based Stewart platforms have been employed
for many years already in camera systems. Current and future areas of applica-
tion span a wide range, also in terms of scale. Examples of small-size devices are
haptic displays [9, 10, 80, 117, 118, 119, 129, 179]; at the other end of the spec-
trum, there are large-scale manufacturing and wind-tunnel positioning systems
[92, 93, 96], as well as rescue systems in earthquake areas [157, 158, 162, 163] (here
the idea is that a number of winches can be attached to some rest of building
structure, providing in a very simple manner a large-scale high-capacity multi-
DOF manipulator). One of the largest applications conceived up to now is a radio
telescope [130] where one component is suspended from a helium aerostat and
the aerostat is controlled by a number of parallel tendons (Fig. 1.11). Thus, the
concept of tendon-based Stewart platforms is likely to extend the field of robotic
manipulators to several new areas.

5Abbreviation of the German title «Seilgetriebene Stewart-Plattformen in Theorie und Anwen-
dung» – tendon-based Stewart platforms in theory and applications. The name was inspired by
a beautiful place named Segesta in western Sicily with an ancient Greek theater, because the con-
cept might be used in theater technology in the future.
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Figure 1.11: Tethered aerostat
photo c© National Research Council of Canada

1.3. Objectives and Structure of this Thesis

The present exposition focuses on perspectives and limits of tendon-based
Stewart platforms inherent in the concept itself, giving an overall picture of what
can be achieved at most. Therefore it relies on geometric, kinematic and dynamic
conditions in ideal cases, disregarding further restrictions due to currently un-
available technology. For instance, Chapter 4 provides the optimal distribution of
forces in the tendons that can be obtained for a given geometry, thus stating the
theoretical optimum that can (and should) be seeked in practical construction.
Further limitations may arise, among others, from limited actuator torque (this is
a subject of ongoing research at Duisburg [57]), joint limits and the geometry of
the supporting frame and the load.

We limit ourselves to manipulators as in Fig. 1.6. These are kinematically
equivalent to an end-effector attached to the ground by a couple of RRRPRR
chains, where the (prismatic) P-joints are actuated and the (revolute) R-joints are
passive. We do not consider systems where the R-joints are actuated because this
is not possible in the case of tendons. Neither do we include arrangements where
the winches themselves are mounted on some movable parts [111] or the tendons
are guided around movable pulleys, because all this leads to completely different
kinematical structures that cannot be handled by the same means.

When designing such a mechanism, there is a large number of theoretical as
well as technical problems, many of which are currently under investigation at
Duisburg, Kobe, Rostock and other places around the world. Here, we focus on
the question:

given geometry of platform and base,
force limits and elasticity of the tendons,
forces and torques acting on the platform,

what can be said about tendon forces,
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singularities,
stiffness and
workspace?

The objective is to present a basic theory of tendon-based Stewart platforms and
their workspace, to develop an algorithm that computes optimal tension distri-
butions, especially for highly redundant manipulators, and to provide tools for
workspace analysis.

This means that we will not discuss practical issues in detail, e. g. which ma-
terial should be used for base and platform, which type of tendon fits our needs,
how we can build the winches, what kind of motors and controllers are appro-
priate etc. Neither do we ask where the forces and torques acting on the plat-
form come from (mainly gravity, inertia, contact), we just consider them as given.
Nevertheless, the simulations in Chapter 6 use realistic values for geometry and
tendon properties and compute forces and torques from inertia in simulated mo-
tions.

Figure 1.12: Winch design in the SEGESTA prototype

This approach implies a number of model assumptions that we briefly sum-
marize:

Tendons are supposed to form straight lines; therefore, we ignore deforma-
tion due to gravity. This assumption becomes quite wrong in the case of
very large systems (with tendons of length 10 m− 1000 m) on earth, but it
is acceptable in space applications of arbitrary size and in small-to-medium-
scale robots anywhere. Furthermore we do not consider vibrations in ten-
dons, because that is a major subject of research which requires its own
mathematical tools.

The points where tendons are connected to base and platform are fixed and
behave as ideal spherical joints of infinite stiffness. This is not that easy
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to achieve in practice, especially on the base (i. e. near the winches). The
current prototype at Duisburg uses thin tendons of synthetic fiber coming
out of a small ceramic eye (Fig. 1.12), while the Cablev prototype at Rostock
[181] has steel wires in a sophisticated construction with a movable pulley
(Fig. 1.13).

Tendons behave as linear springs. This is not a strong limitation because in
typical applications, changes in tendon length due to elasticity are below
1 %. So in many cases elasticity can even be neglected completely.

Platform and base are rigid bodies. As both must bear rather large tendon
forces in different points, some engineering effort may be required to en-
sure this. A possible solution was proposed by the ROBOCRANE team [2],
with grid structures designed in such a manner that all inner forces in the
structure result in longitudinal forces along metal tubes, without bending
or torsion.

Figure 1.13: Winch design in the Cablev prototype
photo c© University of Rostock

Chapter 2 provides a short introduction to the duality between serial and par-
allel manipulators, focusing on the fact that serial systems can be described best
in terms of mobility, whereas parallel ones are suited for a treatment in terms
of controllability. Then the force equilibrium equations for tendon-based Stewart
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platforms are developed. This gives rise to a two-fold classification: one related
to the degree of redundancy, the other to the number and type of DOFs.

Chapter 3 develops a number of criteria for workspace of tendon-based Stew-
art platforms. First of all tendon forces must be positive. It is explained how
this can be verified for each single posture. The region where positive tension
can always be achieved is called «controllable workspace». In addition, tensions
must also be limited. This is treated more in detail in Chapter 4. Then it is im-
portant to avoid singularities. It is shown that certain types of manipulators do
not have singularities at all. For other types a method is presented that allows
to find redundant singularity-free designs. The following section describes how
to compute passive stiffness in each posture and gives an overall estimate of the
stiffness near the center of the workspace. Finally the problem of autocollisions is
stated and some solution strategies are shown.

Chapter 4 explains in depth how to find «acceptable» tension distributions
that satisfy given bounds and how to optimize tension. The strategy is first il-
lustrated by a simple example. Then it is shown how «optimal» solutions of the
tension problem can be defined so that either each optimal solution is acceptable
or no acceptable solution exists. Examples show that such optimal solutions can
lead to discontinuous force paths along a trajectory. To avoid this, an approxi-
mation of the optimal solutions is proposed and is shown to be everywhere con-
tinuous except in singularities. The last section describes an algorithm that was
implemented for the practical computation of such solutions.

Chapter 5 develops a quality measure which indicates, for a given posture,
how far it is from the border of the workspace. This measure is used to examine
a number of designs and to identify some «good» ones with large workspaces.
Furthermore the chapter states some rules of thumb, obtained from a mixture of
computation and experience, that help to find designs with large workspaces.

Chapter 6 uses the implementation outlined in Chapter 4 to compute example
trajectories for some planar and spatial manipulators.

Chapter 7 summarizes the results and gives suggestions for further research.
This dissertation is intended for readers working in the field of engineering,

therefore it focuses on questions which are relevant. On the other hand, one of its
goals is to provide a sound theoretical description. Therefore, some ideas are also
defined in mathematical terms and sometimes results are stated and proven as in
a mathematical paper. As an exception, parts of Chapter 4 are written mainly in
mathematical style because the desired result on continuity, which is important
for engineering, requires complex mathematical proofs. The reader who likes to
follow the details can find in Appendix A a brief survey of the mathematical
background involved.



Chapter 2

Delimitation and Classification

Section 2.1 provides a short introduction to the notions of singularity and
redundancy of parallel manipulators in contrast to serial ones. It turns out
that the key issue of serial systems is mobility, while parallel ones are de-
scribed better in terms of controllability. Section 2.2 supplies the basic force
equations for tendon-based Stewart platforms and develops two classifica-
tions based on the number of tendons and on the type of end-effector DOFs,
respectively.

2.1. Duality of Serial and Parallel Systems

2.1.1. Equations and Mappings

Although parallel robots have become more and more popular in the past two
decades, people working in the field of serial robotics might not be familiar with
the nature of singularity and redundancy in parallel systems. In addition, there is
not yet a unified terminology in literature. In particular, the term «singularity» is
used with a wide range of meanings. As the workspace boundary of serial robots
typically consists of kinematic singularities, some authors identify the terms «sin-
gularity» and «workspace boundary».1 This is not at all appropriate for parallel
systems and even less for tendon-based ones. Therefore it appears useful to give
a short introduction to the theory of parallel manipulators and the duality be-
tween serial and parallel systems [171, 172, 175], defining precisely the concepts
of singularity and redundancy as needed in subsequent chapters.

On an abstract level any manipulator can be seen as a mechanical system
transforming m actuator variables ϑ1, . . . , ϑm and forces f1, . . . , fm into n end-
effector variables x1, . . . , xn , which describe the end-effector position and/or ori-
entation, and forces w1, . . . , wn . The end-effector variables are assumed to be
independent,2 so n cannot be greater than six. As pointed out by Ou and Tsai

1Therefore some of them even use the term «singularity» to denote postures where joint limits
are reached.

2Mathematically speaking, this means that the set of possible end-effector postures forms an
n -dimensional manifold and the end-effector variables are coordinates for this manifold with
respect to some chart. It may happen that we need a couple of maps to describe the manifold.

17
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[139], there may be a difference between «joint» variables and «actuator» vari-
ables: for example, for a revolute joint driven by a linear hydraulic actuator, there
is a nontrivial transformation of the actuator variable (position of the piston) to
the joint variable (rotation angle). This example shows that the choice of actuator
variables is to some extent a matter of taste, or it depends on the objective of the
investigation. The number m of actuator variables can be arbitrarily large, but
must be greater than or equal to n . In general, neither ϑ1, . . . , ϑm nor x1, . . . , xn
needs to be a set of minimal coordinates for the given system: if the forward kine-
matics problem has multiple solutions, the variables ϑ1, . . . , ϑm do not completely
determine the end-effector posture; on the other hand, if the inverse kinematics
problem has multiple solutions, then x1, . . . , xn do not completely determine the
joint parameters.

Restricting the following discussion to holonomic systems, the relation be-
tween joint variables and end-effector variables can always be expressed in a
constraint equation

Φ(ϑ, x) = 0(2.1)
where Φ is a function with values in the «constraint space» IRg . Sometimes the
values in IRg have an intuitive meaning: for instance, they may represent the
distance between the axis and the slider of a revolute joint and the meaning of
the constraint is that the slider is on the axis.
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Figure 2.1: Examples of serial and parallel manipulators

For typical serial systems (such as Fig. 2.1a), with an appropriate choice of
actuator and end-effector variables, the constraint equation can be written in the
form

Φact (ϑ)− x = 0 ,(2.2)
and the derivative of Φact with respect to ϑ – the so-called Jacobian – transforms
infinitesimal actuator motions δϑ ∈ IRm (or actuator velocities ϑ̇) into infinitesi-
mal motions δx ∈ IRn (or velocities ẋ) of the end-effector. Furthermore the trans-
pose of the Jacobian transforms forces/torques in the opposite sense, i. e. (gener-
alized) end-effector forces w ∈ IRn into (generalized) actuator forces f ∈ IRm .

For instance, when an end-effector is capable of performing all possible rotations, this cannot be
described by a single global map. The discussion in this section refers to local properties, so it
does not matter how many maps we need for a global description.
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On the other hand, typical3 parallel systems (as in Fig. 2.1b) with appropri-
ately chosen coordinates have an equation of type

ϑ−Φee (x) = 0 .(2.3)

Then the derivative of Φee with respect to x transforms end-effector motions into
actuator motions and its transpose transforms actuator forces into end-effector
wrenches. Some authors call this derivative Jacobian, too. Such terminology may
be misunderstood because this matrix transforms in the opposite direction when
compared to the Jacobian of serial systems. On the other hand, one cannot call it
«inverse Jacobian» because in general it is not quadratic and hence cannot be the
inverse of a matrix.
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Figure 2.2: Constraint as a relation between actuator and end-effector

In the general case of Eq. (2.1), we have to consider two partial derivatives

Jact :=
∂Φ

∂ϑ
(ϑ0, x0) ∈ IRg×m and Jee := −∂Φ

∂x
(ϑ0, x0) ∈ IRg×n .(2.4)

Both matrices Jact and Jee transform motions from the actuator space and the
end-effector space, respectively, into the constraint space. This idea is illustrated
in Fig. 2.2: the constraint equation Eq. (2.1) defines a relation between actuator
variables ϑ and end-effector variables x , shown as a curve. For a given pair
(ϑ0, x0) that belongs to this relation, there are the Jacobians Jact and Jee (both
dependent on ϑ as well as on x ) which map infinitesimal motions δϑ, δx to mo-
tions δξ in the space of constraint variables. Now a pair (δϑ, δx) belongs to the
tangent space if and only if the images of both contributions cancel each other in
the constraint space, i. e.

Jact δϑ− Jee δx = 0 .(2.5)

3From the point of view of transformation behavior, it seems logical to consider a system as
«serial» if it can be described as in Eq. (2.2), «parallel» if it obeys an equation like Eq. (2.3), and
«hybrid» if neither one applies. However, this differs from the definition in terms of multibody
systems: for instance, the Hexaglide [63] is purely parallel in the sense that it has only closed
loops and no open chains; but it cannot be globally described by Eq. (2.3) because its inverse kine-
matics have multiple solutions. Therefore, in this chapter we speak of «typical» serial/parallel
manipulators. For the purposes of this dissertation it does not matter which kind of definition is
adopted; tendon-based Stewart platforms are purely parallel in both the multibody sense and the
transformation behavior sense.
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For typical serial manipulators, the latter equation can always be solved for δx .
This means that locally, any actuator motion is possible and each actuator motion
achieves exactly one end-effector motion. For typical parallel systems, instead,
Eq. (2.5) can always be solved for δϑ , i. e. any end-effector motion is possible and
each end-effector motion determines a unique actuator motion. There are hybrid
systems where the equation can be solved neither for δx nor for δϑ .

Let us take a look at the relation between the dimensions m, n and g . We
assume that we have a minimal set of constraints, in other words, the constraints
are linearly independent in the tangent space:

rank
(

Jact −Jee
)

= g .(2.6)

Then there are in total m + n variables and g independent constraints. If we had
g > m , then the total number of DOFs in the system would be less than n – this
is not possible because we said before that we have n independent end-effector-
DOFs. Furthermore if we had g < n , then we would have more system DOFs
than actuator variables, so the system could not be completely controlled with
the actuators. Thus, we find that

n ≤ g ≤ m .(2.7)

In typical serial systems the first inequality is an equality, while in typical
parallel ones the second one is an equality. In hybrid systems both inequalities
may be strict.

The transposed matrices JT
act and JT

ee convey the transformation of forces, in
the opposite directions. If f are the actuator forces, τ the forces belonging to the
constraints and w the end-effector forces/torques, then we can summarize the
mapping of motions and forces as follows.

deflection: δϑ
Jact−−−−−→ δξ

Jee←−−−−− δx

force: f
JT

act←−−−−− τ
JT

ee−−−−−→ w

∈ IRm ∈ IRg ∈ IRn

.(2.8)

2.1.2. Mobility

If the rank of the matrix Jact ∈ IRg×m is inferior to the number of actuators,
i. e. if

rank Jact < m ,(2.9)

then Jact is not one-to-one, i. e. there are actuator motions δϑ 
= 0 with Jact δϑ =
0. It follows that for these motions

Jact δϑ− Jee 0 = 0 .(2.10)

In other words, these so-called self-motions δϑ can occur in the actuators without
provoking any motion of the end-effector: the system is velocity redundant. If we
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have g < m , i. e. less constraints than actuators, then this is always the case: the
manipulator has a redundant architecture.

If in addition the rank of Jact is inferior to the number of constraints, i. e. if

rank Jact < g ,(2.11)

then the mapping Jact is not surjective, i. e. there are motions δξ in the constraint
space that cannot be reached with any actuator motion. Now, the image of Jee
is a (rank Jee)-dimensional subspace of IRg . It may still be contained4 in the
(rank Jact)-dimensional image of Jact . If this is not the case, then there are end-
effector motions δx with5

Jee δx 
∈ 〈Jact〉 .(2.12)

This means that such end-effector motions cannot be achieved with any actuator
motion. This situation is called a singularity with undermobility.

a) velocity redundancy b) undermobility

Figure 2.3: Redundancy and singularity in serial systems

Summarizing, there are three situations:

1. If rank Jact = m (which implies g = m), then there is a one-to-one-relation
between actuator motions and constraint space motions. Hence, for a given
end-effector motion δx there is exactly one corresponding actuator motion
δϑ :

δϑ = J−1
act Jee δx .(2.13)

2. If rank Jact < m but there is no singularity6, then for any end-effector mo-
tion δx there is an infinite number of possible actuator motions δϑ :7

δϑ ∈ J+act Jee δx + ker Jact .(2.14)

For δx = 0 we obtain the self-motions, as in Fig. 2.3a: the arrows indicate
infinitesimal actuator motions that do not change the end-effector posture.
The system is velocity redundant.

4If rank Jact < n and rank Jee = n , then this is not possible. In all other cases, this depends on
the location of the spaces.

5 〈Jact〉 denotes the subspace generated by the columns of Jact , cf. Def. A.6, p. 126.
6i. e. either g = rank Jact or rank Jact < g and rank Jee < g such that 〈Jee〉 ⊂ 〈Jact〉
7The term J+act denotes the Moore-Penrose pseudo inverse, cf. Prop. A.8, p. 126, while ker Jact

is the kernel (null space) of Jact , cf. Def. A.6, p. 126.
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3. If we have rank Jact < g and there is a singularity, then for some end-
effector motions there is an infinite number of corresponding actuator mo-
tions (and in particular, self-motions exist), but for some others there is no
solution. Thus, the system is velocity redundant for certain end-effector mo-
tions and at the same time the end-effector mobility is restricted, excluding
certain other motions. (For instance, the end-effector in Fig. 2.3b cannot ro-
tate about its axis as indicated by the arrows.)

Hence, both actuator redundancy and end-effector restrictedness refer to mo-
bility. This is the typical well-known situation for serial manipulators. In fact,
traditionally the behavior of serial robots is described in terms of mobility, be-
cause the main problem of a serial manipulator is the ability of the end-effector
to move in a desired direction. This remains true even when disregarding joint
limits, because the geometry itself of such systems often limits the workspace.
For instance, the workspace of a planar manipulator with a number of revolute
joints is a circle around the first joint.

2.1.3. Controllability

We could proceed in a very similar way for the matrix Jee , but here it is more
appropriate to consider the forces. If the rank of this matrix (which is always
equal to the rank of JT

ee ) is less than the number of constraints, i. e. if

rank Jee < g ,(2.15)

then JT
ee is not one-to-one, i. e. there are forces τ 
= 0 in the constraint space with8

JT
ee τ = 0 and JT

act τ 
= 0 .(2.16)

Thus, we have inner forces JT
act τ in the actuators that do not lead to forces at the

end-effector, as in Fig. 2.4a where the arrows indicate inner forces: the system is
force redundant. If g > n , i. e. there are more constraints than end-effector DOFs,
then this is always the case and the system is architecturally redundant.

If the rank of JT
ee is even less than the number of end-effector DOFs, i. e. if

rank Jee < n ,(2.17)

then the mapping Jee it is not surjective, i. e. there are end-effector wrenches w
that cannot be obtained with any actuator force (e. g. in Fig. 2.4b the indicated
force in y direction cannot be achieved with the actuators). This is called a singu-
larity with overmobility.9

Thus, similarly to the discussion of mobility, we have again three situations.

8 To be precise, τ fulfilling the inequality in the second part may not exist if rank Jact < g , i. e.
in the case that both matrices are singular at the same time and the space of undermobility of the
end-effector coincides with the space of its overmobility. However, it is rather difficult to imagine
a manipulator having such configurations.

9As explained in footnote 4, typical serial systems can have special situations of singularity
where the comparison of ranks of both matrices is not sufficient to characterize the manipulator’s
behavior, while redundancy only depends on the ranks. It is interesting to observe that the op-
posite happens in the parallel case: here redundancy is subject to special cases (footnote 8), while
singularity is given by the rank comparison only.
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xxx

yyy

a) force redundancy

xxx

yyy

b) overmobility

Figure 2.4: Redundancy and singularity in parallel systems

1. If rank Jee = g (which implies g = n), then there is a one-to-one-relation be-
tween end-effector forces and constraint space forces. Thus, for a given end-
effector force/torque w there is exactly one corresponding actuator force:10

f = JT
act J
−T
ee w .(2.18)

2. If n ≤ rank Jee < g and the matrix Jact has full rank, then for any end-
effector wrench w there is an infinite number of possible actuator forces:11

f ∈ JT
act

(
J+T

ee w + ker JT
ee

)
;(2.19)

for w = 0 we obtain the inner forces. The system is force redundant.

3. If we have rank Jact < n , then for some end-effector wrenches there is an
infinite number of corresponding actuator forces (and in particular, inner
forces exist), but for some others there is no solution. Hence, the system
is force redundant and at the same time the end-effector controllability is
restricted.

Here both actuator redundancy and end-effector restrictedness refer to con-
trollability. This is typical for parallel manipulators. Therefore it is natural to
express the properties of parallel systems in terms of controllability rather than
mobility: the theoretical key problem of parallel robots is the ability to exert a wrench
in a desired direction. This holds under the assumption that joint limits are not an
essential restriction. In reality this assumption is often perfectly wrong because
one of the main practical problems in building parallel systems is the unavailabil-
ity of spherical joints with large angular ranges (and a high stiffness at the same
time).

2.2. Tendon-based Stewart Platforms

2.2.1. Force Equilibrium

Fig. 2.5 explains most of the symbols needed in this section. We have a coordi-
nate frame KB fixed on the base and another frame KP attached to the movable
platform. In all our three-dimensional sketches, KB is aligned with the support-
ing frame so that the x axis points to the right, the y axis into drawing plane and

10 J−T
ee is a shorthand for

(
J−1

ee
)T .

11 J+T
ee is a shorthand for

(
J+ee
)T .
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the z axis upwards. We assume that gravity (if taken into account) acts in negative
z direction of KB .

There are no special requirements on the choice of origin and orientation of
KP . In particular, its origin does not need to coincide with the center of grav-
ity of the platform (although this is the case in many examples because usually
this leads to the simplest descriptions). The position of KP with respect to KB is
written as r ∈ IR3 and its orientation is expressed by a rotation12 R ∈ SO3 .

The vectors b1, . . . , bm denote the positions of the base points, i. e. the points
where tendons leave the winches. Similarly, p1, . . . , pm are the connection points
on the platform, but measured from the origin of KP . Their positions with respect
to KB are written as pB,1, . . . , pB,m , which means that pB,µ = r + pµ . The tendon
length vectors l1, . . . , lm point from the platform to the base. This convention is
mostly adopted in literature because then possible (i. e. pulling) tendon forces
are positive with respect to the tendon lengths. However, one must pay attention
when simulating motions because this means that when the length of the µ th
tendon increases, the vector l̇µ has negative orientation with respect to lµ .

For the purposes of this dissertation we consider the tendon lengths l =
(l1, . . . , lm) as the actuator variables. Another possible choice would have been
the rotation angles of the shafts of the winches or the motors, but this would in-
volve technical details of winch construction which are outside our focus. The
systems considered are purely parallel in the sense that they obey the system of
constraint equations13

l−


 |b1 − r− R p1|

...
|bm − r− R pm|


= 0(2.20)

which has the form of Eq. (2.3). Hence, the only possible type of redundancy is
force redundancy and the only possible type of singularity is overmobility.

As pointed out in Section 2.1.3, in theory it is a good idea to describe paral-
lel robots in terms of controllability, but for systems with rigid links this is often
secondary because the main problem are the joint limits. The picture is quite dif-
ferent when dealing with tendon-based systems: assuming the tendons are long
enough, the space of postures that can be reached is arbitrarily large and motion
in any desired direction is possible. But a sophisticated arrangement is necessary
to enable the system of exerting forces and torques on the platform. Here the key
issue really is controllability [161] and therefore the following treatment is based
on forces instead of velocities.

As shown in Fig. 2.5, f 1, . . . , f m denote the forces in the tendons, while f P
and τP summarize all other forces and torques acting on the platform, including
e. g. gravity, inertia, or contact forces/torques. We refer to them as «platform

12The term SO3 denotes the special orthogonal group in three dimensions, i. e. the set of rota-
tions in IR3 .

13As explained in Section A.2, p. 125 ff., the bold letters in the previous paragraph refer to phys-
ical vectors, while the underlined letters in the following equation denote tuples of coordinates.
Throughout this thesis it does not matter which coordinate system is used for decomposition.
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Figure 2.5: Symbols used to describe tendon-based Stewart platforms



26 CHAPTER 2. DELIMITATION AND CLASSIFICATION

wrenches». The force and torque equilibrium supplies

m

∑
µ=1

fµ + f P = 0 and
m

∑
µ=1

pµ × fµ + τP = 0 .(2.21)

The tendon forces act along the tendons, hence

fµ = fµ
lµ
lµ

= fµ uµ(2.22)

where uµ denotes the unit vector along the µ th tendon. Decomposing the vectors
in an arbitrary coordinate system, Eq. (2.21), (2.22) yield

(
u1 · · · um

p1 × u1 · · · pm × um

) f1
...

fm


+

(
f P
τP

)
= 0(2.23)

which can be abbreviated as

AT (r, R) f + w = 0 .(2.24)

The posture-dependent matrix AT is called structure matrix [139]. It trans-
forms actuator forces into end-effector wrenches and is the transpose of the Ja-
cobian, which transforms end-effector twists into actuator velocities.14 In fact, we
could have derived the same result by computing the velocity transformation,
but in this context, the force approach is simpler and more intuitive.

The above writing for AT represents the most general case with six DOFs in
the end-effector. There are several cases where the number of DOFs is restricted
a priori: for instance, when moving an object that slides horizontally on a plane
three rows of the above matrix (and of the vector w ) constantly vanish. Then it is
sufficient to work with a matrix consisting in the other three rows. In general, for
n end-effector-DOFs and m tendons, we obtain an n×m matrix. We denote such
matrices with AT , too.

Now, if we want to use the platform in a given posture with given platform
wrench w , the minimum requirement is that all tendons are under tension, i. e.15

f > 0 .(2.25)

Hence, the most basic problem for the workspace of tendon-based Stewart plat-
forms is: are there positive solutions of the structure matrix equation and how can we
find them?

14This is not Jee in terms of Section 2.1, because Jee applies to derivatives of angle coordinates
whereas A applies to angular velocities. Bruno Siciliano [148] has proposed to speak of Jee as an
«analytic Jacobian» and A as a «geometric Jacobian». In our context, we do not need the analytic
Jacobian because the treatment is entirely based on a discussion of (generalized) forces, without
any reference to the coordinate transformation behind it.

15The notation means that each entry of the left hand side satisfies the inequality with the cor-
responding entry on the right hand side.
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2.2.2. Degree of Redundancy

The problem of solvability of the structure matrix equation gives rise to a clas-
sification based on the dimension of AT . This was first proposed by Ming and
Higuchi in 1994 [125]; we extend it to a more detailed16 classification as follows.
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Figure 2.6: Incompletely / completely restrained positioning mechanism

If the number of tendons is less than or equal to the number of DOFs
(Fig. 2.6a), i. e. if

m ≤ n ,(2.26)

then Eq. (2.24) always has at most one solution (except in singular postures). In
particular, in the homogeneous case with w = 0, the solution is f = 0, so there
are no positive solutions. This implies that the manipulator can be used only
if there are platform wrenches involved, for instance gravity. Such systems are
called Incompletely Restrained Positioning Mechanisms (IRPMs). They can even have
less than n tendons, although this restricts the possible directions of motion. Such
systems are currently being studied in particular at laboratories at Rostock [55]
and Kobe.

So the minimum requirement for a manipulator that can work without plat-
form wrenches (e. g. for quasistatic motions in space or in applications with neg-
ligible mass) is to have one extra tendon (Fig. 2.6b), i. e.

m = n + 1 .(2.27)

We speak then of Completely Restrained Positioning Mechanisms (CRPMs). Except
in cases of singularity, this means that the space of solutions of Eq. (2.24) is a one-
dimensional affine subspace of IRm . Dependent on the properties of AT , positive
solutions can exist and it is easy to check if they do.

If we have even more tendons (Fig. 2.7), i. e.

m > n + 1 ,(2.28)

16Indeed, Ming and Higuchi do not distinguish between CRPMs and RRPMs.
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Figure 2.7: Redundantly restrained positioning mechanism

the situation is similar, but the space of solutions is multidimensional. Thus, more
sophisticated algorithms are needed to check if positive solutions exist and even-
tually to find them. In addition, normally there are infinitely many positive solu-
tions with very different properties. So the problem of optimal tension distribu-
tion (which is present also in CRPMs, but on a trivial level) becomes an interesting
topic. Hence, it is worthwhile to distinguish these Redundantly Restrained Position-
ing Mechanisms (RRPMs) from the CRPMs. Usage of redundant winches tends to
be more expensive, but it has a number of advantages.

First of all, workspace can be extended considerably and singularities can
be reduced. Furthermore passive stiffness increases.

Less powerful actuators can be employed, not only because the load is redis-
tributed, but also because more advantageous geometries can be achieved.

When transporting persons e. g. in rescue applications [162], safety is an im-
portant issue. Then the operational risk is reduced when employing many
redundant tendons.

2.2.3. Degrees of Freedom

Another classification derives from the number and type of end-effector DOFs
that can be achieved. Unlike the classical approach in robotics (which refers to the
dimension of the manifold of possible motions and is particularly suited for serial
manipulators), here the notion of DOF must be defined in terms of controllability
rather than mobility. Hence, we look at the wrenches that the end-effector can
apply in a given posture.17 They are given by the set AT (IRm

+) , i. e. the image of
all vectors f > 0 under the mapping AT . The closure18 of this set is a convex

17In practice, wrenches in other directions may occur as perturbations which need to be cap-
tured by appropriate means, for instance a guiding plane for planar systems.

18The set itself is open or (if AT is rank deficient) an open subset of a lower dimensional sub-
space because its border is the image of vectors f ≥ 0 having some components equal to zero.
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cone (Def. A.12, p. 127) and for the discussion of DOFs, we have to look at its
lineality space (Def. A.14, p. 129)

lin.space AT (IRm
+) = lin.space AT (IRm

+0
)

.(2.29)

In particular, the number of DOFs is the dimension of this space.
For IRPMs, the dimension resulting from this definition is always zero be-

cause of the uniqueness of solutions: if a wrench w0 can be balanced with tendon
forces f 0 > 0, then the only way to balance −w0 would be − f 0 
> 0 which can-
not be achieved with tendons. But the most important application of IRPMs are
crane-like manipulators for rather heavy loads on earth, where gravity always
plays an important role. In that case, we can handle gravity like an additional
tendon. Given a platform of mass mP with the origin of KP in its center of grav-
ity, we have an equation

AT f + mP g + w = 0(2.30)

where w represents all other forces/torques except gravity. We write now
 AT

0
0
1
0
0
0




︸ ︷︷ ︸
=: A′T

(
f

fm+1

)
︸ ︷︷ ︸
=: f ′

+w = 0(2.31)

which is equivalent to the previous equation if we define

fm+1 = mP g .(2.32)

In other words, gravity is like an additional tendon attached to the origin of KP ,
with a winch at infinite distance that can only create a constant force of amount
mP g . Any positive solution

(
f T, fm+1

)T of the structure matrix equation can be
scaled such that Eq. (2.32) is fulfilled. Hence, when working with IRPMs, A′T

should be substituted for AT .
Now we ask if it is possible to build a tendon-based Stewart platform such

that in all postures, the space lin.space AT (IRm
+0
)

is precisely the set of all forces
in a plane, for instance. (While the dimension of this space is constant except for
singularities, its location may depend on the posture.) The result is summarized
by the following theorem.

2.1 Theorem (DOF Classes) The combinations of end-effector DOFs which a
tendon-based Stewart platform can have in all postures are precisely those listed
in Table 2.1. �

Proof. The existence is shown by the examples in Fig. 2.8. We argue that the
combinations not listed in the table cannot exist.
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DOFs n Type of Motion

1T 1 linear motion of a body

2T 2 planar motion of a point

1R2T 3 planar motion of a body

3T 3 spatial motion of a point

2R3T 5 spatial motion of a beam

3R3T 6 spatial motion of a body

Table 2.1: Possible DOF classes
(R stands for rotational, T for translational DOFs)

If the manipulator could produce only torques, then Eq. (2.23) would imply
that all vectors uµ vanish, and then all torques would be zero, too. Hence, there
are no designs with rotational DOFs only.

If the projection of lin.space AT (IRm
+0
)

onto the space of forces is one-
dimensional, then Eq. (2.23) implies that all the vectors uµ are parallel and that
their direction is constant. The latter implies that translation takes place in this
direction only. Then all connection points on the platform, as well as all winches,
must lie on a common axis in this direction and hence no torque can be applied
at all. Hence, 1T is the only system with exactly 1 DOF in translation.

If the force component of lin.space AT (IRm
+0
)

is two-dimensional, then all uµ

must be complanar. Hence, torque can be applied about an axis orthogonal to this
plane (case 1R2T), or no torque is applied (case 2T).

Finally, we show that a 1R3T manipulator cannot be built. Without loss of
generality, let the torque be applied about the z axis. Then Eq. (2.23) yields

pµ × uµ = (0, 0, pµ1uµ2 − pµ2uµ1)
T(2.33)

As we assume that we can apply a nonzero torque, in all postures of the work-
space there is some µ with pµ × uµ 
= 0. Then pµ , uµ must lie in the xy plane,
hence the platform cannot move in z direction, in contradiction to the assumption
of 3 DOFs in translation. �

In the following, we give a brief survey of the classes of Table 2.1. The 1T
manipulator (Fig. 2.8a) is just a point-shaped load moved by antagonistic ten-
dons along a line. The only reasonable construction employs two tendons, as any
further tendon would coincide with one of the two. The set of postures can be
described by real numbers r ∈ IR and the structure matrix is simply

AT =
( −1 1

) ∈ IR1×2(2.34)

which is the only case where the structure matrix is constant. So this class is not
only trivial but also untypical and we will not consider it any more.

In a system of class 2T a still point-shaped load is moved in a plane. Here the
number of tendons can be three as in Fig. 2.8b, or just two together with gravity
(eliminating the tendon below the load in the figure), or also any higher number.
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f) class 3R3T

Figure 2.8: The classes of Theorem 2.1



32 CHAPTER 2. DELIMITATION AND CLASSIFICATION

(Indeed, in this and all the following classes, a arbitrarily high number of tendons
can be employed.) The postures are given as points r ∈ IR2 in the plane and the
structure matrix consists in the unit vectors indicating the tendon directions in
this plane:

AT =
(

u1 · · · um
) ∈ IR2×m .(2.35)

There are no point-shaped loads in the real world, so the main application of
this class are mechanisms where a load is suspended from a point that has to be
controlled in two DOFs. Then the load itself still is subject to sway motions, hence
this is neither appropriate for precision engineering tasks, nor for motions with
high acceleration.

More interesting in applications are manipulators of class 1R2T which allow
for complete control of the load in a plane. Here the postures can be described by
a pair (r,ϕ) ∈ IR2 × S1 consisting of two Cartesian coordinates and an angle19

and the respective wrenches w = ( f P, τP) include two force components and one
torque component. The structure matrix contains tendon unit vectors and torques
applied by the tendons:

AT =


 u1 · · · um

det
(

p1 u1
) · · · det

(
pm um

)

 ∈ IR3×m(2.36)

where the entries of the last row denote determinants. Such systems can perform
any positioning task in the plane, also with high acceleration. A prototype was
described in 1994 [126].

Moving on from planar to spatial systems, we find that the class 3T moving a
point in space is perfectly analogous to the 2T type described above. The structure
matrix is identical to that of Eq. (2.35), the only difference is that the unit vectors
uµ (as well as the posture vector r) have three instead of two components. Fur-
thermore the limits in applications (considering that really point-shaped loads do
not exist) apply in a similar way.

More complicated to handle are the 2R3T systems which move a bar-shaped
load in space [82]. All force/torque components except rotation about the bar’s
axis can be controlled with the tendons. To describe the posture, we need three
Cartesian coordinates for the position and something to describe the bar’s direc-
tion. For the latter, one could employ an equivalence class of spatial rotations
(considering two rotations as equivalent if they differ only by a rotation about
the bar’s axis), but an easier way is to use unit vectors along the bar’s axis, i. e.
elements d of the two-dimensional unit sphere S2 ⊂ IR3 . Hence, the posture is de-
scribed by a pair (r, d) ∈ IR3× S2 . On the other hand, the space of forces/torques
that can be controlled consists of the forces fP ∈ IR3 and the two-dimensional
space of those torques τP that are orthogonal to the bar’s axis. This space varies
with the axis direction.

If we want to express these torques with a two-dimensional vector, we could
think of using a matrix TT

d (d) ∈ IR2×3 depending on the direction d that maps the
set of such torques one-to-one onto IR2 . This is possible, but there is a drawback:

19There are various possible ways to write down the set of angles, e. g. as the half-open interval
[0, 2π [ . Here we identify the set with the points on a unit circle S1 which is mathematically easier
to handle.
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2.2 Proposition (Mapping for 2R3T) For each direction d ∈ S2 , let TT
d (d) ∈

IR2×3 be a matrix such that (
d Td (d)

) ∈ SO3,(2.37)

i. e. the rows of TT
d (d) are unit vectors orthogonal to each other and to the vector

d such that these three vectors form a right-handed system. Then the mapping

S2 → IR2×3, d �→ TT
d (d)(2.38)

cannot be continuous. �

Proof. Let t1 (d) be the first column of TT
d (d) . Then the mapping of d to t1 (d) is a

vector field on the sphere, i. e. it maps each element of the sphere to a vector in the
respective tangent space. Now, a continuous vector field on the sphere vanishes
in at least one point [14, Theorem 9.6], but this is not possible here because t1 (d)
must be a unit vector. �

Thus, we always have to switch at least between some transformations; de-
pending on what the transformation is used for, this might lead to discontinuities
during a trajectory. An example of a good20 choice of transformations that works
for all directions is

Td (d) :=




1
1−d2

3

((−d2
d1
0

)
d×

(−d2
d1
0

) )
if |d3| ≤ |d1| ∧ |d3| ≤ |d2|

1
1−d2

2

((
d3
0

−d1

)
d×

(−d3
0

d1

) )
if |d2| ≤ |d1| < |d3|

1
1−d2

1

((
0

−d3
d2

)
d×

(
0

−d3
d2

) )
if |d1| < |d2| < |d3| .

(2.39)

But usually the set of directions that the robot can actually achieve is not that
large, so with a good choice of the coordinate system KP one can ensure that at
least one component of d is sufficiently far from zero and use always one of the
three alternatives.

With any such transformation TT
d , we can write the structure matrix as

AT =
(

I3
TT

d

)(
u1 · · · um

p1 × u1 · · · pm × um

)
∈ IR5×m .(2.40)

In many cases we do not need such a «minimal» representation of the structure
matrix because the torques are naturally given as elements of IR3 orthogonal to
the axis of the bar, e. g. if the torques represent inertia while rotating the bar
(about some axis different from the bar’s axis). Then it is convenient just to use
the general form in Eq. (2.41) below.

While applications appropriate for the 2R3T class are rather seldom, the most
general class 3R3T has the largest variety of applications, including among others

20in the sense that the denominator is as large as possible – obviously this is just one of several
ways to obtain this
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shipbuilding [33], rescue [162] and motions with high acceleration [80]. Here the
posture can be written as a pair (r, R) ∈ IR3 × SO3 of a translation and a spa-
tial rotation and the wrench is simply a pair w = ( f P, τP) ∈ IR6 consisting of
arbitrary forces and torques. The structure matrix is

AT =
(

u1 · · · um
p1 × u1 · · · pm × um

)
∈ IR6×m .(2.41)



Chapter 3

Aspects of Workspace

Relevant aspects for the problem of the technically usable workspace are sum-
marized and then treated in detail: conditions on tensions in Section 3.2,
the question of singularities in Section 3.3, requirements on stiffness in Sec-
tion 3.4. The problem of autocollisions is shortly addressed in Section 3.5.

3.1. Summary of the Criteria

One of the major problems of tendon-based Stewart platforms is the rather
small workspace, compared to serial manipulators. The technically interesting
part of workspace is the set of those postures which satisfy the following condi-
tions:

the platform is controllable;

tendon forces are positive;

tendon forces lie between minimum and maximum tension;

the end-effector is far from singularities;

the structure is sufficiently stiff;

tendons do not intersect with each other.

Neither joint limits nor collisions of tendons with the support structure, the plat-
form, or obstacles appear in the list because they depend on the technical real-
ization or environment of the system, rather than theoretical limits. The same
applies to limits in actuator power or controller capabilities.

3.2. Controllable Workspace

With the term controllable workspace1 we denote the set of all postures where
the platform can be controlled with positive tensions.

1This expression was proposed by Oussama Khatib when the author presented his first paper
[174] on the 6th Int. Symposium on Advances in Robot Kinematics.

35
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3.1 Definition (controllable workspace) A posture2 x is said to belong to the
controllable workspace if for each wrench vector w ∈ IRn there is a distribution
of tendon forces f ∈ IRm such that

AT (x) f + w = 0 and f > 0 .(3.1)

Such a vector f ∈ IRm
+ is called a positive solution. �

As pointed out in Section 2.2.3, p. 28 ff., gravity can be considered as an ad-
ditional tendon for systems operating on earth with heavy loads, hence in such
cases the matrix A′T can be substituted for AT .

Def. 3.1 actually can be split into two conditions:

For each w ∈ IRn there is a solution of the matrix equation. Thus, the image
space of AT is n-dimensional. In other words, the structure matrix has full
rank. This is the condition needed in any parallel or hybrid system, whether
tendon-driven or not.

Assuming that this condition is satisfied, each element in the image space
can be obtained in particular as the image of a vector with positive compo-
nents.

Given the first condition, the matrix AT has a Moore-Penrose pseudo inverse3

A+T and all the solutions f ∈ IRm (positive or not) can be represented as

f = −A+T w + H λ with λ ∈ IRm−n(3.2)

where H ∈ IRm×(m−n) is a matrix whose columns span the kernel of AT . This
provides a handy criterion for the controllable workspace.

3.2 Proposition (controllable workspace condition) A posture x belongs to the
controllable workspace if and only if

rank AT (x) = n and ker AT (x) ∩ IRm
+ 
= ∅ . �(3.3)

Proof. a) Assume that a posture belongs to the controllable workspace. Then
there is, in particular, a positive solution if no platform wrenches apply, i. e. there
is h ∈ IRm with

AT (x) h = 0 and h > 0 .(3.4)

So this h is an element of the kernel of AT and of the positive quadrant IRm
+ ,

hence the intersection is not empty.

2As explained in Section 2.2.3, p. 28 ff., the posture of a platform is described in different ways
for different types of controlled DOFs (e. g. r for 2T and 3T, (r, R) for 3R3T etc.). So we use the
symbol x as a shorthand for the general case.

3 A+T is a shorthand for
(
A+)T =

(
AT)+ , see Prop. A.8, p. 126.



3.2. CONTROLLABLE WORKSPACE 37

ker AT ∩ IRm
+ker AT ∩ IRm
+ker AT ∩ IRm
+

f1f1f1

f2f2f2

f3f3f3

�hhh
〈h〉〈h〉〈h〉

AAA

�

�

f 0︸︷︷︸

∈ IRm

+

f 0︸︷︷︸

∈ IRm

+

f 0︸︷︷︸

∈ IRm

+

f 0 + λ h︸ ︷︷ ︸
∈ IRm

+

f 0 + λ h︸ ︷︷ ︸
∈ IRm

+

f 0 + λ h︸ ︷︷ ︸
∈ IRm

+
A = (1.000,−1.000, 1.000)

h = (2.667, 5.333, 2.667)T

Figure 3.1: The proof of Prop. 3.2

xxx

yyy

Figure 3.2: The manipulator corresponding to Fig. 3.1

b) Conversely, assume that such h exists. As rank AT = n , for any wrench w ∈
IRn acting on the platform, the matrix equation in Eq. (3.1) has a solution

f 0 := −A+T w .(3.5)

If this is positive, we are finished, otherwise let 1 ≤ µ0 ≤ m be such that

| f0,µ0 |
hµ0

= max
{ | f0,µ |

hµ
: 1 ≤ µ ≤ m ∧ f0,µ < 0

}
.(3.6)

Then

f := f 0 + 2
| f0,µ0 |

hµ0

h(3.7)

is a positive solution. �

The idea of the second part of the proof is illustrated in Fig. 3.1 (for the very
simple 1T manipulator shown in Fig. 3.2): given a solution f 0 anywhere in IRm ,
we can «transport» it into the positive quadrant by adding some multiple of the
positive vector h .

ker AT ∩ IRm
+ker AT ∩ IRm
+ker AT ∩ IRm
+

f1f1f1

f2f2f2

f3f3f3

�hhh
〈h〉〈h〉〈h〉

AAA

A = (1.000,−0.500, 4.000)

h = (2.957, 4.522,−0.174)T

Figure 3.3: Counterexample for the projection of 1 onto ker AT
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xxx

yyy
α1α1α1 α2α2α2

α3α3α3

a) 2T
xxx

yyy
α1α1α1 α2α2α2

α3α3α3

β3β3β3

α4α4α4

β4β4β4

b) 1R2T

Figure 3.4: Example CRPMs

For RRPMs it is not easy to find such an h . Intuitively one might try projecting
the vector 1 := (1, . . . , 1) orthogonally into the kernel of AT . This supplies an
element of ker AT whose components are all close to 1 and it seems clear that the
result has all components positive whenever h ∈ ker AT ∩ IRm

+ exists at all. This
intuition is wrong, as shown by the example4 in Fig. 3.3: here, h was determined
that way, but it is slightly outside IRm

+ .

3.3 Proposition (projection counterexample) Orthogonal projection of a vector
of positive forces into the kernel of the structure matrix does not always provide
a positive distribution of tendon forces even if such a distribution exists. �

Nevertheless, this happens rather near the border of the controllable work-
space. So this projection can still be used as a very simple (and hence fast) al-
gorithm when only the central region of the controllable workspace is needed.
Furthermore it is a good initial guess when looking for positive solutions via it-
eration.

For CRPMs instead, such h is easy to find: then AT has a one-dimensional
kernel and we can look at an arbitrary (nonzero) element h ∈ ker AT : if h > 0
or < 0, then the posture is inside the controllable workspace; if instead there are
components with different signs (or zeros) in h , it is outside. For example let us
consider a CRPM of class 2T, i. e. a system of three tendons5 carrying a point-
shaped load (Fig. 3.4a). Then the structure matrix is

AT =
(

cosα1 cosα2 cosα3
sinα1 sinα2 sinα3

)
(3.8)

and an element of the kernel is

h = (sinα23, sinα31, sinα12)
T with αi j := α j−αi .(3.9)

Thus, the force in each tendon is proportional to the sine of the angle between the
other two tendons. A solution with positive forces exists as long as each of these

4Note that the figure does not correspond to a real mechanism because a system with three
tendons and a two-dimensional null space would have to be of type 1T, and hence all entries in
AT would be either −1 or 1. Examples derived from real mechanisms exist but require more
than three dimensions and hence cannot be illustrated this way.

5In the figures, the tendons are drawn as prismatic joints in order to distinguish them easily,
but one should keep in mind that unlike prismatic links, they represent unilateral constraints.
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angles is less than π , hence the controllable workspace coincides with the area
of the triangle formed by the winches, which is clearly not surprising. This also
results from a numerical computation, as shown in Fig. 3.5a: here each dot means
that the position of the dot belongs to the controllable workspace. For CRPMs of
class 1R2T (Fig. 3.4b), we obtain

AT =


 cosα1 cosα2 cosα3 cosα4

sinα1 sinα2 sinα3 sinα4
p1 sin β1 p2 sin β2 p3 sin β3 p4 sin β4


 ,(3.10)

h =




+ p2 sin β2 sinα34 + p3 sin β3 sinα42 + p4 sin β4 sinα23
− p1 sin β1 sinα34 − p3 sin β3 sinα41 − p4 sin β4 sinα13
+ p1 sin β1 sinα24 + p2 sin β2 sinα41 + p4 sin β4 sinα12
− p1 sin β1 sinα23 − p2 sin β2 sinα31 − p3 sin β3 sinα12


 .(3.11)

Examples are shown in Fig. 3.6a, b: here a dot indicates that a position together
with the indicated platform orientation is inside the controllable workspace.

Similar formulas can be written down for CRPMs of any type, because then,
an element of the kernel of AT can always be expressed in terms of determinants
of square-shaped submatrices of AT .6 When seeking a closed-form expression of
the controllable workspace, we can consider the matrix

AT
L := AT L with L := diag (l1, . . . , lm)(3.12)

instead of AT . This is like rescaling each tendon force with a positive length and
therefore Prop. 3.2 applies to AT

L as well as to AT . Determinants of submatrices of
AT

L are polynomials in the end-effector position coordinates and in sines/cosines
of its orientation angles. Thus, the workspace can be expressed in terms of unions
of sets defined by systems of algebraic inequalities (so-called semi-algebraic sets)
in the end-effector posture. The number of inequalities as well as the degree of
the polynomials increases considerably with the number of DOFs. We will not
go into further details on CRPMs, but present directly a general approach also
suitable for RRPMs.

The basic idea is that force equilibrium with nonnegative tensions can be ob-
tained if and only if it can be obtained with at most n + 1 tendons and zero
tension in the others. This is an extension of an idea proposed by Barrette and
Gosselin [19]. We cannot obtain precisely the controllable workspace because in
Prop. 3.2 it is essential that we have a kernel element with strictly positive compo-
nents, while the below theorem supplies a region where certain components can
also be zero. The latter set contains part of the border of the controllable work-
space which is not included in the controllable workspace itself. This difference is
a lower dimensional set. If we remember that the current discussion completely
disregards lower and upper limits that might be required on tendon forces and
therefore only supplies a superset of the region that can really be used in practice,
this little difference is certainly negligible.

6Indeed, for CRPMs, a posture belongs to the controllable workspace if and only if each
(n× n) -submatrix of AT has full rank and the column of AT which is not part of the subma-
trix can be expressed as a linear combination of the other columns with coefficients that are less
than or equal to zero. This fact can be used to derive a force transmission index [165, 166, 183];
however, such an approach is limited to CRPMs.
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3.4 Theorem (controllable workspace in closed form) The set of all those pos-
tures where nonnegative solutions with positive force in tendon number m exist
is a semi-algebraic set in terms7 of the entries of AT

L :{
x : rank AT

L = n ∧ ∃
h∈ker AT

L

h ≥ 0 ∧ hm > 0

}
(3.13)

=
⋃

I⊂{1,...,m−1}
|I|=n

( {
x : det AT

L,I > 0 ∧
(

det AT
L,I

)
A−T

L,I aL,m < 0
}

∪
{

x : det AT
L,I < 0 ∧

(
det AT

L,I
)

A−T
L,I aL,m > 0

} )
,

where AT
L,I denotes the n× n matrix consisting of the columns of AT

L numbered
by the elements of I and aL,m is the mth column of AT

L .

The right-hand side is a union of 2 (m−1
n ) sets given respectively by (n + 1)

algebraic inequalities of degree n . �

Proof. A posture belongs to the set of the left-hand side if and only if

rank AT
L = n ∧ ∃

h≥0∧hm>0
AT

L h = 0 , i. e. if and only if(3.14)

rank AT
L = n ∧ ∃

h≥0∧hm>0
−hm aL,m = AT

L,m̂ hm̂(3.15)

where the subscript m̂ means that the mth column or component was dropped.
We can divide the equation by hm which is positive by assumption and obtain
the equivalent condition that −aL,m is a nonnegative linear combination of the
columns of AT

L,m̂ , i. e. it belongs to the cone (Def. A.12, p. 127) generated by this
matrix:

rank AT
L = n ∧ −aL,m ∈ cone AT

L,m̂ .(3.16)

Now Carathéodory’s theorem (Theorem A.13, p. 129) states that a vector is an
element of an n-dimensional cone if and only if it is a nonnegative linear combi-
nation of finitely many linear independent vectors among those which generate
the cone. As the cone is contained in IRn , these can be at most n and if fewer
than n are needed, one can add zero multiples of some other linear independent
columns of AT

L,m̂ (which can be found due to the rank condition). Thus, the last
condition is equivalent to

∃
I⊂{1,...,m−1}
|I|=n

rank AT
L,I = n ∧ ∃

λ≥0
−aL,m = AT

L,I λ .(3.17)

As AT
L,I is now a full-rank square matrix, the vector λ is unique and we can

invert the matrix, obtaining the equivalent condition

∃
I⊂{1,...,m−1}
|I|=n

det AT
L,I 
= 0 ∧ A−T

L,I aL,m ≤ 0 .(3.18)

7 A−T is a shorthand for
(
A−1)T =

(
AT)−1 .
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This corresponds to the right-hand side in the theorem if we split it up into the
two cases that the determinant of AT

L,I is either positive or negative.

Now the determinant of AT
L,I is an nth order polynomial of its coefficients

and the entries of
(

det AT
L,I

)
A−T

L,I are (n− 1)th order polynomials in these co-
efficients, hence we have systems of (n + 1) algebraic inequalities of degree n . �

Class n m Sets Inequalities Degree

general n m 2 (m−1
n ) n + 1 n

1R2T 3 4 2 4 3

5 8

6 20

2R3T 5 6 2 6 5

7 12

8 42

9 112

10 252

3R3T 6 7 2 7 6

8 14

9 56

10 168

11 420

12 924

Table 3.1: Size of the closed-form expression for workspace

Thus, a closed form expression for the controllable workspace was found, but
we have to ask whether this can be computed with reasonable effort. Table 3.1
shows the number of sets, the number of inequalities per set and the degree
of the polynomials, for a number of examples. Only the classes with rotational
DOFs were considered, as for the purely translational classes the workspace is
obviously the convex hull of the base points. It turns out that the number of sets
to consider increases very fast with the degree of redundancy. To a certain de-
gree, the closed form can be useful for planar systems with low redundancy and
in fact, some studies were conducted on this topic [19, 45, 46]. In spatial and/or
highly redundant situations instead, the closed-form expression may be of some
theoretical value, but it is not an appropriate tool to actually compute the work-
space.

The notion of controllable workspace discussed up to now completely disre-
gards the amount of tension in the tendons. In reality, tendon load must be limited
to a maximum force fmax depending on the material and the type of tendon. (Ac-
tually fmax is also limited by the power of the motors. This problem is currently
being investigated at Duisburg, but we do not consider it here because is relates
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b) fmax = 10 N

Figure 3.5: Acceptably controllable workspace of a 2T manipulator
( fmin = 1 N; ϕ denotes the rotation angle of the platform)
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Figure 3.6: Acceptably controllable workspace of a 1R2T manipulator
( fmin = 1 N)
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to technical details of construction.) Furthermore real tendons have a certain stiff-
ness against bending. So a pretension 0 < fmin ≤ fmax is also required to keep
them in the right position around pulleys and other guiding devices. Solutions
respecting these bounds will be called acceptable solutions.8

3.5 Definition (acceptable solution) A positive solution f ∈ IRm
+ is called ac-

ceptable solution if it respects the given bounds on tension:

f ∈ [ fmin, fmax]m .(3.19)

A posture where an acceptable solution exists for a given platform wrench w is
said to belong to the acceptably controllable workspace9 for that w . �

The idea of controllable workspace is just about existence of a solution and is
independent of the platform forces/torques w . It is even possible to consider
gravity as an additional tendon without any extra effort. In contrast, the notion of
acceptable solution is of quantitative nature and depends on w . For some cases, it
is useful to look at the acceptably controllable workspace for w = 0, which gives
a rough estimate of the workspace that can be exploited with real tendons, inde-
pendently of a particular task. This estimate is quite precise if platform wrenches
play a minor role, e. g. for loads of small mass or quasistatic motions in space
applications.

The controllable workspace itself is equal to the acceptably controllable work-
space for fmin = 1 (arbitrary unit of force), fmax = ∞ , w = 0. In subsequent
chapters we will just speak of «workspace» to denote the «acceptably control-
lable workspace».

Fig. 3.5b and Fig. 3.6c–f) show acceptably controllable workspaces: it turns
out that the influence of fmax is relatively limited in these cases. Fig. 3.7 shows
the corresponding acceptably controllable workspaces10 of the 1R2T manipulator
with gravity, for a particular load and force bound.

3.3. Singularities

As pointed out in Section 2.2.1, p. 23 ff., we are dealing with purely parallel
systems, hence the only type of singularity that can occur is overmobility. Ac-
cording to Section 2.1.3, p. 22 ff., a system is singular in a posture x if and only if
the structure matrix (which is the transpose of the Jacobian) is rank deficient, i. e.

rank AT (x) < n .(3.20)

8For simplicity of writing, within this thesis we always assume that the force limits are the
same for all tendons. But the description can easily be extended to cases where tendons have
individual limits, and all our results hold for that general case, too.

9That way, the acceptably controllable workspace for a particular w is not necessarily a subset of
the controllable workspace in the sense of Def. 3.1 because it is not guaranteed that solutions exist
for other wrenches w . However, it is a superset of the controllable workspace when considering
the given w as an additional tendon as explained in Section 2.2.3, p. 28 ff.

10The solid dots indicate postures where an acceptable solution is found immediately with the
projection method of Prop. 3.3, while the empty dots denote postures inside the workspace which
require iteration, see Section 4.7, p. 77 ff.
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d) fmax = 100 N,ϕ = 0.7
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e) fmax = 10 N,ϕ = 0
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f) fmax = 10 N,ϕ = 0.7

Figure 3.7: Acceptably controllable workspace with gravity
(mP = 1 kg, fmin = 1 N)

According to Prop. 3.2 the singular postures themselves are not part of the con-
trollable workspace.

We briefly go through the various classes. If a system of class 2T is singular,
this means that the structure matrix has rank 1. Therefore, the column vectors –
which are the unit vectors in the tendon directions – are all parallel. This is im-
possible except in the case that all winches are located on a common line: this
makes no sense because such a system is always singular and hence the control-
lable workspace is empty. In a similar way, a 3T manipulator has no singularities
except when all the winches lie in a plane, which is again a useless design with
empty workspace. Thus, all systems with purely translational DOFs are singularity-
free.

A 1R2T manipulator can have singularities in a lot of different circumstances.
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a) Parallel Tendons

xxx

yyy

b) Vanishing Torques
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c) Vanishing Torques

Figure 3.8: Singularities in 1R2T systems

We will not give an exhaustive classification, but just mention two typical cases:
all tendons may be parallel (Fig. 3.8a), or all torques may vanish (Fig. 3.8b and c).
In the first example, the platform is free to perform infinitesimal translations in x
direction; in the second and third, infinitesimal rotations are possible. (Actually
the singularity in the third example is also on the border of the workspace, except
when gravity is involved).
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a) Controlling two Points
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b) Controlling two Points
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c) Controlling one Point
and Rotation

Figure 3.9: Almost singularity-free 1R2T systems

There is a simple strategy to build singularity-free parallel manipulators
which is particularly relevant for tendon-based systems and can easily be demon-
strated with 1R2T examples. The idea is based on the duality of serial and parallel
systems. The development of serial robots can be thought of as a process where
some joints are added up because each joint adds a DOF of mobility to the end-
effector. In contrast, a parallel system can be assembled by adding links because
each link takes away one DOF of uncontrollability. Now, overmobility arises in
parallel manipulators if there are uncontrolled DOFs.

3.6 Proposition A way to build up (almost) singularity-free parallel robots is to
partition the set of end-effector DOFs into subsets and to ensure that each subset
is completely controlled in all (desired) postures. �

For instance, in Fig. 3.9a the positions of the two connection points on the
platform are given as vertices of triangles (formed by two winches and a point on
the platform) as long as they stay inside the square formed by the four winches.
As a triangle is completely defined when the lengths of its edges are known,
the positions of these points then are always under control. As the posture of a
body in the plane is completely defined by the position of two points, this implies
that the posture of the platform is always controlled.11 The example in Fig. 3.9b

11To be precise, the system is singular if and only if both platform connection points lie on the
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works in a similar way: the only singular postures are those where the platform
is in a vertical orientation such that all platform connection points and winches
are collinear.

A slightly different approach leads to designs such as Fig. 3.9c: here two ten-
dons control the center point of the platform and the other two control the rota-
tion about this point. There is no singularity except when the two rotating ten-
dons and the two platform points lie on a common line, which is again a posture
on the border of the workspace.

This technique of singularity avoidance tends to require more actuators than
would be necessary for control in normal postures. In fact, in the examples a and b
we need four winches in order to have two points controlled by respectively two
tendons, whereas in normal circumstances three actuators would be sufficient for
three end-effector DOFs. But when building tendon-based systems, we have to
use at least n + 1 winches anyway (except for IRPMs). So we can take advantage
of the extra tendons to avoid singularities this way.
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a) Complanar Tendons
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b) Restricted Torques

xxx
yyy

zzz �
�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�
�

�

�
�

�
�

�

�

�

�

�

�

�

�

�
�

�
�

��

�

�

�

�� �

�
�

�
�

�
�

�

�

�

�
�

�

�
�

�
�

�
�

�

�

�

�
�

�

�
�

�
�

�
�

�

�

�

�
�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

� �

��

�

�

�

�� �

��

� �

��

�
�

�
�� �
��

� �

��

�

�

�

�� �

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�
�

�

�
�

�
�

�
�

�

�

�

�
�

�

�
�

�
�

�

�

�

�

�

�

�

�

�
�

c) Singularity Free
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d) Singularity Free

Figure 3.10: Singularities in 2R3T systems

Systems of class 2R3T can also have singularities in various situations. In
Fig. 3.10a, all tendons are complanar and the platform can move infinitesimally
in z direction. Fig. 3.10b shows an example where rotation about the indicated

line through, for instance, the two left base points. Clearly, such a posture is far away from the
controllable workspace.
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axis is not controllable. Obviously both of these designs are nonsense, because
again it is easy to build a singularity-free system by controlling groups of DOFs
separately: in Fig. 3.10c, each of the two points on the platform is completely con-
trolled by three tendons, while in Fig. 3.10d, one point is controlled by the three
horizontal tendons, the two lower tendons control rotation about the y axis and
the two upper ones control rotation about the x axis.

In this last example, seven tendons are employed while normally six would
be sufficient for five DOFs. So the singularity avoidance generates additional cost
here. But the design has the advantage of decoupling translation from rotation,
which simplifies forward kinematics: three tendons provide straightforward two
possible positions of the center point and this together with the other tendons
allows for easy computation of the postures.
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a) Restricted Torques
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b) Singularity Free

Figure 3.11: Singularities in 3R3T systems

Singularities of 3R3T manipulators are an area of research of its own, already
for classical parallel systems with rigid legs [121, 178]. Fig. 3.11a shows an exam-
ple where torque about the z axis is not controllable; there is a wide variety of
other possibilities. Once more we can use the technique of DOF partitioning: in
the RRPM in Fig. 3.11b, each of three three points on the platform is completely
controlled by three tendons, so the entire platform is always under control.
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AT =
( −1 1 0

0 0 1

)

Figure 3.12: Nonsingular posture with singular submatrix

An interesting question in the context of singularities deals with the rank of
submatrices of the structure matrix. Indeed, if we have a CRPM and we know
that some n columns of AT are linearly independent, then we can fix one of the
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tendon forces, say fm , and obtain the other forces as
 f1

...
fn


= − fm A−T

m̂ am − A−T
m̂ w with AT =

(
AT

m̂ am
)

.(3.21)

(Note that in this case we have n = m− 1.) This can be useful for dynamic opti-
mization of CRPMs [57]. But it requires that rank AT

m̂ = n and this might fail to
be the case even if the system is in a nonsingular posture (i. e. rank AT = n). An
example is shown in Fig. 3.12, where the structure matrix is nonsingular, but the
submatrix consisting of its first n columns is singular. One would expect this to
be a considerable limitation to the approach of Eq. (3.21). But surprisingly it turns
out that for CRPMs this condition is no limitation at all. Indeed, the posture in
the example lies on the border of the controllable workspace, hence outside of it,
and this is always the case under such conditions.

3.7 Proposition (rank of submatrices) Inside the controllable workspace any set
of n columns of the structure matrix of a CRPM has full rank n . �

Proof. Denote with AT
µ̂ the matrix of all column vectors of AT except the µ th

one. Then the vector h = (h1, . . . , hm) with

hµ := (−1)µ−1 det AT
µ̂(3.22)

is orthogonal to all rows of AT because for each row (aν,1, . . . , aν,m) , we have

0 = det
(

aν,1 · · · aν,m
AT

)
= (aν,1, . . . , aν,m) h(3.23)

where the first equality holds because the ν th row appears twice in the determi-
nant and the second one is obtained by Lagrange development. Thus, the kernel
of AT is generated by h as long as the system is not in a singular posture. (And
by Prop. 3.2, singularities do not belong to the controllable workspace.) If a pos-
ture is inside the controllable workspace, it follows from Prop. 3.2 that each hµ is
nonzero, hence all the submatrices AT

µ̂ have full rank. �

The proof implies that a posture is on the border of the workspace if some
n× n submatrix is singular. The converse is not true because such a submatrix
may be singular also somewhere far away from the workspace border. Clearly,
the proposition applies to CRPMs only, because for RRPMs there is no such sim-
ple expression for the kernel of the structure matrix.

3.4. Stiffness

Tendon-based systems are much more compliant than classical robots with
rigid links, so that the requirement of a minimum stiffness is a real problem in
this case. While the stiffness of manipulators with rigid links is primarily limited
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by actuator and joint compliance (the latter applies in particular to parallel de-
signs), the main issue in the case of tendon-based Stewart platforms is the tendon
compliance. The following analysis deals only with this aspect. It is not intended
as a basis for precise computations in control strategies, but rather as an approxi-
mation that gives some overall insight.

We consider the passive stiffness which describes the behavior of a mechanical
system under small perturbations when no active response is generated by the
actuators. This can be a basis for active stiffness control strategies. When an in-
finitesimal wrench δw ∈ IRn is applied to the end-effector of a manipulator, the
posture changes by an infinitesimal deflection δx according to a linear relation

δw = K (x) δx .(3.24)

The posture-dependent matrix K is called stiffness matrix; its inverse (if it exists)
is the compliance matrix. Under the assumption that links are rigid bodies, singu-
larities with under-mobility correspond to infinite stiffness (or zero compliance),
while over-mobility means zero stiffness (or infinite compliance). For typical par-
allel systems, the stiffness matrix always exists, while it can happen that a com-
pliance matrix does not exist. The converse holds for typical serial systems.

The stiffness matrix of tendon-based Stewart platforms is obtained as follows.
Let kµ be the stiffness of the µ th tendon, then the stiffness equation in the actuator
space is

δ f =


 k1

. . .
km


 δl ;(3.25)

transforming both sides to the end-effector space using the structure matrix and
its transpose, respectively, we find12

δw = AT


 k1

. . .
km


A δx ,(3.26)

where the rotational part of δx is expressed in infinitesimal angles about the co-
ordinate axes (a description which corresponds to the components of the angular
velocity and cannot be used for finite rotations). The stiffness of a single tendon
is reciprocally proportional to its original length l0,µ , which differs from the cur-
rently measured length lµ by the elongation

lµ − l0,µ =
1
kµ

fµ .(3.27)

As we assume that tendons behave as linear springs, the proportionality factor
k′ (which can be interpreted as a stiffness per reciprocal length or as a force per

12This approach leads to the stiffness matrix. Interestingly, a similar approach for typical serial
manipulators is possible, but as the Jacobian of serial systems transforms in the opposite direction,
one must start from the compliance in the joint space and obtains therefore a compliance matrix.
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relative elongation; it is measured in force units) is constant. The stiffness of a
single tendon is then

kµ = k′ l−1
0,µ = k′

(
1 +

1
k′

fµ

)
l−1
µ =

(
k′ + fµ

)
l−1
µ .(3.28)

In typical applications, we have 1
k′ fµ < 0.5 % [96]. This can be neglected almost

always because in reality, the contribution of actuator and joint compliance (not
included in this model) is much higher than that. Thus, we can just use the cur-
rently measured lengths; this has the advantage that the result depends on the
posture only, not on the force state.13 If we denote the diagonal matrix of the
lengths lµ (x) with L(x) , we obtain now the stiffness matrix

K (x) = k′ AT (x) L−1 (x) A(x)(3.29)

which is related to the posture in two ways: the factor L(x) depends on the
lengths of the tendons only, while the factor A(x) expresses the way tendon
force is translated to end-effector wrench and is mainly influenced by the angles
between tendons or between a tendon lµ and the corresponding lever pµ .

In systems with only translational DOFs (i. e. 1T, 2T, 3T), Eq. (2.35), p. 32 im-
plies that the stiffness matrix has the form14

K = k′
(

u1 · · · um
)

L−1


 uT

1
...

uT
m


= k′

m

∑
µ=1

1
lµ

uµ uT
µ(3.30)

The stiffness matrix is symmetric by Eq. (3.29), hence it is positive semidefinite,
i. e. it has nonnegative eigenvalues 0 ≤ ke1 ≤ . . . ≤ ken . Stiffness in any direction
is then bounded by these values in the sense that

ke1 ≤ |δw|
|δx| ≤ ken .(3.31)

This means that the quotient of the norms of an infinitesimal perturbation and
the infinitesimal deflection resulting from the perturbation is always in the range
between the smallest and the largest eigenvalue. Extreme values for the quotient
are reached for the respective eigenvectors.

The smallest eigenvalue ke1 is particularly interesting because it indicates if a
system is near to a singularity. The problem of finding such measures («dexterity
indices») has been widely discussed [5, 15, 39, 50], and the result seems to be that
there is not a single, natural, general-purpose measure with reasonable proper-
ties [154] and appropriate for any kind of mechanism. Now, for tendon-based
Stewart platforms, the value ke1 vanishes at a singularity and becomes small in
its neighborhood. Furthermore singularity in parallel systems means «looseness»
and this is precisely represented by Eq. (3.31). In this sense, ke1 is a natural mea-
sure for vicinity to singularities, although it depends on the type of tendons and
the absolute size of the system.15

13Here it is essential that we model tendons as linear springs, otherwise the non-linearity can
imply a significant influence of tension on the stiffness.

14The formula looks similar to a spectral decomposition, but it has nothing to do with that
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xxx

yyy

a) CRPM

xxx

yyy

b) RRPM

Figure 3.13: Stiffness of some 2T systems

For a 2T manipulator is it easy to write down the stiffness matrix and the
resulting eigenvalues explicitely. With uµ = (cosαµ , sinαµ)T as in Eq. (3.8), one
obtains the stiffness matrix

K = k′
(

∑m
µ=1 l−1

µ cos2 αµ ∑m
µ=1 l−1

µ sinαµ cosαµ

∑m
µ=1 l−1

µ sinαµ cosαµ ∑m
µ=1 l−1

µ sin2 αµ

)
(3.32)

and the eigenvalues

ke1/e2 =
1
2

k′ sLen

(
1±

√
1− sAng

)
with(3.33)

sLen =
m

∑
µ=1

1
lµ

and(3.34)

sAng =
1

s2
Len

∑
1≤µ<µ′≤m

1
lµ lµ′

sin2 (αµ −αµ′
)

.(3.35)

Thus we have a representation with two factors: one which depends only on the
lengths and one which is mainly a function of the angles between tendons.

Fig. 3.13 shows two example manipulators with their generalized stiffness el-
lipses. The directions of the ellipse axes indicate the direction of stiffness eigen-
vectors: this means that a perturbation in such a direction generates a motion in
the same direction. The length of the half axes is proportional to the square root
of the respective eigenvalues. We find that there is a region close to the center
where both eigenvalues are almost equal: this means that the term sAng almost
vanishes. By contrast, close to the winches both values are quite different from
each other: here the term sLen is large because one tendon is very short, but only
one of the eigenvalues takes advantage of this, while the other one almost van-
ishes – clearly, the stiffness along the short tendon is high, while the system is
rather compliant for motions orthogonal to this because the angles of the other

because the number of terms is higher than n and thus the vectors uµ cannot be all orthogonal to
each other. Hence, this does not provide much insight into the eigenvalues of K .

15It is made independent of the tendon type when dividing by k′ and it can even be made
dimensionless when dividing by some characteristic length. However, there is no easy way to
transform it into a dimensionless number filling the interval [0, 1] , which is one of the properties
usually desired for measures of singularity.
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tendons are disadvantageous. Furthermore we observe that the manipulator with
four tendons has a generally higher stiffness than that with three.

In manipulators with translational and rotational DOFs, Eq. (3.31) cannot be
directly applied because then, δx contains lengths as well as angles and δw con-
tains forces and torques. So the absolute values of the vectors as such are mean-
ingless. This can be overcome by introducing a characteristic length pc that trans-
forms the angles to lengths and the torques to forces [6].16 We obtain new gener-
alized coordinates and forces which for the 1R2T case can be defined as follows:

δx = S
(

δr
δϕ

)
and δw = S−1

(
δ f P

δτP

)
with S =

(
I2

pc

)
.(3.36)

The transformations of deflection and wrench are consistent in the sense that they
preserve the scalar product which represents the work performed by the motion:

δwT δx =
(

δ f T
P δτP

)( δr
δϕ

)
.(3.37)

Using these new coordinates, we obtain the corresponding stiffness matrix

K (x) = k′ S AT (x) L−1 (x) A(x) S(3.38)

= k′
m

∑
µ=1

1
lµ


 uµ

det
(

pµ

pc
uµ

)

( uT

µ det
(

pµ

pc
uµ

) )
.(3.39)

Now Eq. (3.31) holds for the eigenvalues of this matrix.
A convenient choice for pc is the average value of the platform link lengths

p1, . . . , pm : then an angle is translated into the deflection of the points at average
distance from the origin of KP and a torque is translated to the corresponding
force applied at such a point. This is particularly useful when all the links are
of equal length as in Table 3.2. The stiffness matrix of the first posture shows
that any force in x direction acting on the center of the platform results in a pure
translation in x direction. The same holds for such a force in y direction and
also for a tangential force applied to one of the connection points.17 In the second
posture, translational and rotational stiffness are still independent. The remaining
examples show other types of decoupling and it can be seen that in general the
stiffness values in various directions are strongly coupled with each other. Note
that the lists of eigenvalues in the table are just a partial information because
they do not tell which type of translation/rotation they apply to. (It is difficult to
include such an information in the drawing in an intuitive way.)

Similar considerations are possible for 2R3T and 3R3T manipulators. We have
then a transformation matrix S with

S =
(

I3
pc InRot

)
(3.40)

16This approach, widely used by Jorge Angeles, was criticized by Joseph Duffy arguing that the
choice of the characteristic length is somewhat arbitrary. This may be true for the general case;
however, when choosing a meaningful length appearing in the mechanism, also the resulting
linear deflections and forces get a physical meaning.

17To be precise, two forces of half this amount must be applied at opposite connection points in
order to achieve a pure torque on the body.
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Posture Structure Matrix S AT
Stiffness Matrix K

Eigenvalues k

xxx

yyy


 −0.707 0.707 0.707 −0.707

0.707 0.707 −0.707 −0.707
−0.707 0.707 −0.707 0.707





 2.828 0.000 −0.000

0.000 2.828 −0.000
−0.000 −0.000 2.828




(2.828, 2.828, 2.828)

xxx

yyy


 −0.860 0.510 0.860 −0.510

0.510 0.860 −0.510 −0.860
−0.510 0.860 −0.510 0.860





 2.740 0.700 0.000

0.700 3.505 −0.000
−0.000 −0.000 3.505




(2.325, 3.505, 3.920)

xxx

yyy


 −0.514 0.814 0.814 −0.514

0.857 0.581 −0.581 −0.857
−0.514 0.814 −0.814 0.514





 2.447 0.000 −0.000
−0.000 3.307 −0.414
−0.000 −0.414 2.447




(2.281, 2.447, 3.474)

xxx

yyy


 −0.776 0.724 0.906 −0.136

0.631 0.690 −0.423 −0.991
−0.378 0.966 −0.592 0.594





 2.523 0.016 0.822

0.016 3.709 −0.383
0.822 −0.383 2.809




(1.796, 3.317, 3.928)

xxx

yyy


 −0.555 0.555 0.894 −0.894

0.832 0.832 −0.447 −0.447
−0.555 0.555 −0.894 0.894





 3.545 −0.000 −2.179
−0.000 2.252 −0.000
−2.179 −0.000 3.545




(1.365, 2.252, 5.724)

xxx

yyy


 −0.732 0.353 0.969 −0.809

0.681 0.935 −0.247 −0.587
−0.316 0.759 −0.732 0.992





 3.967 1.120 −2.833

1.120 2.800 −0.823
−2.833 −0.823 4.641




(1.375, 2.486, 7.548)

Table 3.2: Stiffness in some postures of a 1R2T manipulator
(with k′ = 10.0 kN and a size of base and platform of 10 m, respectively)
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where nRot equals 2 or 3, respectively. Detailed case studies for 3R3T were con-
ducted by Lafourcade and Zheng [96, 182].

3.5. Autocollisions

As a last aspect of workspace, we look at the problem of autocollisions, i. e.
collisions of tendons with each other. This is mentioned here for the sake of com-
pleteness because it is a question of design geometry independent of technical
details and therefore it belongs to the focus of this work.18 Nevertheless, we will
not go into much detail because there is a theory of its own and it does not share
much mathematical framework with the other aspects discussed so far.

Two tendons can cross each other in at most one point, because otherwise they
would coincide completely for all postures and that would not be a reasonable
design. This has an important consequence:

3.8 Proposition If two tendons are connected to the same point on the base or on
the platform, they will never cross each other elsewhere. �

It follows immediately that autocollisions never occur in systems with pure
translation (1T, 2T, 3T). For 2R3T systems, designs as in Fig. 3.10 suggest that
tendons could cross each other only for very large rotations which are certainly
outside the controllable workspace. It would be difficult to prove this formally,
but it is clear that in normal cases, autocollisions do not play any role in 2R3T
systems.
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b) tendons in different planes

Figure 3.14: Techniques to avoid autocollisions

Thus, the only systems where the problem has to be considered are those of
class 1R2T and 3R3T. Now, considering the above proposition, it is a good strat-
egy to make coincide as many connection points as possible, as in Fig. 3.14a.

18Collisions between tendons and platform, load or obstacles also play an important role, but
they depend on the shape of the involved bodies. So they cannot be discussed when only the
positions of winches and connection points are given.
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While it is practically impossible to do this with the spherical joints on rigid links,
it is rather easy with tendons [127, 128], for instance by guiding multiple tendons
through a common tube. (Clearly, the drawback of this is a limited precision,
but tendon-based systems are not particular candidates for highest-precision po-
sitioning anyway.) This also has advantages for the controllable workspace be-
cause it leads to relatively large values of sin βµ in Eq. (3.10) (Fig. 3.4b) for the
1R2T case and it has similar effects on 3R3T systems. In addition, it often simpli-
fies the computation of forward kinematics [47, 72].

Typical solutions arrange points such that each tendon shares the base con-
nection point with one neighboring tendon and the platform connection point
with another one, as in Table 3.2 for the 1R2T class and in Fig. 2.6a, p. 27 (the
classical Stewart platform) for 3R3T. Then the other tendons are so far away that
autocollisions can rarely occur.

An alternative approach for 1R2T systems is to replace some tendons by a pair
of tendons actuated simultaneously and arranged on parallel planes on opposite
sides of the plane of motion, if the type of application and the environment al-
lows that. Then various tendons can be put on different planes, as in Fig. 3.14b.
However, this solution may be significantly more expensive and is normally not
necessary because in the 1R2T class, the strategy of connection point coincidence
usually works well.

Autocollisions may remain a real problem in 3R3T systems because they are
so complex that usually one cannot see at a glance all possible collision problems
and appropriate solutions. This applies in particular to redundant systems. Ta-
dokoro et al. [160, 161] proposed a numerical method to check tendon distances
during a trajectory. However, a comprehensive analysis of collision problems and
solutions remains an open topic of research.
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Chapter 4

Optimal Tension Distribution

Section 4.1 explains the problem of finding acceptable and optimal solutions
and briefly outlines the results of this chapter. The special case of CRPMs
(Section 4.2) suggests a general strategy, which is presented in Section 4.3.
Optimal solutions may be discontinuous along a trajectory, as shown by ex-
amples in Section 4.4. Therefore, Section 4.5 explains how to find almost op-
timal solutions and Section 4.6 proves that they are continuous. Section 4.7
explains the practical computation of such solutions.

4.1. Introduction

This chapter addresses the problem of finding acceptable solutions to the ten-
sion problem as defined in Def. 3.5, p. 43, in particular for the nontrivial case of
RRPMs. Related questions include:

How can we check if an acceptable solution exists?

If an acceptable solution exists, how can we find it?

What is an «optimal» solution and how can we find it?

Is that optimal solution continuous along a trajectory?

We shall obtain the following main results:

The tension problem can be transformed into a nonlinear optimization
problem on a convex polyhedron.

Then acceptable solutions exist if and only if there are optimal solutions
which are acceptable.

The solution of the optimization problem is unique in most cases.

In the domain of uniqueness, the solution is also continuous.

When crossing a region of non-uniqueness, it may be impossible to follow a
continuous solution path. Unfortunately, such regions may appear close to
the center of the workspace.

57
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One can consider slightly different optimization problems that always have
a unique solution which is close to the original solution. However, in this
case one can fail to find an acceptable solution although it exists.

In singularities, even these solutions fail to be continuous. But this is the
case for any solution based on reasonable requirements.

These results are general in the sense that they apply to any number of ten-
dons and DOFs. As most of the complicated cases arise in dimensions greater
than three and thus are difficult to illustrate, formal proofs are required in or-
der to be sure that all possible complications are included. For that reason, this
chapter was given a structure much like a mathematical paper, with definitions,
propositions and proofs. Examples demonstrate that certain complications really
appear in manipulators; although, for sake of simplicity, the examples are special
and not well-designed from a practical point of view.

4.2. Optimal Solutions for CRPMs

In general, it is not straightforward to check if an acceptable solution exists
and if so to compute it. As the set of vectors f satisfying AT f + w = 0 is a
k -dimensional affine space, one might try fixing k components of f to accept-
able values and then compute the others, but this does not necessarily lead to a
positive solution and in particular not to an acceptable one. A very simple case1

is illustrated in Fig. 4.1: although a segment of acceptable solutions exists, one
might happen to choose acceptable values f1 = f1,0 or f2 = f2,0 such that the
other force components computed from them are not acceptable.

| ||

|
|

|

�

�

f1f1f1

fminfminfmin fmaxfmaxfmax

f10f10f10

fminfminfmin

fmaxfmaxfmax

f20f20f20

[ fmin, fmax]m[ fmin, fmax]m[ fmin, fmax]m
ker ATker ATker AT

acceptable

acceptable

acceptable

Figure 4.1: Fixing some forces does not always yield acceptable solutions

For CRPMs, it is easy to check for acceptable solutions. Given the tension
problem

AT f + w = 0 and f ∈ [ fmin, fmax]m ,(4.1)

1An illustration with m = 2 has been chosen because this is the most obvious case, even
though there is no 2-DOF tendon-based Stewart platform corresponding to this figure. For a real
example, at least m = 3 would be necessary.
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the solutions for CRPMs (i. e. manipulators where AT ∈ IRn×(n+1) ) in nonsingu-
lar postures can be written as

f = −A+T w︸ ︷︷ ︸
=: f 0

+λ h with h ∈ ker AT .(4.2)

By Prop. 3.2, p. 36, a solution for each w exists if and only if there is such an h
where all components are positive.2 As the kernel of the structure matrix is one-
dimensional for CRPMs, this is easy to check: just compute an arbitrary element
of ker AT ; if all components are nonzero and of equal sign, then there is such an
h > 0, otherwise not. If it exists, then the acceptability condition is

∀
1≤µ≤m

fmin ≤ f0,µ + λ hµ ≤ fmax(4.3)

and as h > 0, this can be transformed to3

max
1≤µ≤m

fmin − f0,µ

hµ
≤ λ ≤ min

1≤µ≤m

fmax − f0,µ

hµ
.(4.4)
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Figure 4.2: In CRPMs, acceptable solutions form a line segment

This defines a range for λ that provides acceptable solutions. It may be empty:
in that case, no acceptable solutions exist. We observe two important points:

The acceptable solutions form a polyhedral set. For CRPMs, the set has the
simple structure of a line segment (Fig. 4.2).

It is a matter of respective purpose which element in this segment is opti-
mal:

• If we want to save energy as much as possible, we will choose the
minimum value of λ .

• If we are seeking high eigenfrequencies in the tendons, we can take the
maximum value.

2Of course, for a particular w solutions can exist even when there is no such h > 0. Therefore,
the approach presented here is useful for explanation, but it does not actually provide a suitable
algorithm. Section 4.3 presents a general algorithm, which can be applied to CRPMs as well.

3The same idea for the lower bound only was proposed by Kawamura et al. [80].
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• If the key requirement is safety (e. g. when transporting people in res-
cue systems), we may choose the middle between both, to be sure that
we remain inside the acceptable range under all circumstances, even
when large control errors occur.

• Any mixture of these criteria is possible.

4.3. Optimal Solutions in the General Case

In the general case, the set of acceptable solutions is a polyhedron (Fig. 4.3) of
generally complicated structure. Our goal is to identify in this set a «lowest» and
a «highest» solution (Fig. 4.3). Then the line segment delimited by them provides
a set of «optimal» solutions in a certain sense and we can choose a particular
solution out of the line segment, the same way as presented above.
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Figure 4.3: Optimal solutions as a range: basic idea

When seeking a «lowest» solution of the tension problem, we consider all the
solutions of the structure matrix equation that respect the lower bound on tendon
force (Fig. 4.4a). This is the unbounded polyhedron

Plow :=
{

f ∈ IRm : AT f + w = 0 ∧ f ≥ fmin

}
.(4.5)

Now a solution f ∈ Plow is acceptable if it also satisfies the upper bound condi-
tion, i. e. if the maximum of the components of f is less than or equal to fmax . As
all these components are positive, that condition can be formulated as

‖ f ‖
∞
≤ fmax(4.6)
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where ‖ f ‖
∞

represents the maximum absolute value of the components of f
(Def. A.17, p. 130). Thus, acceptable solutions exist if and only if4

min
f∈Plow

‖ f ‖
∞
≤ fmax .(4.7)

Elements f low ∈ Plow having minimal ‖·‖
∞

-norm among Plow will be called
lowest. They satisfy

‖ f low‖∞ = min
f∈Plow

‖ f ‖
∞

.(4.8)
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Figure 4.4: Polyhedra of solutions

Conversely, highest solutions are seeked in the polyhedron (Fig. 4.4b)

Phigh :=
{

f ∈ IRm : AT f + w = 0 ∧ f ≤ fmax

}
;(4.9)

then an element of Phigh is acceptable if the minimum of its components is greater
than or equal fmin . This formulation is not convenient to work with because the
minimum of the components of a vector is not a norm. But we can introduce again
the ‖·‖

∞
-norm by saying, equivalently, that a solution f ∈ Phigh is acceptable if

and only if

‖ fmax 1− f‖
∞
≤ fmax − fmin .(4.10)

Elements f high ∈ Phigh where the left-hand side reaches its minimum will be
called highest solutions. They fulfill∥∥ fmax 1− f high

∥∥
∞

= min
f∈Phigh

‖ fmax 1− f ‖
∞

.(4.11)

Elements on the line segment joining a lowest and a highest solution (Fig. 4.3) will
be called optimal.5 As an example, Fig. 4.5 shows two postures of a highly redun-
dant manipulator with two DOFs and seven tendons: the dashed arrow indicates
the gravity (equal for all postures), the solid arrows represent forces correspond-
ing to a lowest solution and the dotted arrows show a highest solution.

The sets Plow and Phigh are convex (Def. A.12, p. 127) and the set of accept-
able solutions is the intersection of both, hence it is convex, too (although possibly
empty). We summarize these considerations in a definition and a proposition.

4According to Def. A.3, p. 124, the notation «min» implicitly tells an element f of such norm
really exists. This will be proven in Theorem 4.4.

5For the homogeneous case with w = 0, it can be shown that an «optimal» solution fopt is
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gravity
lowest solution
highest solution

Figure 4.5: Force ranges of two postures for a redundant 2T example

4.1 Definition (lowest/highest/optimal solution) An element f low ∈ Plow is
called lowest solution if

‖ f low‖∞ = min
f∈Plow

‖ f‖
∞

.(4.12)

An element f high ∈ Phigh is called highest solution if∥∥ fmax 1− f high
∥∥

∞

= min
f∈Phigh

‖ fmax 1− f‖
∞

.(4.13)

An element f (σ) ∈ IRm (Fig. 4.5) is called optimal solution if it can be written as

f (σ) = σ f high + (1−σ) f low with σ ∈ [0, 1] . �(4.14)

4.2 Proposition (acceptability of solutions) The following statements are equiv-
alent for a given posture:

a) Acceptable solutions exist.

b) All lowest solutions are acceptable.

c) There is an acceptable lowest solution.

d) All highest solutions are acceptable.

e) There is an acceptable highest solution.

f) All optimal solutions are acceptable.

indeed optimal in the following sense: if there is another solution f with minµ fµ = minµ fopt,µ ,
then we have maxµ fµ ≥ maxµ fopt,µ . In other words, when fixing a minimal force and trying to
minimize the maximum component value, there is nothing better than a corresponding optimal
solution in the above sense. The same result holds for maximizing the minimum component with
a fixed maximum force. For w 
= 0 there is no comparable result. So in general the term «optimal»
is a convention rather than a fact.



4.3. OPTIMAL SOLUTIONS IN THE GENERAL CASE 63

g) There is an acceptable optimal solution. �

Proof. The proposition results from the following implications:

a ⇒ b⇒ c ⇒ a
a ⇒ d⇒ e⇒ a

b∧d⇒ f ⇒ g⇒ a
(4.15)

where «a ⇒ b» and «a ⇒ d» follow from the above considerations, while
«b ∧ d ⇒ f» holds because the set of acceptable solutions is convex. The im-
plications «b ⇒ c», «d ⇒ e» and «f ⇒ g» follow from Theorem 4.4 below (the
nontrivial point is that lowest/highest/optimal solutions really exist). The rest is
obvious. �

Now we shall state that lowest/highest solutions always exist and that they
are found in a very particular region of their respective polyhedra, namely in
the convex hull (Def. A.12, p. 127) of their vertices. This fact is irrelevant for the
actual computation because computation of all vertices is far more expensive than
computation of the solutions themselves, as explained in Section 4.7. However, it
gives some additional theoretic insight and we shall use it in the following section
for the construction of examples.

The unbounded sets Plow and Phigh are polyhedra in the sense of Def. A.12,
p. 127 because they are the sets of those f which satisfy

 AT

−AT

−Im


 f ≤


 0

0
− fmin 1


 for Plow,(4.16)


 AT

−AT

Im


 f ≤


 0

0
fmax 1


 for Phigh .(4.17)

These polyhedra have a zero-dimensional lineality space (Def. A.14, p. 129); they
extend towards infinity only in positive directions for Plow and only in negative
ones for Phigh :

4.3 Lemma The polyhedra Plow,Phigh are pointed and they fulfill6

char.cone Plow ⊂ IRm
+0 and char.cone Phigh ⊂ IRm

−0 . �(4.18)

Proof. Eq. (4.18) follows directly from Eq. (4.16), (4.17) by setting the right hand
side to zero according to Eq. (A.17), p. 129. Then the lineality space is contained
in IR+0 ∩−IR+0 = {0} for Plow and IR−0 ∩−IR−0 = {0} for Phigh , so both poly-
hedra are pointed. �

Now Theorem A.15, p. 130 enables us to prove that lowest (highest) solutions
always exist (this was not yet shown so far) and that they are found in the convex
hull of the vertices of Plow (Phigh ). This can also be observed in Fig. 4.4a; it is not
visible in Fig. 4.4b because there, a second vertex with f3 = fmin lies on the left
hand side outside the drawing region.

6see Def. A.14, p. 129 for the definition of the characteristic cone and of the term «pointed»
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4.4 Theorem (solutions between vertices) Let Qlow and Qhigh be the convex
hulls of the vertices of Plow and Phigh . Whenever Plow (Phigh ) is nonempty,
then so is Qlow (Qhigh ) and we have

inf
f∈Qlow

‖ f‖
∞

= inf
f∈Plow

‖ f ‖
∞

and(4.19)

inf
f∈Qhigh

‖ fmax 1− f‖
∞

= inf
f∈Phigh

‖ fmax 1− f ‖
∞

.(4.20)

Furthermore lowest (highest) solutions exist and lie all in Qlow (Qhigh ). �

Proof. We show the theorem for lowest solutions, the proof for highest ones is
similar.

a) If the pointed polyhedron Plow is nonempty, then it has a nonempty set of
vertices by Theorem A.15, p. 130.

b) With Theorem A.15, p. 130, we can write

inf {‖ f ‖
∞

: f ∈ Plow} = inf {‖ f + f 1‖∞ : f ∈ Qlow ∧ f 1 ∈ char.cone P}
= inf {‖ f ‖

∞
: f ∈ Qlow}(4.21)

because the additional f 1 has nonnegative components by Lemma 4.3.

c) This implies that, if lowest solutions exist, then they lie in Qlow , which is com-
pact by Lemma A.19, p. 132. Now, the infinity norm is continuous, so it takes a
minimum on this compact set by Prop. A.26, p. 133. �

4.4. Discontinuity of Optimal Solutions

When performing a trajectory, Prop. 4.2 implies that one can choose σ ∈ [0, 1]
a priori and then compute f (σ) at each point of the trajectory. Either the result
is acceptable at each point or there is no acceptable force path. In any case, one
does not need to reconsider σ during the motion. Now an interesting question
is whether the result is continuous or not. By their definition, optimal solutions
f (σ) with 0 < σ < 1 are continuous if and only if both lowest and highest so-
lutions are continuous. But these can fail to be continuous, as we will show in
the following examples. We will give an example for the nonsingular as well as
for the singular case, because the latter turns out to be a more general problem.
Both examples are treated quite in detail because this also provides a practical
illustration how the results obtained so far can be applied.

4.4.1. Nonsingular Case

We consider the manipulator shown in Fig. 4.6, where a point p is attached
to five tendons and moved in the plane. The system has two end-effector-DOFs
and five actuators, hence there are three degrees of force redundancy. We look at
postures which satisfy the angular conditions

−δ <α < δ with δ such that −ε < sinα <ε

0 < β < δ′ with δ′ such that 0 < sin β <ζ −ε
(4.22)
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Figure 4.6: Example of discontinuity

with some 0 < ε < 1
2 and ε < ζ ≤ 1

2 .
With Eq. (2.35), p. 32, the figure supplies directly

AT =
(

0 − cosα cosα − cos β cos β

−1 sinα sinα sin β sin β

)
(4.23)

and one can easily imagine three independent force distributions in the kernel of
AT , such that we obtain a representation ker AT = 〈H〉 with

H =




2 sinα 2 sin β 0
1 0 cos β

1 0 − cos β

0 1 − cosα

0 1 cosα


 .(4.24)

The first column represents a situation where tendons 1, 2 and 3 balance each
other, while the others are inactive. The second one is the same with tendons 1, 4
and 5. The third one shows how tendons 2, 3, 4 and 5 create a force equilibrium
while the first tendon is inactive. None of these vectors is a positive solution of the
tension problem because they contain zero and even negative entries, but they generate
the kernel of AT . So in the homogeneous case w = 0 (i. e. the only forces in the
system are tendon forces), any solution f has the form

f = H λ with some λ ∈ IR3 .(4.25)

We assume fmin = 1. Due to the symmetry of the mechanism, it is clear that
solutions with minimal force will have

λ3 = 0 .(4.26)

Therefore it is sufficient to work with a matrix H′ consisting of the first two
columns of H and with the corresponding polyhedra P′low and Q′low . Any el-
ement of P′low then has the form

f =
(

2λ1 sinα + 2λ2 sin β λ1 λ1 λ2 λ2
)T .(4.27)

Now we have to compute the vertices of Q′low . As P′low is two-dimensional,
vertices are given by those elements f which have the form of Eq. (4.27) and two
components equal to 1 in one of the following cases:

a) For f2 = f4 = 1, Eq. (4.22) implies f1 < 1, so such a point is not contained in
P′low and hence not a vertex of it.
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b) For f1 = f2 = 1, we obtain

λ1 = 1 ∧ sinα + 2λ2 sin β = 1 and therefore(4.28)

‖ f‖
∞

= λ2 =

∈]1−2ε,1+2ε[︷ ︸︸ ︷
1− 2 sinα

2 sin β︸ ︷︷ ︸
∈]0,2ζ−2ε[⊂]0,1−2ε[

∈ [1, ∞[(4.29)

and for the ranges of Eq. (4.22), this is always a vertex of Q′low .

c) Analogously, for f1 = f4 = 1, we have

‖ f‖
∞

= λ1 =

∈]1−2ζ+2ε,1[︷ ︸︸ ︷
1− 2 sin β

2 sinα︸ ︷︷ ︸
∈]−2ε,2ε[

∈ [1, ∞[ only for α > 0(4.30)

which is in P′low only for α > 0.

Case a) For α < 0 there is only one vertex in Q′low , hence Q′low consists in
this vertex. By Theorem 4.4, this vertex is then the only lowest solution. It has the
form

f low =
(

1 1 1
1− 2 sinα

2 sin β

1− 2 sinα

2 sin β

)T

.(4.31)

For that case, the end-effector is above the level of b2, b3 (i. e. y > 0): then the last
two tendons need much more tension to apply a force in y direction than the first
one does, thus it is optimal to tend the first three with minimum tension and the
last two with the necessary tension to balance this.

Case b) For α > 0 (i. e. y < 0) all tendons except tendon 1 need much ten-
sion to apply a force in y direction. So it is best to have minimum tension in
the first tendon; but then the tension in the pairs of tendon 2–3 and 4–5 can be
distributed in various ways. Candidates for minimal solutions are found in the
segment between the two solutions, i. e. they have the form

f (τ) :=




1

τ 1−2 sin β
2 sinα + (1− τ)

τ 1−2 sin β
2 sinα + (1− τ)

τ + (1− τ) 1−2 sinα
2 sin β

τ + (1− τ) 1−2 sinα
2 sin β




with τ ∈ [0, 1] .(4.32)

A lowest solution is obtained at τ∞ when the tensions in tendons 4–5 are equal,
i. e.

τ∞

1− 2 sin β

2 sinα
+ (1− τ∞) = τ∞ + (1− τ∞)

1− 2 sinα

2 sin β
,(4.33)
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provided that this happens for τ ∈ [0, 1] . This is in fact the case, and the result is

τ∞ =
sinα

sinα + sin β
(4.34)

f (τ∞) =
(

1
1

2 (sinα + sin β)
. . .

1
2 (sinα + sin β)

)T

(4.35)

‖ f (τ∞)‖
∞

=
1

2 (sinα + sin β)
.(4.36)

Taking Eq. (4.31) and Eq. (4.35) together, we find that for ζ < 1
2 , the lowest

solutions are discontinuous at α = 0:

f low
α↗ 0−−→

(
1 1 1

1
2 sin β

1
2 sin β

)T

(4.37)

f low
α↘ 0−−→

(
1

1
2 sin β

1
2 sin β

1
2 sin β

1
2 sin β

)T

.(4.38)

A closer look at the result shows us that these two different limits are the vertices
of a segment of lowest solutions at α = 0. In fact, Theorem 4.4 only states that
there are lowest solutions in Q′low , not that they are unique.

The example shows that the algorithm for finding optimal solutions has a se-
rious drawback: the result may be discontinuous. We will prove later that it can
be discontinuous only if the lowest (or highest) solution is not unique. Informally
speaking, this happens in our example because at a certain point quite in the cen-
tral region of workspace, the force contribution of a group of tendons (no. 2 and 3)
changes sign for a certain direction (the y axis) and at the point of change, tension
of this group is decoupled from the other tensions: they pull in x direction, the
others in y direction. This is a phenomenon that is likely to happen for many ma-
nipulator geometries near the center of workspace, so the problem has a practical
relevance.

4.4.2. Singular Case

Now we will show that any reasonable choice of tensions may fail to be con-
tinuous if the manipulator crosses a singularity. We briefly illustrate this with a
simple example (Fig. 4.7): three tendons are attached to a single point of the plat-
form and two other ones are connected to points on opposite ends, such that the
former tendons only control translation, while the latter control rotation. The con-
struction is asymmetric and rather useless in practice, but it is good to illustrate
the problem. From the figure we derive with Eq. (2.36), p. 32:

AT =


 0 − cosα cosα − cos β cos β

−1 sinα sinα sin β sin β

0 0 0 −d sin β 2 d sin β


(4.39)

and again it is easy to find two independent solutions in the kernel of AT . First,
the tendons 1, 2 and 3 form a subsystem that can be in equilibrium if the other two
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tendons are without tension. If instead tendon no. 5 has a positive tension, then
tendon no. 4 must have the double amount of tension to balance this. This results
in a negative force in x direction, which can be counteracted by forces in tendon
no. 2 and no. 3. Then the overall result is a positive force in y direction, so tendon
no. 1 must bear this force. As the kernel of AT is known to be 2-dimensional, any
solution is a superposition of these two:

ker AT =
〈



2 sinα 3 (cosα sin β + sinα cos β)
1 cos β

1 2 cos β

0 2 cosα

0 cosα



〉

.(4.40)

As before, we consider the homogeneous case w = 0 with a normalized min-
imum tension fmin = 1. Now if all sines and cosines are positive, the only lowest
solution is obtained from the second column in Eq. (4.40), because the first col-
umn just adds more tension to the first three tendons without taking it away from
the last two ones. If in addition β is small we have β < α and the result is

f low =
(

3 (tanα cos β + sin β)
cos β

cosα
2

cos β

cosα
2 1

)T

.(4.41)

b1b1b1

b2b2b2 b3b3b3b4b4b4 b5b5b5

ddd 2 d2 d2 d

ααα ααα

βββ βββ

Figure 4.7: Example of discontinuity (singular for β = 0)

Now the geometry was chosen such that α = 60◦ when β = 0, i. e. when the
tendons 4 and 5 are parallel. Thus, as β approaches zero, we get

‖ f low‖∞ = 3 (tanα cos β + sin β)
β→0−−−−→ 3

√
3 ,(4.42)

but in the point β = 0 itself, we have a singularity because rotation cannot be
controlled there7 and Eq. (4.39)–(4.41) become

AT =


 0 − 1

2

√
3 1

2

√
3 −1 1

−1 1
2

1
2 0 0

0 0 0 0 0


(4.43)

ker AT =
〈



1 3 0
1 2 0
1 4 0
0 2
√

3 1
0
√

3 1



〉

(4.44)

7This implies that this posture does not belong to the controllable workspace in the sense of
Def. 3.1, p. 36, but there may be tasks where a short-time loss of controllability in rotation does
not harm [159], so it is worthwhile to check what happens.
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f low =
(

1 1 1 1 1
)T(4.45)

‖ f low‖∞ = 1 .(4.46)

In fact, the continuous extension of the previous solution still exists, but as the
kernel of AT has passed from a 2- to a 3-dimensional space, the range of possible
solutions has become much larger and the lowest one is not the extension of the
lowest one for positive β . Thus, there is a discontinuity for both f low and its
infinity norm in the point β = 0:

4.5 Proposition (discontinuity in singularities) Singularities, in addition to the
loss of controllability, can also break the continuity of optimal tension configura-
tions. �

It is easy to see that any approach based on minimizing a «reasonable» norm
leads to this solution: if we have to respect a lower bound on tensions, if we want
to minimize tensions by some norm and if the norm gives the same weight to all
tendons, then there cannot be any solution better than that having all tensions
equal. This phenomenon is a problem particular to singularities in tendon-based
parallel systems: it has no equivalent for classical systems with rigid links.

4.5. Approximation of Optimal Solutions

As already mentioned in Section 4.4.1, the discontinuity of optimal solu-
tions in certain postures has to do with their non-uniqueness. The lack of
uniqueness results from the fact that neither the sets Plow,Phigh nor the sets{

f ∈ IRm : ‖ f ‖
∞
≤ c

}
are strictly convex. This can be overcome by replacing

the infinity norm with some strict p-norm as defined in Def. A.17, p. 130.
These norms are known to approximate the infinity norm as p → ∞ . We shall
prove in Section 4.6 that for p > 1, the « p-lowest» and « p-highest» solutions
f low,p, f high,p obtained that way are always unique and continuous except in singu-
larities.

| |

|
|
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�
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f low,2f low,2f low,2

f low,3f low,3f low,3

f low,5f low,5f low,5

f low,9f low,9f low,9

f lowf lowf low

Figure 4.8: Approximation of f low with f low,p

Clearly, the drawback is that such solutions may be not really optimal. In par-
ticular, Prop. 4.2 cannot be applied to solutions of that kind, i. e. one might fail to
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find acceptable solutions although they exist. For instance, Fig. 4.8 shows a sim-
ple example where acceptable lowest solutions exist and the p-lowest solutions
for p ≥ 5 are indeed acceptable, but for p ≤ 3 they are not.

For illustration, let us continue the example of Section 4.4.1. The proof of The-
orem 4.4 can be generalized to show that all p-norms take a minimum for Plow
in Qlow – in this example, Q′low –. So for α < 0 the point f low of Eq. (4.31) is op-
timal for any p . In the case of α > 0, we have to compute the respective p-norms
of the points in Q′low :

‖ f (τ)‖p = p
√

1 + 2
(
τ 1−2 sin β

2 sinα + (1− τ)
)p

+ 2
(
τ + (1− τ) 1−2 sinα

2 sin β

)p
.(4.47)

As this is a differentiable function, the minimum is taken exactly at that point
where the derivative vanishes, provided that this happens inside [0, 1] . Other-
wise it is 0 or 1, whichever is closer to the point found. This leads to the condi-
tion

τp
1− 2 sin β

2 sinα
+
(
1− τp

)
= p−1

√
sinα

sin β

(
τp +

(
1− τp

) 1− 2 sinα

2 sin β

)
(4.48)

which looks quite similar to Eq. (4.33). Indeed, both equations coincide when
setting p = ∞ . The results are

τp = max




sin
p

p−1 α− 2 sinα
(

sin
p

p−1 α + sin
p

p−1 β
)

(1− 2 sinα− 2 sin β)
(

sin
p

p−1 α + sin
p

p−1 β
) , 0


(4.49)

f
(
τp
)

=




1

sin
1

p−1 α

2
(

sin
p

p−1 α + sin
p

p−1 β
)

sin
1

p−1 α

2
(

sin
p

p−1 α + sin
p

p−1 β
)

sin
1

p−1 β

2
(

sin
p

p−1 α + sin
p

p−1 β
)

sin
1

p−1 β

2
(

sin
p

p−1 α + sin
p

p−1 β
)




or f
(
τp
)

= f (0)(4.50)

∥∥ f low,p
∥∥

∞

=
max

{
sin

1
p−1 α, sin

1
p−1 β

}
2
(

sin
p

p−1 α + sin
p

p−1 β
) or

1− 2 sinα

2 sin β
(4.51)

where the second alternative in Eq. (4.50), (4.51) applies if τp is zero. For p = ∞ ,
this coincides with the results obtained in Section 4.4.1.

Fig. 4.9 shows the results for some postures according to Fig. 4.6. It can be seen
clearly that f3 has a discontinuity at y = 0 for p = ∞ and that the p-solutions
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Figure 4.9: Comparison of p-solutions

provide a more or less smooth approximation at that point. An interesting detail
is the fact that for p = 2, we have τ2 = 0 already for all y ≥ −0.2: this means that
the vertex of case a) is chosen as the best solution. The diagram with the f5 -values
(which coincide with the infinity norms) shows that for this example, it does not
harm to choose p = 2 instead of p = ∞ because the maximum component
of flow,p changes just by a very small amount. Here it is maybe the best choice
to take p = 2, considering that the corresponding f3 -curve is very smooth. The
influence of the choice of p will be examined more in detail in Section 6.2, p. 101 ff.



72 CHAPTER 4. OPTIMAL TENSION DISTRIBUTION

4.6. Proof of Continuity

Now we will show that p-optimal solutions as defined in the preceding sec-
tion are unique and continuous along any trajectory (r, R)(t) that lies inside the
controllable workspace (which implies that it does not cross singularities) pro-
vided that the other wrenches w(t) acting on the platform are continuous while
performing that trajectory. More precisely, we shall prove:

For any norm ‖·‖ , in particular for any p-norm with p ∈ [1, ∞] (including
one and infinity), the minimum value of ‖ f ‖ on Plow (t) is continuous in t .
The same applies to ‖ fmax 1− f ‖ on Phigh (t) .

In the domain where the minimum-norm solution is unique, this solution
is continuous in t as well. This is the case for any p-norm p ∈ ]1, ∞[ (not
including neither one nor infinity).

We prove only the statements about lowest solutions because proofs for the high-
est ones can be worked out the same way. Without loss of generality, we can
assume a normalized minimum force fmin = 1.

In this section, we need tools from a branch of mathematics called «para-
metric optimization». It deals with the question of what happens to results of
optimization problems if the constraints and/or the objective function changes.
There is extensive literature for problems with special kinds of constraints, e. g.
fixed constraints, constraint inequalities where only the right hand side depends
on parameters, or constraints expressed by a single inequality with a (twice) con-
tinuously differentiable function and a (twice) continuously differentiable objec-
tive function. But the tension optimization problem is just at the other end of
the spectrum: the objective function is fixed, but the constraints are inequalities
representing a polyhedron, so they cannot be replaced by a single equation with
differentiable terms; and both sides of the inequalities depend on parameters. In
addition, we would like to obtain certain results also for the infinity norm, which
is a non-differentiable objective function. Therefore, we need a more general the-
ory, as presented by Bank et al. [18]. For convenience of the reader, all the defi-
nitions and theorems taken from that book are briefly presented in Section A.5,
p. 134 ff. in a form suitable for this dissertation. (This means not only that the
notation was adapted to our writing conventions, but also that the propositions
were substantially simplified because the tension problem is still a very special
case when compared to the whole range of that theory.)

We start by defining some mappings that map a structure matrix AT and a
platform wrench w to the corresponding polyhedron Plow or parts of it. Then
we show that these point-to-set mappings have certain useful properties. In the
following we write ‖·‖ to denote an arbitrary norm when the result holds for any
norm (including ‖·‖p , p ∈ [1, ∞] ).

4.6 Lemma For c ∈ [1, ∞] , define a point-to-set mapping: 8

Γ (c) : IRn×m × IRn → 2IRm
,(4.52) (

AT, w
)
�→

{
f ∈ IRm : AT f + w = 0 ∧ f ∈ [1, c]m

}
.

8 2IRm
is the set of all subsets of IRm , see Section A.1, p. 123 ff.
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We will use Γ as a shorthand for Γ (∞) .

a) Then the mappings Γ (c), c ∈ [1, ∞] are closed in the sense of Def. A.28, p. 134.

b) Define the set of those matrices AT that correspond to postures in the
controllable workspace9 and which have maximal dimension of the polyhe-
dron Γ (c) (AT, w

)
:

Λ(c) :=
{(

AT, w
)
∈ IRn×m × IRn : rank AT = n

∧ ker AT ∩ IRm
+ 
= ∅

∧ dim Γ (c) (AT, w
)

= m− n
}

.

(4.53)

We will use Λ as a shorthand for Λ(∞) . Then the restricted mapping Γ (c)
∣∣
Λ(c)

is lower semicontinuous according to Berge (l. s. c.-B) in the sense of Def. A.28,
p. 134.

c) For c = ∞ , the maximum dimension of the polyhedron follows from the other
conditions and hence does not depend on w . Thus, the set Λ is simply the set
of structure matrices corresponding to postures in the controllable workspace,
together with arbitrary wrenches:

Λ =
{

AT ∈ IRn×m : rank AT = n ∧ ker AT ∩ IRm
+ 
= ∅

}
× IRn .(4.54)

d) Given c < ∞ and a pair
(
AT

0 , w0
) ∈ Λ(c) , we can observe that ma-

trices/vectors close to that pair are contained in a slightly larger parameter
set Λ(c+ε) :

∀
ε>0
∃

δ>0
∀

(AT,w)∈IRn×m×IRn

‖AT−AT
0‖<δ∧‖w−w0‖<δ

(
AT, w

)
∈ Λ(c+ε) . �(4.55)

Proof. a) For c < ∞ , we can write

Γ (c)
(

AT, w
)

=


 f ∈ IRm :




AT

−AT

Im
−Im


 f −



−w

w
c 1
−1


 ≤ 0


(4.56)

and thus, the mapping Γ (c) is closed by Theorem A.30, p. 135. Similarly, Γ (∞)

is closed (because the definition of Γ can be written in much the same way, just
leaving out the third row in the above inequality).

b) The characteristic index set (Def. A.29, p. 135) for the representation Eq. (4.56)
includes the first 2n indexes. As dim Γ (c) (AT, w

)
= m− n , any other elements

of the characteristic index set denote equations which are linearly dependent on

9To be precise: postures in the controllable workspace have such matrices, but there may be
such matrices that do not correspond to any postures because they cannot be written in the form
of Eq. (2.23), p. 26.
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the first 2n ones. Thus, the region of IRm where the inequalities belonging to the
characteristic index set are fulfilled is the solution set of the equation

AT f + w = 0 .(4.57)

This is a (by assumption of maximum dimension) nonempty affine subspace of
IRm and hence equal to its own lineality space. The dimension of this space
is m− rank AT and therefore, by definition of the mapping restriction, it does
not change within Λ(c) . Now Theorem A.30, p. 135 implies that the mapping is
l. s. c.-B.

c) Assume that rank AT = n ∧ ker AT ∩ IRm
+ 
= ∅ . Then the idea is similar to

the proof of Prop. 3.2, p. 36: as AT is of full rank, it has a Moore-Penrose pseudo
inverse and a particular (maybe not positive) solution of the tension problem is

f 0 := −A+T w .(4.58)

Now, by the above assumption ker AT ∩ IRm
+ 
= ∅ , there is an element h ∈

ker AT ∩ IRm
+ and this allows to find a solution of the tension problem that lies

in the set ]1, ∞[m :

f 0 + 2
(

max
1≤µ≤m

1− f0,µ

hµ

)
h ∈ ]1, ∞[m .(4.59)

As the set ]1, ∞[m is open (Def. A.18, p. 131), its intersection with the affine space
of solutions of Eq. (4.57) has the same dimension as that affine space itself ac-
cording to Lemma A.21, p. 132. Now Γ

(
AT, w

)
contains this intersection, hence

Γ
(
AT, w

)
has maximum dimension.

d) The assumptions include that Γ (c) (AT
0 , w0

)
is (m− n) -dimensional and con-

vex. Then by Lemma A.21, p. 132, its relative interior (Def. A.20, p. 132) is
(m− n) -dimensional, too. This means that we can find m − n + 1 affinely in-
dependent points f 0,0, . . . , f 0,m−n (Def. A.12, p. 127) in its interior, hence for suf-
ficiently small ε , we have

AT
0 f 0,µ + w0 = 0 ∧ f 0,µ ∈ [1 +ε, c]m .(4.60)

Then it is possible to find matrices Bµ ∈ IR(m−n)×m and vectors bµ ∈ IR(m−n) such
that for each µ ∈ {0, . . . , m− n} the matrix

(
A0 BT

µ

)
has rank m and f 0,µ is

the unique solution of (
AT

0
Bµ

)
f 0,µ =

( −w0
bµ

)
.(4.61)

If a matrix has full rank, any other matrix sufficiently close to it has full rank, too;
and the solution of a full-rank system of linear equations depends continuously
on both the coefficient matrix and the right-hand side. Both facts imply

∃
δ>0

∀
(AT,w)∈IRn×m×IRn

‖AT−AT
0‖<δ∧‖w−w0‖<δ

rank
(

AT

Bµ

)
= m

∧
∥∥∥∥
(

AT

Bµ

)−1( w
bµ

)
︸ ︷︷ ︸

=: fµ

− f 0,µ

∥∥∥∥
∞

< ε ;

(4.62)
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this supplies (m− n + 1) affinely independent points fµ for sufficiently small δ .
In addition, we have

f µ ∈ [1, c +ε]m and thus fµ ∈ Γ (c+ε)
(

AT, w
)

.(4.63)

Thus, the set Γ (c+ε) (AT, w
)

contains (m− n + 1) affinely independent points.
Similarly, it can be shown that for sufficiently small ε , we also have ker AT ∩
IRm

+ 
= ∅ . All this implies then
(
AT, w

) ∈ Λ (c+ε) . �

The next theorem states that the minimum value of any norm (including p-
norms with p ∈ [1, ∞] ) on Plow depends continuously on the structure matrix
and the platform wrench, as long as the manipulator moves inside the control-
lable workspace. Furthermore there is always a tension distribution reaching this
minimum value.

4.7 Theorem For any norm ‖·‖ on IRm , let

Φ : Λ → [1, ∞[ ,(4.64) (
AT, w

)
�→ inf

{
‖ f ‖ : f ∈ Γ

(
AT, w

)}
.(4.65)

a) This mapping is continuous.

b) For each
(
AT, w

)
, there is an f ∈ Γ

(
AT, w

)
with

‖ f ‖ = Φ
(

AT, w
)

. �(4.66)

Proof. We prove continuity in each single point
(
AT

0 , w0
) ∈ Λ . Due to the equiv-

alence of all norms on IRm (Theorem A.22, p. 132), there is a factor c1 ≥ 1 such
that

∀
f∈IRm

‖ f‖
∞
≤ c1 ‖ f ‖ .(4.67)

By definition of Φ , for each ε > 0 there is an f ∈ Γ
(
AT

0 , w0
)

with

‖ f ‖
∞
≤ c1 ‖ f‖ < c1

(
Φ
(

AT
0 , w0

)
+ε

)
(4.68)

and therefore Γ
(
AT

0 , w0
)∩ ]0, c1 Φ

(
AT

0 , w0
)
+ c1 ε

[m is the nonempty intersection
of the convex (m− n)-dimensional Γ

(
AT

0 , w0
)

with an open set, thus (m− n) -
dimensional itself (Lemma A.21, p. 132). It follows(

AT
0 , w0

)
∈ Λ(c1 Φ(AT

0 ,w0)+c1 ε) .(4.69)

If we set

c := c1 Φ
(

AT
0 , w0

)
+ 2 c1 ε ,(4.70)

then by Lemma 4.6d, we can find a small δ > 0 such that

Uδ

(
AT

0 , w0

)
⊂ Λ(c)(4.71)



76 CHAPTER 4. OPTIMAL TENSION DISTRIBUTION

where

Uδ

(
AT

0 , w0

)
:=

{(
AT, w

)
∈ IRn×m × IRn :

∥∥AT − AT
0

∥∥ < δ

∧ ‖w−w0‖ < δ
}

.

(4.72)

This is an open environment of
(
AT

0 , w0
)

and it is sufficient to show continuity

of the restricted mapping Φ
∣∣∣Uδ(AT

0 ,w0) (Def. A.1, p. 124). Now, Eq. (4.71) implies

that for all
(
AT, w

) ∈ Uδ

(
AT

0 , w0
)

, we have

Φ
(

AT, w
)

= inf
{
‖ f ‖ : f ∈ Γ (c)

(
AT, w

)}
.(4.73)

By Lemma 4.6a, Γ (c) is closed and then the restricted mapping Γ (c)
∣∣∣Uδ(AT

0 ,w0) is
still closed. We set

K := [1, c]m ;(4.74)

this is compact and for each
(
AT, w

) ∈ Uδ

(
AT

0 , w0
)

, we find that

Γ (c)
(

AT, w
)
∩K = Γ (c)

(
AT, w

)

= ∅ is compact.(4.75)

As all norms on IRn are equivalent, the ‖·‖ -norm is continuous, so it takes a
minimum on this compact set for each AT . This proves b).

Then Theorem A.31b, p. 136 implies that the mapping Φ
∣∣∣Uδ(AT

0 ,w0) is lower

semicontinuous (Def. A.27, p. 133) in
(
AT

0 , w0
)

. On the other hand, Lemma 4.6b
implies that Γ (c) is l. s. c.-B in

(
AT

0 , w0
)

; now Theorem A.31a, p. 136 tells us that

the mapping in Φ
∣∣∣Uδ(AT

0 ,w0) is also upper semicontinuous in
(
AT

0 , w0
)

. And this

means that it is continuous in
(
AT

0 , w0
)

. �

Next, we consider the set of minimum-norm points in the polyhedron
Γ
(
AT, w

)
, which in general may contain more than one point. We show that,

if the set contains a unique point, then the application that maps
(
AT, w

)
to this

point is continuous.

4.8 Lemma Define the mapping

Θ : Λ→ 2IRm
,

(
AT, w

)
�→

{
f ∈ IR : ‖ f‖ ≤ Φ

(
AT, w

)}
.(4.76)

a) Then the mapping Θ ∩ Γ (defined according to Def. A.28, p. 134) is closed.

b) Furthermore Θ ∩ Γ is u. s. c.-B (Def. A.28b, p. 134).

c) Define the set where this mapping yields unique points:

Λ1 :=
{(

AT, w
)
∈ Λ :

∣∣∣(Θ ∩ Γ )
(

AT, w
)∣∣∣ = 1

}
(4.77)

For
(
AT, w

) ∈ Λ1 , let f low be the unique point in (Θ ∩ Γ )
(
AT, w

)
. Then the

mapping

Ψ : Λ1 → IRm,
(

AT, w
)
�→ f low(4.78)

is continuous. �
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Proof. a) As the ‖·‖ norm is convex and continuous, the mapping Θ ∩ Γ fulfills
all the conditions of Theorem A.30a, p. 135 (cf. proof of Lemma 4.6a).

b) Γ |Λ is closed and l. s. c.-B due to Lemma 4.6 and the image sets of Γ are con-
vex; Φ is continuous by Theorem 4.7; the sets (Θ ∩ Γ )

(
AT, w

)
are nonempty by

Theorem 4.7 and bounded. Theorem A.30c, p. 135 then implies that this mapping
is u. s. c.-B.

c) The definition of «u. s. c.-B» implies that, if a point-to-set mapping is u. s. c.-B
and the image sets consist in single points, then the mapping to these points is
continuous. �

Finally, we remark that strict norms on IRm always lead to unique minimal
points. This includes the p-norms with 1 < p < ∞ and implies the desired result
that for these norms, the mapping from

(
AT, w

)
to the lowest point is continuous.

4.9 Corollary a) Let ‖ · ‖ be a strict norm. Then we have Λ1 = Λ .

b) For p ∈ ]1, ∞[ , there is always a unique point f low,p and the mapping
AT �→ f low,p is continuous. �

Proof. We just have to prove that points of minimal norm over a convex set are
unique with strict norms. Now, if there were two distinct points of minimal norm,
then there would be a convex combination of them with a strictly smaller norm,
which is impossible. �

4.7. Practical Computation

To compute optimal solutions, one has to resolve a nonlinear optimization
problem. This could be done with standard software packages, but there are some
reasons why it is appropriate to implement a tailor-made solution:

As the objective function is not linear, derivates of the simplex algorithm
cannot be used; as the constraints cannot be expressed in a single twice
differentiable function, the most common second-order methods cannot be
applied, either. So the problem is too general for many packages.

On the other hand, the constraints are of quite special nature (intersection
of an affine space with some axis-parallel halfspaces). One can make use of
this to minimize computation time, but this is hardly possible with standard
software.

The objective function may involve high powers (if p is large). Such com-
putation is likely to become a source of numerical problems unless it is im-
plemented quite carefully.

Therefore, a proprietary implementation in C++ was prepared. We shall de-
scribe the computation of f low ; the method for f high is similar. Some details will
be given in footnotes: they are not necessary to understand the algorithm as such,
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though they are needed to make the implementation work properly. (These de-
tails also show how problem-specific tricky solutions can – and sometimes must –
be used here.)

Immediately one might think that a good way to start could be the computa-
tion of the polyhedron Qlow , i. e. of the vertices of Plow . This provides a compact
set which contains the optimal solution and compact sets are always fine in nu-
merics. It also gives a good overview on the entire set of acceptable solutions:
the vertices of Plow are those points in Plow which have (m− n) components
equal to fmin , and all elements of Qlow are convex combinations of these vertices.
This knowledge may be useful in some applications for sophisticated fine-tuning
of tensions. However, computation of the vertices of a polyhedron is extremely
time-consuming, because basically one has to compute all the intersections of

A :=
{

f ∈ IRm : AT f + w = 0
}

(4.79)

with (m− n) out of m axis-parallel planes and then to check which of the in-
tersection points are contained in Plow . The total number of points to check is
therefore ( m

m−n) . For instance, a spatial manipulator with 6 DOFs actuated by
12 tendons would lead to 1848 points (for Qlow and Qhigh together). This is
certainly not appropriate, at least for real-time applications.

For that reason, the chosen implementation does not compute any vertices.
But without knowledge of vertices, it is not even trivial to find an element of
Plow at all (a so-called feasible point), also because Plow may be empty, in which
case no solution exists. Or Plow may be very small and then it is hard to find
elements of it. Therefore, the algorithm consists of three major steps:

1. Obtain an initial guess for f low , possibly such that in many cases it is con-
tained in Plow .

2. If the initial guess is not yet in Plow , move towards Plow until a feasible
point is found.

3. Move along the negative gradient of the chosen objective function until
some termination criterion applies. There are several termination criteria.
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b) with gravity

Figure 4.10: Region of acceptable solutions of a 1R2T system
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The initial guess is computed as the orthogonal projection of the vector 1 onto
the kernel of AT , as explained in the context of Prop. 3.3, p. 38. The initial guess
itself is not always a positive solution, as illustrated in Fig. 4.10a: the solid circles
represent positions of the origin of KP where this is the case, while the empty
ones show positions where only the subsequent iterations supply a positive solu-
tion.

In the homogeneous case (w = 0), appropriate scaling then provides a feasible
point. For the inhomogeneous case, one can use the same approach by transform-
ing the problem to a homogeneous one (similar to Eq. (2.31), p. 29):

(
AT w

)
︸ ︷︷ ︸

=: A′T

(
f

fm+1

)
︸ ︷︷ ︸
=: f ′

= 0 .(4.80)

A positive solution to this equation exists if and only if a positive solution to the
original inhomogeneous one exists. Again, we project the vector 1 (which is now
(m + 1)-dimensional rather than m-dimensional) onto ker A′T . Then the result
has to be scaled such that fm+1 = 1 and the resulting f is a (hopefully feasible)
solution to the inhomogeneous problem. Fig. 4.10b represents the result for an
example with gravity.

The big advantage of this initial guess method is that it can be calculated in
closed form without iteration, so it is very fast. Fig. 4.10 shows that often the
initial guess is already acceptable, so for very time-critical applications where
tension optimization is secondary, this may even be sufficient if the trajectory
performed is not too close to the border of the controllable workspace. The fig-
ures also show that this works better in the homogeneous case (without gravity)
than in the inhomogeneous one (which is not surprising, considering that in the
first case we can obtain f ≥ fmin by appropriate scaling, while in the second, the
scaling factor is fixed by the requirement fm+1 = 1).

Computation of the initial guess is represented by item no 1 in the flowchart
Fig. 4.11. We will now roughly present the algorithm following the flowcharts,
but the explanation does not perfectly fit them because the implementation re-
quires sometimes a certain order of operations, while a different order is easier to
explain.

The second major step starts with item no 2 in Fig. 4.11, by calculating the gra-
dient of the distance from the current approximation f to the polyhedron Plow ,
where distance is measured with the squared 2-norm. This is the notion of dis-
tance whose gradient is most easy to compute and tests have shown that use of
other distance functions does not decrease the number of required iterations. If d
is zero, f is feasible and we can proceed with the actual optimization (see below
and Fig. 4.12).

Otherwise we start the outermost loop in the figure (shown with dark back-
ground), trying to enter Plow with item no 5. As the current f is contained in
A , we remain inside A if and only if any vectors we add to f are contained in
ker AT . Thus, we project the vector d orthogonally into ker AT . This provides
a descent direction (in the terminology of [21, Sec. 2.2.1]). Now we have to find
a good step size. We compute the minimum scaling factor smin of the direction
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f := f init, nc1 := 0 1
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0 if fµ ≥ fmin 2
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nc1 ≤ nc1,max

Plow = ∅ 19

Figure 4.11: Tension computation algorithm, part 1



4.7. PRACTICAL COMPUTATION 81

that we need to enter the set [ fmin, ∞[m and the maximum factor smax we can use
without leaving it (because if the step size is too large, we might step over Plow
and leave it again on the opposite side). If the minimum step size is less than or
equal to the maximum, then we apply it10 (item no 16) and start the next loop
unless the maximum number of iterations is reached. If we exceed the maximum
number of iterations, Plow is empty or at least so small that no feasible point
could be found.

If the minimum step size found in item no 3 is greater than the maximum
one, we cannot enter Plow in this step, we can only try to get as close as possible.
Therefore, we compute that step size (between zero and the computed minimum)
where the distance to Plow becomes minimal (this step size strategy is called lim-
ited minimization rule [21, Eq. (2.8)]), where distance again is measured in the
squared 2-norm. This is a compact one-dimensional optimization problem with
a differentiable function known to have at most one minimum in the given inter-
val. We solve it by finding the zero of the derivative using bisection (the inner-
most loop in the figure, shown with light background). Bisection methods may be
slower than Newton methods, but they have the advantage of providing a result
of known precision after a known number of steps.11 This is particularly impor-
tant in real-time applications where safety is an issue (e. g. when transporting
injured persons in rescue applications).

The third major step minimizes the value of the objective function inside Plow ,
once a feasible point is found. For the objective function we have chosen the pth

10The actual implementation is more complicated: tests have shown that in unfavorable con-
ditions, such a step size may be extremely large and it can lead so far away that we would not
approach the optimal solution with a reasonable number of iterations. Therefore, the step size is
limited to a value that equals fmin in the first loop and may increase up to fmax in subsequent
iterations. In other words, at the beginning we try to enter the feasible region with caution in
small steps and we become more daring if this does not help.

On the other hand, the initial guess may be extremely far away in the negative quadrant and
such a strict step size limitation can inhibit from entering the feasible region. Therefore, if the
current value of f still has negative components, the step size limit is relaxed such that positive
values can be reached within a single step.

11As the bisection steps involve only vector operations, they are much cheaper than the steps
in the outer loop which have matrix operations. Hence, it is a good idea to compute the bisection
result with a very high precision, as the number of iterations increases only logarithmically with
the precision and this may save steps in the outer loop. In addition, if the bisection precision is
only in the order of magnitude of the requested result precision, the algorithm may arrive at an
infinite oscillation between two solutions. The precision used in the current implementation is
about 100 times the machine precision.
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Figure 4.12: Tension computation algorithm, part 2
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power of some p-norm12 with p < ∞ . The infinity norm is necessarily excluded
because it is not differentiable, so gradient methods cannot be applied directly.13

In item no 3 (Fig. 4.12), we compute the gradient of the objective function14

and project it onto ker AT as before. But unlike the second major step, this is not
sufficient because not only we have to stay inside A but even inside Plow ⊂ A .
Therefore we check if the current f lies on the border15 of Plow . If so, we project
the current d onto this border. This is done in the first inner loop in the figure:
in item no 4, we collect all the indices µ ∈ {1, . . . , m} where fµ is on the border
and dµ points out of Plow . If these are (m− n) indices, this means that we have
found the optimum in a vertex and the algorithm terminates successfully.

Otherwise, we set up a matrix N whose columns are those of matrix A plus
the canonical unit vectors belonging to the collected indices. Then (item no 7) we
project d onto the orthogonal complement of this matrix.16

If the result is zero, this means that the gradient of the objective function is
orthogonal to the border of Plow and again the iteration terminates successfully.
Otherwise, we may have to repeat the whole procedure because the projection
might have modified d such that it now points out of Plow in some other coordi-
nate. Therefore we loop through this part until the number of collected indices is
constant.

When this loop is done, we compute the maximum step size that allows us
to remain inside Plow (item no 11). Now, in the second inner loop in the figure,

12Actually, the objective function is not ‖·‖p
p which has been used so far in the theoretical dis-

cussion, but ‖· − fmin 1‖p
p because this is more symmetric to the objective function ‖ fmax 1− ·‖p

p
used for Phigh . The results of the preceding sections apply to this as well and the optima found
are almost the same.

Furthermore high values of p suffer from the fact that their gradients are almost axis-parallel
in large regions. This often leads to very small step sizes. Therefore, the current implementation
always starts with p = 2 and then increases p in each iteration step up to the requested value.
Thus, the first large steps towards smaller f can be done fast and then the final fine-tuning is
done with the actually desired norm.

13One could still figure out similar methods, considering that the behavior of ‖·‖
∞

in the non-
differentiable points is not that complicated. But after all, the added value in practice does not
seem to justify such extra effort.

14If p is large, the powers with exponent (p− 1) can have large errors or even exceed the
numerical range on the machine (either towards zero or towards infinity). But at this point, only
the direction of d is important while the scale does not matter. So before computing powers, the
vector is rescaled such that the logarithms of the absolute values of the single components are
distributed evenly around zero. Then the powers are computed: if the result is infinite, the vector
d is rescaled to half of its length until the result is finite. This exploits to the best the numerical
range at disposition.

15The decision whether fµ = fmin , is a very critical aspect of the entire algorithm. If we admit
equality with a large tolerance, we find points distant from the real border of Plow and if Qlow
is small, we may fail to find acceptable solutions. On the other hand, if we ask for equality too
strictly, we may make a lot of extremely small steps towards the border which do not take us
much closer to the optimal solution. As a compromise, the implementation uses a border tolerance
which is the geometric mean between the requested result precision and the machine precision.

16Actually, the implementation does not orthogonalize N at this point. Instead, an orthogonal-
ized version of A is computed before the entire iteration. The matrix N starts with this and then
it is re-orthogonalized each time a vector eµ is added. It is a bit tricky to implement this in an
optimal way because the number of columns deriving from A may decrease if the projections of
two columns become linearly dependent.
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we find a step size (between zero and the maximum step size) via limited mini-
mization rule as in the first major step above,17 and we apply it (item no 11). The
whole (outer) loop is repeated until it terminates in one of the above mentioned
cases, or the absolute value of the last step is less than the requested precision,18

or the maximum number of iterations is reached. In the latter case, the algorithm
supplies a result which is inside Plow and close th the optimum, but maybe not
perfectly optimal. Tests have shown that it is necessary to limit the number of
iterations (in both the second and the third major step) because in some (quite
rare) situations, the steps resulting from iteration can be extremely small.

The actual implementation is substantially more complicated than the flow-
charts because the limited machine precision requires many steps where vectors
are normalized and/or compared to zero.

There is yet another interesting aspect of powers. In the algorithm, we often
have to compute powers with exponent p− 1 as part of the gradients. Now, if
p− 1 is a power of two, this can be done very fast (and with potentially better
precision) by repeated squaring instead of using the general-purpose floating-
point power function. As the precise value of p does not really matter, we are free
to choose such p without any problems. The current implementation chooses p
appropriately, thus saving some percent of computation time, especially if p is
small.

17Again, the maximum step size is limited by a bound that increases as iteration goes on, as
in the second major step (see footnote 10). And again, we have to make an exception from this
limitation: if the current value f has components larger than fmax , then the step size limit is
relaxed such that f ≤ fmax can be obtained in a single step.

18More precisely, if more than m consecutive steps are smaller than this: a single step may be
very small because it projects f onto a near border and the next step may be much larger because
then also the direction d is projected onto that border before computing the step size. Up to m
such projections may happen consecutively, one for each dimension.



Chapter 5

Workspace Optimization

Section 5.1 explains the difficulty of workspace optimization. Section 5.2 in-
troduces a measure for the quality of workspace, which is used in the following
sections to analyze designs of the various DOF classes. The considerations
lead to a collection of rules of thumb, obtained with a mixture of analysis,
intuition and experience.

5.1. Introduction

While the preceding chapters aim at the analysis of the workspace of tendon-
based Stewart platforms, we will now provide some results on synthesis of such
manipulators, focusing on workspace maximization. This requires a description
of the workspace as a whole, which one could seek in various ways:

Using the closed-form description of Theorem 3.4, p. 40. But, as already
pointed out (Table 3.1, p. 41), this description leads to extremely complex
expressions especially for spatial redundant systems. Thus, attempts to per-
form workspace optimization on this basis [45] were limited to a small num-
ber of special planar cases up to now.

Applying universal methods to explore the workspace boundaries [53, 153]
which do not make any use of particular properties of the mechanism. But
this is time-consuming and for nonconvex, disconnected workspaces it may
be difficult to obtain the workspace volume from the boundary description.

Stepping through a grid of points in posture space and counting the number
of grid points which belong to the workspace. However, this summarizes
the workspace size in a single figure which is difficult to interpret because
it tells nothing about the shape of the workspace.

Printing 2-dimensional slices of the workspace for some choices of values
for the other (up to four) posture coordinates [161]. This is a quite useful
approach for systems with a low number of end-effector-DOFs and it will
be adopted in this chapter for 1R2T systems. But it remains difficult to get
an overview of the shape of a six-dimensional workspace with this method.
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For each orientation, write down a convex polyhedron in space known to
contain the workspace. As shown in 2000 [173], such a superset can be ob-
tained by looking at the force equilibrium only, but the real workspace may
be just a small subset of this.

The present thesis follows a different approach, in particular for 2R3T and
3R3T systems. In Section 5.2, we shall define a measure for workspace quality in
a given posture, which reaches 1 in the workspace center and 0 on its boundary.
Thus, this measure gives an indication about the distance of a posture from the
workspace border. Then we step through a very rough grid in posture space and
look at the workspace quality in each grid point. The result will be shown in
a table, where the workspace quality in each posture is represented graphically.
This allows to check at a glance in which DOFs the workspace is large and in
which ones it is small. It also makes it easy to compare designs.

Once chosen a way to describe the workspace of a given design, the second
problem is then how to obtain good designs. Classical gradient methods are dif-
ficult to apply due to the huge number of design parameters: for each tendon,
there are 3 coordinates for the winch position and other 3 for the platform con-
nection point. For instance, a 3R3T manipulator with 8 tendons is thus defined
by about 31 parameters.1 And things get much more complex when the number
of tendons itself becomes a variable subject to optimization.

A more promising approach is offered by nonclassical methods [32, 88, 144]
like genetic algorithms or simulated annealing, in particular when considering
some recent discoveries. Indeed, during optimization, most of the CPU time will
be spend to approximately compute the workspace size (with any of the above
methods), and the result will still have a considerable degree of uncertainty. Now,
Ball et al. have shown [17] that this uncertainty can be used as a randomizer for
simulated annealing, so that the cooling schedule in simulated annealing corre-
sponds to an increasing precision in workspace computation. A similiar but faster
algorithm has recently been proposed by Meisel [116]. In practice, this means that
the optimization has basically the same computation cost as repeatedly comput-
ing a workspace size with increasing precision. Similar recent results exist for
genetic algorithms [30].

However, the set of solutions can be limited in advance, so that nonclassical
optimization like genetic algorithms or simulated annealing can then be applied
to a smaller set of feasible solutions.2 As pointed out in Section 3.5, p. 54 ff., there
is a number of advantages when connecting several tendons to the same winch
or connection point. Furthermore for most applications in engineering (except
those dedicated to one single task), it is good to have some symmetry. Finally, it

1Considering that the absolute position and orientation of platform and basis in space does
not matter and neither the absolute scale, one has 48− 6− 6− 1 parameters. One could also
think of introducing one plane of symmetry in both platform and basis: then the number of point
coordinates reduces to its half. Then one can still subtract 3 parameters for absolute posture
of basis and platform, respectively and one for absolute scale, thus arriving at 17 remaining
parameters.

2For certain classes of discrete problems, it is known that the number of iterations needed at
each temperature for guaranteed convergence towards a global optimum, is proportional to the
square of the size of the set of feasible solutions [1]. Therefore, any further limitation of this set
would be a substantial enhancement.
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is clear that an extremely high number of tendons implies disadvantages, at least
in terms of cost.

The objective of this chapter is to state some rules of thumb, with a mixture
of analysis, intuition and experience. Such rules can be used to define the ba-
sic structure of a system; then any known algorithms may be applied to fine-
optimize the design parameters. Such an approach has already proven to be effi-
cient within limited sets of designs [91, 93, 94, 161].

5.2. Measuring Workspace Quality

The results obtained so far enable us to tell whether a posture does or does not
belong to the workspace for a given platform wrench. But often one also needs
to know when a posture is close to the border of the workspace. To express this,
we will develop a dimensionless «quality measure» which equals 1 in «optimal»
conditions,3 reaches 0 precisely on the border of the workspace and is continuous
over the workspace. These are standard requirements for quality measures which
also appear in the context of isotropy/dexterity [5, 15, 39, 50, 154].

We approach the border of the workspace if one of the tensions reaches either
the lower bound fmin or the upper bound fmax . Hence, for a given solution f ,
we can consider the value

2
fmax − fmin

min
{

min
1≤µ≤m

( fµ − fmin) , min
1≤µ≤m

( fmax − fµ)
}

,(5.1)

which lies in the interval [0, 1] . If we express this in terms of ‖·‖
∞

-distance from
the center of the cube [ fmin, fmax]m and take the minimum over all the optimal
solutions,4 we arrive at the quality criterion5

d∂ := 1− 2
fmax − fmin

min
σ∈[0,1]

∥∥∥∥ fσ − fmin + fmax

2
1
∥∥∥∥

∞

.(5.2)

This vanishes if the entire set of solutions computed from flow,p, fhigh,p lies on
the border of the cube [ fmin, fmax]m , it equals 1 if and only if all the tensions are
equal to fmin+ fmax

2 for some σ and it continously depends on f low and f high . It is
easy to compute with the following lemma.

5.1 Lemma Let S ⊂ IRm be a line and m ≥ 2. Define C := S ∩ [−1, 1]m . If C 
= ∅
then there is an element of C with minimal infinity norm having two coordinates

3In the sense of «optimal solutions» in Def. 4.1, p. 62. In applications like wind-tunnels [93]
where some tendons are more important then others, this might not be appropriate, but the mea-
sure can be adapted to that. Also note that in general, the proposed measure only evaluates the
possibility to achieve desired force distributions in the tendons, while it does not provide any
information about vicinity to singularities.

4We could easily compute the minimum over the entire set P because in such a minimum, a
number of coordinates would have the same absolute value. However, what we are interested in
is not the real distance of P from the center of the cube, but rather the distance of the solutions
we actually compute with a given p -norm.

5The letter d stands for «distance» and the symbol ∂ is used in mathematics to denote, among
others, the border of a set.



88 CHAPTER 5. WORKSPACE OPTIMIZATION

of equal absolute values:

∃
f 0∈C

∃
1≤µ1<µ2≤m

‖ f 0‖∞ = min
f∈C
‖ f ‖

∞
∧ | f0,µ1 | = | f0,µ2 | . �(5.3)

Proof. a) A minimum exists by Prop. A.26, p. 133 because the infinity norm is
continuous and C is compact.

b) Let f 0 ∈ C minimize the infinity norm on C . If it does not satisfy the second
part of Eq. (5.3), we assume without loss of generality

∀
1≤µ<m

| f0,m| > | f0,µ| .(5.4)

Now let V be the difference space (Def. A.12, p. 127) of S . If there is a v0 ∈ V
with v0,m > 0, then Eq. (5.4) implies

∃
ε>0

f 0 −ε v0 ∈ C ∧ ‖ f 0 −ε v0‖∞ < ‖ f 0‖∞(5.5)

which is impossible by assumption. Therefore S lies in the plane IRm−1 × { f0,m} .
Eq. (5.4) further implies that S intersects the set ]− f0,m, f0,m[m−1 × { f0,m} which
lies in that plane. It follows that S also intersects the border of that set, and
each point f on that border has the property that there is 1 ≤ µ0 < m with
| fµ0 | = | f0,m| . �

Hence we can find such a minimum just by considering the finite set of all
points on the segment where two coordinates are equal.

It should be emphasized that the border distance measure d∂ does not have
anything to do with isotropy or dexterity. It does not measure efficiency of force
or motion transmission and has nothing to do with vicinity to singularities (in
the sense of Section 2.1, p. 17 ff.). For instance, the nonsingular posture in Fig. 3.12,
p. 47 is on the border of the workspace and therefore has d∂ = 0 and the singular
posture in Fig. 3.8, p. 45 has d∂ = 1 because all the tensions are equal. Indeed, as
pointed out in Section 2.1.1, p. 17 ff., workspace boundary has nothing to do with
kinematic singularity when dealing with tendon-based parallel robots.

5.3. Class 2T

For purely translational systems, we limit ourselves to the planar case because
it is easier to illustrate and spatial systems with pure translation do not provide
substantially different situations.

We consider some manipulators which cover a large spectrum of redundancy
(Fig. 5.1), ranging from a CRPM with the minimum number of tendons up to
an RRPM with as many as thirteen extra tendons. This allows us to study in
particular the effect of high redundancy. The overall size of the CRPM (design a)
was chosen somewhat larger, so that the largest square fitting into the polygon
formed by the winches, is about the same for all the manipulators.

Fig. 5.1 shows the workspace quality of each manipulator: the size of the small
squares is proportional to the value of d∂ in the center of the square; it is 1 if two
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yyy

a) CRPM

xxx

yyy

b) RRPM with m− n− 1 = 1

xxx

yyy

c) RRPM with m− n− 1 = 5

xxx

yyy

d) RRPM with m− n− 1 = 13

Figure 5.1: Workspace of 2T sample designs
( fmin = 0.010 kN, fmax = 1.000 kN )

adjacent squares touch each other, while it is 0 if the square vanishes. Here the
computation does not take into account any platform wrenches other then tendon
forces. The most obvious result is that the RRPM b provides a larger square-
shaped workspace than the CRPM a, with a smaller overall manipulator size.
Then the workspace region with d∂ ≈ 1 shrinks as redundancy increases. This
is because close to a winch, the corresponding tendon has to balance at least the
minimum tension in all the other tendons. So this requires more tension if the
number of tendons increases. Experience with several geometries has shown that
this is a general phenomenon:

5.2 Rule of Thumb If no external wrenches are involved, then extra redundant
tendons are useful to improve the shape of the workspace, but not its quality. �

Next (Fig. 5.2), we consider almost the same designs, taking gravity into ac-
count (with a quite large load). Some winches were removed which seem unnec-
essary if gravity is present. As expected, now a higher number of tendons allows
for a better distribution of the load, so that design c is preferable to b.
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xxx

yyy

b) RRPM with m− n− 1 = 1

xxx

yyy

c) RRPM with m− n− 1 = 4

xxx

yyy

d) RRPM with
m− n− 1 = 10

Figure 5.2: Workspace of 2T sample designs with gravity
( fmin = 0.010 kN, fmax = 1.000 kN, mP = 100.0 kg)

5.3 Rule of Thumb If large external wrenches6 need to be supported, it may be a
good idea to add a higher number of redundant tendons. �

5.4. Class 1R2T

Even though 1R2T systems are fairly simple, there is already a vast variety
of possible design ideas. We will not try to give a survey here, but just consider
examples which illustrate some important rules. Fig. 5.3 shows these designs and
their workspace quality for two rotation angles, without external wrenches.

Designs a and b illustrate the already mentioned fact that workspace is larger
the more connection points coincide: both are CRPMs, but b has a higher degree
of connection coincidence and it turns out that b has a much larger workspace for
large rotations.

5.4 Rule of Thumb Connection points should be put together as often as possi-
ble. This usually increases substantially the rotational workspace. �

It is easy to see that the workspace of design b is always the entire triangle
area, for any angle between −90◦ and 90◦ . And the figure shows that even the
quality remains at a rather high level. Applying the method of Prop. 3.6, p. 45,
we find that there are singularities only when the two upper tendons are parallel.
Then the rotational DOF is uncontrolled. The only drawback of the design is that
tendons often intersect with each other (but this is the case in design a as well).
To the author’s knowledge, there is no planar 3-DOF CRPM superior to this.

5.5 Rule of Thumb In terms of rotational workspace, the design in Fig. 5.3b is
presumably an optimal CRPM within the 1R2T class. �

A disadvantage of this design is that the workspace is triangle-shaped rather
than square-shaped. A possible solution is to add tendons obtained by mirroring
the existing ones on a horizontal axis. This would lead to a platform with three
connection points such that the central one bears four tendons in all directions

6This may also apply for inertia forces, gravity is just an example.
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a) poor CRPM
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yyy

xxx

yyy

b) excellent CRPM
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c) RRPM with m = n + 5
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d) RRPM with m = 2n

Figure 5.3: Workspace of 1R2T sample designs
( fmin = 0.010 kN, fmax = 1.000 kN )
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and it would be difficult to append a load anywhere. So design c was derived
from this by splitting this point into two. Fig. 5.3 shows that the workspace is
good, but tendons intersect always with each other. Again, singularities appear
only for extreme rotations.

Design d is obtained from another idea. It is a known result for tendon-driven
serial systems that n DOFs can be controlled quite well with 2n tendons [137,
139]. In the ideal case, for each DOF there are two tendons, controlling this one
exclusively and pulling with opposite signs. To a certain degree, this is the case
at home position of d: we have

AT =


 −0.707 0.872 0.490 0.707 −0.872 −0.490
−0.707 −0.490 −0.872 0.707 0.490 0.872

0.000 1.907 −1.907 0.000 1.907 −1.907


(5.6)

1
k′

K =


 0.469 −0.036 −0.000
−0.036 0.469 0.000
−0.000 0.000 0.505


 .(5.7)

This means that the force along one diagonal is controlled exclusively by ten-
dons 1 and 4. The force along the other diagonal is obtained by antagonistic
operation of no. 2 and 3 against 5 and 6, having equal tension in 2 and 3 (as
well as 5 and 6). Similarly, pure torque is given by antagonistic operation of no. 2
and 5 against 3 and 6, having equal tension in 2 and 5 (3 and 6). As a conse-
quence, the rotational stiffness is decoupled from the translational one and the
two eigenvector directions of the translational stiffness are the diagonals of the
system.

Hence, this design has good decoupling properties at home posture. In addi-
tion, Fig. 5.3 shows that its workspace is larger than that of c. As two platform
points are always controlled in respectively two DOFs, the design has no singu-
larities at all. Tendon collisions occur, but much less than in case c.

5.6 Rule of Thumb Manipulators with m = 2n tendons can be designed to have
good decoupling properties at home posture. They offer a good workspace also
for large rotations. This can be considered a reasonable limit on the maximum
number of tendons to employ. �

5.5. Class 2R3T

Fig. 5.4 presents a number of 2R3T designs, which are all singularity-free and
autocollision-free. Table 5.1 illustrates the quality of their workspaces for a grid
of postures.7 Roll denotes rotation about the x axis and pitch rotation about the y
axis as usual.8 As the designs are all symmetric in x direction but not all in y and
z, the grid covers only half an x range but a full y and z range. In each cell, the
lengths of the bars indicate the values of d∂ for designs a–f.

7Coordinates are given in meters; the supporting frame is a cube of size 10 m.
8However, the postures are not defined by performing two consecutive rotations because then,

the roles of both angles would not be symmetric. Instead, for a roll ϕ and a pitch ϑ , the direction



5.5. CLASS 2R3T 93

�
�

�
�

�

�

�

�
�

�

�
�

�
�

�
�

�

�

�

�
�

�

�
�

�
�

�
�

�

�

�

�
�

�

�
�

� �

��

�

�

�

�� �

��

�
�

�
�

�

�

�

�
�

�

�
�

�
�

�
�

�

�

�

�
�

�

�
�

�
�

�
�

�

�

�

�
�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

� �

��

�

�

�

�� �

��

� �

��

�
�

�
�� �
��

xxx
yyy

zzz
� �

��

�

�

�

�� �

��

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

�

�

�

�
�

�

�
�

�
�

�
�

�

�

�

�
�

�

�
�

�
�

�
�

�

�

�

�
�

�

�
�

a) simple CRPM
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c) RRPM with m− n− 1 = 2
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d) RRPM with m− n− 1 = 6
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e) RRPM with m = 2n
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f) RRPM with m− n− 1 = 10

Figure 5.4: 2R3T sample designs
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roll 0 30 60 90
pitch 0 30 60 90 0 30 60 90 0 30 60 90 0 30 60 90

x y z

5.0 2.0 5.0

5.0 2.0 5.5

5.0 2.0 6.0

5.0 5.0 5.0

5.0 5.0 5.5

5.0 5.0 6.0

5.0 8.0 5.0

5.0 8.0 5.5

5.0 8.0 6.0

6.5 2.0 5.0

6.5 2.0 5.5

6.5 2.0 6.0

6.5 5.0 5.0

6.5 5.0 5.5

6.5 5.0 6.0

6.5 8.0 5.0

6.5 8.0 5.5

6.5 8.0 6.0

8.0 2.0 5.0

8.0 2.0 5.5

8.0 2.0 6.0

8.0 5.0 5.0

8.0 5.0 5.5

8.0 5.0 6.0

8.0 8.0 5.0

8.0 8.0 5.5

8.0 8.0 6.0

Table 5.1: Workspace quality of 2R3T sample designs
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Rule 5.4 implies that optimal designs of class 2R3T have exactly two distinct
platform connection points. Then the simplest idea is design a, but Rule 5.4 can
be applied once more and yields design b. Table 5.1 shows that indeed, b has
a much better rotational workspace than a.9 This is a maximal application of
Rule 5.4 because there must be at least 3 distinct winch positions in order to get
a non-planar system. Intuitively, it appears difficult to design something better
with 6 tendons and 5 DOFs.

5.7 Rule of Thumb In terms of workspace, the design in Fig. 5.4b is presumably
an optimal CRPM within the 2R3T class. �

Design c implements the idea of subdividing DOFs between tendons: at home
posture, the central ones control translation in the xy plane, the lower (upper)
ones rotation about the y (x) axis and lower and upper ones together translation in
z direction. However, Table 5.1 shows a very poor workspace and even addition
of 4 extra tendons (thus obtaining much more symmetry) in design d does not
improve the workspace significantly. This confirms Rule 5.4.

Design e is a trial to apply Rule 5.6. Indeed, the result has a good translational
workspace (better than a), although the range of rotations is smaller than that of a.
Again, a design like f with much more tendons does not have a larger workspace,
but rather a smaller one. This confirms the limit statement in Rule 5.6 (and also
Rule 5.2).

5.6. Class 3R3T

Manipulators with 6 DOFs are the most important ones from an application
point of view, but as they have the largest number of design variables, they are
also most difficult to optimize. Thus, several designs were proposed, but little
has been written about their optimization (except for Tadokoro et al. [161]). Here
we compare just a small number of designs (Fig. 5.5) mostly taken from existing
publications.

The CRPM a implements the idea of separating translation control from rota-
tion control with a small number of connection points, but Table 5.210 shows that
it has a very poor workspace. Design b is the CRPM presented by Kawamura et
al. [80] for a tennis simulator: it turns out to be quite good in rotation, while the
translational range is rather limited. The RRPMs c and d were proposed by Ta-
dokoro et al. [161]. Table 5.2 confirms the conclusion of that paper: the «Nishioka»
type is capable of quite large rotations, while the «Kawamura» type is somewhat
better in translation.

Design e is a trial to apply Rule 5.6 but reveals a very poor workspace. A

of(cosϕ sin ϑ,− sinϕ cos ϑ, cosϕ cos ϑ)T was taken. This mapping is singularity-free in each
hemisphere, treats both angles in a symmetric manner and is almost isometric for small angles.

9Note that the excellent performance of b for a pitch of 90◦ is referred only to the question of
distribution of forces – at the same time, the manipulator is singular, but this is not reflected in
the quality measure.

10Again, the supporting frames of all proposed manipulators are cubes of 10 m size.
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a) CRPM
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b) «Virtual Tennis» CRPM
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c) «Kawamura» RRPM
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d) «Nishioka» RRPM
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e) RRPM with m = 2n
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f) «French-German» RRPM

Figure 5.5: 3R3T sample designs
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roll 0 25 50
pitch 0 25 50 0 25 50 0 25 50
yaw 0 25 50 0 25 50 0 25 50 0 25 50 0 25 50 0 25 50 0 25 50 0 25 50 0 25 50

x y z

5.0 3.0 2.0

5.0 3.0 5.0

5.0 3.0 8.0

5.0 5.0 2.0

5.0 5.0 5.0

5.0 5.0 8.0

5.0 7.0 2.0

5.0 7.0 5.0

5.0 7.0 8.0

6.0 3.0 2.0

6.0 3.0 5.0

6.0 3.0 8.0

6.0 5.0 2.0

6.0 5.0 5.0

6.0 5.0 8.0

6.0 7.0 2.0

6.0 7.0 5.0

6.0 7.0 8.0

7.0 3.0 2.0

7.0 3.0 5.0

7.0 3.0 8.0

7.0 5.0 2.0

7.0 5.0 5.0

7.0 5.0 8.0

7.0 7.0 2.0

7.0 7.0 5.0

7.0 7.0 8.0

Table 5.2: Workspace quality of 3R3T sample designs
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more successful application is the «French-German» manipulator f [95],11 which
at home posture implements a complete decoupling of DOFs from each other. It
shows rotational capabilities like the «Nishioka» design, but with a somewhat
larger translational workspace in the domain of small y values.

All these designs are singularity-free except for extreme rotations. While a–d
are almost free of tendon collisions (for c and d this was also stated by Tadokoro et
al. [161]), such collisions present a serious problem in manipulators e and f when
performing large rotations. This was not investigated here because in addition
to collisions among tendons, also collisions between tendons and load – which
depend on the shape of the load and therefore cannot be discussed in general –
are likely to occur often.

The 3R3T class is different from the other ones in that autocollisions play a
central role; thus, the question of optimal manipulators in this class is still open.

11This design was invented by Pascal Lafourcade and the author during Pascal’s visit at Duis-
burg in January 2003, as a contribution to celebrate the 40th anniversary of the Elysée treatise.



Chapter 6

Motion Simulation Results

All the results of the preceding chapters are combined and used for simulation
of motions. In Section 6.1 we state some general results on tendon velocity
and acceleration. Later on, the influence of several parameters is examined in
detail for manipulators moving a point in the plane (Section 6.2). Finally, a
complex 6-DOF motion is simulated for some relatively good designs (Sec-
tion 6.3).

6.1. Characteristics of Tendon Motion

For the design of tendon-based Stewart platforms it is important to know the
velocities, accelerations and forces that will occur in the tendons, and the required
actuator power. While in Chapter 4, we examined the forces much in detail, in this
chapter we will state results on velocity, acceleration and power.

Given an end-effector twist t =
(
vT, ωT)T , the vector of tendon velocities is

obtained from Eq. (2.21), p. 26, by the principle of D’Alembert:1

l̇ = −A t .(6.1)

We obtain more insight into the structure of l̇ when looking at a single tendon. In
the general 6-DOF case (Eq. (2.41), p. 34), we find

l̇µ = −
(

uT
µ (pµ × uµ)T

)( v
ω

)
(6.2)

= −uT
µ (v + ω× pµ)(6.3)

= −uT
µ ṗB,µ and therefore(6.4) ∣∣l̇µ∣∣ ≤ |ṗB,µ| , considering that uµ is a unit vector.(6.5)

This means that the velocity of a tendon equals the velocity of the respective
platform attachment point, projected onto the tendon direction. This is always
less than or equal the velocity of the attachment point; it is equal if the attachment
point moves straight away (or towards) the winch.

1The wrench in Eq. (2.21) is the external wrench balanced by the platform; the wrench exerted

99
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uµuµuµ

−uµ−uµ−uµ

ṗB,ṗB,ṗB,

−u̇µ−u̇µ−u̇µ

Figure 6.1: Second term of acceleration

The acceleration is more complicated because it involves also the change of
the structure matrix in time. Derivation of Eq. (6.1) yields

l̈ = −A ṫ− Ȧ t ,(6.6)

and proceeding the same way as above, we find for a single tendon:

l̈µ = −uT
µ p̈B,µ − u̇T

µ ṗB,µ and therefore(6.7) ∣∣l̈µ∣∣ ≤ |p̈B,µ|+ |u̇µ| |ṗB,µ| .(6.8)

This tendon acceleration is the sum of two terms, one of which is at most the
attachment point acceleration (similar to the above result on velocity), while the
other one is the scalar product of the attachment point velocity and the change
rate of the direction of the tendon. As the tendon direction follows the attach-
ment point, the angle between −u̇µ and ṗB,µ is never more than a right angle
(Fig. 6.1). Therefore, the second term of acceleration is always nonnegative. It follows
that a (signed) tendon acceleration is always greater than or equal to the projec-
tion of the respective attachment point acceleration on the tendon direction. This
«acceleration shift» is large if the attachment point is close to the winch and if it
moves almost perpendicularly to the tendon.

The mechanical power Pµ generated by the µ th actuator is the product of
tendon force and velocity.2 Defining a power as positive if the motor puts energy
into the mechanical system, we obtain

Pµ = − fµ l̇µ .(6.9)

A negative power means that the motor is used as a brake and in theory en-
ergy can be gained back. Disregarding friction and other (e. g. electromagnetic)
losses, the overall power consumption at a point of time is then the sum PΣ of the
signed powers of the single actuators. It depends on the design of the actuators
up to which degree this is true. In the worst case when nothing can be regained,
the overall power consumption is the sum P+ of all the positive powers (again
disregarding friction and other losses). Then we have two sums

PΣ =
m

∑
µ=1

Pµ = − f T l̇ ,(6.10)

P+ =
m

∑
µ=1

max {Pµ , 0} .(6.11)

has the opposite sign. On the other hand, by convention the vector lµ points towards the winches,
such that pulling forces are positive. Therefore a positive change of lµ in this direction means that
the tendon is shortened, i. e. l̇µ = d

dt |lµ| is negative. This explains for the minus sign in Eq. (6.1).
2Again one has to pay attention to the sign: a positive tendon force points towards the winch,

while a positive change in tendon length corresponds to a vector l̇µ pointing away from the
winch.



6.2. PLANAR TRANSLATIONAL SYSTEMS 101

Due to the conservation of energy, the time integral of the first sum vanishes for
an entire cycle (i. e. a motion where end-effector position and velocity at time t2
are the same as at time t1 ). The time integral of the second sum is the overall
mechanical energy W needed to perform the cycle in worst case:∫ t2

t1

PΣ dt = 0(6.12) ∫ t2

t1

P+ dt = W .(6.13)

In the following sections, we will have a look at W in order to get a rough idea of
energy consumption.

Clearly, this is only the mechanical power as output by the motors; it does
not take into account many other factors depending on the actuator concept. For
instance, electrical actuators require energy also to hold a tension even when the
velocity is zero. The amount of power depends on the motor type: it may be pro-
portional to the tension, to its square, or follow more complicated laws. Further-
more motors with winches (and eventually gears) have their own inertia which
may contribute significantly to the overall power consumption. This is somewhat
different when using electrical direct drives (which require power to hold ten-
sion, but do not have so much inertia). And it is completely different when using
hydraulic actuators which can hold a tension almost without employing energy.
As the present discussion aims at an overall picture independent of the actuator
concept, the only quantities discussed in the following sections are mechanical
power and energy.

6.2. Planar Translational Systems

Fig. 6.2a is taken from a simulation of a manipulator (time t indicated in
the lower right corner) performing an ∞-shaped trajectory. The dashed arrow
(pointing out of the drawing region) indicates the inertia force at the end-effector,
while the solid ones represent the tendon forces at that point of time. Axis-parallel
squares at the winches indicate that a motor puts energy into the mechanical sys-
tem, while a rotated square means that a motor acts as a brake, taking energy out
of the mechanical system. In both cases, the area of the square is proportional
to the mechanical actuator power at that point of time. The trajectory can be de-
scribed as

r(ξ) = (d1 sinξ , d2 sin 2ξ)T , ξ ∈ [0, 2π ](6.14)

where d1, d2 are lengths specifying the geometrical extension of the trajectory.
Such a trajectory covers a wide variety of velocity/acceleration situations in dif-
ferent regions of the workspace. So it provides a good overall impression of ma-
nipulator capability.

If we express the parameter3 ξ as a function of time t , we find

ṙ = ξ̇ (d1 cosξ , 2 d2 cos 2ξ)T(6.15)

3Unfortunately, it is not possible to parameterize the curve by arc length. Indeed, the arc length
as a function of ξ can be expressed in closed form, but its inverse function cannot.
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a) ∞ -shaped trajectory

t0 = 0 st0 = 0 st0 = 0 s

xxx

yyy

t1 = 12.500 st1 = 12.500 st1 = 12.500 s

���������� � �
� � � � � � � � � �

� �
� �����������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�������

��
�

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

��
����

�
�
�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�
�
� � � �

�
�
�

d1d1d1

d2d2d2

b) Modified trajectory

Figure 6.2: Test trajectories for 2T

r̈ = ξ̈ (d1 cosξ , 2 d2 cos 2ξ)T − ξ̇2 (d1 sinξ , 4 d2 sin 2ξ)T(6.16)

˙̇ṙ = ˙̇ξ̇ (d1 cosξ , 2 d2 cos 2ξ)T − 3 ξ̈ ξ̇ (d1 sinξ , 4 d2 sin 2ξ)T(6.17)

− ξ̇3 (d1 cosξ , 8 d2 cos 2ξ)T .

For ξ (t) , we use a point-to-point-motion from 0 to 2π with finite jerk, i. e. a
three times differentiable4 time-optimal motion such that velocity and accelera-
tion are zero at the beginning and the end and velocity, acceleration and jerk (the
derivate of acceleration) are limited to prescribed values ξ̇max , ξ̈max and ˙̇ξ̇max .
Then we have the estimates:5

|ṙ| ≤ c1
∣∣ξ̇∣∣ , c1 :=

√
d2

1 + 4 d2
2(6.18)

|r̈| ≤ c1
∣∣ξ̈∣∣+ c2

∣∣ξ̇∣∣2 , c2 :=
d2

1 + 64 d2
2

16 d2
(6.19)

| ˙̇ṙ| ≤ c1
∣∣ ˙̇ξ̇
∣∣+ 3 c2

∣∣ξ̈∣∣ ∣∣ξ̇∣∣+ c3
∣∣ξ̇∣∣3 , c3 :=

√
d2

1 + 64 d2
2 .(6.20)

There are several ways to choose ξ̇max, ξ̈max, ˙̇ξ̇max such that given bounds
vmax, amax, jmax for the velocity ṙ , acceleration r̈ and jerk ˙̇ṙ are not exceeded,
but it is difficult to find a choice such that the bounds are actually reached. A
very conservative approach could be to limit each term in Eq. (6.19) to 1

2 amax

4more precisely, two times continously differentiable and three times differentiable every-
where except for a finite number of points.

5 c2 is found by computing the maximum of |(d1 sinξ , 4 d2 sin 2ξ)|2 ; c1, c3 are obvious.
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Figure 6.3: End-effector motion for 2T trajectory

and each term in Eq. (6.20) to 1
3 jmax . Then the resulting velocities, accelerations

and jerks are certainly inside the limits, but far away from them. Now, velocity
and acceleration of point-to-point-motions are never maximal at the same time
and experience shows that the limits are therefore still respected when neglecting
the mixed term in Eq. (6.20). This leads to

ξ̇max := min

{
vmax

c1
,
√

amax

2 c2
, 3

√
jmax

2 c3

}
(6.21)

ξ̈max :=
amax

2 c1
(6.22)

˙̇ξ̇max :=
jmax

2 c1
.(6.23)

The trajectory just presented has two axes of symmetry, so it would lead
to four basically equal tendon force paths (provided that the arrangement of
winches has two axes of symmetry, too). In order to get a more general exam-
ple, we consider a slightly different curve where the second radius d2 starts from
zero and increases linearly up to its maximum value (Fig. 6.2b). This leads to a
nonsymmetric trajectory described by

r =
(

d1 sinξ ,
d2

2π
ξ sin 2ξ

)T

(6.24)

ṙ = ξ̇

(
d1 cosξ ,

d2

2π
sin 2ξ +

d2

π
ξ cos 2ξ

)T

(6.25)
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r̈ = ξ̈

(
d1 cosξ ,

d2

2π
sin 2ξ +

d2

π
ξ cos 2ξ

)T

(6.26)

− ξ̇2
(

d1 sinξ , −2 d2

π
cos 2ξ +

2 d2

π
ξ sin 2ξ

)T

.

We see that the y component of velocity and acceleration consists now of two
terms, where the second one is less than or equal to the result for constant d2 (be-
cause it contains the factor ξ

2π which varies from 0 to 1). For the sake of simplic-
ity, we assume that the first term is not that large and that the estimates Eq. (6.18),
(6.19) and (6.20) still hold. Then we can still use Eq. (6.21), (6.22) and (6.23) to
guess appropriate parameters for the point-to-point motion in ξ . Experience has
shown that this works: Fig. 6.3 shows position, velocity, acceleration and jerk for
the example of Fig. 6.2b.

Now we perform this trajectory with the manipulators presented in Sec-
tion 5.3, p. 88 ff. (Fig. 6.4) and solve the inverse kinematics (which is trivial) and
the inverse dynamics (with the algorithm presented in Section 4.7, p. 77 ff.

Fig. 6.5 shows the tendon velocities for designs a and b. As explained in Sec-
tion 6.1, the tendon velocity is always less than or equal to the end-effector veloc-
ity. Comparison of Fig. 6.5 with Fig. 6.3b shows that this bound is in fact reached,
i. e. often some tendon moves almost as fast as the end-effector. Similar results
can be found for the other two designs.

When looking at the accelerations as illustrated in Fig. 6.5, we find that the
acceleration shift explained in Section 6.1 is almost invisible in design b and most
of the time also in c. But for a short period of less than a second, it leads to
very high peaks in c: this is when the end-effector comes very close to winch
no 8 (on the left border of the system). The same can be observed for design a
which behaves like b and for d which resembles c. We can conclude that most
of the time during a task, tendon acceleration is in the order of magnitude of
end-effector acceleration, but near actuators, high acceleration peaks can come
up very suddenly. The control hardware and software must be aware of such
sudden events. For the software this should not be difficult, as the peaks can be
foreseen easily. If this is not possible, trajectories should be planned such that
they avoid vicinity of winches.6

a) b) c) d) where

ke1
[
kN m−1

]
0.955 2.053 5.972 14.079 k′ = 10.0 kN

mint ke1
[
kN m−1

]
0.622 1.493 4.447 10.495

Table 6.1: Stiffness for 2T trajectory

Next, we take a look at the stiffness eigenvalues, as plotted in Fig. 6.7. As
pointed out in the context of Eq. (3.31), p. 50, the value of the smaller one mea-
sures vicinity to singularities: it vanishes if a singular posture is reached. It was

6Note that there is a difference between «vicinity of winches» and «vicinity of the border of the
workspace»: for instance, in case a, the trajectory comes very close to the border of the workspace
(cf. Fig. 6.4a), but it is always quite far away from the winches.
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c) RRPM with m− n− 1 = 5
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d) RRPM with m− n− 1 = 13

Figure 6.4: 2T sample designs
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Figure 6.5: Tendon velocity for 2T trajectory

-10

-5

0

5

10

0 2 4 6 8 10 12 14 16

l̈
[ m

s−
2]

t [s]

l̈1

��

��

��

��

��

��

l̈2

+ + + +

+
l̈3

��
��

��

��

��

l̈4

+
+

+

+

+

b) RRPM with m− n− 1 = 1

-10

-5

0

5

10

0 2 4 6 8 10 12 14 16

l̈
[ m

s−
2]

t [s]

l̈1

��

��

��

��

��

��

l̈2

+
+

+
+

+

+
l̈3

��
�� ��

��

��

l̈4

+
+ + +

+
l̈5��

��
��

��

��

l̈6

��

��

��

��

��

l̈7

��
��

��

�� ��

l̈8

� �
�

�

�

c) RRPM with m− n− 1 = 5

Figure 6.6: Tendon acceleration for 2T trajectory
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Figure 6.7: Stiffness for 2T trajectory
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shown in Section 3.3, p. 43 ff. that purely translational systems are singularity-free
and in fact, the eigenvalues are far away from zero in all designs. The overall level
of stiffness is higher if more tendons are employed,7 as shown also in Table 6.1.
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c) RRPM with m− n− 1 = 5

Figure 6.8: Tendon forces for 2T trajectory
( fmin = 0.010 kN, fmax = 1.000 kN ;

for each design, forces computed with the ‖·‖5 -norm,
mP = 1.0 kg in the first plot, mP = 100.0 kg in the second one)

a) b) c) d) where

maxt ‖ f (t)‖
∞

[kN] 0.159 0.084 0.080 0.083 mP = 1.0 kg

maxt ‖ f (t)‖
∞

[kN] 0.565 0.483 0.224 0.120 mP = 100.0 kg

maxt
∥∥ ḟ (t)

∥∥
∞

[
kN s−1] 0.226 0.081 0.292 0.315 mP = 1.0 kg

maxt
∥∥ ḟ (t)

∥∥
∞

[
kN s−1] 2.087 1.577 2.030 1.203 mP = 100.0 kg

Table 6.2: Maximum forces / force change rates for 2T trajectory

Fig. 6.8 shows some tendon forces, computed to f low,5 as described in Sec-
tion 4.5, p. 69 ff. The trajectory is performed once with a platform mass of
mP = 1.0 kg, and another time with mP = 100.0 kg in each design. Thus, the
first version is an almost quasistatic motion in the sense that tendon forces are
required only to balance each other, while in the second version they also have
to balance platform inertia.8 Both simulations do not contain gravity, i. e. we as-

7Note that the y axes are scaled individually for each design, such that the point where both
eigenvalues are equal is always in the middle of the axis range.

8The forces shown in Fig. 6.4 refer to the second case.



108 CHAPTER 6. MOTION SIMULATION RESULTS

sume that the motion takes place in a horizontal plane. The maximum forces (i. e.
the maximum of the tensions among all tendons in all points of time) are sum-
marized in Table 6.2. As expected, the peak force decreases with the number of
tendons and this especially if the load is high. Intuitively speaking, a larger num-
ber of tendons then shares the same load and in fact, the maxima for the heavy
load are roughly proportional to 1

m .
There is a general tendency that only some tendons are «active» with a tension

fµ > fmin while the others just hold the minimum force fmin , so that at certain
points, some tendons are «switched on», while others are «switched off». How-
ever, the force paths are continuous, as proven in Section 4.6, p. 72 ff. In this
context it is interesting to have a look at the time derivates ḟ of the forces9 (Ta-
ble 6.2). It does not seem that there is a systematic dependency on the number
of tendons,10 but it can be observed that the force derivatives have larger values
for the higher mass. This is mainly due to the changes in acceleration direction
which are negligible only if the mass is small.

a) b) c) d) where

d∂ 0.637 0.583 0.502 0.484 mP = 1.0 kg ‖·‖p = ‖·‖5

d∂ 0.718 0.620 0.537 0.501 mP = 100.0 kg

mint d∂ (t) 0.080 0.177 0.114 0.105 mP = 1.0 kg ‖·‖p = ‖·‖5

mint d∂ (t) 0.438 0.261 0.177 0.158 mP = 100.0 kg

Table 6.3: Distance from border for 2T trajectory

The quality index developed in Section 5.2, p. 87 ff. is shown in Fig. 6.9 and
Table 6.3. Both its average and minimum value over the trajectory tends to de-
crease because in peripheral regions, more force may be required to balance the
other tendons, as explained in the context of Rule 5.2, p. 89.

Our next topic is mechanical power consumption (Fig. 6.10 and Table 6.4).
For the large mass, the maximum power occurring in a single actuator is very
roughly proportional to 1

m . The power peak of the entire system does not vary
that much with the number of actuators, while the overall energy consumption
increases with m , but much less than proportionally.

Finally, we discuss the computation time in these examples. Fig. 6.11 shows
the CPU11 time needed to compute the force distribution in each single point
of the trajectory and Table 6.5 summarizes the average time for each trajectory.
As expected, CPU time increases dramatically with the degree of redundancy.
Computation requires more time if large additional forces (in this case, inertia)
appear.

9The force paths are differentiable not everywhere, but almost. Hence, a numerical derivate
can always be computed: in non-differentiable points, it lies somewhere between limes inferior
and limes superior of the quotient of differences, and this is still a meaningful result.

10Actually, the most interesting point of these figures is that they help to validate the force opti-
mization algorithm. If the implementation is correct, then the resulting force paths are continuous
and their derivatives bounded. While developing the current implementation, many bugs were
found and fixed by investigating extreme peaks in the ḟ -plots.

11on a 1.1 MHz PentiumTM III
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Figure 6.9: Distance from border for 2T trajectory

a) b) c) d) where

maxt ‖P(t)‖
∞

[kW] 0.334 0.280 0.252 0.243 mP = 1.0 kg

maxt ‖P(t)‖
∞

[kW] 1.049 0.670 0.319 0.178 mP = 100.0 kg

maxt P+(t) [kW] 0.338 0.296 0.293 0.574 mP = 1.0 kg

maxt P+(t) [kW] 1.063 1.066 1.075 1.174 mP = 100.0 kg

W [kJ] 0.645 0.823 1.210 2.401 mP = 1.0 kg

W [kJ] 2.428 2.503 2.815 3.382 mP = 100.0 kg

Table 6.4: Energy consumption for 2T trajectory
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d) RRPM with m− n− 1 = 13

Figure 6.10: Power consumption for 2T trajectory

After this general discussion about geometry and mass, we examine the influ-
ence of some other parameters, with a mass of mP = 10.0 kg as a kind of average
situation. Table 6.6 shows force, workspace quality, energy and CPU time char-
acteristics for several values of the approximation parameter p (introduced in
Section 4.5, p. 69 ff.):

p = 2k + 1, k = 0, . . . , 5 ;(6.27)

such values allow fast computation of powers (see Section 4.7, p. 77 ff.). As ex-
pected from theory, the maximum forces are lower for higher p , although this
phenomenon is remarkable only for high redundancy, while the force change rate
increases with p in an irregular manner and the workspace quality increases sig-
nificantly with p .

The dashes in the energy row for design b indicate that no overall energy
consumption could be computed because the trajectory could not be performed
under these conditions. The reader might be surprised because the only change
with respect to Table 6.4 was the platform mass. But the chosen trajectory comes
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d) RRPM with m− n− 1 = 13

Figure 6.11: CPU time usage for 2T trajectory
(computing optima up to a precision of about 10−3 )

a) b) c) d) where

tCPU [ms] 0.000 0.172 0.777 3.683 mP = 1.0 kg precision 10−3

tCPU [ms] 0.017 0.216 1.040 3.838 mP = 100.0 kg

Table 6.5: Average computation time for 2T trajectory
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p 2 3 5 9 17 33

maxt ‖ f (t)‖
∞

[kN] a) 0.065 0.065 0.065 0.065 0.065 0.065

b) 0.058 0.058 0.058 0.058 0.058 0.058

c) 0.056 0.056 0.056 0.056 0.056 0.056

d) 0.081 0.074 0.070 0.067 0.066 0.066

maxt,µ ḟµ
[
kN s−1

]
a) 0.198 0.198 0.198 0.198 0.198 0.198

b) 0.149 0.149 0.149 0.149 0.149 0.149

c) 0.148 0.148 0.148 0.148 0.391 0.813

d) 0.202 0.170 0.191 0.194 0.201 0.539

d∂ a) 0.650 0.650 0.650 0.650 0.650 0.650

b) − − − − − −
c) 0.405 0.458 0.506 0.529 0.540 0.545

d) 0.374 0.436 0.487 0.512 0.524 0.530

mint d∂ (t) a) 0.117 0.117 0.117 0.117 0.117 0.117

b) − − − − − −
c) 0.001 0.024 0.121 0.164 0.186 0.197

d) 0.000 0.002 0.111 0.161 0.185 0.197

maxt ‖P(t)‖
∞

[kW] a) 0.118 0.118 0.118 0.118 0.118 0.118

b) 0.126 0.126 0.126 0.126 0.126 0.126

c) 0.180 0.180 0.180 0.180 0.180 0.180

d) 0.229 0.218 0.213 0.210 0.216 0.219

maxt P+(t) [kW] a) 0.133 0.133 0.133 0.133 0.133 0.133

b) 0.142 0.142 0.142 0.142 0.143 0.145

c) 0.221 0.221 0.221 0.221 0.221 0.221

d) 0.462 0.499 0.514 0.522 0.527 0.528

W [kJ] a) 0.447 0.447 0.447 0.447 0.447 0.447

b) − − − − − −
c) 1.092 1.101 1.108 1.113 1.115 1.117

d) 2.123 2.210 2.272 2.306 2.324 2.333

tCPU [ms] a) 0.004 0.004 0.004 0.005 0.003 0.003

b) 0.106 0.115 0.179 0.189 0.292 0.499

c) 0.600 0.696 0.874 1.139 1.504 2.304

d) 2.057 2.569 3.397 4.637 5.406 7.002

Table 6.6: Influence of the parameter p for 2T trajectory
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very near to the border of the workspace and hence feasibility of some pieces of
the curve depends very much on the other forces involved. Further investiga-
tions have shown that the set of «feasible platform masses» for this trajectory is indeed
disconnected: masses up to 2 kg or above 15 kg can be used, while masses between 3
and 10 kg cannot.

There is no clear relationship between the parameter p and the energy con-
sumption. Indeed, this would be minimized by using a weighted ‖·‖1 -norm
which uses the tendon velocities l̇µ as weighting factors.12 If velocities are not
taken into account, higher values of p tend to slightly increase power consump-
tion.

Computation time increases considerably with higher p . This is clear if we
think that sets of solutions with equal ‖·‖

∞
-norm (so-called «level sets») are axis-

parallel boxes, level sets for the ‖·‖2 -norm are balls and other ‖·‖p -norms lead to
intermediate shapes. Now the boundary conditions f ∈ [ fmin, fmax]m correspond
to another axis-parallel box. Therefore, the higher p , the more the level-sets are
box-shaped and hence the objective function gradients tend to be almost per-
pendicular to the boundary. This leads to smaller steps and therefore to higher
computation times.

Thus, workspace quality requires larger values of p and computation speed
suggests to choose p not too high, while the other criteria do not provide substan-
tial recommendations. We propose p = 5 as a compromise and shall continue
using it throughout this section.

precision 10−1 10−2 10−3 10−4 10−5 10−6

d∂ a) 0.650 0.650 0.650 0.650 0.650 0.650

b) − − − − − −
c) 0.506 0.506 0.506 0.506 0.506 0.506

d) 0.487 0.487 0.487 0.487 0.487 0.487

mint d∂ (t) a) 0.116 0.117 0.117 0.117 0.117 0.117

b) − − − − − −
c) 0.121 0.121 0.121 0.121 0.121 0.121

d) 0.110 0.111 0.111 0.111 0.111 0.111

tCPU [ms] a) 0.006 0.004 0.001 0.003 0.004 0.004

b) 0.113 0.142 0.178 0.182 0.177 0.185

c) 0.551 0.698 0.873 1.079 1.288 1.515

d) 1.884 2.580 3.444 4.440 5.403 6.314

Table 6.7: Influence of the computation precision for a 2T trajectory

Another interesting parameter is the requested precision we try to achieve
when computing the optimal force distribution, as explained in Section 4.7,
p. 77 ff. Table 6.7 shows a comparison for various values of precision. It turns

12However, the ‖·‖1 -norm might lead to discontinuous force paths the same way as the ‖·‖
∞

-
norm does.
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out that we may loose a little bit of workspace quality when computing very
rough solutions, while we waste much computation time when requesting too
high precision. Apparently, 10−3 is more than sufficient for this type of systems.

To conclude this section, we simulate the test trajectory with gravity, using
the modified designs of Fig. 5.2, p. 90 where some winches pulling downwards
(regarded as superfluous) were removed.
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c) RRPM with m− n− 1 = 5

Figure 6.12: Tendon forces for a 2T trajectory with gravity
(for each design, mP = 1.0 kg in the first plot,

mP = 50.0 kg in the second one)

Again, we compare two masses; but in this case, the second mass was cho-
sen smaller than before, because otherwise the CRPM and the RRPM with
m− n− 1 = 1 would not have been able to handle it. They’re not able to han-
dle the light mass, either; but this was left unchanged, to show again that small
masses can be a problem as well as large ones. Fig. 6.12 shows forces for two de-
signs (with the same force limits as in the previous simulations). Clearly, in this
case the forces for the large mass tend to be much higher than those for the small
one. The summary in Table 6.8 confirms all the general remarks made above on
the examples without gravity. Some other trajectories, which are not discussed
here, were also simulated and give similar results.



6.3. SPATIAL SYSTEMS WITH SIX DOFS 115

a) b) c) d) where

maxt ‖ f (t)‖
∞

[kN] 0.616 0.086 0.067 0.125 mP = 1.0 kg

maxt ‖ f (t)‖
∞

[kN] 0.608 0.547 0.372 0.195 mP = 50.0 kg

d∂ − − 0.463 0.393 mP = 1.0 kg

d∂ 0.510 0.430 0.541 0.463 mP = 50.0 kg

mint d∂ (t) − − 0.169 0.020 mP = 1.0 kg

mint d∂ (t) 0.293 0.145 0.098 0.189 mP = 50.0 kg

maxt ‖P(t)‖
∞

[kW] 1.730 0.260 0.200 0.190 mP = 1.0 kg

maxt ‖P(t)‖
∞

[kW] 1.651 1.299 0.794 0.378 mP = 50.0 kg

W [kJ] − − 1.033 2.040 mP = 1.0 kg

W [kJ] 8.443 6.552 6.595 7.055 mP = 50.0 kg

tCPU [ms] 0.006 0.170 0.703 2.579 mP = 1.0 kg

tCPU [ms] 0.033 0.195 0.875 2.724 mP = 50.0 kg

Table 6.8: Summary for a 2T trajectory with gravity

6.3. Spatial Systems with six DOFs

Now, we will simulate a spatial trajectory similar to that in the preceding sec-
tion, by adding a z component which also varies in time:

r =
(

d1 sinξ ,
d2

2π
ξ sin 2ξ , d3 sin

1
2
ξ

)T

, ξ ∈ [0, 2π ](6.28)

ṙ = ξ̇

(
d1 cosξ ,

d2

2π
sin 2ξ +

d2

π
ξ cos 2ξ ,

d3

2
cos

1
2
ξ

)T

(6.29)

r̈ = ξ̈

(
d1 cosξ ,

d2

2π
sin 2ξ +

d2

π
ξ cos 2ξ ,

d3

4
sin

1
2
ξ

)T

(6.30)

− ξ̇2
(

d1 sinξ , −2 d2

π
cos 2ξ +

2 d2

π
ξ sin 2ξ ,

d3

4
sin

1
2
ξ

)T

.

Fig. 6.13 shows one posture in the trajectory as well as an overview of the
entire trajectory with some postures of the platform coordinate frame.

With the same approximation as in Eq. (6.18), (6.19) and (6.20) and neglecting
the contribution of the z component to the absolute value of acceleration and jerk,
we obtain the estimates

|ṙ| ≤ c1
∣∣ξ̇∣∣ , c1 :=

√
d2

1 + 4 d2
2 +

1
4

d2
3(6.31)

|r̈| ≤ c1
∣∣ξ̈∣∣+ c2

∣∣ξ̇∣∣2 , c2 :=
d2

1 + 64 d2
2

16 d2
(6.32)

| ˙̇ṙ| ≤ c1
∣∣ ˙̇ξ̇
∣∣+ 3 c2

∣∣ξ̈∣∣ ∣∣ξ̇∣∣+ c3
∣∣ξ̇∣∣3 , c3 :=

√
d2

1 + 64 d2
2 .(6.33)

Then we can use the same guesses for ξ̇max, ξ̈max, ˙̇ξ̇max as in Eq. (6.21), (6.22)
and (6.23).
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Figure 6.13: Test trajectory for 3R3T systems

For the orientation of the platform, we require that the negative z axis of KP
should always be oriented towards a point below the start position and that the
projection of the x axis of KP on the xy plane of KB should be a multiple of
(1, sinξ , 0)T , i. e. it performs a cyclic motion within the limits ±45◦ . This way,
the third column of the rotation matrix R can be written down directly, the first
one can be computed by an appropriate vector product and the second one is the
vector product of the other two:

R3 =
r + (0, 0, 1)
|r + (0, 0, 1)|(6.34)

R1 =
R3 × (sinξ ,−1, 0)
|R3 × (sinξ ,−1, 0)|(6.35)

R2 = R3 × R1 .(6.36)

The corresponding end-effector posture and velocity are plotted in Fig. 6.14.

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8

-80

-60

-40

-20

0

20

40

60

80

r
[m

]
(α

,β
,

)
[◦

]

t [s]

rx

��

��

��

��

ry

+ + +

+
rz

��

��

��

roll+ + +
pitch

��

��

��

yaw

��

��

��

a) Posture

-4

-2

0

2

4

0 1 2 3 4 5 6 7 8
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

v
[ m

s−
1]

ω
[ s−

1]

t [s]

vx

��

��

��

��

vy

+
+ +

+
vz

��

�� ��

��

|v|

+ +

+
ωx�� �� ��

ωy�� �� ��

ωz

��

��

��

|ω|

� �

�

b) Velocity (vmax = 5.0 ms−1 )

Figure 6.14: End-effector motion for a 3T3T trajectory
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p 2 3 5 9 17 33

d∂ b) − − − − − −
d) 0.121 0.139 0.155 0.166 0.175 0.181

f) 0.110 0.173 0.223 0.263 0.285 0.298

mint d∂ (t) b) − − − − − −
d) 0.000 0.000 0.000 0.000 0.000 0.000

f) 0.000 0.000 0.000 0.000 0.012 0.042

tCPU [ms] b) 1.110 1.105 1.100 1.099 1.105 1.095

d) 0.545 0.606 0.664 0.831 1.223 1.987

f) 1.622 1.894 2.274 2.879 3.709 5.327

Table 6.9: Influence of the parameter p for a 3R3T trajectory

Table 5.2, p. 97 suggests that it is worthwhile to take into consideration the
following designs of Fig. 5.5, p. 96 which offer a relatively large workspace:

The «Virtual Tennis» design b),

the «Nishioka» design d),

the «French-German» design f).

Simulations have shown that the higher number of end-effector-DOFs (and ten-
dons) when compared to 2T systems, require higher values for the parameter p
to find acceptable solutions (Table 6.9).

b) d) f) where

ke1
[
kN m−1

]
0.345 0.714 2.016 k′ = 10.0 kN

mint ke1
[
kN m−1] 0.057 0.243 0.976

maxt ‖ f (t)‖
∞

[kN] 0.390 0.388 0.438 mP = 10.0 kg

d∂ − 0.175 0.285 ‖·‖p = ‖·‖17

mint d∂ (t) − 0.000 0.012

maxt ‖P(t)‖
∞

[kW] 0.324 0.550 0.695

maxt P+(t) [kW] 0.562 0.973 0.793

W [kJ] − 2.572 3.098

tCPU [ms] 1.082 1.225 3.665 precision 10−3

Table 6.10: Summary for a 3R3T trajectory

Summarizing the results for reasonable choices, Table 6.10 provides a good
overview of the dilemma typical for the design of tendon-based Stewart plat-
forms, which was seen already in the previous section but is much more striking
for 3R3T systems:
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Independently of any simulation results, one would try to use as few actu-
ators as possible for reasons of cost.

But workspace can be improved a lot by adding more tendons, as already
seen in Table 5.2, p. 97.

If stiffness is important, it is useful to use as many tendons as possible. In
the examples presented, stiffness increases much more than proportionally
with the number of tendons if tendons of equal stiffness are employed.

Maximum forces tend to increase with the number of tendons because more
forces need to be balanced. This somewhat counterintuitive phenomenon
was already observed for 2T systems and might discourage the use of a
large number of tendons.

Workspace size, shape and quality improve a lot if additional tendons are
arranged in an intelligent way. In this example, the chosen test trajectory
cannot be performed by the CRPM. On the other hand, tests have shown
that the French-German design is able to perform larger trajectories of that
shape which are partly outside the workspace of the Nishioka design.

The relationship between number of tendons and energy consumption does
not give a clear picture.

Computation time increases much more than linearly with the degree of
redundancy.

In few simple words, large workspaces of high quality can be obtained with large
numbers of tendons, but one has to pay a price for this in terms of actuator cost,
force requirements and computation time.
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Figure 6.15: Distance from border for a 3R3T trajectory
(with ‖·‖p = ‖·‖17 )
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The plots for d∂ are shown in Fig. 6.15. These plots have proven to be a most
useful tool when looking for a test trajectory which should fit at least into the
workspaces of the Niskioka and the French-German design, because they show
clearly which parts of the trajectory approach the border and therefore need to
be modified. Without the concept of workspace quality index, such an analysis
would require knowledge of the 6-dimensional workspace shape around the cur-
rent posture, which is most difficult to obtain (as already stated several times).

6.1 Rule of Thumb While it is almost impossible to get an overview of the shape
of the workspace of a 3R3T system, the workspace quality index often allows to
do without such knowledge. �



120 CHAPTER 6. MOTION SIMULATION RESULTS



Chapter 7

Conclusions and Outlook

7.1. Workspace Basics

The first part of this thesis gave an introduction to tendon-based Stewart plat-
forms. While many of the cited facts were already known, to the author’s knowl-
edge this is the first time that they were collected and presented in a coherent
manner and in rather mathematical terms.

An important negative result was the proof that an intuitive way to compute
tensions does not always guarantee a positive solution (Prop. 3.3, p. 38). A com-
pletely new result, obtained with theory of convex sets, was that it is possible to
write down the controllable workspace in closed form (Theorem 3.4, p. 40), but
this is useless from a practical point of view. Another interesting fact, which to the
author’s knowledge was not yet stated elsewhere, is the possibility to build (al-
most) singularity-free manipulators in an easy constructive way (Prop. 3.6, p. 45).

7.2. Optimal Tension Distribution

One of the main topics in this thesis was the development of an algorithm to
find acceptable tension distributions. Key points include:

1. The theory of convex sets proved again to be a powerful tool.

2. An algorithm was developed which provides solutions with lowest (or
highest) possible tensions (Section 4.3, p. 60 ff.).

3. It was proven that a slightly modified algorithm (Section 4.5, p. 69 ff.) pro-
vides solutions which form a continuous path in time (Section 4.6, p. 72 ff.)
when the platform moves.

4. The algorithm was implemented in C++ (Section 4.7, p. 77 ff.).

7.3. Workspace Optimization

There is currently no sound theory on optimization of the workspace of
tendon-based Stewart platforms (see Section 5.1, p. 85 ff.) and the present the-
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sis did not provide it, either. General results are of negative type: a closed-form
representation exists but is useless. Therefore, the chapter on workspace opti-
mization presented a collection of rules of thumb (several of them were already
known) which can be used as a first guideline in structural synthesis.

The main achievement in this context was the development of a quality index
(Section 5.2, p. 87 ff.) which tells us for a given posture how far it is from the
workspace boundary, without any knowledge of the workspace shape. Even though it
is a measure computed in force space, which cannot be mapped to a distance in
meters, it has proven very useful to roughly compare the workspace of designs.

Motions along test trajectories where simulated for planar 2-DOF (Section 6.2,
p. 101 ff.) and spatial 6-DOF (Section 6.3, p. 115 ff.) designs and the influence of
some design and computation parameters were studied. Here, the new quality
index was a quite useful tool to fit trajectories into workspaces.

7.4. Outlook

The idea of tendon-based Stewart platforms was pioneered about fifteen years
ago and only the last five to ten years have seen an increasing worldwide inter-
est for this concept. The current state of research is characterized by a rapidly
increasing number of prototypes and a rather small collection of theory-oriented
articles spread over various journals mainly in the USA and Japan. One of the
objectives of the present thesis was to provide a first consolidation of the theory
known so far, collecting material from a number of sources.

Investigation of workspace has lead to some negative results, like the closed
form representation which exists but is useless. From the author’s point of view,
the question of an adequate description of workspace, as well as the problem
of optimizing the manipulator geometry in terms of workspace, is an open is-
sue. Some facts known from intuition and/or experience are summarized in the
present work.

The main result of this thesis was the development of the theory of tension
distribution and of an algorithm to compute optimal tensions. The algorithm was
implemented in C++. It could be developed further: for instance, the conditions
for acceptable forces could be modified to obtain smooth boundaries, such that
force paths become not only continuous, but also differentiable.

A local workspace quality measure was developed and proven useful for anal-
ysis of workspaces and trajectories. In tendon-based Stewart platforms, the prob-
lem of tensions is more critical than the classical problems of kinematic perfor-
mance and singularity avoidance. So such a measure may be important for future
work.

The mathematical theory of convex sets has proven quite useful for all of these
results. It is likely to offer still a lot of opportunities in the context of tendon-based
robots, which are worthwhile to investigate further.



Appendix A

Mathematical Background

This appendix explains the mathematical notation used and summarizes the
main facts needed in the preceding chapters. In the first sections, we recall
some basic concepts, mainly in order to clarify the terminology. Then we pro-
ceed to more specific arguments, probably known to people specialized in cer-
tain fields of robotics. We end up with rather sophisticated tools of parametric
optimization, which most readers may never have heard of. We will not de-
fine all the concepts used in the entire thesis, but rather restrict ourselves to
the notions needed in definitions, propositions and proofs. The exposition is
intended as a quick reference, rather than an exhaustive introduction to the
subjects; however, occasionally we will give explanations in order to convey
an intuitive idea of the concepts.

A.1. Set Theory

Sets of any kind (including sets of sets) are written with calligraphic letters
such as X ,Y . The symbol ∅ denotes the empty set. The character IN stands
for the set of natural numbers (i. e. {1, 2, . . .} ), IN0 for the nonnegative integers
(i. e. {0, 1, 2, . . .} ) and IR for the real numbers. Real intervals are written as fol-
lows:

[a, b] := {x ∈ IR : a ≤ x ≤ b}
]a, b] := {x ∈ IR : a < x ≤ b}
[a, b[ := {x ∈ IR : a ≤ x < b}
]a, b[ := {x ∈ IR : a < x < b}

and

IR+ := ]0, ∞[
IR+0 := [0, ∞[
IR− := ]−∞, 0[
IR−0 := ]−∞, 0]

.

The notation X ⊂ Y means that X is a subset of Y ; this applies also if both
sets are equal. The intersection of two sets is written X ∩ Y and their union is
X ∪ Y . With 2X we write the power set of X , i. e. the set of all the sets Y with
Y ⊂ X . (For instance, we have ∅ ∈ 2X and X ∈ 2X .)

The Cartesian product X × Y denotes the set of all the pairs (x, y) with x ∈ X
and y ∈ Y . The term Xm denotes the set of all m-tuples of elements of X ; for
instance, IR3

+ is a shorthand for IR+ × IR+ × IR+ (all triples of positive real num-
bers). With (xν) ∈ X IN we express that x1, x2, . . . ∈ X is a sequence of elements
of X .
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XXX YYYΦΦΦ

�

�

�

�

�

a) injective

XXX YYYΦΦΦ

�

�

�

�

�

b) surjective

XXX YYYΦΦΦ

�

�

�

�

�

�

c) bijective

Figure A.1: Examples of mappings

The number of elements in a set X is written as |X | .
A.1 Definition (mapping, restriction) a) Let X ,Y be sets of any kind. A map-
ping that maps an element x ∈ X to Φ(x) ∈ Y is written as

Φ : X → Y , x �→ Φ(x) .

b) If X1 ⊂ X , then the mapping

Φ
∣∣X1 : X1 → Y , x �→ Φ(x) .

which is identical to Φ except that it is defined on a smaller set, is called restric-
tion of Φ to X1 . �

A.2 Definition (injective, surjective, bijective) A mapping Φ : X → Y is called

a) one-to-one or injective (Fig. A.1a) if for each y ∈ Y , there is at most one x ∈ X
such that x �→ y ,

b) onto or surjective (Fig. A.1b) if for each y ∈ Y , there is at least one x ∈ X such
that x �→ y ,

c) bijective (Fig. A.1c) if for each y ∈ Y , there is exactly one x ∈ X such that
x �→ y . �

A.3 Definition (infimum/supremum, minimum/maximum) a) Given a (possi-
bly empty) set X ⊂ [−∞, ∞] , its infimum infX is the largest element of
[−∞, ∞] satisfying

∀
x∈X

infX ≤ x .

Similarly, the supremum supX is the smallest number with

∀
x∈X

supX ≥ x .

These definitions imply

inf ∅ = ∞ and sup ∅ = −∞ .

b) The infimum is called minimum if infX ∈ X and the supremum is called
maximum if supX ∈ X . �

This way, the infimum and supremum of any set X ⊂ [−∞, ∞] is always
defined, while minimum and maximum may not exist; e. g. the set ]0, 1[ has in-
fimum zero and supremum one, but neither minimum nor maximum. Therefore,
the expressions «minimum» and «maximum» must be used with care; actually
we can talk about them only after they have been proven to exist.
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A.2. Vector Spaces and Linear Mappings

A (real) vector space is a set V where the sum of two vectors and the product
of a real number with a vector are defined and obey certain rules (that we will
not list here). Any book about mechanics actually deals with two different kinds
of vector spaces, which in this thesis are also written in distinct ways. «Physical»
vectors are physical observables such as velocities, forces etc.; they are written
with bold lowercase letters like v, f .

«Mathematical» vectors are tuples of real numbers, i. e. elements of vector
spaces like IRn ; we write them with underlined lowercase letters such as v, f .
Mathematical vectors are obtained from physical ones when measuring the latter
with respect to a coordinate frame. Throughout this thesis, it does not matter
which coordinate frame is used. So v denotes a coordinate representation of v in
an arbitrary coordinate frame. We refer to its components using indexes, such as

v = (v1, . . . , vn)T ∈ IRn

(where the terms vν denote scalars and therefore are not underlined).1 The ex-
ample illustrates that elements of IRn are considered to be column vectors; when
row vectors are needed (often for convenience in writing, as in this case), they are
explicitely transposed. The symbols 0 and 1 denote vectors having each compo-
nent equal to 0 (to 1).

A.4 Definition (independency, dimension) a) A family of vectors v1, . . . , vm is
called linearly independent if the equation

m

∑
µ=1

αµ vµ = 0 with α1, . . . ,αm ∈ IR

implies α1, . . . ,αm = 0.

b) The maximum number of linearly independent vectors that can be found in a
vector space is called the dimension of that space. �

A.5 Definition (linear mapping) Given vector spaces V and W , a mapping
A : V → W is called linear if it satisfies for all vectors v1, v2 ∈ V and all scalars
α ∈ IR

A(v1 + v2) = A v1 + A v2(A.1)
α A v1 = A(α v1) . �(A.2)

We write such mappings with bold uppercase letters. If the vectors in V and
W are represented by tuples v, w of m and n scalars respectively, then each linear
mapping A can be represented by exactly one matrix A ∈ IRn×m (a matrix with
n rows and m columns) such that

w = A v .
1Note the difference to expressions like v1, . . . , vm which represent families of vectors.
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The following definitions and propositions are formulated in terms of matrices
(because this is what mostly appears in this thesis), but they can be applied to
linear mappings as well. The term In denotes the n× n unit matrix (having ones
in the main diagonal and zeros in all other positions); we may write just I if the
dimension is clear from context.

A.6 Definition (span, image, rank, kernel) a) Given vectors v1, . . . , vm ∈ IRn ,
the span of these vectors (or the vector space they generate) is

〈v1, . . . , vm〉 :=

{
m

∑
µ=1

αµ vµ : α1, . . . ,αm ∈ IR

}
⊂ IRn .(A.3)

b) If A ∈ IRn×m is a matrix, then the term 〈A〉 denotes the span of the columns
of A and is called image of A .

c) The dimension of the span of a matrix is called rank of the matrix.

d) The kernel of the matrix A is the vector space

ker A := {v ∈ IRm : A v = 0} . �(A.4)

A.7 Proposition (dimension formula) Any matrix A ∈ IRn×m satisfies

dim 〈A〉+ dim ker A = m . �(A.5)

A.8 Proposition (pseudo inverse) a) If A ∈ IRn×m and rank A = n < m , then
the so-called Moore-Penrose pseudo inverse

A+ := AT
(

A AT
)−1

satisfies A A+ = In .(A.6)

b) Analogously, if rank A = m < n , then

A+ :=
(

ATA
)−1

AT satisfies A+A = Im . �(A.7)

We use the shorthands A−T and A+T to denote
(
A−1)T and (A+)T .

A.9 Definition (eigenvector, eigenvalue) If A is a square matrix, v 
= 0 a
nonzero vector and λ a scalar such that

A v = λ v ,

then v is called eigenvector and λ eigenvalue of A . The set of eigenvectors to
an eigenvalue, together with the zero vector, forms a vector space, the so-called
eigenspace. The dimension of an eigenspace is called multiplicity of the corre-
sponding eigenvalue. �

A.10 Proposition (zero eigenvalues, trace, estimate) a) A matrix A ∈ IRn×n has
the eigenvalue zero if and only if rank A < n .
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b) The sum of all eigenvalues of a matrix (taking multiplicity into account) equals
the sum of its diagonal entries, called trace A .

c) If A = AT with nonnegative eigenvalues λ1, . . . , λn ≥ 0, then

∀
v∈IRn\{0}

min
1≤ν≤n

λν ≤ |A v|
|v| ≤ max

1≤ν≤n
λν(A.8)

where |v| :=
√

∑n
ν=1 v2

ν denotes the Euclidean norm of a vector. �

A.11 Definition (particular sets) a) The n-dimensional sphere is the set

Sn :=
{

d ∈ IRn+1 : |d| = 1
}

.(A.9)

b) The set of three-dimensional rotation matrices is

SO3 :=
{

R ∈ IR3×3 : R RT = I ∧ det R = 1
}

. �(A.10)

A.3. Convex Sets and Polyhedra

Most of the material in this section is taken from [147, part I, chapters 7–8].
We adopt the terminology used there but use sometimes different letters, to be
coherent with the use of letters in other parts of this thesis.

A.12 Definition (convexity, cone, polyhedron) a) A set Q ⊂ IRm is called con-
vex [147, p. 6] if

∀
v1,v2∈Q

∀
α1,α2≥0
α1+α2=1

α1 v1 +α2 v2 ∈ Q .(A.11)

If X ⊂ IRm is any set, then the intersection of all of its convex supersets

convX :=
⋂ {Q ⊂ IRm : X ⊂ Q ∧ Q is convex}

is called convex hull of X .

b) A set C ⊂ IRm is called a cone [147, p. 87] if

∀
v1,v2∈C

∀
α1,α2≥0

α1 v1 +α2 v2 ∈ C .(A.12)

If X ⊂ IRm is any set, then the intersection of all of the cones containing X

coneX :=
⋂ {C ⊂ IRm : X ⊂ C ∧ C is a cone}

is called the cone generated by X .

c) A set A ⊂ IRm is called an affine subspace of IRm if

∀
v1,v2∈A

∀
α1+α2=1

α1 v1 +α2 v2 ∈ A .(A.13)
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The dimension of an affine space is the dimension of the vector space of differ-
ences (the so-called difference space) of elements of A

dimA := dim {a1 − a2 : a1, a2 ∈ A} .(A.14)

A family of points a0, . . . , an is called affinely independent if the vectors a1 −
a0, . . . , an − a0 are linearly independent. If X ⊂ IRm is any set, then the set

aff.hullX :=
⋂ {A ⊂ IRm : X ⊂ A ∧ A is an affine space}

is called affine hull of X .

d) The dimension of any set is the dimension of its affine hull.

e) A set P ⊂ IRm is called a polyhedron [147, p. 87] if there are a matrix B ∈
IRn×m and a vector b ∈ IRn such that

P = {v1 ∈ IRm : B v1 ≤ b} ,(A.15)

where the inequality means that each component of the left hand side is less or
equal the corresponding one on the right hand side. �
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Figure A.2: Convexity examples

This means that a set is convex if the segment joining any two of its points
is completely contained in it and the convex hull of a set is the smallest convex
superset (Fig. A.2). A cone is a convex set of points that contains all nonnega-
tive multiples of itself (see Fig. A.3a). Simple examples of cones are IRm

+0 and,
obviously, IRm . Affine subspaces are points, lines and planes (and similar objects
in higher-dimensional spaces); the definition implies that a set is n-dimensional
if and only if it contains (n + 1) affinely independent points. Eq. (A.11), (A.12)
and (A.13) show that the definitions of cones and affine spaces are obtained by
strengthening the condition for convexity in two different ways; in particular, all
cones and all affine spaces are convex.

A polyhedron is a geometric object delimited by hyperplanes (i. e. (m− 1)-
dimensional affine subspaces of IRm ); the «≤»-sign in Eq. (A.15) implies that the
row vectors of B are normals to these hyperplanes pointing out of P , as shown in
Fig. A.3b. A polyhedron is always convex because it is defined as the intersection
of halfspaces, which are convex. Polyhedra can be unbounded, as in Fig. A.3b;
they can also be empty. In particular, each affine subspace is a polyhedron.
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Figure A.3: Cone and polyhedron examples

A.13 Theorem (Carathéodory) If X ⊂ IRn and v ∈ coneX , then [147, p. 94]
there are linearly independent vectors v1, . . . , vd ∈ X such that

v ∈ cone {v1, . . . , vd} . �(A.16)

In other words, any element of a cone can be expressed as a nonnegative linear
combination of finitely many linear independent generators of that cone. In the
case of full-dimensional cones generated by a finite set X , the theorem allows
to test if an arbitrary vector v belongs to the cone: one can take all the subsets
of X which contain exactly n linear independent elements and check whether
x can be expressed as a nonnegative linear combination of the vectors in such a
subset (due to the linear independency such a representation is unique). By the
theorem, x belongs to the cone only if such a representation exists (and obviously,
the converse is true as well).

A.14 Definition (char.cone, lin.space, vertex) a) For a polyhedron P ⊂ IRm

given by Eq. (A.15), the set

char.cone P :=
{

v2 ∈ IRm : ∀
v1∈P

v1 + v2 ∈ P
}

= {v2 ∈ IRm : B v2 ≤ 0}(A.17)

is called characteristic cone of P [147, p. 100].

b) The intersection of a characteristic cone with the opposite copy of itself

lin.spaceP := char.cone P ∩− char.cone P = {v2 ∈ IRm : B v2 = 0}(A.18)

is called lineality space of P . A polyhedron having lineality space {0} is called
pointed [147, p. 100].

c) A point v ∈ P is called vertex [147, p. 104] of P if there is a matrix B′ ∈ IRm×m

consisting of m linear independent rows of B and a vector b′ of the correspond-
ing components of b such that v is the solution (which is then unique) of

B′ v = b′ . �

The characteristic cone is therefore the largest cone that always stays inside
P when translated to any point in P (Fig. A.4a). The lineality space is the vec-
tor space belonging to the largest affine subspace contained in P (Fig. A.4b). A
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Figure A.4: Examples for structure of polyhedra

vertex is a point of P which is given by the intersection of (at least) m delimiting
hyperplanes. Note that the condition that the point belongs to P is essential be-
cause there may be choices of m planes that intersect outside of P (Fig. A.4c). A
polyhedron does not need to have any vertices at all, e. g. there are no vertices in
IRm (neither in the polyhedron of Fig. A.4b). The polyhedron IRm

+0 has the only
vertex 0.

A.15 Theorem Let P ⊂ IRm be a pointed polyhedron and Q the convex hull of
its vertices. Then [147, p. 106]

P = Q+ char.cone P . �(A.19)

For example, the corresponding convex hull Q for the polyhedron P shown
in Fig. A.4c consists in the two vertices v1, v2 and the segment joining them. The
theorem implies that any nonempty pointed polyhedron has at least one vertex.
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Figure A.5: Convex function

A.16 Definition (convex function) A real-valued function Φ on a convex subset
of IRm is called convex (Fig. A.5) if

∀
v1,v2∈IRm

∀
α1,α2≥0
α1+α2=1

Φ(α1 v1 +α2 v2) ≤ α1 Φ(v1) +α2 Φ(v2) . �(A.20)

A.4. Normed Vector Spaces and Topology

A.17 Definition (norm) a) A norm on IRm is a mapping

‖·‖ : IRm → IR+0
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with the following properties for all v, v1, v2 ∈ IRm and α ∈ IR:

‖v‖ = 0 ⇔ v = 0 ,(A.21)
‖α v1‖ = |α| ‖v1‖ ,(A.22)

‖v1 + v2‖ ≤ ‖v1‖+ ‖v2‖ .(A.23)

b) A norm is called strict if

∀
v1,v2∈IRm

∀
α1,α2>0
α1+α2=1

‖α1 v1 +α2 v2‖ < α1 ‖v1‖+α2 ‖v2‖ .(A.24)

c) For p ∈ [1, ∞[ , the p-norms are defined by

‖v‖p := p

√√√√ m

∑
µ=1

vp
µ .(A.25)

For p ∈ ]1, ∞[ , these norms are strict.

d) The infinity norm is defined as

‖v‖
∞

:= max
1≤µ≤m

|vµ | . �(A.26)

Finite dimensional vector spaces with norms are a special kind of topological
spaces, i. e. spaces where concepts such as open or closed sets and continuity are
defined. In the following, we define some topological ideas in terms of norms.
Such formulations make use of the very special topological properties of IRm . So
they are quite appropriate for the needs of this dissertation, although they do not
convey an idea of these concepts in general topological spaces.
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Figure A.6: Interior and border points

A.18 Definition (open, closed etc.) Let X ⊂ IRm be a set and v ∈ IRm a point.
For ε > 0 define the ε-environment

Uε (v) := {v1 ∈ IRm : ‖v1 − v‖ < ε} .(A.27)

a) v is said to belong to the interior (Fig. A.6) of X if

∃
ε>0

Uε (v) ⊂ X .(A.28)
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b) v is said to belong to the closure of X if

∀
ε>0

Uε (v) ∩X 
= ∅ .(A.29)

c) The set of points that belong to the closure but not to the interior is called
border of X (Fig. A.6).

d) A set equal to its interior is called open and a set equal to its closure is called
closed.

e) X is called bounded if there is c > 0 with

X ⊂ Uc (0) .(A.30)

A closed bounded set is called compact. �

A.19 Lemma (convex hulls of vertices are compact) If P is a polyhedron and Q
the convex hull of its vertices, then Q is compact. �

Sometimes we need the set of points of a polyhedron which are «not on its
border» in an intuitive sense. The intuitive idea does not always fit the above
definition because a polyhedron in IRn with dimension smaller than n consists
entirely in its border in the above sense. This is because the definition considers it
as part of the entire IRn . Instead, what we need here is to consider the polyhedron
just in the context of its affine hull.

A.20 Definition (relative interior) Given a set X ⊂ IRm , a point v ∈ X is said to
belong to the relative interior of X if

∃
ε>0

Uε (v) ∩ aff.hullX ⊂ X . �(A.31)

The following lemma can be proven in a straightforward way just employing
the definitions involved. It appears quite useful in Chapter 4.

A.21 Lemma (dimension in open sets) a) If Q ⊂ IRm is a convex set, O ⊂ IRm

is open, then

Q∩O 
= ∅ ⇒ dim (Q∩O) = dimQ .(A.32)

b) The relative interior of a convex set has the same dimension as the set itself. �

The following theorem states that all norms on IRm lead to the same topology,
i. e. the notions of openness, closedness, compactness etc. do not depend on the
particular chosen norm.

A.22 Theorem (norm equivalence) All norms on IRm are topologically equiva-
lent. This means that for any two norms ‖·‖ , ‖·‖′ , there is a c > 0 such that

∀
v∈IRm

‖v‖′ ≤ c ‖v‖ . �(A.33)
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The next two definitions generalize the ideas of convergence and continuity
known for real numbers.

A.23 Definition (convergence) A sequence (vn) ∈ (IRm)IN is said to converge to
an element v0 ∈ IRm if

∀
ε>0

∃
n0∈IN

∀
n≥n0

‖vn − v0‖ < ε .(A.34)

We then write (vn)→ v0 . �

A.24 Definition (continuity) Given an open set O ⊂ IRm , a mapping Φ : O →
IRn is called continuous in a point v ∈ O if

∀
ε>0
∃

δ>0
∀

v1∈O
‖v1−v‖<δ

‖Φ(v1)−Φ(v)‖ < ε . �(A.35)

Theorem A.22 implies that also the notion of continuity is independent of the
choice of a norm. Thus all norms on IRm (as mappings to the vector space IR) are
continuous in every point.

A mapping which is continuous in every point is simply called continuous. In
general, when we define a property of a mapping in a point, then we may say «the
mapping has this property» to express that the mapping has this property in any
point. We will not mention this any more in the following (e. g. in Def. A.27). The
following corollary states that continuous mappings map a convergent sequence
to a convergent sequence, such that the latter converges to the image of the limit.

A.25 Corollary A mapping Φ : O → IRn on an open set O ⊂ IRm is continuous
in v0 ∈ O if and only if

∀
(vν)∈OIN

(vν)→v0

(Φ(vν))→ Φ(v0) . �(A.36)

A.26 Proposition (continuous function on compact set) A real-valued continu-
ous function on a compact set takes a minimum and a maximum. �

In Section A.5, we will need to split up the idea of continuity into two parts,
which are called upper and lower semicontinuity (Fig. A.7). Then a mapping is
continuous in a point if and only if it is both upper and lower semicontinuous in
that point. This concept requires the image space to lie in [−∞, ∞] rather than
IRn .

A.27 Definition (semicontinuity) Let Φ : IRm → [−∞, ∞] be a mapping.

a) Φ is said to be upper semicontinuous in v ∈ IRm if

∀
ε>0
∃

δ>0
∀

v1∈IRm

‖v1−v‖<δ

Φ(v1) < Φ(v) +ε .(A.37)

b) Φ is said to be lower semicontinuous in v ∈ IRm if

∀
ε>0
∃

δ>0
∀

v1∈IRm

‖v1−v‖<δ

Φ(v1) > Φ(v)−ε . �(A.38)
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Figure A.7: Semicontinuity and continuity

A.5. Parametric Optimization

The material in this section is taken completely from [18]. For this dissertation
we need only a small slice out of the broad theory presented in that book and
often we do not even need the results in their full generality because the problem
treated in Chapter 4, p. 57 ff. is just a special case. Therefore, definitions and
propositions presented in the following are adapted to the writing conventions
of this document and sometimes restricted to the special situation that we need.2

First, let us take a look at the point-to-set mappings like those which provide
the constraints for the optimization problem in Chapter 4, p. 57 ff. We define some
properties, each of which generalizes some aspect of the idea of continuity known
from point-to-point mappings. It turns out that there are several ways to do it (we
choose only three out of the five provided in the book [18, p. 25]); in other words,
the property of continuity splits up into a couple of different properties that are
quite independent of each other.

A.28 Definition (point-to-set mapping, closedness, semicontinuity)
Let Λ ⊂ IRl . A point-to-set mapping of Λ into IRm is a mapping

Γ : Λ→ 2IRm
(A.39)

assigning to every λ ∈ Λ a (possibly empty) subset of IRm . Given two such point-
to-set mappings Γ , Θ , the point-to-set mapping Γ ∩Θ is defined as

Γ ∩Θ : Λ→ 2IRm
, λ �→ Γ (λ) ∩Θ(λ) .(A.40)

a) Γ is called closed at λ0 ∈ Λ if for each pair of sequences (λν) ∈ ΛIN, (vν) ∈
(IRm)IN and each point v0 ∈ IRm with

(λν)→ λ0 and (vν)→ v0 and ∀
ν∈IN

vν ∈ Γ (λν)(A.41)

it follows that v0 ∈ Γ (λ0) .

b) Γ is called upper semicontinuous according to Berge (u. s. c.-B) at λ0 ∈ Λ if

∀
open setO⊂IRm

Γ(λ0)⊂O

∃
δ>0

∀
λ∈Uδ(λ0)

Γ (λ) ⊂ O .(A.42)

2For instance, the condition «metric space» (a term which is not defined in this appendix) was
replaced by «subset of IRm », which is a very special case of a metric space.
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c) Γ is called lower semicontinuous according to Berge (l. s. c.-B) at λ0 ∈ Λ if

∀
open setO⊂IRm

Γ(λ0)∩O
=∅

∃
δ>0

∀
λ∈Uδ(λ0)

Γ (λ) ∩O 
= ∅ . �(A.43)

Now we define a special class of point-to-set mappings, where a parameter λ

is mapped to the solution set of a system of inequalities with convex constraint
mappings depending on λ . The definition and the following proposition are sub-
stantially simplified with respect to the formulation in [18] because for the appli-
cations we need we can assume much stronger conditions.

A.29 Definition (characteristic index set) Let g1, . . . , gn : IRm × Λ → IR be a
family of continuous mappings such that

∀
1≤ν≤n

∀
λ∈Λ

gν (·, λ) : IRm → IR, v �→ gν (v, λ) is convex.(A.44)

Then define a point-to-set mapping Γ by

Γ : Λ→ 2IRm
, λ �→

{
v ∈ IRm : ∀

1≤ν≤n
gν (v, λ) ≤ 0

}
.(A.45)

Similarly, for I ⊂ {1, . . . , n} , let

Γ (I) : Λ→ 2IRm
, λ �→

{
v ∈ IRm : ∀

ν∈I
gν (v, λ) ≤ 0

}
.(A.46)

For λ ∈ Λ , the set

ch.ind Γ (λ) :=
{

ν ∈ {1, . . . , n} : ∀
v∈Γ(λ)

gν (v, λ) = 0
}

(A.47)

is called characteristic index set of Γ (λ) [18, p. 43]. �

The definition implies that all the sets Γ (λ) and Γ (I) (λ) are convex and
closed. The next proposition supplies conditions under which such mappings
have some of the properties defined in Def. A.28.

A.30 Theorem (closedness, semicontinuity) We assume the conditions of
Def. A.29.

a) Then Γ is closed [18, Theorem 3.2.1 (1), p. 44].

b) Let λ0 ∈ Λ and I = ch.ind Γ (λ0) satisfy the following conditions:

∀
λ∈Λ

Γ (I) (λ) is a nonempty affine space(A.48)

∀
λ∈Λ

dim lin.space Γ (I) (λ) = dim lin.space Γ (I) (λ0) .(A.49)

Then Γ , Γ (I) are l. s. c.-B at λ0 [18, Theorem 3.2.2, p. 45].
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c) Let Θ be another point-to-set mapping with the conditions of Def. A.29. If Γ

is l. s. c.-B at λ0 and the set (Γ ∩Θ)(λ0) is nonempty and bounded, then Γ ∩Θ is
u. s. c.-B at λ0 [18, Theorem 3.1.3, p. 37]. �

Now we come to the optimization problem itself, providing some results on
stability. Again our formulation is much simpler than in [18] because we maintain
the much stronger conditions of Def. A.29.

A.31 Theorem Given a point-to-set mapping Γ : Λ→ 2IRm
and a continuous

function f : IRm ×Λ→ IR, we define the extreme value function

Φ : Λ→ [−∞, +∞] , λ �→ inf { f (v, λ) : v ∈ Γ (λ)}(A.50)

and the optimal set mapping

Ψ : Λ→ 2IRm
, λ �→ {v ∈ Γ (λ) : f (v, λ) = Φ(λ)} .(A.51)

a) If Γ is l. s. c.-B at λ0 ∈ Λ , then Φ is upper semicontinuous at λ0 [18, Theo-
rem 4.2.2 (1), p. 61].

b) If there is a compact subset K ⊂ IRm such that

∀
λ∈Λ

Ψ(λ) ∩K 
= ∅ ,(A.52)

then Φ is lower semicontinuous [18, Theorem 4.2.1 (1), p. 61]. �

If both conditions a and b can be satisfied, this theorem allows to conclude
that an objective function is continuous. Concerning the optimal set mapping,
we do not need further theorems in this dissertation because the only case we
are interested in is where optimal points are unique. In that case, both lower and
upper semicontinuity according to Berge are equivalent to continuity in the usual
sense.
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Lenarčič and Stanišić [12], pages 285–294.

[154] Stafetti, Ernesto, Bruyninckx, Hermann, and De Schutter, Joris. On the
invariance of manipulability indices. In Lenarčič and Thomas [13], pages
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