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ABSTRACT

Flexibility occurs in all mechanisms, to some degree. The
dynamics of most flexible robotic manipulators can be modeled by
a system of coupled ordinary differential equations. This study
presents a general model of the dynamics of flexible robotic
manipulators, including the gross motion of the links, the
vibrations of the links and Jjoints, and the dynamic coupling
between the gross motions and vibrations.

The vibrations in the links may be modeled using lumped
parameters, truncated modal summation, a component mode
synthesis method, or a '“mixture" of these methods. The local
link inertia matrix is derived to obtain the coupling terms
between the gross motion of the link and the vibrations of the
link. Coupling between the motions of the links results from the
kinematic model, which wutilizes the method of kinematic
influence.

The model is used to simulate the dynamics of a flexible,
space-based robotic manipulator which 1is attached to a
spacecraft, and is free to move with respect to the inertial
reference frame. This model may be used to study the dynamic
response of the manipulator to the motions of its joints, or to

externally applied disturbances.
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1.0 Introduction

All real mechanical devices exhibit some flexibility. If
the flexibility is negligible, the system dynamics can be
modeled by a set of second order differential equations,
developed from Newton’'s laws of motion. But for other compliant
systems, this model is not sufficient. The structural dynamics,
and the coupling between the structural and gross motions of the
system must be included to obtain a model of the system
dynamics.

Models of vibrations in continuous systems usually assume
that the structure is homogeneous, isotropic, and obeys Hooke’s
law within the elastic limit [23]. The dynamics of the system is
represented by partial differential equations, such as the Euler
equation for beams. This form of equation is not suitable for
real-time computation of the dynamic model. Therefore mode
summation methods, component mode synthesis methods, and lumped
parameter methods are used. These methods use second order
ordinary differential equations to model vibrations, and are
sufficient to describe the vibrations in almost all flexible
manipulators.

The first goal of this study is to formulate a total
model of the dynamics of a flexible manipulator system, which is
valid for a wide variety of flexible robotic systems. The second

goal is to analyze the dynamic coupling which occurs between the

1



gross motion and vibrations in the system. The final goal is to
present specific applications of the model which utilize the

knowledge of dynamic coupling to study the system dynamics.

1.1 Literature Review

Research in the dynamics of robotics and other spatial
mechanisms is a union of geometry, the kinematics of mechanisms,
and classical mechanics, each drawing on the knowledge of the
other two. Robotics, as a broader subject, involves prfnciples
from almost every fleld of engineering and science.
Researchers in the field have differing backgrounds, and
therefore many methods and perspectives have been published
about the various subjects in the field. This review will cover
the major papers relevant to the dynamics of flexible
manipulators.

Benedict and Tesar [1-3) introduced the concept of
kinematic influence coefficients, which were applied to rigid
and quasi-rigid planar mechanisms. Sanders and Tesar [22] showed
via experimentation that the quasi-static assumption is valid
for mechanisms which operate well below the first natural
frequency of the mechanism. The concept of kinematic influence
was generallized for spatial mechanisms with rigid links by

Thomas and Tesar [4). Freeman and Tesar [5] showed that this



method is extremely powerful and may be used to model the
dynamics of both serial and parallel robotic manipulators.
Fresonki, Henandez, and Tesar (6]1[25] used the concept of
kinematic influence to obtain a description of the spatial
deflections 'in robotic mechanisms. Kinematic influence was used
by Behi and Tesar (7] to model vibrations in a multi-degree of
freedom system due to flexibilities in the drive mechanisms.
Wander and Tesar [8] proved that a totally generél dynamic model
of a robotic manipulator may be computed in real-time using the
method of kinematic influence coefficients.

Denavit and Hartenberg (9] are well know for a kinematic
notation used to describe spatial, multi-degree of freedom
devices. Most kinematics notational schemes seen In the
literature vary little from this scheme. A recursive algorithm
for computing the dynamics of rigid manipulators was presented
by Hollerbach (10]. Book ([11-15], Maizza-Neto [12,16], and
whitney, [12,15] and their assoclates were some of the first to
study the dynamics of flexible manipulators. Book {141
formulated a recursive Lagrangian algorithm with a truncated
mode summation representation of vibrating links, as did King,
Gourishankar, and Rink [22]). In [16], Hughes devoloped a model
of the space shuttle manipulator arm. Hamilton's principle was

used by Low [17] to develop the explicit equations of motion for



a manipulator with flexible links. Finite element methods have
been used by Sunada and Dubowsky [18]), and by Naganathan and
Soni (18] to analyze manipulators with elastic links. Huang and
Lee [20] extended the Newton-Euler formulation of dynamics to

model non-rigid manipulators.



2.0 The Reference Model

The dynamic model of a flexible manipulator presented
here is a general method which may be used to model the majority
of flexible manipulators. Drive mechanism flexibilities may be
modeled using lumped parmeters. Structural flexibilities may be
modeled using lumped parameters, assumed modes ( a truncated
mode summation technique), a component mode synthesis technique,
or a combination of these methods. The result 1s a set of
ordinary coupled differential equations, which model the
dynamics of the system, including the gross motions, the
vibrations, and the coupling between the gross motions and
vibrations.

All models of vibrations are approximations. Due to the
generality of the model, and the variety of methods which may be
used to represent the vibratlions, it is possible to create a
model which is a much closer approximation to the real system,
than it would if only one method was used to represent the
vibrations. To do so, the actual deflections of the system must
be observed, or predicted to assure that the vibrations model
is correct. The reader unfamiliar with models of vibrations in

continuous systems is urged to refer to Thomson [231].



2.1 Geometry of a Flexible Robotic System

In a spatial manipulator consisting of n+l distinct
links, a local body-fixed reference frame is assigned to each
link. A requirement of Newtonian dynamics is that all motion
must be measured relative to an inertial reference frame. If the
base link of the manipulator is fixed relative to the inertial
reference frame, the reference systém of the base link becomes
the inertial frame. Otherwise, a frame which 1s not attached to
the manipulator will be the inertial reference frame. Thus, for
the constrained case there will be n+l1 reference frames, and for
the unconstrained case there will be n+2. One of the reference
frames s chosen to be the global reference frame, and is
denoted as frame h, as shown If Figure 2.1-1. The global frame
serves as a common frame to which all vector quantities will be
referenced. Notice that the global frame is not required to be
the same as the 1inertial frame. A preceeding superscript
enclosed in parentheses 1ls used to denote the local frame to
which a vector 1s referenced. (ie. (1)3 Is referenced to frame
i.}) If the superscript ls not shown, the vector is assumed to be
referenced to frame h.

The geometry of the manipulator 1is described by the
instantaneous orlentations and positions of the reference
frames, shown in Figure 2.1-1. Frame i is attached to link 1.

~

The unit vectors §r, §r, and §: are the direction cosines of the



inertial frame

global frame h

Figure 2.1-1 The Reference Frames



X, ¥, and z axes of frame i, defining the orientation. The unit
vector ér coincides with the line of action of Jjoint i. Joint i
may be a revolute or prismatic Jjuncture between links i-1 and i.

§r is a common perpendicular to the succesive joint axes §f and

~

§f‘1, when no deflectlon occurs in link i.

The undeflected position of a flexible link is considered
to be the reference position. When link i 1s in its reference
position, the direction cosines of local frame i+1 are denoted
as ér,, é:'. and é:'. The vector X, defines the position of a
point on link i, relative to the origin of frame i. Deflections
of the point are described by the vector functionals 9(51). and
9(51)' which are the linear and angular deflections relative to
the reference position.

2.1.1 Angular Displacements and Deflections

The relative orientation of succesive local coordinate
frames is defined by a set of ordered rotations, shown in
Figure 2.1-2. The angular deflections of the link are assumed to
be small, and thus add vectorially. This first order
approximation of the rotation is necessary in three dimensional
systems where there is no dominant angular deflection in one
direction, and will 1introduce errors {nto the geometry
calculations smaller than 5% If the magnitude of the angular

deflectlions is less than 3 degrees. The angular deflection of a

point on link 1 from its undeflected orientation is represented



Figure 2.1-2 Angular Link Parameters

Figure 2.1-3 Translational Link Parameters
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Figure 2.1-5

Local Link Deflections
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by the vector functional 9(51) which describes the relative
translational deflection of the distal end of link 1 from its
reference position. Let Qj(gl) be the shape function describing
the rotational deflection of mode J of link i, and qu be the
corresponding generalized coordinate which is the magnitude of
the mode. The functional relationship between the total angular
deflection of a small element on a link with m, modes is:

1
(1)
elx) = | {qu ¥, (x,) } (2.1-1)
1=1

or, in matrix form:

Ma(x) = [w(gl) ] g, (2.1-2)

When the elements of the rotation are organized into a

skew-symmetric form, the small rotation matrix results.

1 -8 (x ) 6 (x)
z =i y =t
[To(x )]l = | 0 (x) 1 -0 (x) {2.1-3)
<y z =1 x =1
-0 (x) 6 (x) 1
y =i x =1

These rotations are measured in the local ith coordinate system.

Notice that the determinant of this small rotation matrix is

det(Te(x )] =1 + | 6(x)| = 1, (2.1-4)

because | 8(x )| is small, as assumed previously. The inverse of



the small rotation matrix can then be approximated as the

transpose:

[To(x)17" = [Ta(x)1" (2.1-5)

Next, the angle ® is defined about the resulting x-axis. The

new z-axis, formed by these rotations, is parallel to the
éz

S| axis, which is the line of action of Joint i+1. The final

rotation is ¢’ about S° ., where ¢’ is the sum of the gross
1+1 =141 141

displacement of Jolnt i+1, ¢ , and the deflection of the

i+l

Joint, 64»“1. The resultant transformation from coordinate

system 1 to coordinate system i+1 is:

1 0 0 c(¢'“1) -s(¢'“1) 0
1+1 - - » »
[ Tl] = [Te“:a)] 0 c(al) s(a‘) s(¢“1) c(¢“1) 0
0 s(al) c(a’) 0 0 1
(2.1-86)

where s() = sine() and.c() = cosine().

13
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The matrix [th] transforms a vector from the local coordinate
system of link i to the coordinate system of the reference 1link,

h. The columns of [hTi] are composed of the direction cosines of

-~

the unit vectors S/, S/, and S, and are obtained via the

formula:

-~

[n.l.l] - [(h)éx | (m§r | (h)é: ]

1-1
=1 't ﬂ] for 1 > h
s=h 3

= [I] (identity matrix) for i = h

h-1

= [‘TM] for 1 < h (2.1-7)
3=t



2.1.2 Translational Displacements and Deflections
The reference position of the distal end of the link is

L, and is the sum of the vector a, directed along §T, and the

A

vector §1+1 which is directed along §T’1, as shown if Flgure
2.1-3. The vector functional g(gi) describes the relative
translational deflection of the distal end of link 1 from its
reference position. Let §J(§‘) be the shape function, or mode
shape describing the translational deflection of mode j of link
i, and qu be the corresponding generalized coordinate which is
the magnitude of the mode. The functional relationship between
the generalized coordinates and the translational deflection of

a link with m1 modes is:

i
d(x) = ) {qU 8,(x,) } (2.1-8)
or, in matrix form:

My(x) = [6()_(1) ] q, (2.1-9)

The dimension of the modal matrix is 3xmi, and the columns are

the translational parts of the mode shape functions.
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The vector equations describing the position of a point
on link i relative to the origin of link h (for a serial chain)

are:

FOR i>h:

i-1

- (@) ) 1) (1)
R(%,) -[("r)]{ L o+ gu__J)} + [hTH{ X, * g()_(i)}

j=h

i-1

S} S}
= Z [hTi]{ S, + g +[ 3(x,) ] g, }

j=h
(.
+ [th]{ X+ [ 8(x,) ] q, }
FOR i=h:
R(%,) = x, +[ 8(x) ] q, (2.1-10)
FOR i<h:

i

T (1 (9
R(x) =T ["Tl]{ s, + +[ 8(x,) ] g, }

j=h-1
+ [hTi]{ “)51 + [ 8(x,) ] q, }

These vectors are shown in Figure 2.1-4.



2.1.3 Position of the Center of Mass

Also of geometric interest is the equation of the center
of mass of the system. Let cm, be the vector from the origin of
link 1 to the center of mass of link i, in the reference
position. Let M, be the ratio of the mass of link 1 to the total
mass of the system. For a rigid system, the position of the
center of mass is:
1

)}

(2.1-11)

n

B.=Lw em v [ {u,[kgﬁ]}-z {w]

h
1=0 J=h+1 jy=0 k
Although the derivation of this equation is not given here, the

reader may verify it by noting that:

chz m = Z{ml R(em ) } (2.1-12)
1=0 i=0

17



2.2 Kinematics of a Flexible Robotic System

Kinematics is a study of how motions interact based on
the geometric properties of a mechanism, ignoring the forces
which may occur. The complete kinematic description of a serial
chain of compliant bodies includes the motion of the actuated
Joints, the motion due to vibrations, and the motion of the
whole system relative to.an inertial reference frame.

Thomas, Tesar, Freeman, [4-5] and their associates have
developed a general kinematic representation to describe
actuated motion in rigid-body mechanisms, for both serial and
parallel link topologies. Fresonki, Behl, and Tesar [6-7] have
used the concepts developed for rigid body kinematics in a model
of the kinematics of a compliant system, to predict the
deflections and frequency response of the mechanism.

In this model, the concept of kinematic influence is
extended to ascertain the total kinematic effect of motions due
to compliance of both joints and links. The gross motion of the
whole system relative to an inertial reference frame is also
examined. The final result is a general kinematic model based on
the kinematic influence of all possible motions in a compliant
system.

The relative motion between bodies is defined by the
relative motlons of the local reference frames. Each motion is

defined by a line of action, S, and a magnitude, &. The line of

18



action of Joint i between links i-1 and i is defined by §T, and
the magnitude 1is defined by $1' The motions due to the
vibrations are defined by the three orthogonal unit vectors §:,

§Z, and éf, and by the mode shape and magnitude of each mode of
vibration.

The kinematic foundation used to model the spatial
deflections of the system, and the motion of the system relative
to the inertial reference frame, is similar to the kinematic
foundation used to model the motion due to the actuated Joints.
The original development of this kinematic method was performed
by Tesar, and his associates [1-7] and was used to model
mechanisms with no flexibility, which were fixed relative to the
inertial reference frame. The degrees of freedom in these
systems were always associated with an actuated joint, and thus
the term input became synonymous with the term degree of
freedom. Behi, Fresonki, and Tesar extended this model to
include deflections of the system. In order to emphasize the
fact that the spatial deflections can be modeled in the same
manner as the actuated Jjoints, the spatial deflections have been
called pseudo-inputs. In this model, the spatial deflections of
the 1link g(gl) and 9(§1)’ and the Jjoint deflection are
pseudo-inputs. The pseudo-inputs are related to the generalized

coordinates of vibrations via the modal matrix.

19



2.2.1 General Kinematic Foundation

Many popular kinematic formulations are based on a
recursive algorithm which transforms velocities in a serial
fashion from local coordinate system 1 to i+1, adding the
contribution of local motions in an iterative procedure.
Kinematics may be approached in a more efficient way by
utilizing the geometric information of the system, allowing the
velocity contribution of each motion to be computed
independently. [8]

The velocity of a point P on link I is the vector sum of
the velocity contributions of all motions between the inertial
reference frame and the point P. The velocity contribution of a
single motion is the magnitude of that motion multiplied by a
kinematic influence coefficient. The kinematic influence
coefficient is a vector derivative, and is readily obtained from
the geometric description of the mechanism. By organizing the
kinematic influence coefficients into a matrix, the Jacoblan ls
formed.

Each type of motion which may occur, may be considered to
be a relative velocity, and may be modeled by this method. The
gross motion of the system, the Jjoint motions, and the spatial
deflections each are multiplied by an appropriate kinematic
influence coefficient. The sum of all these relative motions

gives the "absolute" velocity.

20
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2.2.2 First Order Kinematic Influence

The first order kinematic influence coefficient is
defined as the rate of change of the position or orientation of
a point with respect to a position state. A position state may
be the gross position of the mechanism, the position of an
actuated Jjoint, or the deflection of the link or Jjoint. The
"absolute" tr'a'nslational velocity of a point at position x on
link k 1is the sum of the kinematic influence coefficients

multiplied by the corresponding velocity states:

dof dof

. P .
(x) = z [61_3(5“)/6@l <pl} = z [gk(gk) qpl]. (2.2-1)

1=1 1=1

170

where dof = the total number of degrees of freedom in the
system, and g‘;(z_k) is the translational kinematic influence

coefficient. The “absolute" rotational velocity is

- ~ . = R . _
¢1>(>_gk)—2[§1 “’1] Z[gl(x_k) wi]. (2.2-2)

where g?()ﬁk) is the rotational kinematic influence coefficient.



2.2.2.1 Translations

The kinematic influence of a translational motion on the

translation of a point P (in a serial mechanism) is the S vector

describing the line of action of the motlion. For a translational

motion designated as &J, and a point P at

local reference

position X the kinematic influence coefficient is defined by

the following:

IF the translational motion j causes point

relative to the global frame h, AND kzh:

I[F the translational motion J causes point

relative to the global frame h, AND k<h:

(h)_P (M
gj(gk) §%.

For all other cases,

P to translate

(2.2-3a)

P to translate

(2.2-3b)

(2.2-3c)

22



The kinematic influence of a rotational motion on the
translation of a point (in a serial mechanism) is the cross
product of the line of action of the rotation, é. and a vector
from the line of action of the motion to the point P. For a
rotational motion at local reference position 5), and a point P
at 1local reference pos?tion X, the kinematic influence |is

defined by the following:

IF the rotational motion J causes point P to translate relative

to the global frame h, AND kzh:

S x {”"g(x_k) - Mr(x )}. (2.2-4a)

IF the rotational motion j causes point P to translate relative

to the global frame h, AND k<h:

(h) P = (hg {h) _(n) _
gj(zk) §j x { B(;J) B(gk)}. (2.2-4b)
For all other cases,
(h) P - -
gj(gk) =0 (2.2-4c)

23
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2.2.2.2 Rotations

The kinematic influence of a rotational motion on the
rotation of a differential mass element surrounding point P (in
a serial mechanism) is the vector é‘ describing the line of
action of the motion. For a rotatlional motion at local reference
position 5). and an element P at local reference position X .

the kinematic influence coefficient is defined by the following:

IF the rotational motion J causes the differential element
element surrounding point P to rotate relative to the global

reference frame h, AND kzh:

g(x) = S (2.2-5a)

IF the rotational motion J causes the differential element
element surrounding point P to rotate relative to the global

reference frame h, AND k<h:

(h) R _ _(n _
gj(zk) = s (2.2-5b)
For all other cases,
MPix) =0 (2.2-5¢)



2.2.2.3 Translations and Rotations Due to
Motion Of The Global Frame

Systems with bases which move relative to the inertial
reference frame undergo gross motion which must be included in
the dynamics of the system, therefore they will be included in
the kinematic model of the system. These motions are easily
described as three orthogonal translatlons and three orthogonal

rotations at the global frame.

2.2.2.4 Matrix Notation and the Jacobian Matrix

The kinematic influence coefficients for a point P can be

organized into matrix form (a Jacobian):

™MRix,) = [(h)GPb_(i)] @ (2.2-6)
and
My () = [(h)GR(:_gi)] ¢ (2.2-7)

Or in a more compact notation,

(h)g

Bl()-(l) th) . (2.2-8)
n = G(x )¢

L] -‘

@, (x,)

25
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2.2.3 Second Order Kinematic Influence
The second order kinematic relationships for a serial

chain are defined by the second derivative of the position:

i e | T[] }

1=1

dof dof dof

=7 [sf 31] ) {a/av,[ sf] é,{oj}

{=1 1=1 j=1

dof dof dof
-1 [31: ;1] ) {E:J 6’1&1} (2.2-9)

i=1 1=1 j=1

The second order relationships of the rotations are :

dof dof dof
- (@8]0 I T forn () )
=1 t=1 j=1

dof dof dof
-p(8) 1 1w
1=1 1=1 j=1

The second order kinematic influence coefficlient is defined by
the vector derivative of the first order kinematic influence
coefficient. This relationship defines all centrifugal and
coriolls acceleration terms which result from coupling between

velocities due to the rotation of the local reference frames.



27

2.2.3.1 Second Order Translations
The translational second-order kinematic relationship for
a point P at reference position X, on link k is defined by the
following:
IF the motions i and J are rotational and occur between the

global frame h and point P, AND kzh:

-~

{h) P - {h) P _
lgu(zk) _S_1 X g-()_-c_k) (2.2-11a)

(where 1 is the minimum of i and J, and m is the maximum)
IF the motion 1 and J are rotational and occur between the

global frame h and point P, AND k<h:

(h) P _ _tmg  (n) P -
nlj(gk) = § X gm(gk). (2.2-11b)

(where 1 is the minimum of 1 and J, and m ls the maximum)
IF the motion { is rotational and the motion J ls translational,

and i occurs between frame h and motion j, and AND kzh:

-~

(h), P _ (n {h) P _
r_;”(gk) = ‘.il x gj(x_k) (2.2-11c)

IF the motion 1 is rotational and the motion J i{s translational,

and 1 occurs between frame h and motion Jj, and AND kzh:

y = -Mg x Mglix) (2.2-11d)
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For all other cases,

MpP(x) =0 (2.2-11e)
1j “x =
Note that (h)§‘ is always assoclated with a rotational motion,
and (h)gp may be associated with a rotational motion

J
contributing to the translation of point P, or associated with a

translational motion.

2.2.3.2 Second Order Rotations

The rotational second-order kinematic influence
coefficient for an element at reference position X on link k is
defined by the following:
IF the motion | is rotational and occurs between the local

frame h and motion j, or with motion j, AND kzh:

(h) .

h
§x()R

g (x) (2.2-12a)

(M, R _
h (x) = . ) (&

=13 Tk

IF the motion i is rotational and occurs between the global

frame h and motion j, or with motion j, AND k<h:

(h), R 2 _(mg (n) R -
Ql’(zk) = S, x gj(zk). (2.2-12b)



For all other cases,

MR (x) =0 (2.2-12¢)
1) =k =

Note that in this case, (h)§1 and (h)gj are always associated

with rotational motlons.

2.2.3.3 Second Order Kinematic Effects Due to Gross Motion

The gross rotation of the system can couple with the
relative rotations and translations to cause coriolis and
centrifugal accelerations, in the same way a relative motion
does. The gross translations do not contribute to the
the second order acceleratlons of the system. These kinematic
formulas used to compute these kinematic effects are the same as
those for the Jjoints, noting that the gross motion occurs at
the global frame, and therefore equations 2.2-11a,1l1c,and 12a

are used for all Ozkzn.
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2.2.3.4 Matrix Notation and the Hessian Matrix
The second order kinematic influence ccoefficients for a
point P can be organized into matrix form, called the Hessian

matrix. The acceleration can be written as:

MRix,) = [‘“’c"(;i)] o+ [“"H"u_ﬂ)] @ (2.2-13)
and
Mo (%) = [""c“(»_:l)] e+ [""u"(g,)] @ (2.2-14)

In a more compact notation,

(MR (x )

o0 - [unG(El)]g R éT[“nH(§l)]é (2.2-15)

w (x,)

The dimension of [(h)H(gl)] is (dof x 6 x dof).

2.2.4 Local Link Kinematics

The velocity of a point on a compliant link, relative to
the local reference frame, 1s defined by a vector function of
the mode shapes and the time rates of change of the
corresponding generalized coordinates. This information

describes the rotational and translational deflections in the



three orthogonal directions. The mode shapes may be a function,
or a set of data obtained via modal analysis or a finite element
simulation of link deflections. For a lumped parameter model,
the mode shapes are assumed to be linear functions. The
direction of the motion due to vibrations between reference
frames i1 and i+1 is defined by the 11ne§ of action in the three

~ -~

orthogonal directions, §:. §:. and éf. Note that these motions
take place at the distal end of the link, coinciding with frame
i+1, but are measﬁred in local frame i.
2.2.4.1 Local Link Velocities and Accelerations

The first order relationship which defines the spatial
translational and rotational deflectional velocities of a point

associated with the reference position “)&1' is :

(1) (1) .
gl(zl) [ 6(5‘) ] q, (2.2-16)

F (0 .
8.(x) = [ v(x,) ] q, (2.2-17)

This simple relationship results from the assumption of the

vibrations model that the mode shapes are time invarient. The
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form of the second order relationship is similar to the first

order relationship:

(1)e
d (x,)

tm -
[ §j(’—(1) ] g, (2.2-18)

“E (x) = [“’w (x) ] g, (2.2-19)

L Rt

The velocity of the end of the link is the velocity of the point
(1) (1)

at x = L‘. Note that the kinematic influence of the
vibrational motions are represented as three translations and
three rotations at the distal end of the link, but m, degrees of
freedom are needed to describe the dynamics of these
translations and rotations. The velocities of the spatial
deflectlions contribute to the absolute velocities via the
appropriate kinematic influence coefficlients, which were deflned
in the previous sections.
2.2.5 Kinematics of the Center of Mass of the System

It is not nessesary to formulate the dynamics of the
system in terms of the center of mass of the system, although it
may be done. It 1is the opinion of the author that such
formulations are unneccesary for the general model of dynamics,
and only make the problem more complicated and computational
inefficient. The only kinematic information needed to complete

this kinematic model is the velocity of the center of mass of

the system, relative to the global frame. Note that this
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information is not required for the dynamics model, but may be
needed for control purposes. Defining “3 to be the ratio of the
mass of link 1 to the mass of the total system, and gmj to be
the vector form the origin of frame j to the center of mass of
frame J. The kinematic effect of the rotational motion ¢1 on the

translational velocity of the center of mass is:

n n j-1
p o
g (R)J = g X K, cm, + X My z L, for 1>h
3= J=0 k=1
1-1 1-1 -1
» -
g(R )= S X p ocm - T L for 1sh
1 -cm 1 JZ; 3 =) 1% ] kzj x
(2.2-20)

These kinematic parameters give the translational velocity of
the center of mass of the system relative to the origin of the
global frame.
2.2.6 Kinematic Models and Momentum Conservation

If no external loads are applied to a system with a base

which is free to move relative to the inertial frame,

conservation of momentum may be used to derive a first order
model of the system, based on the kinematics of the system, and
the mass ratios of each link. A system of control based on these
equations may be formulated. It can be shown that tﬁere is no

obvious advantage to computing these equations using the center
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of mass formulation, since the necessary equations of the
momentum of the system can be obtained from the original
kinematics. The reader with an intimate knowlege of dynamics
should note that momentum of the system must be calculated with
respect to the inertial reference frame. Any computation of the
motion of a point In space or on the mechanism, based on the
equations of momentum of the system, does not require that the
motion of the center of mass be directly computed as an
intermediate step. Therefore, any control scheme based on
conservation of momentum does not require kinematic formulation

in terms of the center of mass of the system.
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2.3 The Dynamics of the System

A complete model of system dynamics includes the coupling
between gross motion and vibrations. Dynamic coupling terms
originate from the kinematics of a system. By measuring Joint
angles relative to the preceeding link, off-diagonal terms are
produced in the rotational Jjacobian, and in the global inertia
modeling matrix for the system. Dynamic coupling will occur in
all systems where states (ie. displacement, velocity, ..) are
not measured directly from the inertial reference frame.

One of the most interesting, yet subtle examples of
coupling is that between the vibrational modes of a link and the
gross motions of the link. Most models ignore this coupling by
assuming that the off-diagonal terms of the local link inertia
matrix, which correspond to this coupling, are =zero. These
coupling terms, and all other inertia terms, can be derived from
expressions of the systems kinetic and potential energles.
Lagrange's Equation s then used to produce the equations of
motion, resulting in one equation for each degree of freedom of
the system. For a system 1in space (unconstrained), there there
are six degrees of freedom for the gross motion, one degree of
freedom for each joint, and one degree of freedom for each mode

of vibration.
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2.3.1 Vibration Model Concepts

Vibrations in the system are described by the normal
modes, which exhibit harmonic motion at the corresponding root
frequency. In theory, there ls an infinite number of modes for a
continuous body, such as a beam. But in a real system, this
theory 1s not totally accurate in predicting the actual modes,
because the assumptions of the theory are only approximations of
reality (ie. the beam is not a true continuous system, and
material imperfections are not modeled). Also, higher modes
usually do not have a measureable effect on the dynamics of the
real system, because any large amplitude vibrations at higher
frequencies die out quickly due to structural damping.
Therefore, the inertia and stiffness terms used in the system
model should be based on experimental data obtained from modal
analysis, and metrology, or predicted from computational methods
such as finite element analysis.

The equivalent mass and stiffness of a link can be
obtained by experiments in modal analysis, and other forms of
metrology. But unfortunately, these methods do not reveal the
inertia terms which describe the coupling between the gross
motions and vibratlons in the link, which are off-dliagonal terms
in the inertia matrix. These terms can be derived from the

kinetic energy of the system, and a method of predicting their
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magnitudes is presented in this study.

To predict the inertia terms of the system, a mode
summation method is used where the mode shapes and mass
distribution of each link are assumed to be known. This
information must be obtained via experimental or computational
methods. An accurate knowledge of this information assures that
the dynamic model will be accurate. These mode shapes can be
represented by any function or set of data. A finite number of
modes are used. Lumped parameter models are considered to be a
special case, where the mode shapes are simple linear functions
and all mass is lumped at the center of mass of the link. To

accomodate more flexible 1links, a link model similar to

component mode sythesis |is used, allowing the link to be

subdivided into smaller sections, or link segments. The
rotational and translational deflections of a sub-link are
assumed to obey the magnitude constraints imposed by the
geometric model of rotations.

There is always 2 question about when to use lumped
parameters, mode summation, or component mode synthesis. No
absolute guidelines can be presented as to when each method
should be used. As a rule of thumb, 1umped parameters should be
used to model Joint flexibllities and short, fat links. Mode

summation should be used to model longer links which exlbit
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angular deflections of less than five degrees. Component mode
synthesis should be used to model flexible links which have
angular deflections greater than five degrees. Note that these
models may be "mixed" together in the overall system model.

A firm understanding of the assumptions inherent in these
modeling methods is a prerequisite to insuring that the model
represents the actual system. It must be stressed that mode
summation methods require the beam té be relatively long and
thin, but the cross sectional area is not required to be
constant. All models of vibrating systems are approximations of
very complex phenomena. A good model will not oversimplify the
problem. On the other hand, a model should not include more
information than is necessary, due to the computational burden
imposed. Most importantly, it must be realized that the quality
of the information used will have a great effect on the accuracy
of model. A qualitatize knowledge of the relationship between
accuracy of the data used in the model to the accuracy of the

results obtained is absolutely necessary.
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2.3.2 Kinetic Energy and the System Inertia Matrix

The total kinetic energy of the system is the sum of the
kinetic energies of its sub-systems. Each sub-system can be 2
set of links, one link, or part of a 1ink. Although this is not
required, it is convenient to choose each sub-system so the
local flexibility matrix 1s constant. Therefore, for lumped
parameter models and hode summation models, a sub-system will be
one link, and for component mode synthesis models, a sub-system
will be a link segment. The kinetic energy of an element of

mass, &m, in subsystem i will be

1 : - -
SKE = - ém { R(x,) } {E()_(l_) } (2.3-1)

where E(&l) is the absolute velocity of the element on link i.
The total kinetic energy for the sub-system is the sum of the
kinetic energies of all mass elements. Assuming the mass
distribution of the sub-system is known, the kinetic energy can

jdeally be expressed as a volumetric integral:

- l R . s -
KE = 3 {p()_(l) {3(5‘) } {3(51) }d\l1 (2.3-2)

v

i
E(gl) can be expressed as the velocity of a reference point plus
the velocity relative to this reference point. By, choosing the

reference point to coincide with the local reference frame
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origin of the link, the inertia terms commonly associated with
the gross motion of the link are obtained, along with the
equivalent masses of vibration, and the inertia coupling terms
between the gross motion and vibrations. The detailed derivation
of the kinetic energy and the inertia terms is presented in
Appendix A.

The kinetic energy of the link can be rewritten in terms
of the 1local inertia matrix, the gross motions, and the

velocities of vibration for the 1link.

1 (18T ¢ (1) (e
KE, =2 & ( 5 ] 2,
where “)Q “)l‘}( (2.3-3)

and “).5(91) is the translational velocity of the reference

frame, (“9(0) is the rotational velocity of the reference

frame point, and éx are the generalized veloclties of vibration

of link {.
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The local velocities can be expressed in terms of the

global reference frame, h, by multiplying by the rotation

matrix.
mye _ [ g _ (1)
9, = (h)B(Q:) = ["'rllmr_i(g‘)
w(Q,) ("1, w0
9 9
=l ("1,1 0 o R,
o ("T10 “ug,) (2.3-4)
| o o (1] g,

[I] 1s the m X m identity matrix, and [ hﬂl ] is the

augmented transformation matrix. Rewriting the kinetic energy,

1 (1)sT (1) 1)
1 2 Ql [ Ii ] Ql

[SH L]

-1 (h)é‘i‘ [hy‘ ][ (1)Il ] [hgl ]T(mél

-
z

.
-

"
(5]
R

[ ™1, ] Me,. (2.3-5)
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At this point, it is necessary to express the kinetic
energy in terms of another set of states which consists of the
gross motion of the entire system, the velocities of the
actuated inputs, and the velocities of all vibrations (le. at
the Jjoints, and in the links) in the system, é. The kinematic

relationship between é and (h)él is:
Mg = [a“"gl/ag ] g = [“"gi ] 2 (2.3-8)

where [“”gl ] is the Jacobian for the origin of local
coordinate system i augmented by an identity relationship which
specifies which generalized velocities of vibration are

associated with this link:

(h)
G (0)
[“"gl ] = ! (2.3-7)
WL

Substituting this expression into the kinetic energy,

(]
N I=
[ S
-
r———
-~
-4
~
ug
-
i
]
[ g |
4
L]
-
—
f )
=
«§
[
—d
.

e [ M1l ] e (2.3-8)

N =

(h)_*

where [ I, ] the the inertia modeling matrix for sub-system
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i. The total kinetic energy of the system is the sum of the

kinetic energy of each sub-system
n+l
KE =) KE
system - i

1 T (W), *
;e [ ] (2.3-9)

L
where [ (h)I ] is the inertia modeling matrix of the entire

system.



2.3.3 Potential Energy and the Stiffness Matrix

The potential energy due to complliance in the system is
usually a linear function of the generalized coordinates of
vibration. The potential energy of a differential element of

link | can be expressed as

1
aPE‘ =3 S(EI) {g(x_l) } . {g(zl) } , (2.3-10)

and ldeally may be represented as a volumetric integral over the

link

PE =
1

[ N

JEI/V(Kx) {(_i_(;l) } . {g(al) }dv‘ .

Vl (2.3-11)

A detalled derivation of the potential energy and stiffness
terms is presented in Appendix B.

The potential energy of the link can be rewritten in
terms of the local stiffness matrix and the generalized

coordinates of vibration for the link:

- 'r —
PE =gq [K ]g - (2.3-12)
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Noting that the flexibilities may be extracted from the state

position vector via an identity relationship defined as

g, = [ ag‘/BQ ] e, (2.3-13)

the potential energy can be written in terms of the system state

vector,

PE
i

¢ [391/39 ]T[ K ] [39,/69 ] ¢ -

T »
o [X e (2.3-14)
 J
where [ K, ] is the flexibility modeling matrix of link 1. The

total potential energy of the system is the sum of the potential

energy of the links.
n+l
PE =y PE
system i
1=1
= S
= Z 52 [k e (2.3-15)
1=1
1 T .
=-¢ [K ]¢

-
where [ K ] is the flexibility modeling matrix of the entire

system.
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2.3.4 The Equations of Motion and the Power Modeling Matrix

The equations of dynamics are obtained via Lagrange's
equation. For a multi-degree of freedom system, it can be

expressed as:
1= d/dt[ axs/aé’]- 8KE/3g"+ OPE/dp’ . (2.3-16)

The term aKE/ai:T can be readily obtained due to the quadratic

form of KE. -

T
6KE/6éT = % [(h)I! ] é . % [(h)I' ] Q . é ér a/aé'r[(h)lu ] Q

= ™1 ] (2.3-17)

L ]
noting that [(h)I ] 1s symmetric, and not a function of

veloclity. The time derivative of this term is

d/dt[ axs/ai_»’] = d/dt {[“"I' ] e }

= {d/dt [""1' ]} o+ [”"1' J¢ -

(2.3-18)
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The time derivative of the inertia modeling matrix can be

written as
(h),* °T (h) . * T
dzdt[V1 ] = ¢ {d/dg[ I ]} ; (2.3-19)

where the planar transpose operator performs the following

operation:

PT
{ a/ag[™1 ]} = {d/dg[““l' ]} (2.3-20)
Jilsk

1355k

for all i, J, and k, where the notation is plane;row;column.

The next term of Lagrange’s Equation 1is
T T {1 T p(),"® .
9KE/op = 3/o¢ {;se [ ]9}

=1y {a/ag[ ™t } @ . (2.3-21)

The last term ylelds

8PE /ag" { L[] S‘.’}

aPE/ag’

[x’ ] e (2.3-22)
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The system of equations can be written as

1~

= [(h)I' Ie + Qr[ { a/ag[“"x' ]}P‘r_ %{  fog] m * ] } ]se
F K Je
(2.3-23)

These terms can be written in a more compact matrix form as a

matrix with dimensions (dof x dof x dof):
LI S L S T a/apl M1 (2.3-24)
[~ ] o171} - L {agpel ™11 ) 3-24

so the dynamic equations can be written in a standard matrix

notation,

=™ Jgre [P Je+[K Je. (2.3-25)

I~

»
Recalling the expression for [““I 1.

(h),* S TS T (n)
[1]:2[9"][ Il][?l]. (2.3-26)



1 (h) g
The term a/sp [ ] can be expressed as

n+l T
(h) (h) (h)

o T ]
1=1

e ad (he T [ g (hg

- 121 2 b4 1 1 1
*“’1 (g T a/d [(h)I ] (g
1; 2 1 14 { g
net (h) T o (n

) [ 5, ] [ ™1, ] drde { [ s ] } (2.3-27)
11

Notice that the second order kinematic influence coeffliclents

1= (1o jr

[N

are defined by

d/dgq[“"s?1 ] = [""nl ] : (2.3-28)

Substituting the local inertia matrix referenced to the local

frame,

6/8@[ (h)Il ] = é/aQ { {hﬂl ][ (HIl ] [hgi ]1‘}
- 8780 { [hg‘ ] }[ (1)1' ] [hy‘ ]r

)
+ ["31 ] [ M1, ] aseg { ["7 ]T} (2.3-29)
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where 8/38¢ {[ “)Ii ]} will be denoted henceforth as

(1)
[0 '1,78¢].
Recalling the exact form of the augmented' transformation matrix,

a/ag{["ﬂ ]}=a/ag ("r1 0 o
' o (] o0 (2.3-30)
i
0 0 [I]

The columns of the tranformation matrix, [th], are made up of
the direction cosines of the ith local coordinate frame. These
direction cosines are a function of the rotational dispacements
between the global reference frame a.nd the local frame. This
kinematic relationship can be expressed by the cross-product of
the first order rotational influence coefficients and the
direction cosines of the local ith frame. This results is the

second-order relationship:

asag, ("1,) = (2.3-31)

(h) . jk (h) . jk (h) .jk
[[ 61 X" 1EMER ) (el

i H H H H

x[h'l'l];s]



The skew-symmetric form of [(h)Gik] may be substituted for the

cross product, yielding

asdp, ("r,1 = - (2.3-32)

("1 1 |[“"Ei“1 ("1 ] |[“?’E;f“1

(h)x ik
[[ G ];J 1751 i3 1752 3! [hrt];s]

or, in more compact notation,

_ ik -
a/8g, ("t = VG "r,) . (2.3-33)

Now, the term a/agj { [ h?‘ ] } can be expressed as

a/0g, { [hffl ] }= [“"E:“].J 0 0 [hﬂx ]

0 [“"Ef“l 0

i J -
0 0 o (2.3-34)
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Letting the matrix of skew-symmetric forms be

[(h)gfk] | [(h)a:k].i 0 0 1
o (™ME o
i HB
0 0 0
(M8 0 o |
o [“"Ef“];2 0 (2.3-35)
0 0 0
(‘ME* o o |
o (‘Me™ o
0 o o

the derivative in question can be expressed in a much more

compact form:

e { (%]} ("] [ ]



§3

*
The final resulting equation for the term B/BQ Fh)l ] is a
function of the local linertia tensor matrix and the geometry of

the system:

i=1

EICAET MG
SRS EAIE
SR ERICA SN RS
SRR CAERIERIEIES
oo I o5 T 1) e

It has dimensions of (dof x dof x dof' ).

ojo0 P17 1= 1 {
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2.3.5 Applied Forces and Torques

The applied torque vector T 1s the equivalent load of any
point loads or distributed loads which may be applied to the
system. The equivalent load which corresponds to an applied

point force and point moment at position 51 on link i is:

T
(h)
quulvalent [ 9()_(1) ] Elpplled (2.3 38)

The equivalent load expression for a distributed load is

n

T
(h)
qutuvalent = Z{J’ [ Q()_(l) ] GE,pP“ed } (2.3-39)

=0 v

which is a volumetric integral of the distributed load over each
link, or sub-system. This is particularly important for an
unconstrained system in a gravity, or pressure fleld. For
orbiting systems, a slight differential in the gravity gradient
field will cause a torque on the system. For underwater systems,
a similar effect will occur due to the variation of water

pressure with depth.
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This gravity gradient effect can be estimated by assuming
the distributed load to be a point load at the center of mass.

This leads to the equation

n

T

t = Z{ [""9(@) ] T . (2.3-40)

—equivalent i —approx_1
1=0

This same method can be used to estimate the equivalent loads of
an underwater system, systems which develop fluid drag, systems
working in a centrifuge, or systems in a gravity field.

Damping terms have not been presented explicitly in this
study, but may be modeled as loads which are functions of the
magnitude of the vibrations, or the velocity of the vibrations.
These loads are assumed to occur “internally”, and are written
in terms of the states of the system, é, and ¢. Therefore it is
not necessary to use the Jacobian to transform the damping

loads, as it is with externally applied loads.
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3.0 Dynamic Simulations:

The product of this research is a general model of the
dynamics of serial manipulators. The model derived has been
implemented in a simulation package in “C" (a programming
language) which currently resides on a Silicon Graphics 4-D
computer system at the University of Texas Mechanical Systems
Robotics Laboratory. The source code for this program, called
VSim, can be found in Appendix C.

VSim is a general simulation package, which can simulate
serial sys.tems of n links. Each link can have nmt trans.lational
vibration modes and mr rotational vibration modes. The number of
modes may differ from link to link (le. 1link 2 may have 1
translational mode and 5 rotational modes, while link 1 may
have 3 translational modes ...). A link may be modeled as a rigid
body by assigning it no vibrational modes. Extremely flexible
links may be subdivided and modeled as several sub-link. Each
sub-link is modeled the same as a regular link. Each sub-link
may be modeled with several modes.

Because of the generality of the program, it must be
stressed that the output is only as good as the input. If the
input data truely represents the real system, there will be a
good chance that the output data also represents the real system.
The input to VSim includes geometry, inertia, and stiffness data

for each link, along with a variety of "bookkeeping" data. In
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order to promote efficliency in computations, yet preserve the
general capabilities of the program, the current version requires
that the input data be included in the file "Robotdat.c". The
control model must be included in the file "Model.c" which is
accessed by the integration routine. The program generates the
equations of motion internally, from the data provided, and from
the . control algorithm provided. The numerical integration
algorithm uses a predictor-corrector method with adaptive
step size and adaptive order, which was presented by C. VWilliam
Gear [24].
3.1 Example: A Large Space-Based Robotic System

As an example, the dynamic equations of a large flexible
robotic system used in space operations are formulated, and the
resulting system lis simulated under various disturbing inputs to
the end-effector and Joints. The system consists of a large
spacecraft with a §5 ft. manipulator which has 6 actuated
joints. The system was modeled such that the base link, (the
spacecraft) could translate relative to the inertial reference
frame. The geometry, mass, and stiffness information used for
this example is similar to that of the Remote Manipulator System
used by NASA. A truncated mode summation method will be used to
model translational vibrations, and a lumped parameter method

will be used to rotational vibrations.
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Table 3.1-1

Geometric Data for Example Robot:

Link

L (ft)

® (rad)

8 (rad)

joint type

-3S.
-8.
0.

88
07
8

0.

[N 8- ]

revolute

revolute

revolute

w
[ RF

revolute

IR

0N

revolute

2.

{
{
{
(%
{
{
{

}
}
}
3
}
}
}

revolute
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Table 3.1-2
Mass and Inertia for the Example Robot
mass 2
Link # cm (ft) 1 (stuge*ft )
(slugs) - -
0.0 B8.9eS 1.6e4 -2.9eS
0 6.39e3 0.0 1.6e4 6.9e6 3.Se3
0.0 -2.9¢5 3.S5e3 7.3e6
0.0 1.37 .01a -.088
1 2.198 0.0 .014 1.895 -.027
0.8 -.0589 ~-.027 .439
10.46 [ 2.38 -6.77 1.423
2 9.538 0.0 -6.77 1.8e3 -.223
0.0 | 1.423 -.223 1.8e3
11.88 C 1.17 2.79 -.592
3 5.982 0.0 2.79 8.5e2 -.059
2.17 L-.ssz -.059 1.3e3
0.7% " .oe6 0.0 0.0
4 0.58 0.0 0.0 .622 0.0
0.0 | 0.0 0.0 .622
0.0 [ g.38 0.0 0.0
5 3.144 -1.28% 0.0 .301 0.0
0.0 | 0.0 0.0 8.38
0.0 [ s.71 .281 -.712
6 3.084 0.0 . 281 .301 0.0
1.08 - . 721 0.0 8.63
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Links 2 and 3 were modeled as flexible, and the other
links were considered to be rigid bodies. The translational
vibrations transverse to the length of the link were modeled by
cubic modes, and the torsion about the minor axis of the links
were modeled by simple linear rotational springs. The inertia
terms were computgd using the equations derived in Appendix A.

The translational cubic mode shapes are:

r 0 3
2 3
8,(x)=4a +b(x/L)+c(x/L)" +d(x/L) » (3.1-1)
L 0 J
r O -
= . 2 3| _
8, (x,) a + bz(x‘/Ll) + cz(xl/L‘) + dz(xl/Ll) (3.1-2)
S 0 J
-
8,(x,) = ; (3.1-3)
2 3
L 2, + b(x /L) + cs(xl/Ll) + ds(xi/L‘)
and
3, (x) = 0 (3.1-4)

®
+

2 3
b‘(xi/L‘) + c‘(x‘/Ll) + d‘(xi/Ll)
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The proximal end of the link is not allowed to defect relative

to the local coordinate system,

8,(0) =3(9) = { 0 } (3.1-5)

therefore a.J = 0. The slope of the deflection is also assumed to
be zero at the local coordinate system, therefore bJ = 0.
The orthogonality condition needed to assure that these

modes are independent 1s expressed as

[8,0e) - 3,(x) av =0 (3.1-6)
v

1
cc (x /L )4 + (cd + cd) (x /L )S + dd (x /L )s dx .
172" 12 271 177 1727177y 1

"
O e—

(3.1-7)

Integrating, we find the orthogonality requirement to be

r, -(42 + 35 P1) / (35 + 30 P1) (3.1-8)

where r = d/c, and r_ = d /c_.. For this example, the first
1 11 2 2 2

ratio is r1 = 0, making'the second ratlo, rz = ~1.2.



The mode shape functions relating the local deflectlions

to the generalized coordinates of the local link are:

~

0
2
§,(x) =1 (x/L) (3.1-9)
S
[ 0
5(x)=4 (xn)?-12xn) (3.1-10)
=2 =y 177 ) 1 ’
| 0
[ 0
3, (%) = ; 0 (3.1-11)
2
(xn/La)
[ 0
8,(x,) = ; 0 (3.1-12)
(x L)% - 1.2 (xL)?
- i i i 1

These mode shapes can be organized into matrix form which gives

the local link translational deflections.

d(x ) = [5(5,) ] q, (3.1-13)

= &) 1 g (x) g0k ) 1 g (x) 1 0
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The rotational mode shapes are assumed to be simple linear
functions, which 1is the prescribed assumption for lumped
paramter models:
x /L
TS

v, (x) = 0 (3.1-14)
0

and may be organized into matrix form to obtain the local

rotational deflection.

8(x) =01 0101 QI yglx) a, |- (3.1-15)

The shape functions will now be used to compute the coupling
terms and vibration terms of the local Iinertia matricies.

From Appendix A, the inertial coupling between the translational

flexibilities and the translational motion of the link are
I = M I M I M I M I 0|, (3.1-186)
mq, -di1 -di12 -di3 -dia -

such that

M, = J‘ plx,) [‘23(’-‘1)] av. (3.1-17)
v
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Assuming that the mass of the link is distributed evenly along the

length of the link, such that M= ml/L‘, the matrix becomes

0

I = u c L /3 c L /30
mq, | 11 21

0]

For link number 2 this matrix is:

0

[ I ] = 3.18 ¢
»q,, 1
0

and for link number 3 this matrix is:

0
1.99 ¢
1

0

[ ]

0 0
c c L /3
11
0 9]
.318 <, 0
e 3.18

0 0
.199 ¢ 0
2

0 1.99

0]

0
c L /30
21
(3.1-18)
0 0
0 0
318 ¢ o
2
(3.1-19)
0 0
0 0
.199 ¢ ¢]
2
(3.1-20)

The coeffients c1 and c2 are scale factors.



The coupling terms between the gross rotation and the

translational flexibility are presented in Appendix A as:

[1’ ]=[ﬁ M M |o] (3.1-21)
Lqi =-Ldt1l =-1di2 -Ld13 ~-Ldi4 -
such that
W - I p(x,) [ 51] 8,(x,) av. (3.1-22)
v

The resulting matrix is

0 0 0
[ 3 ] = p 0 0 -c1?4 -cl?100 O
La, 1 11 271
cL/4 cL /100 0 0 0
11 21
(3.1-22)

The coupling between the rotational vibrations and the

rotational gross motion was presented in Appendix A.

[ I’ ] = [ 01010101 M ] (3.1-23)
™ ST T T M

This matrix becomes

/2

xxi

= o 0 o 0 0 (3.1-24)
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By combining these matricies we obtain the total coupling
between the vibrations and the rotational gross motion.

For link number 2 this matrix is

0 0 0 0 1.18
[ I = 0 0 -49.8 ¢ -1.99 ¢ o |,
La, 1 2
49.8 ¢ 1.89 ¢ 0 0 0
1 2
(3.1-25)

0 0 0] 0] .585
[ I ] = 0 o -34.6 ¢ -1.39 ¢ o
an 1 2
34.6 c, 1.39 c, 0 0 0
(3.1-26 )

The generalized inertias of vibration are defined in Appendix A

as

P
I“"m_ j p(x,) 8(x) * 8 (x) v, (3.1-27)
v

and for rotational vibrations it is given as

R = . -
e, [ 1) gz - g av. (3.1-28)
v



The results of this integration may be organized 1into

matrix for each flexible link.

[ 2.38 cf 0 0 0 o |
[ L ] oo .05448 c> O 0 0
g 0 0 2.38 cf 0 0
0 0 0 . 05449 cz 0
| o 0 0 0 793 |
(3.1-29)
[ 1.5 cf 0 0 0 o |
[ . ] I 03419 ¢Z 0 0 0
g 0 0 1.45 cf 0 0
0 0 0 .03419 cz 0
o 0 0 0 .39 |

{3.1-30)



The stiffness terms for these two links are obtained from
the equations presented in Appendix B. The resulting stiffness

matrix for link 2 is:

4.5e3 cf -3.8e3 cc, O 0 0
[ ] -3.5e3 cc_7.7e3 c> 0 0 0
K2 = 1 2 2 2
0 0 ‘4.5e3 01 -3.5e3 cic2 0
0 o) -3.5e3 cc_7.7e3 c°> 0
1 2 2
o 0 0 0 1.1e6
(3.1-31)
and for link 3:
B 2 b
2.2e3 c1 -1.7e3 cic2 0 0 0
-1.7e3 cc_ 3.8e3 c° 0 0 0
K3 = 12 2 2
0 0 2.2e3 c1 -1.7e3 clc2 0
0 0 -1.7e3 cc_ 3.8e3 c2 0
1 2 2
| o 0 0 0 8. 3e5
(3.1-32)

This system was simulated with various disturbances
applied to the point of resolution (The point of resolution is a
peint at the end-effector of the manipulator). In the first
simulation, a step load of 1000 1b. and 1000 ft-1b. was applied
along each axis of the global frame. The simulation was
performed once for configuration #1, for which all Joint
displacements are zero, and once for configuration #2, for which

all Joints are zero, except for Joint 3, which was set at wn/2
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radians. The base was allowed to translate. The magnitudes of
the first and second translational modes for each flexible link
are shown in Figures 3.1-1a through 3.1-4b, for reference
position #1. The translational modes are dominated Dby
frequencies around 3 Hz. The impulse response of the rotational
mode was found to be much faster than that of the translational
modes. This 1s because of the small inertia of the system in
configuration #1. The rotational vibrations of the system near
configuration #1 will be dominated by the loadings at the
end-effector. If a payload with large inertia is being moved,
the frequency of the rotational vibrations will be lowgr. The
simulation for configuarion #2, shown in Figure 3.1-5a through
3.1-8b, shows the conflguration dependence of the system
response. These simulations reveal a much lower frequency on the
order of 0.1 Hz, which modulates the amplitudes of the higher
frequencies of vibrations.

In the second simulation, the load was a cyclic
disturbance of 100 lb and 100 ft-1b. along each axis of the
global frame. The frequency of the load was 3.18 Hz. The
simulation was performed once for reference position #1, for
which all Jjoint dispacements are zero, and once for reference
position #2, for which all joints are zero, except for Joint 3,
which was set at n/2 radians. The base was allowed to translate.

The position of the end effector is shown in Figures 3.1-8a and
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3.1-9b, for reference position #1. The magnitudes of the first
and second modes for each flexible link are shown in Figures
3.1-10a through 3.1-13b, for reference position #1. The
magnitudes of the first and second modes for each flexible link
are shown in Figures 3.1-14a through 3.1-17b, for reference
position #2. |
The third set of simulations were performed for an

oscillating load of 1000 1b. and 1000 ft-1b., at a frequency of
.318 Hz. The results for the magnitudes of the first and second
modes for each flexible link are shown in Figures 3.1-18a
through 3.1-18b, for reference position #1. The results for the
magnitudes of the first and second modes for each flexible link
are shown in Figures 3.1-22a through 3.1-25b, for reference

position #1.
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4.0 Conclusions

Tﬁe flexibility of a robotic manipulator may cause large
errors at the end-effector of the system. Dynamic simulation of
these vibrations and deflections 1is necessary to study the
control of the system so these vibrations may be eliminated, or
reduced. A general modeling method has been presented which
includes the dynamics due to gross motions of the base, motions
of the Joints, and vibrations of the Jjoints and links of the
system. The motions of the Joints and the base are coupled to
the vibrations of the Jjoints and links. The vibrations may be
modeled using lumped parameters, truncated mode summation, or a
component mode synthesis method.

This model has been implemented in a simulation package
called VSim. The package was used to simulate a large
space-based manipulator system. Both mode summation and lumped
parameter techniques are used in the model. The response of the
system was seen to be configuration dependent. Very slow
frequencies were present is some configurations, and not 1in
other configurationsi The response of the system also was
dependent on the type and frequency content of the disturbance
applied to the system. It should be noted that the second
mode seemed to respond much the same as the lowest mode. This

indicates that the system response probably can be modeled
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sufficiently by only the first mode.

This simulation package can be easily modified to include
a control algorithm. Disturbances may be applied externally, or
may be created due to the motion of the links. The number of
flexibilities, links, and Joints which the simulation package
may model is resticted only by the constraints imposed by the

computational resource which is used to run the simulation.
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APPENDIX A
Derivation of the Local Inertia Matrix
The expression for the kinetic energy of the jith

link or sub-link 1s ideally expressed in integral form as
1 i -
KE = 1 [ o(x)) {5(;:1) } {3‘51) }dV . (A-1)
v
The velocity, E(gl), can be written as the sum of the velocity
of a reference point and the velocity relative to the reference
point. The reference point is chosen to coincide with the local

origin of the link. The equation of velocity is then

<x)§(li) - (1)3(91) . (1)§(x )+ Do) x {“)9(51) . (1)&1}

= =i - =
= “’g(gl) + “’g(gl) x {“))_(i } (A-2)

+“)9(Ql) « {“)d(ﬁl) } . “)é(Kx)

where “)E(Ql) is the translational velocity of the local
coordinate system, ‘“g(g]) is the rotational velocity of the
local coordinate system, (l)é(g‘) is the velocity of the point

of interest relative to the local coordinate frame, and (l)g(gl)

+ ("gl is the distance from the local coordinate frame to the

point of interest. For notational brevity, define

(1)§(§1) - (1)51 _ (ngml . (A=3)

(1

Also, the pre-script )will be dropped, noting that all vectors-

In this appendix will be referenced to the local frame.
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Substituting the expression for 3(51),

can be expressed as:

+ (SR +

N -

x

x

X

%

—
1€
JO
b3

the kinetic energy

(A-4)

a9



100

These integrals define the total kinetic energy of a link
Including that due to gross motion, vibrations, and the couping
between the gross motion and vibrations. Fach integral can be
rewritten so that the velocities are factored out of the
integral. The integrations are performed off-line to predict the

inertlia terms that are needed for the dynamic model.

The first kinetic energy term,
1fp(x){1’a(o )}- {x’a(o )}dv
2 = i | = 71
v
L T .
{ g(gl)} j plx) av { g(g‘)}

v

N

(SR

T
E(Qn’} ml{ ﬁ(gl)}. (A-5)

m, [(I], this kinetic energy term becomes:

T
R(0 )} [ I ] { R(Q )} (A-6)
1 mm i

This term i{s the kinetic energy of the link ﬁoving as a point

letting [ Inml]

mass.
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The second kinetic energy term is

il
—
©

|
—
ol
JO
— —
1€
JO
x
(23
El
——
Q.
<
+

1]
— ——— ]
(o -
__|o JO
— —
f_H r__)sﬁ
1€ 1€
1o 1o
x xX
—
© —
._IX ©
(_A_\ —
> ¢]
! 2
1
[o ]
0 <
-Ja | NE——
— ——
.
] +
——

(A-7)

The second integration in this kinetic energy term is zero because
I 9(51) { X - gm‘} ayv = I p(;l) x, dv - J p(51) cm dv
v v v

=m cm -m cn=0. {A-8)

The first integration can be written in more convenient

notation,

{E(g‘)} . {g(gl) X Up(gx) em dV] }
v

=J.p(>_(l)A~{BxC}dv. (A-9)
v



Noting that cyclic permutations of the vectors in the scalar

triple product do not change the value of the result,
=J.p(§l)B°{CxA}dV. (A-10)
v

Expressing the vector cross product in skew-symmetric form,

- Ip(;l) BT (C] A v . (A-11)
v

Substituting the original vector functions, and moving them

outside of the integral,

[}
—
©
i
=
'l
1€ =
1o
Q:-_‘i r

(A-12)

1
——
14
1
;;Lﬁ
)
[ |
5
| S————)
—h—
(0.
1
——

T
Defining [ ImL ] = ml[ cml] , this kinetlic energy term can be

expressed as:

{eof [n ]

This is the additional kinetic energy of a point mass

1.

(Q1)} (A-13)

resulting from the choice of the reference point.
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The third kinetic energy term is a couping term caused by
deflections. It is similar in form to the previous term. The
derivation 1is the same wuntil the original vectors are

substituted.
J' p(x,) { g(gl)} . { W) x Q(’%)} av
v

=J.p(5l) BT (E] A av

v
T ~ L
= Jp(gl) {g(gx)} [g(;‘)] { g(gl)} av . (A-14)
1)

Remembering that the deflections are the sum of the normal

modes,
m

T i
- [ ete {“’(Q')} le[ qU[ §J(**)] ] {B(gl)} &

v (A-15)

The velocities and generalized coordinates of vibration can be

moved outside of the integral:

™ . .
Lo F o frarlsu] o] s}
- '

(A-16)

Defining the integral over the skew-symmetric form of the mode

—

shape to be

(4,1 = J‘p(gl)[cjj(gl)] av , (A-17)
v

this kinetlc energy coupling term can be rewritten as

mi
= {g(gl)}J;[ (M, lq,, ] {5((_)1)} . (A-18)
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The fourth kinetic energy term 1s a coupling term
between the translational velocity and the velocities of

vibration.

* T L]
= { g(gl)} J' plx,) { g(gl)} av (A-18)
v

Substituting the mode shapes and generalized velocities -of

vibrations into the expression,

m
T i
= { g(gx)} f plx,) { ) [ q,, 8,(x) ]} v (A-20)
v

j=1
and taking the summation and the velocities of vibrations out of

the integral, we obtain
. . S P .
-1 {3(9‘)}{2 qu[ [ots) 5 0x) av ]} . (a-21)
- v

Defining the integral over the mode shape:
M, = I p(&l)[ ‘5,‘51’] av (A-22)
v
and arranging these terms into a matrix,

[ I ] = [ M I'M [ oeee | M ] , (A-23)
mq1 =d11  ~di2 ~dim,

the fourth kinetic energy term can be rewritten as

T
= {g(gx)} [ Lot ] g, - (A-24)
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The fifth kinetic energy term is the rotational kinetic

energy of a rigid link.

%Ip(&l) {Q(Ql) X z‘} . {g(gl) X >_<‘} av
v
slj'p(x){ww)xcm}- {w(O)xcm}dV
2 -1 - =1 -1 - = -

v

.1 Ip()_(l) {g(g‘) x 2(;1)} - {g(g‘) X 2(5‘)} av
v

+ { Q(Q‘) X j p(gl) 2(5‘) dV} . { 9(9‘) X _mi} (A-25)
v

The last integral is zero because,

I p(gl) 2(&1) dy
v

L]
—
©
A
—
AX
[}
|0
[——
[o X
<<

v
=Ip(x)xldv-‘[p(x)c_:m‘dv
v Vv
=m cm -m ¢cm =0. (A-26)

The other two integrals in this kinetic energy term may be

expressed in a more convenient notation:

1
> j p(;i) AxB } . { AXxB } av . (A-27)
v
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Noting that the dot product is commutative, and the expression

can be manipulated as a scalar triple product,

;fp(g‘){AxB}xA-de

v

;fp(;l)A-Bx{AxB}dv

v

;jp(x)A [[B-B]A-[B-A]B] av
p(x)A [[B- B]A-B[B- A]] av

: f px,) AT[BTBA - BBTA] v
v

[S N

[ otx AT[BTB(I] - BB’]A av (A-28)
v
where [I] is the identity matrix.

N -

Substituting the original vectors, the kinetic energy term can

be expressed as

% I p(&l) { g(g‘) X 51} . { g(g‘) X 51} dy
v

NI

fp()_(l) g(glJT[ 2(x )7 20x)1] - £x) g(;i)’] w(Q ) av

N i

(A-29)
Notice that the term in brackets involving £ 1is the three

dimensional vector form of the parallel axis theorenm.



Removing terms which are constant with respect to the
integration, the integral in the first term yields the mass of

the link.

T

1 T T} (1)
2 ™ Q(Q\) [ cm, <R, (1] cm, <, ] Q(Qx)

N -

w(g)’ J' plx,) [ 20x)7 2(x)(1] - £(x) g(;‘)’] v w(Q ).
v (A-30)

The first term is the kinetlc energy due to the fact that the
reference point was not the center of mass and the parallel axis
theorem must be used to find the equivalent inertia at the
reference point. The second expression is the rotational kinetic
energy of an undeflected body about the center of mass. The
integral in the expression is the definition of the rigid-body
rotational inertia matrix for a link. The expression can be
rewritten in terms of the the rigid-body rotational inertia

matrix

i
[V g

T 1 T
Q(Ql) [ Icm/cml ] Q(QX) * E Q(Qi) [ ILLl ] Q(Ql)

(A-31)
Defining the inertia about the local origin as

[1’]=[1 ]+[1 ] (A-32)
LLl cm/cn‘ LL‘ :

this kinetic energy term can finally be written as

=1 T ' -
= 2 w(g) [ Iu_l ] w(Q,) (A-33)
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The sixth kinetic energy term is similar in form to the

fifth term.

[ ptx)) { w(Q) x 5‘} . { w(Q) x g(ﬁl)} av (A-34)
v

Proceeding with the derivation in a similar way,

{ p(;l) { AxB } . { A x-C } dy .
o) n-(fe-o)e- - o) o

Ip(gl) AT[CTBA - BC’A] dv
v

J.p(;c_l) A’[C’Bm - BCT]A av (A-35)
. |

where [I] is the identity matrix. Introducing the original

vector functions,

=jﬂg)ggﬂ[y§ﬂgqgn1~yg)g%f]gg)w‘

(A-36)

g(gl) can be removed from the integral, resulting in

=ggfjp@g[ggfgqgu1-g@ggnggmg
v
(A-37)



The resulting expression is the rotational kinetic energy due to

the deflection of the body. Introducing the mode shapes,
m
T 1 T
= g(gl) jz1ql“ J. p()_c_l)[ §j(§1) ._._“Zb_cl)[I] (A-38)
- g(gx) §j(§‘) ] dv ol Ql).

the integral can be defined to be

T T
[Im; ] = I 9(5,)[‘?,(-’51) 20x )11 - £(x) 8,(x) ] av ,
v
(A-39)

and the sixth kinetic energy term can be rewritten as

i
- T -
= w(Q) Zl [ [ ILd”]q” } w(@) . (A-40)
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The seventh kinetic energy term is the couping between

the rigid body rotations, and the velocities of vibration.

fp(gl) {Q(Ql) x ;1} . {é(;_l)} av . (A-41)
v

Noting that cyclic permutations of the vectors in the scalar

triple product does not change the value of the result,

= I p(&l) 9(9‘) . { X X é(gl) } av . (A-42)
Y

Expressing the vector cross product in skew-symmetric form,

T
= I px,) { w(Q,) } [ g‘] {‘l‘ll’} av
v
T - ml .
= I p(&l) { Q(Ql) } [ xl] { Z [ qu §J[5l) ]} dv
v i=t

m
i

T
= {g(gl) } {Z [&U Ip()_(l) [i‘] 8 (x) av ]} (A-43)
v

)=

Defining the integral across the cross product as
gidu = J—p(g(_‘) [51 ] 8 (x) av , (A-44)
v
and defining a matrix,

P = * s e -
“qu] B [h‘{dll ' y:daz ! ! Ez':uml ] ’ (A-45)

this couping term can be rewritten as

- {Q(Ql)} [ I ] {{;1} : (A-28)
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The eighth kinetic energy term is the extra rotational

kinetic energy due to the deflection of the link.
1
Equg{gmgxgqg} {yg)xgg%dv (A-47)
v .

which is similar is form to the rigid-body kinetic energy term.
The derivation is the same up to the point where the original

term are introduced into the equation.

-[p()_(_‘) A’[B’Bm - BB’]A dv (A-48)
v

1
2

Substituting the original vectors, the kinetic energy term can

be expressed as

J.p(ﬁl) g(gl)’[ dix )T d(x 1) - dlx,) g(;l)T] w(Q,) av.

(A-49

Introducing the mode shapes results in

1 i T
= L T
T2 Q(Ql) z z qxj 9 I p(;l)[ [ §J(§x)] [ §k(¥l)]
v

T
_[ ‘§,(’-‘1)] [§k(z<_i)] ] av (@) - (A-50)
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Defining the inertia term associated with the integral as

T -
[ Iddijk] = J.p(ﬁn)[ [91(51)] [‘Eu(ﬁx)‘

\J
- T
-[ 8,(x,) [§k(>_<_‘)] av ,

(A-51)

the kinetic energy term becomes

§ {Q(Q‘)}r Ji: j: [q”q“‘[ gt i) } {egp}.

(A-52)
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The nineth kinetic energy term is

f plx,) {9(9_‘) X g(;x)} . {g(x_l)} av

{uar} {, Jou [ (500

5 (x) dv q } (A-53)
-k 1 1k
Defining the integral to be

—ddi jk

Me = I px,) [g)(gl)] 5 (x) v, (A-54)

this kinetic energy term can be rewritten as

m
i

= { w(Q )} [ z q, ' —44111 | lequ g;d112 oo (A-55)

i
I lequ rjEdn,mi ] qtk'
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The tenth and final kinetic energy term is

1 (1) (1)
! J.p(g‘) { 9‘51’} . { g(gl)} Qv . (A-56)

o
i i
1 * .
3 [o {3 (5w ]} {5 s Jh o
(A-57)
then taking the velocity of vibrations outside the integral,

results in

1

] m
i
- l . . .
T2 Z z 9y 9 I p(Kl)[ §1(51)] [ ék(lx)]dv '
151 k=1
Y
{A-58)
Defining the generalized mass of vibrations,
P
S J-p(xi)[ ‘L"—%’] {(}k(&l)]dv . (A-59)

v

which forms the generalized translational mass matrix of

vibrations, [ I:q1 ], the kinetic energy term can be written as

=17 ] -
-29‘[I ]gl- (A-60)



At this point it should be noted that this derivation was
based on the translational mode shapes of the link. The kinetic
energy contribution of the rotational modes can be obtained via
a method analogous to that wused for translational modes.
Assuming that the local link rotational deflections are
decoupled from the local link translational deflections, the

rotational kinetic energy of the link can be expressed as:

R 1
ke? = 2 [ 1y {9(;‘) } . {9(;‘) }dv. (A-61)
v

The angular velocity of a reference point can be written as the
sum of the velocity of a reference 'point and the velocity
relative to the reference point. The reference point is chosen
to coincide with the local origin of the link. The equation of

velocity is then
wlx) = @) + 8(x), (A-62)

and the rotational kinetic energy is

KET = : J' I/V(x) {g(g‘) } . {Q(Q
v

o
(o

+
—
-
N
<
ke
—
£
JO
—
—
1D
I
— —
[o % [o%
< <

+
N

v
J' IV (x,) {é(;‘) } . {éu_cl) } av. (A-63)
v
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The first integration occured in the previous derivation,

because it 1is a measure of the curl of the translational

velocity fleld. The second integration can be expressed as:

= J V() {g(gl) }T {ii[&” ¢, (x) ]} dv
v

151

1=

T i
= { w(Q,) } {Z [qu I IV(x) g (x) Qv ]} (A-64)
v

Defining the integral to be

Eidlj = I I/V(;l) Qj(gl) dv
v

(A-85)

and deflning a matrix

—
[

—[MR I MY 1 eee | MR ] (A-66)
Lqt -Ldi1 -1d12 -Ldim‘

this couping term can be rewritten as

= {‘1"91’} [ I ] {éi} . (A-67)
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The third, and final integration can be expressed as

(A-68)

Taking the velocity of vibrations outside the integral,

] m
1 1
1 . .
= 2 Z Z q,, Q. I I/V(;x)[ QJ(K‘)] [ gk(gi)]dv .
J=1 k=1 v
(A-69)
Next, defining the generalized mass of vibrations,
R _ . -
I = | 1/\/(5‘)[ gj(g‘)] [u_;k_(;‘)]dv (A-70)

which forms the rotatlonal generalized mass matrix of

vibrations, [ qu‘ ]. The final integration can be expressed as

1 T hd
=2 s,[ Lot ] g, - (A-T1)



The kinetic energy can now be presented in terms of the

new mass and inertia matricies.

Defining:
I ]=[IP ]+[I“ ] (A-72)
Lq Lq Lq
- i 1 1
and
I ] = [ 1 ] + [ 1® ], (A-73)
SR q, aq,

+
[T
—
1€
o
—
.-.
——
—
r
- -
—_—
—
1€
Ao
=

0 e

+ 8(KE) + 3%(KE) (A-74)

where &(KE) and 62(KE) are the kinetic energy term which are

functions of the link deflections, and are small.
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This expression can be organized into the desired quadratic

form.

1 7T *
L =38 [ I ] ¢, (A-75)

T v
] [I [i ] 4 w(C_J)»
LL Lq - "1
[ B 1

N -
a
€
—~
(@]

-

A

[ pemmenn |
—

-]

=

-

(A-78)

This local inertia matrix Iis used in the derivation of the
equations of motion. In deriving these inertia terms, the reader
must be cautious that none of the assumptions or restrictions of
the vibrations model are violated. Due to the generality
of this modeling method, these restrictions are not inherently
included as the equatlons were derived. Those unfami{iar with
the restrictions which apply to models of vibrations 1in

continuous systems are urged to refer to Thomson (23].
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APPENDIX B

Derivation of the Stiffness Matrix

The expression of the potential energy due to elastic

deflection of a system is given as:

PE =
1

N )=

IEI/V(K‘) az/a>_cf{ (“Q(gc_l) } . azxagf{ “)d_(gl) }d\l .
v

(B-1)
In this case, the link is assumed to be long and thin. The

equation for the local deflection is assumed to be the sum

of the normal modes:

m
i
_ (1) _
d(x) -Z q, '3, (B-2)
3=
such that
l.l
-1 2, 2[(1) ]
PE, = 3 IEI/V(gl) ;; q,, 8 /6)_(1{ gu}
v -

m
1

q az/axz{“’a }dv .
& 1) =i <1}

(B-3)
The summation and the generalized coordinates of vibrations can

be taken outside the integral,

ul -l
1
PE = 2 z X q, 9, (B-4)
j=1 k=1
J'EI/V(g) a"’/axz{ Mg } . az/axz{ s }dv .
1 <t =1j ) =ik
v
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Now, define the integration to be the stiffness term relating

the potential energy due to the deflections qU and q,

¢ = j' EI/V(x ) az/ax"'{“’a } . az/axz{‘”a } qv .
Lk 1 = =1} %1 =ik
v

(B-5)
analogously for the rotational deflections:
K= I GI/N(x ) 8/3x% {“’y_: } . 8/8% {‘”w }dv .
13k 1 =i 1) =1 ik
v
(B-6)

The potential energy can now be expressed in quadratic form,
=147 -
PEi > 9, [ Kl ] q, - (B-7)

where [ Ki ] = [ KT ] + [ Kf ] (B-8)
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APPENDIX C
VSim: A Simulation Package

The source code for the simulation resides on the Silicon
Graphics 4-D computer system in the University of Texas
Mechanical Systems Robotics Lab. It may be found 1in the
following directory:
/usr/people/philip/VIBES
To perform a simulation, the following files must be altered
for the system which is to be simulated.
/usr/people/philip/VIBES/Robotdat.c
and
/usr/people/philip/VIBES/Model.c
The first contains the mass, geometry, and stiffness data for
the system to be simulated. The control model for the system
must be included in the second file. It is suggested that the
user be familiar with the screen editor Vi, which is the common
editor in a Unix system. The user must also be able to program
in the computer language "C" to implement a control! model. The
whole program must be compiled by the following command:
cc =03 -2g -o VSim VSim.c

This compiles the program using the full optimization option.

122



To execute the simulation, type:

VSim outfile

The word "outfile" refers to the name of the file in which the
output data will be found. It may be replaced by any other name,
and may include a directory, using the common Unix format. The
program will ask what the starting and ending times should be,

and what the minimum, and maximum time steps should be.
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sinclude "math.h*
zinclude "stdio.h"

sinclude "Robotdat.c"
tinclude "External.c”

tinclude "Const.c"
tinclude "Cmath.c"
zinclude "Gear.c"
tinclude "Geometry.c*
tinclude "Kinematics.c”
sinclude “Istar.c”
zinclude "Kstar.c”
zinclude "Torque.c”
=include "Model.c"

sain(argc, argv)

int arge;
char wargv{;:

iouble cndtzmc,hh,hhmin,hhmax,opl,printtimo,oldprxnt:
icukle :,y[a:ford-rj,savo[lz}{ordcr},ymax(crd.r}:

icuble crror(ordcr:,pw[ord.t][ordcr),tcld,hhcld,hhnnw,-aa:
int L,j,mt,ktlaq,jstart,maxdnr,nq,nqold.nowq,k,nunda:a:
FILE +dat_file, *fopen():

Lffarge>l) o
erintf("The output filename is called ¥s n \n",*rargvel));

printf("starttine= ?'n");
scanf("slf",&t);

printff"starttine= e n",t);
printf("endtime= 2\n"):

scanf("%¥1lf", sendtine);

printf("endtine= fe\n",endtine; ;
printf("how many data points 2nn");
scanf("3d", énumdata,) ;

printf("initial step size= 2\n");
scanf("sl£", shh);

orintf("initial step size= ie n", hh);
printf(”ninimum step size= ' n");
scant("ylf", shhnin) ;

printf("minimum step size= ie‘n", hhmin):
printf(“naximum step size= 2n"):
scanf("%1¢", shhmax) :

printf("maximum step size= te\n", hhmax) ;
printf("error constants 2\n"y
scanf("s1lf", seps);

orintf(“error constants Ye\n",eps);

dat_tilc-topnn('(argv’lj,"w"):
for(i=0:i<order;i~+) y{0]{i]=0.:

nt=0;
for(i=0;i<order:i++) |

GRIGINAL PAGE IS
OF POOR QUALITY
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ymax(i]=1.0:
arror(i}=0.0;
}
jstart=0:
maxder=6:
printtimc-(ondcim--:)/numda:a:
oldprints=t;

printf("The integration is now starting \n"):
Gcar(&:,y,savc,Ehh,&hhmin,&hhmax,op:.mf,ymax,error.&ktlaq,&jstart,
maxd-r,pw,&told,&hhold,&hhnow,&nq,&nqold,&newq,&k):

jstart=l;
:printt(dat_tile,“%d\n“,do!):
while(t<endtime && kflag>0) |
printf("%d”,nq);
if(t>(oldprint+printtine)) (
oldprinte=t:
tprintt(dat_tilt,"%o ", L)y
for(j=0;j<dof;j++) fprintf(dat_file, "%¥1l.4de "oy(0Y[i)
tprintf(dat_file,"\n"):

}
Gear(i:,y,savo.&hh,ihhmin,&hhmax,eps,mt,ymax,etror,&ktlaq,
&jstart,maxdcr,pu,itold,&hhold,&hhncw,&nq,&nqold,&newq,&k):
)

fclose(dat_file):
pzintf("k!laq-\d\n",kflaq):
b

else pr.ntf("Please include the name of the output file “n"):

URIGINAL b
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sdefine order dof*2
typedef double Vector(3], Matrix{3j[3]:

double sa(n)], ca(n), stheta{n], ctheta(n];

ORIGINAL PAGE IS
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Const (G,Gp)

+ INITIALIZE THE JACOBIAN AND HESSIAN MATRICIES TO ALL ZERO */

/* COMPUTE CONSTANT VALUES IN THE JACOBIAN AND

double G{n](6][def], Gp[nl(6](dot]:

int i,3,k,1¢

extern int state_type(n], state_dir(dof], stat
extern int jflag(n]:

extern double alpha{n], theta{n], sa(n}, ca(n]

‘« COMPUTE THE TRANSCENDENTAL FUNCTIONS OF THE
LINK PARAMETERS */

tor(i=Q;i<n:isr+) |
sa[ij=sin(alpha(i])};
ca(il=cos(alpha(i]):
stheta(i]=sin(theta(i]);
ctheta(i)=cos(theta(i}):
}

. % INTITIALIZE THE JACOBIANS */
for(j=0:j<n:je+) |
for(k=0:k<6;:Ke+) |
for(l=0;:l<dof;l+~) GIJ1lk]{l
for(l=0:l<dof:l+-) Gp(J1ik]{
b

=
1
i

]
1

» ASSEMBLE ALL CONSTANT FLEX DIRECTICH COSINE
.=h;
forri=helrjcnsie=) !
l=state_pos(hl«jflag(hj+l:
for(k=l:;k<lemt i]:k++)
Gp(jl(state_dirrk} (k]=1.:
for(:k<state_pos{hel];k++)
Gplj]rstate_dir(k]«3][kl=l.;
« ASSEMBLE ALL CONSTANT JOINT OIRECTION COSIN
forimh=1:]>=0;3==) |
ijjjS-J'stacc_:ypa{h]]{staco_pos[h];-
Gpj]jj5-!'state_typo{h]Itstate_pos(h]]

133T8LE ALL COMNSTANT JOINT FLEX DIRECTION
£lag’hl; !
for(j=h=1;3>=0:j=~) |
G[j][S5-3I*state_type h], state_
Gp[j]{s-lﬂstate_type:hjj[s:aCe
§

]
» ALL GROSS MOTION DIRECTION COSINES */
Lf rfree) |
fsriim0ii<niie~)
tfor(l=6;1>0;1=-=) G{j)(6~-1)[dof~1l]=1.:
for(l=6:1>0:1--) Gpl[j][(6-1](dof=1l]=1.;
)i

HESSIAN MATRICIES */

e _pos(n], mtin], mr{n}:
, stheta(n], ctheta(n]:

CONSTANT ANGLE

0.:
=0, ;

S */

/% translational flex */

/* rotational flex */
ES */

1.0:
=1.0;

COSINES */

pos /h +1!=1.0:
_pos[h:-lj-l.o:

T T L]
DRIGINAL page '3
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:define max_ele dof*2

/S .t....'.t"i"'ﬁﬁ"t'."‘./

/* PRINT MATRIX TO SCREEN */
P T Y T Ly

PRINTM(M, i,3)

double *M;
int 1,37

int k,l,row;

printf(*\n"):
for (km0;k<iike+)
rowskwy;
printf("\n"):
Lf(*(Mrrow+l)>=0)
for(l=0;1<j:1l++) printf(" $1.2e ", *(M+row+l)):
else
for(l=0;:;1<j:1++) printf("\l.2e ", *(M+row+l));
printf("\n"):
}

srintf("\n");
return(li):

.QIQC'.....'.'.'.'./

* MATRIX MULTIPLY ¢/

LAAAA RS AR AR AR EXE R N
T, L, 3,0,k 0,0)
icuble *M, %N, *0;

e L,3,K, L0

nt e, f,q:

JE s imk) return(-l): /* check to see if matricies are conformable +.
fzr ‘ew(;e<);@e-) /* row counter for matrix M =~/
Eor (f=mD;fc) fe") /* column counter for matrix N */

*/{0+1lve-£)®=0.0;
for (g=0:g<ji;ge=) *(O+«l*g+f)+e= rMejre~qg, *+ *(l-1leg+f);
'

Qt"."'.'."/

* TRANSPOSE »/
R I Y

T, L300

mt 1,3

~TAUIRER G Uag e ngs
\.n‘».‘if.u*wh. e o

OF POOR QUALITY



jouble *M, *N:

f

int x,1l:
for (k=0;k<iik++)

{
for(1=0;:1<jil++) # (N+leivk)= * (M+krj+l):
)
return(l);

\
i

t'ii'iﬁﬁiﬁ.ﬁ"'i‘../

» SCALAR MULTIPLY */

tttit'itttttiﬂitﬁ'i/
sM(M,1,3,8.N)

int 1,3
double *M, *N, S

int k,1:
for rx=0 k<l k+=)

4
far(l=0:1<iile")

{
»(Nek#j+l) = S * * (M+R*j+1) ¢
i

!
rezurnil)

AR AR AR N AR AR R AR RN

« 1208S PRODUCTS */

tr'.t""'.'i'.'.'}
~rossx(%,0,G)
ratrix

-
ecTor T

cgrepr2i-%i2; 01 ElL
“interio; -tro‘Lo*-ztz,,
figepiitegilliolerlOl

YL WL

cgtilimellll ‘1repc2)-t{2)[1i*r(L]
1iiii=el2l f1iere Fol-efoi(1)er(2]:
RS LI DR DAL 1 fli-ef1i{iieriol):
eTirn(i):

- " L)hll.l -

~ross2/t.r.G)

SIS TR
PN v e 1D
i
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Matrix t,G:
‘’ector r:

.'i't't'it'i"Q'i..'t....tt"'/

* GENERATE A ROTATION MATRIX +/
e ey,

ROT/axis,radians M)

int axis;
dcuble radians:
Matrix M;

Lnt 1,3:

for (im0 icdiee)
for(j=0:j<3:j+e)
‘ M{i]7§1=0.0;
11

Ji’axis==m?)
M70)70'=cos(radians):
MI0!71;= -gin(radians);
MT1iI0i= <M{O})[{1;:

MILTT1IAMr0 100 ;
42772 a100:

e.se Lf/axis==];

A DN
Mt
Mol
Miate
izl

!=cos(radians):
'=sin({radians):
=1.0;

.= o=MI0]C21;
C=MrQYI0t;

[ RN VY

2.se Lf’axis==);
M'01°01=1.0;
A1 li=cos(radians);
4717 72'= -sin(radians;:
ME271)m =M{17723:
M2l mMr1 1

return(y; ;

CRICINAL PAGE 1S
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/* MATRIX INVERSE ~/
*/

/* using
/* Gaussian-Jordan ./
/* Elimination "/

/tiﬁnﬁitttﬁ.-.'t'tiﬁti"/
GInverse(ti,a,nn)
,* ti points to the matrix to be inverted */

/* a points to the inverted matrix */
/* nn is the dimension of the matrix */

double *a, *ti;
int nn;

{

int ipiv(max_ele], indxr(max_ele], indxc[max_ele]:
int i, j, k, irow, iecel, 1, 11, row, col:
double big,dum,pivinv;

for (im0:i<nn;i++) |
row=ji+nn:
for (3=0:j<nnrj++) |

}

*(a~row+j)= *(tirrow+y}:
}

for(i=0:j<nn:i+s+) *(ipiv+])=0;

Sor!i=0;i<nn;is~) !

big=0.:

for(j=0:j<nn:j++) |

row=sj*nn;
LE(*(ipive]) !=1) ¢
for(k=0;k<nn;k+=) !
if(s(ipivek) == 0D} |
Lf{fabs(*{a+rrow«k)) >=p013)

big=fabs(*(arrow+k)):
irow=j;
icol=k:
}

)

else Lf(*(ipiv+k)>1) !
printf{”"singular natrix"):
return:
'

}

-- w(ipiv+icol};
roWsnnN* irow:
col=nn*icol:
if(irow!=icol) !

for(l=0:l<nn;l++) {
dum= *(a+row+l):
*(asrow+l)= *(arcol+l);
*(a+col+l)=dum;
1
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}

*(indxr+i)=irow:

*(indxc+i)=icol;

it(*(a+col+icol)==0) |
printf("singular matrix"):
reaturn;

}
pivinvsl./ #(a+col+icol);
¢(a+col+icol)=1,;
for(l=0:;1l<nn;l++) #(a+col+l)= *(a+col+l) *pivinv;
for(llag:ll<nn;lle+) ¢
if(ll!=icol) ¢
rowsnnvll;
colwnnwicol:;
dume *(a+row+icol);
*(a+row+icol)=0. ;
for(l=0:1l<nn;l++) *{a+row+l) -= #(a+col-l)*dum;
)
)

v
for(l=nn=1:1>m0;1==) |

return;

if{*(indxr+l) != «(indxce+l)) [
for(k=0:k<nn:k++) ¢
rowsnn+vk;
dums #(aerow+ *(indxr+l)):
*(a+rrow+ *(indxr+l))s +(a+row+ *(indxce+l)):;
*(arrow+ *(indxcel))sdum;
H
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Geometry(phi,t,tl,r)

« GIVEN THE GEOMETRY STATES, CREATE THE TRANSFORMATION MATRICIES AND
THE POSITION VECTORS %/

,+ NOTE THAT THE CONSTANT POSITION VECTOR r(h], THE CONSTANT TRANS-
FORMATION MATRIX t(h], THE TRANSCENDENTALS OF ALPHA(n] AND THETA(n:
ARE ALREADY ASSIGNED VALUES BY THE CONSTANTS ROUTINE */

double phi{def]:
Matrix tlin],t(n):
‘'ecTor rinj;

*

ohi’dof) : THE GEOMETRY STATES

<tni’3}73] : THE TRANSFORMATION FROM LOCAL SYSTEM 1 TO SYSTEM H

tl;nj 3773] : THE LOCAL TRANSFORMATION MATRIX FROM i to i-1 WHEN
i>h, OR FROM i to i~1 WHEN i<h.

r'n 737 : THE POSITION VECTOR FROM ORIGIY H TO ORIGIN N

L3
extern int state_typen}, state_pos(nl, state_dir‘dof;, mtin], mrinj, h:
axtern double mode(dof!, sa(n], ca(n], thetafn), sthetain!, cthetain;j:
extern Vector L{n}:

w/

nt L.i.k,1.me
4dcuble a,s,c?
rector del’n)!, rdelin], rl,r2:

Maerix tl:

+ TUE ROTATION MATRIX ASSOCIATED WITH FRAME h IS THE IDENTITY MATRIX */
mrsim0iciiier)

for(i=0;3<3i)~*) !

tl(hj{i}{il=0.:

tihj{illj]=0.;

)
1’ lii 1=l
thllijiig=l.

of gt

« ~2wPUTE LOCAL DEFLECTIONS OF EACH LINK */
fzrriadiiongies) !

iagtate_posij+jflagli +l:

« INITIALIZE THE DEFLECTIONS TO ZERO */
far(k=mQ k<3 ikes) |
del(i]{k]=0;
rdel[i}[k;=0;
}

s* SUM THE TRANSLATIONAL DEFLECTIONS OF LINK 1 */

/* ¥ DEMOTES THE STATE POSITION ASSOCIATED WITH A DEFLECTIOCHN
OF LINK 1 »/

for (ksjrkejemt{i]ike+) dol[i][state_dir[k)}‘npnl[kj'modefk}:

./« §UM THE ROTATIONAL DEFLECTIONS OF LIMK 1 */
s+ % DEMOTES THE STATE POSITION ASSOCIATED WITH A DEFLECITION
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OF LINK i »/
for (:k<jemt(i}+mr(i):k++) rdel(i](state_dir({k]]-=phi(X)*mode(k:
)

* COMPUTE 3x3 ROTATION MATRICIES AND POSITION VECTORS FOR ALL > h +/
for(ishel;icn;ii+es) {
j=state_pos{i];

/* COMPUTE TRANSCENDENTAL FUNCTIONS OF JOINT i *»/
/* IF JOINT i IS ROTATIONAL, INCLUDE JOINT i MAGNITUDE
AND DEFLECTION (theta(i] is the constant joint rotation) */
if(!state_type(i]) i -
c=cos (phi(jl+phi{j+l]*jflag{i]+theta(i]):
sesin(phi{j}+phi(j+1]*jflag(i]+thetali]):

)

+ IF JOINT i IS TRANSLATIONAL, OR CONSTRAINED, LEAVE OUT
JOINT i MAGNITUDE AND DEFLECTION, AND INCLUDE CONSTANT
LINK i PARAMETER TRANSCENDENTALS#*/

else (
cw=ctheta(il:
swgtheta(i]:
}

s * FORM LOCAL TRANSFORMATION MATRIX TO TRANSFORM A VECTOR FROM
LOCAL FRAME i TO LOCAL FRAME i1-1. THIS TRANSFORMATION IS a
FUNCTION OF THE TRANSCENDENTALS OF JOINT i AND ALPHA i-1,
AND LINK i~1 DEFLECTIONS o/

rei=-1:

1707 0)=c-rdel’k (2 *calk)*s+rdel kX ‘1]}*sa‘k;*s;

1170 71]= -s-rdel kj[2;*calk *cerdel k)[1]*sa(k *c;

i)70](2!=rdel{k]{2 *sa[k!+rdel{k; 1 ;*calk]:

Ci;71;[0]=rdel{k}{2]*crcal(k!*s-rdel k ‘0 %sark)+s;

71071, 71]= ~rdel{kj(2)*s»calk]}*c-rdel k{0 *sak]*c;

1]71)12]= -sa(k]j-rdel’k!{0)%ca(k’:

717727(0]= -rdellk]l]*cerdel(k](0)*ca k)*s+sa k]*s;

%

i

al

27l =rdel {K][1 ;*s-rdel{k])[0]%ca({k *cesalk *c:
T2172)= -rdal{k][0l*sa(k]+ca{k’;

AR RN R NN
L R e

* FORM THE TRANSFORMATION MATRIX TO TRANSFORM A VECTOR FRCH
LOCAL FRAME i to GLOBAL FRAME h +/
eri-17,3,3,e104],3,3,8043) ¢

* FORM THE LOCAL POSITION VECTOR FROM ORIGIN i-1 TO ORIGIY i
THIS 7ECTOR IS A FUNCTION OF THE LENGTH OF LIMK i-1, THE
CEFLECTION OF LINK i=-1, THE TRANSLATION OF JOINT i, AND THE
TPANSLATIONAL DEFLECTION OF JOINT i. THIS LOCAL POSITICH
JECTOR IS IN THE i-1 LOCAL FRAME +/

* IF JOINT 1 IS TRANLATIONAL, INCLUDE JOINT i MAGUITUDE aliD
DEFLECTION »/

ifrstate_typef{i;) ¢
m=mgtate_pos(i]:
for (k=0;k<3 ; k++)
rlik)sL{i-1j(k]+del{i~1] (k]
+t{i](k](2]*(phi m +phi n~1;*3flag(i ;:
i
,* IF JOINT 1 IS ROTATIONAL, LEAVE OUT JOINT 1 MAGNITUDE AMND
DEFLECTION #/

else !
for(k=0;k<3:k+~) ri{k)=L[{i-1)(k)~del[i~1 "k!:
¥
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/* CONVERT LOCAL POSITION VECTOR TO FRAME H */
MM(t(i=1].3,3,r1,3,1,72)¢

/% FORM THE POSITION VECTOR FROM ORIGIN H TO ORIGIN T */
for (k=0:k<3k++}) r{i](k]=r{i-1]1(k]+r2(k};

t

/* COMPUTE 3x3 ROTATION MATRICIES AND POSITION YECTORS FOR ALL < H *~/
for(i=h:;i>0:i++) |
jmstate_pos(i):

/* COMPUTE TRANSCENDENTAL FUNCTIONS OF JOINT i */
/# IF JOINT i IS ROTATIONAL, INCLUDE JOINT i MAGNITUDE
AND DEFLECTION (theta(i] is the constant joint rotation) */
if(!state_typeli]}) |
c-cos(phi[j]Ophi(j¢1]'jflaq(i]*thcta[i]):
)

s-sin(phi[j]*phl[j*l}'jrlaq[il+theta[i]

)

/% IF JOINT 1 IS TRANSLATIONAL, LEAVE OUT JOINT i MAGNITUDE
AND DEFLECTION, AND INCLUDE CONSTANT LINK i PARAMETER
TRANSENDENTALS */

else |

c=ctheta[i]:
smstheta(i];
}

/* FORM LOCAL TRANSFORMATION MATRIX TO TRANFORM A VECTOR FROM
LOCAL FRAME i-1 TO LOCAL FRAME i. THIS TRANSFORMATION IS A
FUNCTION OF THE TRANSCENDENTALS OF JOINT 1 AND ALPHA 1-1,
AND LINK i-1 DEFLECTIONS */

k=i-1;

tl{k}:0][0]-c-rdel(k]:2]'ca[k}'s+rdeljk}[l]*sa(k;'s:

‘k;C1i70)= -s-rdel[k}{2}'ca[kj'c~rdel{k][lj-sa(kj-c:

jkjij:0]-rdel(k1{2]'sa[k;—rdel(k}{1}'ca[k1:

jkjjOj(1}-rdel[k][Zjﬁcvca[kj*s-rdel[k][Oj'sa(k}-s:

‘k;Ilill)= -rdel[k]:2]-s+ca[k]'c-rdel[k}[01-sa{kj-c:

‘kiT271l]= -salk]-rdel[k]{0]*ca(k]:

k171112 = -rdel[k}[1]'c+rdcl[k1(0]*ca(k]'s+sa{k}'s:

fkj:2}[2j-rdel[k][1;-svtdel[k}{O]'ca[kl'cosa[kjic:

w132 = -rdel(k](0]*sa(k]+calk]:

AN N i il
O e s

'+ FORM THE TRANSFORMATION MATRIX TO TRANSFORM A VECTOR FROM
LOCAL FRAME i-1 to GLOBAL FRAME h */
w(esi,3,3,tlik], 3,3, 80k}

‘» FORM THE LOCAL POSITION VECTOR FROM ORIGIN 1 TO ORIGIMN i-1
THIS JECTOR IS A FUNCTION OF THE LENGTH OF LINK 1-1, THE
SEFLECTION OF LINK i-l, THE TRANSLATION OF JOINT i, AaND THE
~RANSLATIONAL DEFLECTION OF JOINT 1 */

;* IF JOINT i IS TRANLATIONAL, INCLUDE JOINT 1 MAGHITUDE AlD
DEFLECTION */

1f¢!state_type(i]) |

m=state_pos{i]:
for (k=0:k<l:k++)
rifk]= =L{i=1](k]-del{i-1]

[k
~e{ij(k](2}

i

«(phi/m)+phi m-l]*jflag:il):
)

,« IF JOINT i IS ROTATIONAL, LEAVE OUT JOINT i MAGMITUDE AND

DEFLECTION */
alse !

NeL PEOY 18
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for(km0:k<3;k++) ri{k]= -L[i-1][k]-del(i-1](k];
}

/* CONVERT LOCAL POSITION VECTOR TO FRAME H #/
MM(t(i-1],3,3,r1,3,1,r2):

/* FORM THE POSITION VECTOR FROM ORIGIN H TO ORIGIN i-1 */
for(kw0:k<3:k++) r(i-1)(k]er(i}(k]+r2(k]; -
)
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Kinermatics(t,r,G,Gp)

/* GIVEN THE TRANSFORMATION MATRICIES t{n] AND THE POSITION VECTORS
r{n], THE JACOBIAN AND HESSIAN MATRICIES FOR EACH LOCAL FRAME ARE FORMED */

Matrix t(n]:
vector rinl:
double Ginj[6][dof],Gp(n](6](dotL];

i

int i, j, k., 1, 11, 12, 13;

Maerix GPJKPIn}[n}, GPJKD(n}[n], GPJK(n}(n]:

Yeczor rl:

extern int state_type{n], state_dirf{dof], state_pos{n], mt{nj, mrinj:

+ COMPUTE ALL CROSS PRODUCTS WHICH ARE THE GEOMETRIC INFLUENCE
OF THE ROTATIONS ON THE TRANSLATIONS OF THE LOCAL FRAMES */

« COMPUTE THE CROSS PRODUCTS ASSOCIATED WITH THE GROSS MOTION
OF LINK h */

for(i=0;ichyies) |

C:ossx(c[h],rfx],GPJK[h}[i}):
Crossy(:(h],r{i},GPJKth}(i]):
Ccrossz(tih),rii],GPIK{N]I[i]);

)
for(imhel;i<niis=) |

Cressx(t h),r[i},GPIKIh (i1}
C:cssy(t(h},rtil,G?JK(h]:ij):
h:ril):

Cressz(tfh’,r’i},GPIKIh; 1]

« CCUEUTE CROSS PRODUCTS ASSOCIATED WITH JOINT MOTIONS AND VIBRATICHS */
« FCR ALL LINKS, DEFINE THE PROXIMAL END OF LINK 1 TO

£2INCIDE WITH THE LOCAL REFERENCE FRAME i, AND THE DISTAL END

~AF THE LIYK TO COINCIDE WITH LOCAL REFERENCE FRAME i-1 */

« “CTE THAT FOR LINKS NUMBERED > h, THE MOTION OF JOINT i CONTRIBUTES

-4 T4r ¥CTION OF LOCAL FRAMES i, i«l1, ... n=1. BUT THE VIBRATIONS OF LINK 1
(“HICH IS DEFIMED AS THE MOTION OF FRAME i~1 RELATIVE TO THE MoTION
AT IOINT i) CONTRIBUTES TO THE MOTION OF LOCAL FRAMES i+l, i-2, ... a=-1.

EFORE THE CROSS PRODUCTS ASSOCIATED WITH THE MOTION OF SOINT §

3E DIFFERENT THAN THE CROSS PRODUCTS ASSOCIATED WITH THE
;r=3pATIONS OF LINK i, THE CROSS PRODUCTS ASSOCIATED WITH JOINT
wATION WILL SE CALLED GPJKP, AND THE CROSS PRODUCTS ASSOCIATED WITH
->z3PATTIONS WILL BE CALLED GPJKD. */

« . DENGTES THE JOINT VELOCITY OR LINK YIBRATIOHS REFERENCED 10O THE
ith LCCAL FRAME */

cor(imh;i<(n=1):l+e=) |
/% - DENQOTES THE LOCAL FRAME WHERE THE POSITION VECTCR TERMIUATES */
for(imi+l:j<=mn;j++) |

/% COMPUTE CROSS PROOUCT OF LOCAL LINK i JOINT AXIS AlD
POSITION VECTORS ORIGINATING AT THE PROXIMAL END OF LIMNK

G?ﬂ;‘::j’?r [ I AP,
W AN PG S

CF FOOR QueLITY
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i+l AND TERMINATING AT THE ORIGIN OF LINK j. THIS IS
THE CROSS PRODUCT ASSOCIATED WITH JOINT MOTION i +/

for(k=0;k<3:k++) ril(k]=r{j](k]-r[i]{k]:
Crossz(t(i],rl,GPIKP(i](j]):
}

for(jmi+2:j<=n;j++) ¢

/* COMPUTE CROSS PRODUCT OF LOCAL LINK i AXES AND
POSITION VECTORS ORIGINATING AT THE DISTAL END OF
LINK i+l AND TERMINATING AT THE ORIGIN OF LINK j.
THIS IS THE CROSS PRODUCT ASSOCIATED WITH THE
THE VIBRATIONS OF LINK i w»/

for(k=0:k<3:k++) ri{k]=e(j](k]-r(i}(k]:

/* THE CROSS PRODUCT IN THE JOINT DIRECTION IS */
for(km0;: k<3 ;k++)
GPJKD(i}(j](k][Z]-GPJKP(i][j][k](Z]-GPJKP[i]Ei‘l}[k}[Z}:

/* THE CROSS PRODUCTS IN THE X AND Y DIRECTIONS ARE */
Crossx(t(i],rl,.GPIKD{i](3]):
Crossy(t(i],rl,GPIKD(i][3}):

)

* THE h JOINT AXIS IS A SPECIAL CASE, WHICH EFFECTS THE LINKS NUMBERED < h v/
* THE CROSS PRODUCTS ASSOCIATED WITH THIS HAVE BEEN COMPUTED, ONLY THE SIGN
MUST 3E CHANGED WHEN THIS CROSS PRODUCT IS USED FOR JOINT h MOTION ./

* NOTE THAT FOR LIMKS NUMBERED < h, THE MOTION OF JOINT i COHTRIBUTES

TO THE MOTION OF LOCAL FRAMES i-l, ... 0, AND THE VIBRATIONS OF LINK |
“HICH IS DEFINED AS THE MOTION OF FRAME i+l RELATIVE TO THE MOTION
JOINT i) CONTRIBUTES TO THE MOTION OF LOCAL FRAMES i, i-1, ... o.
. THE CROSS PRODUCTS ASSOCIATED WITH THE MOTION OF JOINT i
«wiLZ 3E THE SAME AS THE CROSS PRODUCTS ASSOCIATED WITH THE
/IBRATIONS OF LIMNK i, SINCE THEIR RELATIVE MOTIONS COINCIDE AT THE
Z2CAL ith COORDINATE FRAME. »/

el
ar

* - JENCTES THE JOINT VELOCITY OR LINK VIBRATIONS REFERENCED TO THE
.n LJCAL FRAME e/

Itrilmnelil>0 .- |
+* 3 DENOTES THE LOCAL FRAME WHERE THE POSITION VECTOR TERMIMNATES */
forijmi-1l;3>=0;:j==)

/* COMPUTE CROSS PRODUCT OF LOCAL LINK i AXES AND
POSITION YECTORS ORIGINATING AT THE DISTAL END OF
LINK i-1 AND TERMINATING AT THE ORIGIN OF LINK j.
THIS IS THE CROSS PRODUCT ASSOCIATED WITH BOTH
THE JOINT MOTION i AND THE VIBRATIONS OF LINK 1 #-

tor(k=0:k<3;k++) rl{k]er(i]{k]=-r(j](k:;
Crossx(t(i],rl,GPIK[i](3][0}1):
Crossy(t(i],rl,GPIK({i](j][1])
Crossz(t({i],rl,GPIK(i}(3}[2])

i s . oy s
ORIGINAL PAZESIS
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/* ASSEMBLE THE JACOBIANS */

/% ALL DATA NEEDED TO FORM THE JACOBIAN IS NOW AVA
TRANSFORMATION MATRICIES, AND THE CROSS PRODUCT!

/* AT THE BEGINNING OF THE PROGRAM, A

2ERO, AND THE CONSTANT PARTS,

TRANSLATIONAL AND ROTATIONAL DEFLECTIONS OF LINK

PRODUCTS ASSOCIATED WITH THE
(EXCEPT THE CROSS PRODUCTS AS

COMPUTED. THE JACOBIAN FOR FRAME h

ARYING PARTS OF THE JACOBIAN

*
3

ILABLE FROM THE
S THAT WERE COMPUTED */

LL n JACOBIANS WERE INITIALIZED TO

ASSOCIATED WITH THE GROSS MOTION, THE

ROTATIONS) ,

SOCIATED WITH A RO

h (EXCEPT THE CROSS

AND THE MOTION OF JOINT h

TATIONAL JOINT), ARE
TS ALWAYS CONSTANT. ONLY THE TIME-

S ARE CHANGED IN THIS ROUTINE */

DENOTES THE JACOBIAN FOR FRAME j */

'« 3 INDICATES THAT THE JOINT MOTION OR VIBRATION IS ASSOCIATED WITH LINK i */

» k DENOTES THE STATE VECTOR POSITION OF JOINT MOTION, LINK VIBRATION,
OR GROSS MOTION. THE CONVENTION USED IS k EQUALS:

if i=0 (link 0}):

stat._pos[O]...statc_pos(mt(O]-l]
« translational deflections of link 0.

state_pos(mt{0]]...state_

pos[mt[O]*mz[O]-l]

= rotational deflections of link 0.

if isl...n=1 (all other joints gnd links):

state _pos(i] = motion of

joint i.

if jtlag = 1 (if there is flex in joint i)
state_pos[i]*jtlaq[i; = deflection of joint 1.
eranslational flex in link i)
..scat._pos[iJOjtlaq[x;omt[i3
ational deflections of link i.
rotational flex in link i)

ig me{i]>0 (if there is
scacc_pos[i]+j£laq[i]*1.

= transl
i€ mp(i)>0 (if there is

statc_pos(i]~jtlaq[ij~;~mc{i]

= rotati

s:atc_poszdct}-é s gross
state_posidof]-5 = gross
stace_pcs[dotj-4 = gross
s:a:e_pos(dot]-l = gross
state _pos{dof]-2 = gross
state_pog(dof]-1 = gross

« 3R j > h v/

...sta:n_pos[i]#jtlaq(ilvmt:Lj-mrixj;

onal deflections of link i.

cranslation
translation
translation
rotation of
rotation of
rotation of

of link h in the x direczion
of link h in the 7 direction
of link h in the & directicn
1ink h in the x direction
1ink h in the y directicn
link h in the z direct.on

THE NCN=-CONSTANT JOINT DIRECTION COSINES */

. W

« | DENOTES JOINT NUMBER */

fsr/i=h=l:i<niis=) |
li=state_pos{i}:

/# IF THIS JOINT HAS FLEX INCLUDE IT IN THE JACOBIAN */

ifriglagi’) !
/* 1

2 IS THE STATE POSITION OF THE OF JOINT 1 FLEX */

12=1ll+1l;

/* j DENOTES JACOB

IAN OF LOCAL FRAME J */

-

Mty
thativ,t L ;’,fig M gpa
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for(jmsi;j<nsie+) ¢
/* JOINT POSITION PARTS #/
/* 1 1S ZERO IF TRANSLATIONAL, OR THREE
IF ROTATIONAL JOINT #/
1 = 3-3sgtate_type{i}:
(11{11] ="eri)[o)¢
1+1](11] = £(i}(1
1+21[11) = £(4i](2
(L1[ll] = e(i]j(o0)
(l1](11) = e[1i)[
(1+2](11) = e(i]f
INT FLEX PARTS »/
11712) = £(1][0]¢
1 (1
1 (2
{ 0}
{ 1
{ IR

i

+1](12] = ¢{i] ]
1:

+2]1(12] = t{i)
11(12) = i)
1+1](12] = ¢[i

G(
G(
G[
Gp
Gp
P
*
{
{
(
P
P
P 1¢2]{12) = e[i

b))
30
I
(3]
(1]
{31

JO
bN
3
I
(1]
(1
(3]

H
H

-~ QAN QO

)
/% IF THIS JOINT HAS NO FLEX, LEAVE IT OUT OF THE JACOBIAN #/
else |
/* ) DENOTES JACOBIAN OF LOCAL FRAME j #/
for(je=irjen;jes) |
/* JOINT POSITIOM PARTS w/
/* 1 IS ZERO IF TRANSLATIONAL, OR THREE
IF ROTATIONAL JOINT #/
1 = 3-3'stat0_typc’i

G[3:[1][11l; = ¢"i® roysz,

GIIiflelocln; = efizr1ri2:
Gij.{l-2]011] = CCLI(ZIEZI?
GP(3.(1){11] = eli ro7(2};
Gp{3il1+1j(11] = ¢ 1}(1;:2;
GpIi{l=2]012]) = €{1i]72]:2!

i

DENOTES JOINT NUMBER #/
'-h-l i<n=l:ir=) |
7% CHECK TO SEE IF THE JOINT IS ROTATIONAL *»/
if/'state _typeli)) ¢
11 = state _pos(i;;
/% IF THIS JOINT HAS FLEX, INCLUDE IT IM THE JACCBIAN =+
1f (iflaglil) ¢
12=11+1;
/* 3 DENOTES JACOBIAN OF LOCAL FRAME : w/
tor(jmi+l:jen:je~-)
/* JOINT POSITION PARTS */
G[J1[O] (11} = GPIJKP'i 131(0}72;;

* ALL HdH-COHSTANT JOINT CROSS~-PRODUCTS */
* 1

GIIJ{1]{11] = GRIKPCii3if1i2]:
G[j1(2]{11‘ = GPIKP(i}’3]{2][2)
GpLil{0]{1ll} = GPJKP'L,(J]’O"z‘
Gp(ii(1]1{11] = GPIKP{ijfii[1if2]
Gp(3]{2](11] = GPIKP(il [J"27‘2’:
/% JOINT FLEX PARTS */
G(j}{0}{1l2] = GPIKP(1i;{j](0]({2):
G[ji(1]{l2] = GPIKP(i] ] T11(2];
GEjI[2}[121 = GPJKP{i](jl(2}72]):
Gp(Jj(o}(l2; = GPIKP[1([]j}r0.72];

ORICINAL PAGE IS
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Gp(j](1]{12] = GRPIKP(i](]](
?P[j {12} = GPIKP{1i]1(]]I(

}
/#* IF THIS JOINT HAS NO FLEX, LEAVE IT OUT OF THE JACOBIAN */
else |
/* j DENOTES JACOBIAN OF LOCAL FRAME j ow/
for(jmi+l:j<n:i++) |
/% JOINT POSITION PARTS */
G[31(0)(11] = GPIKP(i]([I](
G{3)(11[11) = GPIKP{1]1(]]!(
G{3]{2]1(11] = GPIXP{i] (][
Gp(3](0]1{11] = GRIKP(i](]]
Gp(jJCLi[(iy] = GPJKP{i](]3}]
J{2)(l1] = GPIKP(1i] (3]

)

}
.+ GROSS MOTION CROSS-PRODUCTS */
‘% 3 DENOTES JACOBIAN OF LOCAL FRAME j */
if(free) |
for(j=h+l:jen:j++) |
/* x-DIRECTION */
G{j)[0]{dof-3]=GPIK(h] (]
G{3]1(1](dot=3]=GPIKIN] (]
G[3](2]{dof-31=GPIK[h][]]
Gp(j]10][dof=3]=GPIK(h
Gp(ji{l](dot~ 31=GPJK{h!
Gp[]"Z‘[dof 3}=GPIK[h;
/* ¥= ZDIRECTION */
G(j’[O][dot 2]sGPJK{h
1) [(dof-2]=GPJK[h
2] (dof-2]=GPJK(h
{0]{dof~-2]=GPJK]
(1] ([dof=2]=GPJK([
[2][dot-2)=GPIK]
DIRECTION #/
0] (dof-1]sGPIK(h
1
2]
{0
1
172

1
]
1
3
S
(3

P Tl T =
(AP

oo

,—‘h'—-.uu

(dof-1]=GPIK(h
(dof-1]=GPJK(h
]1idof=1]=GPIK[
] {(dof-1}=GPIK(

il
(
] ]
j
3
{
E
W
1721 7dof-1]=GPIK{

'U'U'U'—‘ atenl Q'U‘U'U'—'r‘

o g+ gihe e

~ R0 QOO0 0
Cddan

* THE .CW—COWS'ANT FLEX DIRECTION COSINES */
+ : DEMOTES LINK ASSOCIATED WITH THIS FLEX */
sreimh«l;i<n=1:i+") {
Ll-state_pos[i]+jflag[i)01;
l12=1leme{il:
13=l2emr[i]:
/% j DENOTES JACOBIAN OF LOCAL FRAME j */
forfjmi=lii<n:j++) !
/* k DENOTES STATE POSITION OF TRANSLATIONAL LINK FLEX
AND THE COLUMN OF THE JACOBIAN */
for(k=1ll:kel2ke+) |
Gp(31(0]Ck] = €LLlX 0][state_dirlk; :
Gp[i.[1}i{k] = tfijfl](state_dir(k i:

e

GRIZIN
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Gp{il(2](k) = t(i][Z)[statn_dir[k]];
)

/* k DENOTES STATE POSITION OF ROTATIONAL LINK FLEX
AND THE COLUMN OF THE JACOBIAN */
for(:k<li;k++) ¢
31(k] = t{i](0][state_dir(k]];:
Gp{31{4]1(k) = t(i)(1)[state_dir(k)]:
(51(k) = t(i)[2)(state_dir(k]]:

]
* THE NON-CONSTANT FLEX CROSS PRODUCTS */ -
* . DENOTES LINK ASSOCIATED WITH THIS FLEX »/
for(i=h:icn=2;iv+) ¢
ll-stato_pos(i]*l#jtlag(i]+uc(i]:
L2=11l+mr(i};
/* J DENOTES JACOBIAN OF LOCAL FRAME j »/
for(imivr2:jen:jee)
/* k DENOTES STATE POSITION OF ROTATIONAL LINK FLEX
AND THE COLUMN OF THE JACOBIAN */
for(k=1l:k<l2:k++) {
GP(31(0](k] = GPIKD(i}[]]([0](state_dir(k]]:
GP(J]{1](k} = GPIKD[i])[j]’1](state dir(k}!:
Gplil[(2)(k] = GPIKD(i](i]({2) state_dir{k}]:
}

« FOR ] < h w/
* THE !NON-CONSTANT FLEX DIRECTION COSINES »/
* . CENOTES LINK ASSOCIATED WITH THIS FLEX »/
Srilmh=lil>m0:i-=) (
;l-s:a:e_pos[ij—jtlaq[i}—l:
l2=llemeli:;
i12=12-mr‘i;;
~* ] DENOTES JACOBIAN OF LOCAL FRAME j owy
for(imi;i>=0;j=-=) |
/* k DENOTES STATE POSITION OF TRANSLATIONAL LINK FLEX
AND THE COLUMN OF THE JACOBIAN */
for(k=ll:;k<l2;k+s) ¢
GIj}{0)[k} = -€[i;(0)[state_dir'k] :
G{j]{1i{k] = -e{i][1 /state dirik  :
G{jl(2l(k] = -elijr2)rstate dir‘k’ " ;

e

i

. * k DENOTES STATE POSITION OF ROTATIOMNAL LINK FLEX

AND THE COLUMN OF THE JACOBIAM ./

for{ikell;ke+) |
G{jl(3](k] = -t{1]({0] state _dirik;::
G{jl(4](k] = =t(i]{1l]fstate_dir k};:
Gl3]{S](k] = -t{i]};2; stace dir(k]}:
}

b

* THE LQN-CONSTANT FLEX CROSS PRODUCTS =/
* L DENOTES LINK ASSOCIATED WITH THIS FLEX w/
Icrtiah=1;:i>0:i-=) |
ll-sta:e_pos[i]*j!laq(i}+1¢mt[i]:
12=1l1-mr(i’;
‘* 3 DENOTES JACOBIAN OF LOCAL FRAME j #/

oRiGAL FAGE
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{
« Kk DENOTES STATE POSITION OF ROTATIONAL LINK FLEX
AND THE COLUMN OF THE JACOBIAN */

tor (k=l1;k<l2:k++) |
G(31[01(K] = GPIK[1)(j]1(0](state_dir{k]l:
6{I1(11(k) = GPIK(i]([3](1](state _dir(k]l:
G(31(21(k] = GPIK(i]{3}(2][state dir(k]]:
)

for(j=i=1:j>=0ij==)
/

)

)
/* THE NON-CONSTANT JOINT DIRECTION COSINES */
+ i DENOTES JOINT NUMBER */
sar(i=h=1;1>07i="=) |
ll=state_pos{i]’
/% IF THERE IS JOINT FLEX, INCLUDE IT IN THE JACOBIAN */
if (jflag(i})
12=11+1;
/* 3 DENOTES JACOBIAN OF LOCAL FRAME j */
tor(jmi=1:3>=0;3==)
/* JOINT POSITION PARTS */
/* 1 1S 2ERO IF TRANSLATIONAL, OR THREE
IF ROTATIONAL JOINT */
1 = 31-)*state_typeli}:
G{jiLLy(1L} = -tri]ioyla;:
G(3l(i-L](13] = ~efij{1li{2}s
Grjllile2](11] = -eril(2y(2l:
/* JOINT FLEX PARTS */
fjroLiglal = -e(ijro;iai;
f3ji1e1i(12) = -~efiifl
) 2

{31(1e2it12] = -eiall

, .
/« IF THERE IS NO JOINT FLEX, LEAVE IT OUT OF THE JACCBIAN */
else
/* 3 DENOTES JACOBIAN OF LOCAL FRAME 3 */
for(j=i=1:j>=0:j==) |
/* JOINT POSITION PARTS */
,# 1 IS ZERO IF TRANSLATICNAL, OR THREE
IF ROTATIGCHAL JOINT */
1-j*state_typeli}:
TiLI[LL] = -e{Li (0]
1(1+1)(11} = -elil(l
Trle21011) = =t{1]{2

-
{3 23

] 121
i3 1120

1
G
G
G
}

L uCH-CONSTANT JOINT CROSS~PRODUCTS */
SENCTES JOINT NUMBER */

;% CHECK TO SEE IF THE JOINT IS ROTATIOUAL */
1ftistate_type(il) |
ll-s:a:o_pos[i]:
/% IF THERE IF JOINT FLEX, INCLUDE IT IN THE JACOBIAN */
if (jflag(ii) |
12=11~+1;
/* j DENOTES JACOBIAN OF LOCAL FRAME J */
for(jm=i=1:3j>=0:3==) |
/* JOINT POSITION PARTS */
G{jlLoi(it = -GPIK{1]1j1[011207




{1}({11) =
{21(11] =

)
/* IF THERE IS NO JOINT FLEX,
else |
/* J DENOTES JACOBIAN
for(j=i-1;j>=0;j==) {

144

-GPIK[1) (]
-GPIK{i![]
PARTS +/
~GPIK[i)
-GPIK[i]
-GPIK[1]

LEAVE IT OUT OF THE JACOBIAN */
OF LOCAL FRAME j #*/

/* JOINT POSITION PARTS */

G[jl(o](11) =
G{Jj[1](11) =
GE)J(21[111 -

}

{or(imh=1:i>0;i==) ¢

-GPIK[i)([3)(0][2];
=GPIK[i](j]1(1]1(2];
~GPJK[i](31(2](2]:

/* CHECK TO SEE IF THE JOINT IS ROTATIONAL #*/

if(state_type(i]) ¢
Ti=state _pos(1i]
/*1F THERE 1S JOINT FLEX,
if(jtlag(i)) ¢
12=11+1;
/* j DENOTES JACOBIAN
for(jmi=1:4>=0:j-~) ¢

/* JOINT POSITION PARTS

HIHHE
1l =
: .
. JOINT FLEX
{3:07:127 =
{(3ii1il12; =
(3ji2:{12] =

i3]
03]
(3. Z2"

vnon\onn

}
/% LF THERE IS

else

NO JOINT FLEX,

‘* J DENOTES JACOBIAN
tor()-z l:j>=0:j=~) ¢

/* JOINT POSITION PARTS '/

m"onn‘ -
GIy10L;011; =
Gi3jf2ilil: -
}

i

SRCSS MCTIQN CROSS=-PRODUCTS #/
J OENOTES JACOBIAN OF LOCAL FRAME ] %/
‘free) !
for(jsh-1;:j>=0:3=-=) ¢
/* X=DIRECTION w/

a
L]
-

G(j][OIEdOf'3]'GPJK[h][J][°][0
GIJIf1:7dof-3]=GPIK{R]{]I{1]]0
Gijil2i]dof-3]=GRIK{nI[I](2](0

/* y=DIRECTION +/
GIj100! dof-2]=GPIK[h](§110];

.

INCLUDE IT IN THE JACOBIAN #*/

OF LOCAL FRAME j #/

*/

GPIK({1i]13 tiel:
GPIK[il7j f1iz27;
GPIK{ij 3 727%2%;
PARTS */
GPIKii]{j:[0'72;
GPJIK[ 1] E§1[1J22I
GPIK[il{jif2ii2}

LEAVE IT CUT OF THE JACOBIAN */

OF LOCAL FRAME ) #/

GPIK il{i 70 72"
GRIK{1':§ i1 a"
GPIK[ il j 72" 2"

.

1]:
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—~—

j1(1](dof-2]=GPJK[h

]
i

1{2]1({dof~2]=GPIK(h

2~DIRECTION #/

{
{
*
{
{
t

G
G
/
G
G
G

)

goo

1(0] (dof-1]=GPJK[
1(1]1(dof-1]=GPIK(
1{2){dof~1]=GPIK(

3
)
]

) E Ee 1S
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Istar(istr,istrc,qg,t)

double istr(n+l](dof][dof], iltrc(n+l][dot1[dot]:
double g[n}][6](dof], te(n)[3)(3):

int i,j,k,row,col,cl;
double a{dof](dof], b(dof][dof], c(dof](dof], al,bl,cl,dl;

* L DENOTES THE FRAME OF LINK (OR LOCAL REFERENCE) NUMBER +/
* COMPUTE THE istar OF EACH LINK SEPARATELY, AND ADD THEM UP
AT THE END OF THE ROUTINE TO FORM istar FOR THE SYSTEM »/

for{i=0;:i<n;i++) |

/% INITIALIZE THE istar MATRIX FOR LINK i v/
for (rows0;rowcdof ; rows+)
for(col=0:col<dof;col++)
istr{i](row}(cel]=0.;

‘% FIRST, FORM THE UPPER-RIGHT SYMMETRIC PARTS OF
THE SUB-MATRICIES ON THE DIAGONAL OF THE LOCAL INERTIA
MATRIX, THEN FORM THE LOWER-LEFT PARTS.
NEXT FORM THE OFF DIAGOMAL SUB-MATRICIES IN THE UPPER-
RIGHT AREA OF THE LOCAL INERTIA MATRIX, AND TRANSPOSE
THEM TO GET THE LOWER-LEFT PARTS. */

/* TRANSLATIONAL MASS +/
* PRE-MULTIPLY THE TRAMNSLATIONAL JACOBIAN BY ITS TRANSPOSE
AND MULTIPLY BY THE MASS +/
for(rows=0:row<dof; row+~)
for(col=0;col<dof;col«=) |
al=m{i]*(g{1;{0](row]*g(i][0](col]
g1 {1li{row)*g(i}{1]{col;
*g(Li{2])(row!*g(i}{2](col]);
istr(i; row){col]+=al:
)

* RIGID BODY ROTATION &/

* UPPER-RIGHT TERMS, TAKING ADVANTAGE OF SYMMETRY *,
* CJCMPUTE INERTIA IN GLOBAL FRAME +*/
foricol=n:colcl;cole~) |

al= IL17i][0]f{0)*t i "col;’0!
<Ill713707 1 %2l eol; 1;
~Illlij;01r2 e iteolit2’;

bl= I1l7ij(1jf0l%t{i][col](0
~I1L{i}71){1*eli}{eol][1
~T11]i][1}{2]%e{i  colll2

cl= Ill{i]{2)[0)*e(i!{col](0

-Illfiifa;(1yee{ij{ecol](1]

-Illrit(2)c2]*e(i)fecoli(2):
for(rowscol;row<l:row++) |

a(rowl({col)= t{i)(row]{0]*al

~t{ilfrow][1!*bl

~t ij[rowli2!+cl;

CRIGH AL FRGe 1S
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a(col){row]= a(row][col]:
}

)
/* PRE- AND POST- MULTIPLY THE INERTIA BY THE ROTATIONAL
JACOBIAN */
for(col=0:col<dof;col++) |

alm= a{0](0)*g{i](3]}(col]
*6(01[11'9[§][4][¢°l]
+a(0](2]*g(i}[S](¢c

bl= a[l](0]*g(i][3](col] )
+a(1]f1]*g(i][4](col]
~a(1][2]*g(i](5](col}:

cl= a(2](0]*g[i][3](col]
-a(2](1l]*g[i][4][eol]
~a(2](2]1*g(i](S][eol]:

for (rows=0;row<dof;row++) |
dl=g{i](3](row]*al
«g(i]{4])(row]*bl
+g{i)(S]{rowl*cl;

istr{i)(row][col]+=dl;
)
}

s+ ADD THE LINK FLEXIBLILITY INERTIA TERMS TO istr */
/* (NO TRANSFORMATIONS ARE NECESSARY) */
jmmelijemr{i}:
k=state_pos(il-jflag{i]+l:
for(rowmQ;row<] i row++)
for(col=0:col<i:colr+)
istr{i][row+k)[col-k;+=Iqq{i; row](col’:

* RIGID-BODY/ROTATIONAL COUPLING */
* AN OFF-DIAGONAL MATRIX »/

« CCMPUTE INERTIA IN GLOBAL FRAME */
fortcol=0:col<l:coler) !

al=s Iml[i](0](0] 't'xcholjj01
<Iml{i}{01(1])*e(i]lcol L}
<Iml;ij[(0](2] 't[x,'col]:l}:

bl= Iml[ij[1)° cjttrLJ’colg[OI
SImlfilflif1}ee(il eal]1;
-zml:iwzlxtzzﬁc(xj[col};2}:
rilr21(0)*eli;(col}l (0]
~Iml(i]{21(1]*e{i](coOl]{L}
ijr2yc21*e{ij(eol}f2]:
for{rowscol;row<lirow++) |
afrow]{col]= t{i][row]{0O]l*al

«t{i]{row]{11#*bl
+tfi]frow] 2)*cl;

alcol) row)=a(row]fcolj:
|

OFRSIL £rcy
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H
/* POST MULTIPY BY THE ROTATIONAL JACOBIAN %/
for(row=0;row<l; row++)
for (col=0;col<dof;col++)
b{row](col)= a{row](0]l*g(i]({3](col)}
+va(row](l]*g({i](4](col]
+afrow](2)*g{i](S](col];

/% PRE MULTIPLY BY THE TRANSLATIONAL JACOBIAN #/
for(row=0;row<dof;rows+)
for(col=0:col<dof;col++)

c{row][col]= g(i](0][row)*b(0]({col] -
*qg(i]{1]{row]*b(1][col]
+g(i)[2]{row)*b({2](col];
/* ADD THIS MATRIX AND IS TRANSPOSE TO istr =/

for(row=0;:row<dof ;row++)
for({col=0;col<dof:;col++) |
istr{i)(row](col]+=c{row](col];
istr{ij{col](row]+=sc{row)fcol’:
)

/* TRANSLATION/FLEX COUPLING */
/% MULTIPLY THE INERTIA BY THE TRANSFORMATION MATRIX #*/
jumt i emr’i);
for (row=0;row<3l; row++)
for(col=0:col<j:cole+)

a(row)’col = t[x} row} 0i*Img(i} {0} col]
. ’L}[row][l *Imgfi;{1;.col;
x’[row’rZ"Imq{x}[Z}:col}.

« MULTIPLY BY THE TRANSLATICHNAL JACOBIAN e/
for({rowsaQ;row<dof ;row+=)
foricol=0;col<y:cale=)
b{row] col = g(i] 0][row!*a 0 col;
~g{i {1 (row]*a{l’ [col;
~g{iil2]{rowl*a{2 col ;

* ADD THIS MATRIX AND ITS TRANSPOSE TOQ 1str */
“=state_pos 1 -jflag{i;-1l:
fortrowmsd row<dof;rows=)
for(col=k;col<k+j;col+~)
istrc{i; ‘row. col -=b row  l¢ol-k;:
istrc!/i) col row!+=blirow’ col=-x':

* 20TATION/FLEX COUPLING */
'+ MULTIPLY THE INERTIA MATRIX BY THE TRANSFORMATICH MATRIX *-/
cmmtilenr(i]:
for (row=0Q;row<l ;  row++)
for{col=0;col<j;col=~)
afrowl{col]= t{il{row](0]*I1q(i]{0]) col:
~t(i][row][1]-Ilq[i‘f1) col:?
+t{ijlrow][2 ;*Ilq{i [2; col;:

+ MULTIPLY BY THE TRANSLATIONAL JACOBIAN #/
for{row=0;row<dof ;row+e)
for({col=0;col<j;col++)
b(row!/coll= g[i}[3]({row *a(0]{col]
~g[i)(4]){row)*a(l][col;
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~g(i](5])(row)*a(2](col];

/% ADD THIS MATRIX AND ITS TRANSPOSE TO istr */

k=state_pos(i]+jflag(i]+l;

for (rows0:row<dof ;row++)

for (col=k:col<k+j:col++) {

istrc(i][(row](col)+=b(row}[col-k]:
istrc(i)(col]({row)+sb(row]{col~k :
)

'

« ADD THE CONTRIBUTIONS OF EACH LINK TO FORM THE GROSS Istar */
for(row=0;row<dof;row++)
foricol=0;:gol<dot;col++) |
istr(n](row)[col]=0.:
istrc[n][row](col]=0.:
for(i=0;i<n;is+)
istr(n]{row)(col)+=istr({i][row]}{col];
istrc{n]{row}{coll+=istrcli](row)(col];

T cn
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Xstar(kstr)

double kstr{dof](dof]:

int i,k,l,row,col;

for(i=0;icn;i++) |
kewstate_pos{i]+jflag(i]:
if(jflag(ii=ml) kstr(k)}(k]=kjoint{i};
k+=:
l=mt 1 +mr(i):
1£(1!=0)
for(rowsQ:row<l ;row++)
tor(col=0:col<l;col+~)
kstr/k+row! kvcol]=klink{i]{row]{col}:

CRIGHNAL PAGE IS
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Torquc(tquo,lcad,cj

double tquo[dot],lcad[n][é],G{n][6](do£];

1
int i,3;
double a;

for(imQricdofriss) ¢
a=Q0.: -
tor(j=0:j<6:i++) |
a-=load{n-1}{§)*G(n=11{I] (1]}

1
tque’i}=lmode{i]*a;
)

e
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odel (hh,time,y, save)

iouble *hh,*time,y(8](order], *savae:

.

double phifdof],disturb:

Matrix tl{n)],t{n};

‘Jactor r(nl;

double endload(n}[6],lold[do!],jointload(dot],tque[dot]:
jouble Gin){6]j(dot]),Gpin)[6](def]:

dcuble istrfn*l][dot][dct],iserinv(dot][dot]:

double kstridof’ [dof], istrc(n+1)(dof)(dof]:

double pstrin+l]{dofl(dof](dof):

e L, 3

for(ims0:ic6;ies)
for(j=0;j<n:j+e+)
endload(j][i]=0.:
|
for(i=0:i<dof:i++) phili]=y(0][i]:
const (G,Gp) ;
Secnetry(phi,t,tl,r):
Xinematics(t,r,G,Gp):
Istar(istr,istre,Gp,t);
* Pstar(G,H,SkewG,pstr);: w/
“star(kstr);

* APPLY E!ND LOADw/
LI oveime>.3 Bk *time<2.) endload/ n-1;:0’=1000.
Tsrgueftgue,endload,Sp)

* INVERT THE INERTIA MATRIX +/
iinverse(&istr’nif0j70),istrinv,dof);

* APPLY JOINT TORQUES w»/

_iretimec<d.)
jeintload(0)=0.
jointload{1)w0.:
Jointload(2;=0.;
sointloadf{lj=0.;
Jointloadf41=0.;
sslntloadl5'=Q. ;

* CCTHMPUTE LCAD VECTOR AND ASSEMBLE RIGID BGODY INERTIA #/
Tricdofile-)

.cad’: =tque’l ~jointlcad 1 :

for(i=0:)<dof;j+~)

> a=0, ;
for(k=0;:j<dof;j-+) a+sy 0] idof~k *pstar{j!'i ‘k :
loadfi]-=awy(0)(dof+j];:
load(ij-=kstriij(jley(0;(j;:
load[i}--(alph*istr[n];i]:j}+beta*tabs(ks::[i]{j}))*ny}:dot*jj:

load(il==istre(n)[il(j]* y(l)(dofej '/ #*hh:
'
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for(i=0:i<dof;i++) *(save+i)=y[0][i+dof]:
for(;i<order;i++) {
*(save+i)=0.;
for(j=0:j<dot:j++)
*(save+i)+=(istrinv(i-dof]{j]+*load(]j]):
)

/% APPLY BREAKS IF DESIRED */
for(imsl:i<7;ie+) {(
if (brakes(i]) {(
/* SET VELOCITY = 0 */
«(save+state_pos({i])=0.0; -

/* SET ACCELERATION = O */

*(gave+dof+state_pos(i))=0.0;
}
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