5,487 research outputs found

    Stiffness Analysis Of Multi-Chain Parallel Robotic Systems

    Get PDF
    The paper presents a new stiffness modelling method for multi-chain parallel robotic manipulators with flexible links and compliant actuating joints. In contrast to other works, the method involves a FEA-based link stiffness evaluation and employs a new solution strategy of the kinetostatic equations, which allows computing the stiffness matrix for singular postures and to take into account influence of the external forces. The advantages of the developed technique are confirmed by application examples, which deal with stiffness analysis of a parallel manipulator of the Orthoglide famil

    On the optimal design of parallel robots taking into account their deformations and natural frequencies

    Get PDF
    This paper discusses the utility of using simple stiffness and vibrations models, based on the Jacobian matrix of a manipulator and only the rigidity of the actuators, whenever its geometry is optimised. In many works, these simplified models are used to propose optimal design of robots. However, the elasticity of the drive system is often negligible in comparison with the elasticity of the elements, especially in applications where high dynamic performances are needed. Therefore, the use of such a simplified model may lead to the creation of robots with long legs, which will be submitted to large bending and twisting deformations. This paper presents an example of manipulator for which it is preferable to use a complete stiffness or vibration model to obtain the most suitable design and shows that the use of simplified models can lead to mechanisms with poorer rigidity

    An Active helideck testbed for floating structures based on a Stewart-Gough platform

    Get PDF
    A parallel robot testbed based on Stewart-Gough platform called Active-helideck is designed, developed and tested as a helicopter floating helideck. The objective of this testbed is to show the advantages of helicopters that use an active helideck upon landing on and taking off from ships or from offshore structures. Active-helideck compensates simulated movements of a ship at sea. The main goal of this study is to maintain the robot’s end effector (helideck) in a quasi-static position in accordance to an absolute inertial frame. Compensation is carried out through the coordinate action of its six prismatic actuators in function of an inertial measurement unit. Moreover, the simulation of the sea movement is done by a parallel robot called ship platform with three degrees of freedom. The ship platform is built with a vertical oscillation along the z axis, i.e. heave, and rotates on remaining axes, i.e. roll and pitch. Active helideck is able to compensate simulated movements by considering the ship as an inertial frame as observed in the experiment

    Modeling and simulation of a Stewart platform type parallel structure robot

    Get PDF
    The kinematics and dynamics of a Stewart Platform type parallel structure robot (NASA's Dynamic Docking Test System) were modeled using the method of kinematic influence coefficients (KIC) and isomorphic transformations of system dependence from one set of generalized coordinates to another. By specifying the end-effector (platform) time trajectory, the required generalized input forces which would theoretically yield the desired motion were determined. It was found that the relationship between the platform motion and the actuators motion was nonlinear. In addition, the contribution to the total generalized forces, required at the actuators, from the acceleration related terms were found to be more significant than the velocity related terms. Hence, the curve representing the total required actuator force generally resembled the curve for the acceleration related force. Another observation revealed that the acceleration related effective inertia matrix I sub dd had the tendency to decouple, with the elements on the main diagonal of I sub dd being larger than the off-diagonal elements, while the velocity related inertia power array P sub ddd did not show such tendency. This tendency results in the acceleration related force curve of a given actuator resembling the acceleration profile of that particular actuator. Furthermore, it was indicated that the effective inertia matrix for the legs is more decoupled than that for the platform. These observations provide essential information for further research to develop an effective control strategy for real-time control of the Dynamic Docking Test System

    Design and control of a 6-degree-of-freedom precision positioning system

    Get PDF
    This paper presents the design and test of a6-degree-of-freedom (DOF) precision positioning system, which is assembledby two different 3-DOF precision positioning stages each driven by three piezoelectric actuators (PEAs). Based on the precision PEAs and flexure hinge mechanisms, high precision motion is obtained.The design methodology and kinematic characteristics of the6-DOF positioning system areinvestigated. According to an effective kinematic model, the transformation matrices are obtained, which is used to predict the relationship between the output displacement from the system arrangement and the amountof PEAsexpansion. In addition, the static and dynamic characteristics of the 6-DOF system have been evaluated by finite element method (FEM) simulation andexperiments. The design structure provides a high dynamic bandwidth withthe first naturalfrequency of 586.3 Hz.Decoupling control is proposed to solve the existing coupling motion of the 6-DOF system. Meanwhile, in order to compensate for the hysteresis of PEAs, the inverse Bouc-Wen model was applied as a feedforward hysteresis compensator in the feedforward/feedback hybrid control method. Finally, extensive experiments were performed to verify the tracking performance of the developed mechanism

    Design, analysis, and control of a cable-driven parallel platform with a pneumatic muscle active support

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The neck is an important part of the body that connects the head to the torso, supporting the weight and generating the movement of the head. In this paper, a cable-driven parallel platform with a pneumatic muscle active support (CPPPMS) is presented for imitating human necks, where cable actuators imitate neck muscles and a pneumatic muscle actuator imitates spinal muscles, respectively. Analyzing the stiffness of the mechanism is carried out based on screw theory, and this mechanism is optimized according to the stiffness characteristics. While taking the dynamics of the pneumatic muscle active support into consideration as well as the cable dynamics and the dynamics of the Up-platform, a dynamic modeling approach to the CPPPMS is established. In order to overcome the flexibility and uncertainties amid the dynamic model, a sliding mode controller is investigated for trajectory tracking, and the stability of the control system is verified by a Lyapunov function. Moreover, a PD controller is proposed for a comparative study. The results of the simulation indicate that the sliding mode controller is more effective than the PD controller for the CPPPMS, and the CPPPMS provides feasible performances for operations under the sliding mode control

    The effect of inertial coupling in the dynamics and control of flexible robotic manipulators

    Get PDF
    A general model of the dynamics of flexible robotic manipulators is presented, including the gross motion of the links, the vibrations of the links and joints, and the dynamic coupling between the gross motions and vibrations. The vibrations in the links may be modeled using lumped parameters, truncated modal summation, a component mode synthesis method, or a mixture of these methods. The local link inertia matrix is derived to obtain the coupling terms between the gross motion of the link and the vibrations of the link. Coupling between the motions of the links results from the kinematic model, which utilizes the method of kinematic influence. The model is used to simulate the dynamics of a flexible space-based robotic manipulator which is attached to a spacecraft, and is free to move with respect to the inertial reference frame. This model may be used to study the dynamic response of the manipulator to the motions of its joints, or to externally applied disturbances

    Accuracy Improvement for Stiffness Modeling of Parallel Manipulators

    Get PDF
    The paper focuses on the accuracy improvement of stiffness models for parallel manipulators, which are employed in high-speed precision machining. It is based on the integrated methodology that combines analytical and numerical techniques and deals with multidimensional lumped-parameter models of the links. The latter replace the link flexibility by localized 6-dof virtual springs describing both translational/rotational compliance and the coupling between them. There is presented detailed accuracy analysis of the stiffness identification procedures employed in the commercial CAD systems (including statistical analysis of round-off errors, evaluating the confidence intervals for stiffness matrices). The efficiency of the developed technique is confirmed by application examples, which deal with stiffness analysis of translational parallel manipulators

    Kinematic calibration of Orthoglide-type mechanisms from observation of parallel leg motions

    Get PDF
    The paper proposes a new calibration method for parallel manipulators that allows efficient identification of the joint offsets using observations of the manipulator leg parallelism with respect to the base surface. The method employs a simple and low-cost measuring system, which evaluates deviation of the leg location during motions that are assumed to preserve the leg parallelism for the nominal values of the manipulator parameters. Using the measured deviations, the developed algorithm estimates the joint offsets that are treated as the most essential parameters to be identified. The validity of the proposed calibration method and efficiency of the developed numerical algorithms are confirmed by experimental results. The sensitivity of the measurement methods and the calibration accuracy are also studied
    corecore