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ABSTRACT

Flexibility occurs in all mechanisms, to some degree. The

dynamics of most flexible robotic manipulators can be modeled by

a system of coupled ordinary differential equations. This study

presents a general model of the dynamics of flexible robotic

manipulators, including the gross motion of the links, the

vibrations of the links and joints, and the dynamic coupling

between the gross motions and vibrations.

The vibrations in the links may be modeled using lumped

parameters, truncated modal summation, a component mode

synthesis method, or a "mixture" of these methods. The local

link inertia matrix is derived to obtain the coupling terms

between the gross motion of the llnk and the vibrations of the

link. Coupling between the motions of the links results from the

kinematic model, which utilizes the method of kinematic

influence.

. The model is used to simulate the dynamics of a flexible,

space-based robotic manipulator which is attached to a

spacecraft, and is free to move with respect to the inertial

reference frame. This model may be used to study the dynamic

response of the manipulator to the motions of its joints, or to

externally applied disturbances.
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1.0 Introduction

All real mechanical devices exhibit some flexibility. [f

the flexibility is negligible, the system dynamics can be

modeled by a set of second order differential equations,

developed from Newton's laws of motion. But for other compliant

systems, this model is not sufficient. The structural dynamics,

and the coupling between the structural and gross motions of the

system must be included to obtain a model of the system

dynamics.

Models of vibrations in continuous systems usually assume

that the structure is homogeneous, isotropic, and obeys Hooke's

law within the elastic limit [23]. The dynamics of the system is

represented by partial differential equations, such as the Euler

equation for beams. This form of equation is not suitable for

real-time computation of the dynamic model. Therefore mode

summation methods, component mode synthesis methods, and lumped

parameter methods are used. These methods use second order

ordinary differential equations to model vibrations, and are

sufficient to describe the vibrations in almost all flexible

manipulators.

The first goal of this study is to formulate a total

model of the dynamics of a flexible manipulator system, which is

valid for a wide variety of flexible robotic systems. The second

goal is to analyze the dynamic coupling which occurs between the

I



gross motion and vibrations in the system. The final goal is to

present specific applications of the model which utlllze the

knowledge of dynamic coupling to study the system dynamics.

1.1 Literature Review

Research in the dynamics of robotics and other spatial

mechanisms is a union of geometry, the kinematics of mechanisms,

and classical mechanics, each drawing on the knowledge of the

other two. Robotics, as a broader subject, involves principles

from almost every field of engineering sund science.

Researchers in the field have differing backgrounds, and

therefore many methods and perspectives have been published

about the various subjects in the field. This review will cover

the major papers relevant to the dynamics of flexible

manipulators.

Benedlct and Tesar [I-3] introduced the concept of

kinematic influence coefficients, which were applied to rigid

and quasl-rlgld planar mechanisms. Sanders and Tesar [22] showed

via experimentation that the quasl-statlc assumption Is valid

for mechanisms which operate well below the first natural

frequency of the mechanism. The concept of klnematic influence

was generalized for spatial mechanisms with rigid links by

Thomas and Tesar [4]. Freeman and Tesar [5] showed that this



method is extremely powerful and may be used to model the

dynamics of both serial and parallel robotic manipulators.

Fresonki, Henandez, and Tesar [6][25] used the concept of

kinematic influence to obtain a description of the spatial

deflections in robotic mechanisms.Kinematic influence was used

by Behi and Tesar [7] to model vibrations in a multi-degree of

freedom system due to flexibillties in the drive mechanisms.

Wanderand Tesar [8] proved that a totally general dynamicmodel

of a robotic manipulator maybe computedin real-time using the

methodof kinematic influence coefficients.

Denavlt and Hartenberg [9] are well knowfor a kinematic

notation used to describe spatial, multi-degree of freedom

devices. Most kinematics notational schemes seen in the

literature vary little from this scheme. A recurslve algorithm

for computing the dynamics of rigid manipulators was presented

by Hollerbach [I0]. Book [II-15], Maizza-Neto [12,16], and

Whitney, [12,15] and their associates were someof the first to

study the dynamics of flexible manipulators. Book [14]

formulated a recurslve Lagrangian algorithm with a truncated

mode summation representation of vibrating links, as did King,

Gourishankar, and Rink [22]. In [16], Hughes devoloped a model

of the space shuttle manipulator arm. Hamilton's principle was

used by Low [17] to develop the explicit equations of motion for
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a manipulator with flexible links. Finite element methods have

been used by Sunada and Dubowsky [18], and by Naganathan and

Soni [19] to analyze manipulators with elastic links. Huang and

Lee [20] extended the Newton-Euler formulation of dynamics to

model non-rigid manipulators.



2.0 The Reference Model

The dynamic model of a flexible manipulator presented

here is a general method which may be used to model the majority

of flexible manipulators. Drive mechanism flexibllities may be

modeled usin E lumped par'meters. Structural flexlbilities may be

modeled usin E lumped parameters, assumed modes ( a truncated

mode summation technique), a component mode synthesis technique,

or a combination of these methods. The result is a set of

ordinary coupled differential equations, which model the

dynamics of the system, Includln E the gross motions, the

vibrations, and the couplin E between the Eross motions and

vibrations.

All models of vibrations are approximations. Due to the

Eenerality of the model, and the variety of methods which may be

used to represent the vibrations, it is possible to create a

model which is a much closer approximation to the real system,

than it would if only one method was used to represent the

vibrations. To do so, the actual deflections of the system must

be observed, or predicted to assure that the vibrations model

is correct. The reader unfamiliar with models of vibrations in

continuous systems is urEed to refer to Thomson [23].



2.1 Geometry of a Flexible Robotic System

In a spatial manipulator consisting of n+l distinct

links, a local body-fixed reference frame is assigned to each

llnk. A requirement of Newtonian dynamics is that all motion

must be measured relative to an inertial reference frame. If the

base link of the manipulator is fixed relative to the inertial

reference frame, the reference system of the base link becomes

the inertial frame. Otherwise, a frame which is not attached to

the manipulator will be the inertial reference frame. Thus, for

the constrained case there will be n+1 reference frames, and for

the unconstrained case there will be n+2. One of the reference

frames is chosen to be the global reference frame, and is

denoted as frame h, as shown if Figure 2.1-I. The global frame

serves as a common frame to which all vector quantities will be

referenced. Notice that the global frame is not required to be

the same as the Inertial frame. A preceeding superscript

enclosed in parentheses is used to denote the local frame to

which a vector is referenced. (ie. (1)R is referenced to frame

i.) If the superscript Is not shown, the vector is assumed to be

referenced to frame h.

The geometry of the manipulator is described by the

instantaneous orientations and positions of the reference

frames, shown in Figure 2.1-I. Frame i is attached to link i.

^

The unit vectors Sx ^Y _: are-i' _i' and the direction cosines of the

B
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_Lmeh÷3

frame h+2

frame h+l

global frame h

Figure 2.1-I The Reference Frames



x, y, and z axes of frame i, defining the orientation. The unit

vector _z coincides with the line of action of joint i. Joint I
-i

may be a revolute or prismatic juncture between links i-I and I.

i x is a common perpendicular to the succesive joint axes _z and
-i -i

_z when no deflection occurs in link i.
-i÷1'

The undeflected position of a flexible link is considered

to be the reference position. When link i is in its reference

position, the direction cosines of local frame i+1 are denoted

as S x Y and z The vector x defines the position of a
-i ' -i ' -i -i

point on link I, relative to the origin of frame I. Deflections

of the point are described by the vector functlonals d(x ), and

8(x ), which are the linear and angular deflections relative to

the reference position.

2.1.1 Angular Displacements and Deflections

The relative orientation of succesive local coordinate

frames is defined by a set of ordered rotations, shown in

Figure 2.1-2. The angular" deflections of the link are assumed to

be small, and thus add vectorially. This first order

approximation of the rotation is necessary in three dimensional

systems where there is no dominant angular deflection in one

direction, and will introduce errors into the geometry

calculations smaller than 5M if the magnitude of the angular

deflections is less than 3 degrees. The angular deflection of a

point on llnk i from its undeflected orientation is represented



\

sX

-|

SZ

-!

sX

-I÷1

Figure 2.1-2 Angular Link Parameters

\

Figure 2.1-3 Translational Link parameters
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link h+3

link h

R(O )
- -h÷!

Figure 2.1-4 Position Vectors
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d(L )

L + d(L )

Figure 2.1-5 Local Link Deflections
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by the vector functional e(x ) which describes the relative

trznslatlonal deflection of the distal end of llnk i from its

reference position. Let _j(xt) be the shape function describing

the rotational deflection of mode J of llnk i, and qlj be the

corresponding generalized coordinate which is the magnitude of

the mode. The functional relationship between the total angular

deflection of a small element on a link with m modes Is:
i

m

1=1

(2.1-I)

or, in matrix form:

(1)8_(_xl)= [@(_xi) ] gi
(2.1-2)

When the elements of the rotation are organized into a

skew-symmetric form, the small rotation matrix results.

I -ec_ ) e c_ il1
[TOC_xl)l = OzCX_i) 1 -exC_Xi

L-ey(x) ex(X,) 1

(2.1-3)

These rotations are measured in the local Ith coordinate system.

Notice that the determinant of this small rotation matrix is

det[TO(_xi)] = I + I -8(xi)l m 1, (2.1-4)

because I _(51)I is small, as assumed previously. The inverse of
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the small rotation matrix can then be approximated as the

transpose:

[Te(_i)]-*= [Te(_)] T (2.1-5)

Next, the angle al Is defined about the resulting x-axis. The

new z-axis, formed by these rotations, is parallel to the

_z axis, which Is the line of action of Joint i+l. The final
-I+1

rotation is #|÷I about _:÷I' where _'i÷1 is the sum of the Eross

displacement of Joint i+l, #I÷1' and the deflection of the

joint, _I.I" The resultant transformation from coordinate

system i to coordinate system I+I is:

°I[t'IT ] = [Te(Lt)] c(_ l) -s(_ t)
i

s(=) c(=l) j

s(_÷ 1) c(_'L÷ 1)
0 0

(2.1-6)

where s() - sine() and,c() m cosine().
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The matrix [hT ] tra_nsforms a vector from the local coordinate
i

system of link i to the coordinate system of the reference 11nk,

h. The columns of [hT ] are composed of the direction cosines of
I

^x S_, andthe unit vectors _i' S_, and are obtained via the

formula:

[hTl ] --[ (h)_x_! I (h)sYI_l (h)_Z_l l

1-1

= _ [JT
J+1

Jfh

] for I > h

= [I] (identity matrix) for i = h

h-1

= _ [ JTj+ 1]

J=t

for I < h (2.1-7)



IS

2.1.2 Translational Displacements and Deflections

The reference position of the distal end of the llnk is

LL-, and is the sum of the vector ai- directed alon E _x_i, and the

^ P

vector _Si+t which is directed alon E S z-I+I' as shown if Figure

2. I-3. The vector functional d(_L! ) describes the relative

translational deflection of the distal end of llnk i from its

reference position. Let _jCx$) be the shape function, or mode

shape descrlbinE the translational deflection of mode j of link

i, and qtj be the correspondinE Eenerallzed coordinate which is

the maEnitude of the mode. The functional relationship between

the Eeneralized coordinates and the translational deflection of

a link with m modes is:
i

m

'{ }c"_(5L) = [ qlj _jCxt)

J=l

(2.1-8)

or, in matrix form:

(1)d(x) = [ _(Xl) 1gt--I - (2.1-9)

The dimension of the modal matrix is 3xm|, and the columns are

the translational parts of the mode shape functions.
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The vector equations describing the position of a point

on llnk i relative to the origin of llnk h (for a serial chain)

ave:

FOR i>h:

I-1

J =h

|-1

J=h

÷ [hTl]{ (1)X+-i [ _(Xl)

(2.1-10)

FOR i<h:

_R(_xs) = [ [hT i]{ (J)_Sj + ¢j- )_aj +[ _(_xj) ] qj }

J=h-1

+ [hTi] { (t)xI + [ (_(Xi) ] qi }

These vectors are shown in Figure 2.1-4.



2.1.3 Posltlon of the Center of Mass

Also of geometric interest is the equation of the center

of mass of the system. Let cm be the vector from the origin of

link i to the center of mass of link i, in the refePence

position. Let _i be the ratio of the mass of link i to the total

mass of the system. For a rigid system, the position of the

center of mass Is:

R
--Cm

n n J-1 h-1 h-1

=z. z z zal}
l=O J=h+1 k=h J=O k=J

(2.1-11)

Although the derivation of this equation is not given here, the

reader may verify it by noting that:

I% n

1=0 |:0

(2.1-12)

17
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2.2 Kinematics of a Flexible Robotic System

Kinematics is a study of how motions Interact based on

the geometric properties of a mechanism, ignoring the forces

whlch may occur. The complete kinematic description of a serial

chain of compliant bodies includes the motion of the actuated

joints, the motion due to vibrations, and the motion of the

whole system relative to an inertial .reference frame.

Thomas, Tesar, Freeman, [4-5] and their associates have

developed a general kinematic representation to describe

actuated motion in rlgld-body mechanisms, for both serial and

ps_rallel llnk topologies. Fresonkl, Behl, and Tesar [8-7] have

used the concepts developed for rigid body kinematics in a model

of the kinematics of a compliant system, to predict the

deflections and frequency response of the mechanism.

In this model, the concept of kinematic influence is

extended to ascertain the total kinematic effect of motions due

to compliance of both Joints and links. The gross motion of the

whole system relative to an inertial reference frame Is also

exsumlned. The final result is a general kinematic model based on

the kinematic influence of all possible motions in a compliant

system.

The relative motion between bodies Is defined by the

relative motions of the local reference frames. Each motion is

^

defined by a llne of action, _S, and a magnitude, _. The llne of



action of joint i between links i-I and i is defined by S_, and

the magnitude is defined bF eL" The motions due to the

^X

vibrations are defined bF the three orthogonal unit vectors S ,
-i

A

S y and sz, and by the mode shape and magnitude of each mode of
--i'

vibration.

The kinematic foundation used to model the spatial

deflections of the sFstem, and the motion of the system relative

to the inertial reference frame, is similar to the kinematic

foundation used to model the motion due to the actuated Joints.

The oriEinal development of this kinematic method was performed

by Tesar, and his associates [I-7] and was used to model

mechanisms with no flexibility, which were fixed relative to the

inertial reference frame. The deErees of freedom in these

systems were always associated with an actuated joint, and thus

the term input became synonymous with the term degree of

freedom. Behi, Fresonki, and Tesar extended this model to

include deflections of the system. In order to emphasize the

fact that the spatial deflections can be modeled in the same

manner as the actuated Joints, the spatial deflections have been

called pseudo-inputs. In this model, the spatial deflections of

the link d(x ) and e(x ), and the joint deflection are

pseudo-inputs. The pseudo-lnputs are related to the Eeneralized

coordinates of vibrations via the modal matrix.

19
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2.2.1 General Kinematic Foundation

Many popular kinematic formulations are based on a

recursive algorithm which transforms velocities in a serial

fashion from local coordinate system i to i+l, adding the

contribution of local motions in an iteratlve procedure.

Kinematics may be approached in a more efficient way by

utilizing the geometric information of the system, allowing the

velocity contribution of each motion to be computed

independently. [8]

The velocity of a point P on llnk i is the vector sum of

the velocity contributions of all motions between the inertial

reference frame and the point P. The velocity contribution of a

single motion is the magnitude of that motion multiplied by a

kinematic influence coefficient. The kinematic influence

coefficient is a vector derivative, and is readily obtained from

the geometric description of the mechanism. By organizing the

kinematic influence coefficients into a matrix, the Jacobian is

formed.

Each type of motion which may occur, may be considered to

be a relative velocity, and may be modeled by this method. The

gross motion of the system, the joint motions, and the spatial

deflections each are multiplied by an appropriate kinematic

influence coefficient. The sum of all these relative motions

gives the "absolute" velocity.
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2.2.2 First Order Kinematic Influence

The first order kinematic In_rluence coefficient is

defined as the rate of change of the position or orientation of

a point with respect to a position state. A position state may

be the gross position of the mechanism, the position of an

actuated joint, or the deflectlon of the link or joint. The

"absolute" translational velocity of a point at position x on
-'k

link k is the sum of the kinematic influence coefficients

multiplied by the corresponding velocity states:

dof do£

1=1 1=1

(2.2-1)

where dof • the total number of degrees of freedom in the

system, and _{_k) is the translational kinematic influence

coefficient. The "absolute" rotational velocity is

doF dof

I=I I=1

(2.2-2)

R

where --=El(x--)is the rotational kinematic influence coefficient.
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2.2.2.1 Translations

The kinematic influence of a translational motion on the

^

translation of a point P (in a serial mechanism) is the S vector

describing the line of action of the motion. For a translational

motion designated as @], and a point P at local reference

position _k' the kinematic influence coefficient is defined by

the following:

IF the translational motion J causes point P to translate

relative to the global frame h, AND k_h:

(h) P, . (h)_ (2.2-3a)

IF the translational motion J causes point P to translate

relative to the global frame h, AND k<h:

(h) P'X ) = _(h)_ (2.2-3b)
8j t-x -j"

For all other cases,

(h) P, ,
_jtxJ = 0 (2.2-3c1
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The kinematic influence of a rotational motion on the

translation of a point (in a serial mechanism) is the cross

product of the line of action of the rotation, S, and a vector

from the llne of action of the motion to the point P. For a

rotational motion at local reference position xj, and a point P

at local reference position _, the kinematic influence is

defined by the following:

IF the rotational motion j causes point P to translate relative

to the global frame h, AND kzh:

,h,sJPCX," = Ch,__jx Ich'RC_)_ - 'h'p,Cx__j)_.j C2.2-4a)

IF the rotational motion j causes point P to translate relative

to the global frame h, AND k<h:

For all other cases,

(h) P(x ) = 0 (2.2-4c)
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2.2.2.2 Rotations

The kinematic influence of a rotational motion on the

rotation of a differential mass element surrounding point P (in

a serial mechanism) is the vector S describing the llne of
-I

action of the motion. For a rotational motion at local reference

position Kj, and an element P at local reference position --kX,

the kinematic influence coefficient is defined by the following:

IF the rotational motion J causes the differential element

element surrounding point P to rotate relative to the global

reference frame h, AND k_h:

(h) R, (h)_ (2.2-5a)
g.j(X W) = _j

IF the rotational motion J causes the differential element

element surrounding point P to rotate relative to the global

reference frame h, AND k<h:

(h) R. , (h)_ (2.2-5b)
gjtxJ ffi- _j.

For all other cases,

(h)gjR'X)t ffi0 (2.2-5c)
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2.2.2.3 Translations and Rotations Due to
Motion Of The Global Frame

Systems with bases which move relative to the inertial

reference frame undergo gross motion which must be included in

the dynamics of the system, therefore they will be included in

the kinematic model of the system. These motions are easily

described as three orthogonal tra_nslatlons and three orthogonal

rotations at the global frame.

2.2.2.4 Matrix Notation and the Jacobian Matrix

The kinematic influence coefficients for a point P can be

organized into matrix form (a Jacobian):

and

(h)a" [(h)GP(xl )]

(h_(X) = [(h)Gn(5)]_

(2.2-8)

(2.2-7)

Or in a more compact notation,

(2.2-8)
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2.2.3 Second Order Kinematic Influence

The second order kinematic relationships for a serial

chain s.-e deflned by the second derivative of the position:

,o, }
1 =1

dof

i=l

dof dof

I--1 IB1

dof dofdoff t= 81 _i -lj i j

I=1 I=1 J=l

(2.2-9)

The second order relatlonshlps of the rotations are :

dof

(,: •
1=1 I=1 J=l

dof dof dof

= _i _i -_j _ j

I=1 I=1 J=l

(2.2-10)

The second order kinematic influence coefficient is defined by

the vector derivative of the first order kinematic influence

coefficient. This relationship defines all centrifugal and

corlolls acceleration terms which result from coupling between

velocities due to the rotation of the local reference frames.
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2.2.3.1 Second Order Translations

The translational second-order kinematic relationship for

a point P at reference position _-k on llnk k is defined by the

fol lowing:

IF the mot ions i and J are rotational

global frame h and point P, AND kah:

(h)hP (h) P(X"(x) = oh).. x _,,, .._j (2.2-11a)
--$ J --!

(where 1 is the minimum of i _nd j, and m is the maximum)

IF the motion i 83%d J are rotational and occur between the

global frame h and point P. AND k<h:

(h)hP_tj(_k)= _(h)__!X (h)_mP(x_).

and occur between the

(where i is the minimum of i _nd j, and m is the maximum)

IF the motion i is rotatlonal and the motion j is translatlonal,

and i occurs between frame h and motion J, and AND kmh:

(h)hP (X) = (h)_ X (h) P(X ) (2.2-11C)

IF the motion I is rotational and the motion J is translational,

and i occurs between frame h _Lnd motion j, and AND k->h:

(h}hP (X) = _(h)_ X (h) P(X ) (2.2-11d)
-ij "-k -i _j "-k

(2.2-11b)
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For all other cases,

fh}hP (X) = 0
--lJ "-k -

(2.2-Iie)

Note that (h)_ is always associated with a rotational motion,
--!

(h) P

and _j may be associated with a rotational motion

contributing to the translation of point P, or associated with a

translational motion.

2.2.3.2 Second Order Rotations

The rotational second-order kinematic influence

coefficient for an element at reference position x on link k is

defined by the following:

IF the motion i is rotational and occurs between the local

frame h and motion J, or with motion j, AND k_h:

(h)hR (X) -- (h)_ X (h) R(X )
-sj -I¢ -1 Sj -no (2.2-12a)

IF the motion I is rotational and occurs between the global

frame h and motion 3, or with motion j, AND k<h:

(h)hR (_i,) = _(h)_ (h) R, ,-tj -_ x gjLxj. (2.2-12b)
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For all other cases,

(h_hR (X) = 0
--tJ -_ -

(2.2-12c)

Note that in this case,

with rotational motions.

(h)+! and (h) j are always associated

2.2.3.3 Second Order Kinematic Effects Due to Gross Motion

The gross rotation of the system can couple with the

relative rotations and translations to cause corlolis and

centrifugal accelerations, in the same way a relative motion

does. The gross translations do not contribute to the

the second order accelerations of the system. These kinematic

formulas used to compute these kinematic effects are the same as

those for the Joints, noting that the gross motion occurs at

the global frame, and therefore equations 2.2-11a, llc,and 12a

are used for all Ozkzn.
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2.2.3.4 MRtrix Notation and the Hessian Natrix

The second order kinematic influence coefficients for a

polnt P can be organized into matrix form, called the Hesst_m

matrix. The acceleration can be Wl-itten as:

and

(2.2-13)

C2.2-14)

In a more compact notation,

-,I.[ ]Ch___(X)

The dimenslon of [(h)H(xl)] Is (dof x 6 x dof).

(2.2-1S)

2.2.4 Local Link Kinematics

The velocity of a point on a compliant link, relative to

the local reference frame, is defined by a vector function of

the mode shapes and the time rates of change of the

corresponding generalized coordinates. This information

describes the rotatlonal and translatlonal deflections In the



three orthogonal directions. The mode shapes may be a function.

or a set of data obtained via modal analysis or a finite element

simulation of link deflections. For a lumped parameter model,

the mode shapes are assumed to be llnear functlons. The

direction of the motion due to vibrations between reference

frames i and i+l is defined by the lines of action In the three

;,.
orthogonal direct lons, S_, , and -i Note that these motions

take place at the distal end of the link, coinciding with frame

i+l, but are measured in local frame i.

2.2.4.1 Local Link Velocities and Accelerations

The first order relationship which defines the spatial

translational and rotational deflectional velocities of a point

associated with the reference position

¢"d (x_,) = ['"_(x-,) ] gi_,

(')e_t(x_,) = [ (",(x)_ ] g,

(I)
X, Is :
--i

(2.2-16)

(2.2-17)

This simple relationship results from the assumption of the

vibrations model that the mode shapes are tlme Invarlent. The
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form of the second order relationship is similar to the first

order relationship:

(1)_i(K) = [ ("_j(K,) ] g ' (2.2-18)

(I)_,(_I) = [ (')" ( ]_J KI) gl (2.2-19)

The velocity of the end of the llnk is the velocity of the point

at (1)x = (1)L . Note th&t the kinematic in£1uence of the
-! -I

vibrational motions are represented as three tra_nslations and

three rotations at the dlstal end of the llnk. but m degrees of
l

freedom are needed to describe the dynamics of these

translations and rotations. The veloclties of the spatlal

deflections contribute to the absolute velocities via the

appropriate kinematic influence coefficients, which were defined

in the previous sections.

2.2.5 Kinematics of the Center of )lass of the System

It is not nessesary to formulate the dynamics of the

system in terms of the center of mass of the system, although it

may be done. It is the opinion of the author that such

formulations are unneccesary for the general model of dynamics,

and only make the problem more complicated and computational

inefficient. The only kinematic information needed to complete

this kinematic model is the velocity of the center of mass o£

the system, relatlve to the global frame. Note that this

32



lnformatlon Is not required for the dynamics model, but may be

needed for control purposes. Defining _j to be the ratio of the

mass of llnk I to the mass of the total system, and cm to be
--j

the vector form the origin of frame j to the center of mass of

frame j. The kinematic effect of the rotational motion _I on the

translational velocity of the center of mass is:

S_C_R ) = _s,x .j cmj ÷ .j [ _Uk
cm J I J k=l

for ,>h

j k

(2.2-20)

These kinematic parameters give the translatlonal velocity of

the center of mass of the system relative to the orlgln of the

global frame.

2.2.6 Kinematic Models and Momentum Conservation

If no external loads are applied to a system with a base

which is free to move relative to the inertial frame,

conservation of momentum may be used to derive a first order

model of the system, based on the kinematics of the system, and

the mass ratios of each link. A system of control based on these

equations may be formulated. It can be shown that there is no

obvious advantage to computing these equations using the center

33
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of mass formulation, since the necessary equations of the

momentum of the system can be obtained from the original

kinematics. The reader with an intimate knowlege of dynamics

should note that momentum of the system must be calculated with

respect to the inertial reference frame. Any computation of the

motion of a point in space or on the mechanism, based on the

equations of momentum of the system, does not require that the

motion of the center of mass be directly computed as an

intermediate step. Therefore, any control scheme based on

conservation of momentum does not requlre kinematic formulation

in terms of the center of mass of the system.
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2.S The Dynamics of the System

A complete model of system dynamics includes the coupling

between gross motion and vibrations. Dynamic coupling terms

originate from the kinematics of a system. By measuring joint

angles relative to the preceeding link, off-diagonal terms are

produced in the rotational jacobi_n, and in the global inertia

modeling matrix for the system. Dynamic coupling will occur in

all systems where states (ie. displacement, velocity, ..) are

not measured directly from the inertial reference frame.

One of the most interesting0 yet subtle examples of

coupling is that between the vibrational modes of a link and the

gross motions of the link. Most models ignore this coupling by

assuming that the off-diagonal terms of the local link inertia

matrix, which correspond to this couplin E, are zero. These

coupling terms, and all other inertia terms, czn be derived from

expressions of the systems kinetic and potential energies.

Lagrange's Equation is then used to produce the equations of

motion, resulting in one equation for each degree of freedom of

the system. For a system in space (unconstrained], there there

ape six degrees of freedom for the gross motion, one degree of

freedom for each joint, and one degree of freedom for each mode

of vibration.
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2.3.1 Vibration Model Concepts

Vibrations in the system are described by the normal

modes, which exhibit harmonic motion at the corresponding root

frequency. In theory, there is an infinite number of modes for a

continuous body, such as a beam. But in a real system, this

theory is not totally accurate in predicting the actual modes,

because the assumptions of the theory are only approximations of

reality (ie. the beam is not a true continuous system, and

material imperfections are not modeled). Also, higher modes

usually do not have a measureable effect on the dynamics of the

real system, because any large amplitude vibrations at higher

frequencies die out quickly due to structural damping.

Therefore, the inertia and stiffness terms used in the system

model should be based on experimental data obtained from modal

analysis, and metrology, or predicted from computational methods

such as finite element analysis.

The equivalent mass and stiffness of a link can be

obtained by experiments in modal analysis, and other forms of

metrology. But unfortunately, these methods do not reveal the

inertia terms which describe the coupling between the gross

motions and vibrations in the llnk, which are off-diagonal terms

in the inertia matrix. These terms can be derived from the

kinetic energy of the system, and a method of predicting their
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magnitudes is presented in this study.

To predict the inertia terms of the system, a mode

summation method is used where the mode shapes and mass

distribution of each link are assumed to be known. This

information must be obtained via experimental or computational

methods. An accurate knowledge of this information assures that

the dynamic model will be accurate. These mode shapes can be

represented by any function or set of data. A finite number of

modes are used. Lumped parameter models are considered to be a

special case, where the mode shapes are simple linear functions

and all mass is lumped at the center of mass of the link. To

accomodate more flexible links, a link model similar to

component mode sythesis is used, allowing the link to be

subdivided into sm_ller sections, or link segments. The

rotational and translational deflections of a sub-link are

assumed to obey the magnitude constraints imposed by the

geometric model of rotations.

There is always a question about when to use lumped

parameters, mode summation, or component mode synthesis. No

absolute guidelines can be presented as to when each method

should be used. As a rule of thumb, lumped parameters should be

used to model Joint flexlbilities and short, fat links. Mode

summation should be used to model longer links which exlbit
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angular deflectlons of less than flve degrees. Componentmode

synthesis should be used to model flexible links which have

angular deflectlons greater than flve degrees. Note that these

models maybe "mixed" together In the overall system model.

A flrm understandlng of the assumptlons inherent In these

modellng methods Is a prereqJ/Islte to Ins%trlng that the model

represents the actual system. It must be stressed that mode

summatlon methods require the besmto be relatively long and

thin, but the cross sectional area is not required to be

constant. All models of vibrating systems are approximations of

very complex phenomena.A good model will not oversimplify the

problem. On the other hand, a model should not include more

Informatlon than is necessary, due to the computational burden

imposed. Most importantly, It must be realized that the quality

of the information used will have a great effect on the accuracy

of model. A qualltatlze knowledgeof the relationship between

accuracy of the data used in the model to the accuracy of the

results obtained is absolutely necessary.
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2.3.2 Kinetic Energy and the System Inertia Matrix

The total kinetic energy of the system is the sum of the

kinetic energies of its sub-systems. Each sub-system can be a

set of links, one link, or part of a link. Although this is not

required, it is convenient to choose each sub-system so the

local flexibility matrix is constant. Therefore, for lumped

parameter models and'mode summation models, a sub-system will be

one llnk, and for component mode synthesis models, a sub-system

will be a link segment. The kinetic energy of an element of

mass, _m, In subsystem i will be

_KE| 2 - -.

where _(xl) is the absolute velocity of the element on link i.

The total kinetic energy for the sub-system is the sum of the

kinetic energies of all mass elements. Assuming the mass

distribution of the sub-system is known, the kinetic energy can

ideally be expressed as a volumetric integral:

V
l

R(x ) can be expressed as the velocity of a reference point plus

the velocity relative to this reference point. By, choosing the

reference point to coincide with the local reference frame
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origin o£ the llnk, the inertia terms commonly associated with

the gross motion of the llnk are obtained, along with the

equivalent masses of vibration, and the inertia coupling terms

between the gross motion and vibrations. The detailed derivation

of the kinetic energy and the inertia terms is presented in

Appendix A.

The kinetic energy of the llnk can be rewritten in terms

of the local Inertla matrix, the gross motions, and the

velocities of vibration for the llnk.

= 1 (i)_T (l) (1)_

where (l):_l = [ (l)3(31)(t)l_(O-.-lgi) } (2.3-3)

and (t)--._
!itu_i) is the translational veloclty o£ the re£erence

£rame, (1)__(O_i) is the rotatlonal velocity of the re£erence

frame point, and _ql are the generalized velocities o£ vibration

of link i.



41

The local velocities can be expressed in terms of the

globsl reference frame, h, by multiplying by the rotation

matrix.

(h)_wCOi) [hTi](|)_(Oi3

=I [hT! ] 0 0

o {h'l o
o o [z]

'_)w(o I )

gi

(2.3-4)

[h_ ] (I):-- l _l

] is the[I] is the mix m i identity matrix, and h_i

augmented transformation matrix. Rewriting the kinetic energy,

'[ (_):T (t_I ] (t)__ = _ _ [ _

I (h)".T (h) ] (h): (2.3-5)= 2 _t. [ Is. _l"
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At thls point, it is necessary to express the kinetic

enerEy in terms of another set of states which consists of the

gross motion of the entire system, the velocities of the

actuated inputs, and the velocities of all vibrations (le. at

the joints, and In the links) In the system, 9" The kinematic

relationship between _ and (h)"_i Is:

where [(h)_i ] Is the Jacoblan for the orlgln of local

coordinate system I augmented by an identity relationship which

specifies which generalized velocities of vibration are

associated wlth this llnk:

ICh'Gi(O-)l (2 3-7)

Substituting this expression Into the kinetic energy,

1 °T (h) [[ (2.3-8)

where [ (h)I" ] the the Inertia modeling matrix for sub-system
I
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[. The total klnetlc energy of the system is the sum of the

kinetic energy of each sub-system

n+l

I_syst em= [ _l
t=l

=n_l 1 h)

I=1

(2.3-9)

m

2

where [ (h}I" ] is the inertia modellnE matrix of the entire

system.
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2.3.3 Potential Energy and the Stiffness Matrix

The potential energy due to compliance in the system is

usually a llnear function of the generalized coordinates of

vibratlon. The potential energy of a differential element of

llnk I can be expressed as

(2.3-10)

and ideally may be represented as a volumetric integral over the

llnk

V
! (2.3-11)

A detailed derivation of the potential energy and stiffness

terms is presented in Appendix B.

The potential energy of the llnk can be rewritten in

terms of the local stiffness matrix and the generalized

coordinates of vibration for the link:

PE : g[ [_ ]g, c2.3-12)
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Noting that the flexibilities may be extracted from the state

position vector via an identity relationship defined as

gi = [ ag,/O_ ] j_, (2.3-13)

the potential energy can be written in terms of the system state

vector,

T

PE i =

T C<], (2.3-14)

where [ K°I ] is the flexibility modeling matrix of llnk I. The

total potential energy of the system is the sum of the potential

energy of the links.

n÷l

--[ PEPEs_tem 1

n÷1
1 T

I=I

1 T

where [ K" ] is the flexibility modeling matrix of the entire

system.
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2.3.4 The Equations of Motion and the Power Modeling Matrix

The equations of dynamics are obtained via Lagrange's

equation. For a multi-degree of freedom system, it can be

expressed as:

_T= d/dt[ aKE/a_T] - 8KE/8_T+ apE/a_ T (2.3-16)

The term aKE/a_ T can be readily obtained due to the quadratic

form of KE.

I [(hi e I [(hii° T I

" [ (hiI. ] _ (2.3-17)

noting that [(hiI" ] is symmetric, and not

velocity. The time derivative of this term is

" eL/dr {r(h'im ] _ }

--{ d/dt[<")," ]}_÷ It'>i" ]_.

a function of

(2.3-18)
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The time derivative of the inertia modeling matrix can be

written as

d/dt[(h)i_ ] = _r { d/d_p[(h)i_ ]}PT (2.3-19)

where the planar transpose operator performs the following

operation:

(2.3-20)

for all i, J, and k, where the notation is plane;row;column.

The next term of Lagrange's Equation is

= a/8_'r { _ _ T [ (h}I. ] 9 }

=_ [ ] (2.3-21}

The last term yields

Q

=EK ]_ (2.3-22)
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The system of equations can be written as

T Z

+ [K']_

(2.3-23)

These terms can be written in a more compact matrix form as a

matrix with dimensions (dof x dof x dof):

(2.3-24)

so the dynamic equations can be written in a standard matrix

notation,

•_-- ['"'_" ]5 + _" [ '"'P" ] _ + [ _" ] , c23-2_

Recalling the expression for [(h)I" ],

I=1

(2.3-26)
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' 8/a_ [("'I"The term _ ] can be expressed as

Z -'d/d_ [("'2
t=t

2
t=t

°.,,[,h,_], (
I=%

o.,,[_h_]T ([ ]}÷ Z _ [ (h)Ii ] d/d_ (h)_
1=1

(2.3-27)

Notlce that the second order klnematlc Influence coefflclents

are defined by

d/dT[(h)_'t ] = [(h)_t ]
(2.3-28)

Substituting the local inertia matrix referenced to the local

frame,

+ [ _, ] a/a_ {[ (')I, ]} [ _, ] T

" [_ ] [ (t)I ] a/aS { [_ IT}
(2.3-29)
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will be denoted henceforth as

Recalllng the exact form of the augmented transformation matrix,

hT ] 0 0
I

o [h;,] o
0 0 [If

(2.3-30)

h

The columns of the tr_nformation matrix, ['71], are made up of

the dlrection cosines of the Ith local coordinate frame. These

direction cosines are a function of the rotational dispacements

between the Elobal reference frame and the local frame. This

kinematic relationship can be expressed by the cross-product of

the first order rotational influence coefficients and the

direction cosines of the local ith frame. This results is the

second-order relationship:

a/a_j [h',] = (2.3-31)

[(h)cJk] jX[hTl] l[(h)GJk] X[hTl] [(h)cJk] jX[hTI] ], - ., i .j _2a i _3



51

The skew-symmetrlc form of [(h)GJk] may be substituted for the
i

cross product, yielding

o/a_j [hi] =

[ (h)_Jk] [hTl ]l ;j ;1 I[(h)_:k]j [hT]21 [(h,_Jk]i ;j

(2.3-32)

or. In more compact notatlon,

(:?/O_j [hT|] = [(h)_Jk] [l_l ]! .j
(2.3-33)

Now, the term a/8_j { [ _i ] } can be expressed as

[(h)_Jk],j 0 0
i " (h}_Jk 0

0 [ Gi ]j

0 0 0
(2.3-34}
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Letting the matrix of skew-symmetric forms be

[(h)_Jk] GO oO ]

i ;1 (h)--Jk]
0 [ i ;,

0 0 0

[(h)_Jk] 0 0
l ;2

0 [(h)sJkl 0
t ;2

0 0 0

[(h)_Jk] 0 0

i ;n

0 [(h)_Jk] 0

l -;n

0 0 0

(2.3-35)

the derlvative in question can be expressed in a much more

compact form:

(2.3-36)
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The final resultlng equation for the term 8//8_ [(h)I" ] is a

function of the local inertia tensor matrix and the Eeometry of

the system:

°.,{_/a_[<"'i"]- Z
I=I

+[<h,.,]'[_,}c<h,,,i[_,]T[<h'.,]

+[,h,_]'[,h>_.][_,]C'h",_[h_]'[<h,_]

+[''>:,]:{_,]i:<',>,,][ _ ]"[<,,>_.,,q"r<,,>_,,j,.,7

+[,,,,,,]'[,,,,]E_,,,,,o,j[_ ]'[<,,>:] }
It has dimensions of (dof x dof x dof).

(2.3-37)
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2.3.5 Applied Forces and Torques

The applied torque vector _ is the equivalent load o£ any

point loads or distributed loads which may be applied to the

system. The equivalent load which corresponds to a.n applied

point force and point moment at position x on llnk i is:
-!

T = I(h}_(Xt) I _appl--equ iva Ient Ied
(2.3-38)

The equivalent load expression for a distributed load is

_equivalent = ) _-Tappl led (2.3-39)

1
V

which is a volumetric integral of the distributed load over each

llnk, or sub-system. This is particularly important for an

unconstrained system in a gravity, or pressure field. For

orbiting systems, a slight differential in the Eravlty Eradient

field will cause a torque on the system. For underwater systems,

a similar effect will occur due to the variation of water

pressure with depth.
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This gravity gradient effect can be estimated by assuming

the distributed load to be a point load at the center of mass.

This leads to the equation

•r =t "r . (2.3-40)
--equi va | ent -approx_t

l

This same method can be used to estimate the equivalent loads of

an underwater system, systems which develop fluid drag, systems

workinE in a centrifuge, or systems in a gravity field.

Damping terms have not been presented explicitly in this

study, but may be modeled as loads which are functions of the

maEnitude of the vibrations, or the velocity of the vibrations.

These loads are assumed to occur "Internally", and are written

In terms of the states of the system, 9, and T. Therefore it is

not necessary to use the Jacoblan to transform the dampinE

loads, as it is wlth externally applled loads.



3.0 Dynamic Simulations:

The product of this research is a general model of the

dynamics of serial manipulators. The model derived has been

implemented in a simulation package in "C" (a programming

language) which currently resides on a Silicon Graphics 4-D

computer system at the University of Texas Mechanical Systems

Robotics Laboratory. The source code for this program, called

VSim, can be found in Appendix C.

VSIm Is a general simulation package, which can simulate

serial systems of n links. Each llnk can have mt translational

vibration modes and mr" rotational vibration modes. The number of

modes may differ from llnk to link (le. link 2 may have 1

translational mode and 5 rotational modes, while link 1 may

have 3 translational modes ...). A link may be modeled as a rigid

body by assigning it no vibrational modes. Extremely flexible

links may be subdivided and modeled as several sub-link. Each

sub-llnk is modeled the same as a regular link. Each sub-link

may be modeled with several modes.

Because of the generality of the program, it must be

stressed that the output is only as good as the input. If the

input data truely represents the real system, there will be a

good chance that the output data also represents the real system.

The input to VSIm includes geometry, inertia, and stiffness data

for each link, along with a variety of "bookkeeping" data. In

56
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order to promote efficiency in computations, yet preserve the

general capabilities of the program, the current version requires

that the input data be included in the file "Robotdat.c '°. The

control model must be included in the file "Model.c" which is

accessed by the integration routine. The program generates the

equations of motion internally, from the data provided, and from

the control algorithm provided. The numerical integration

algorithm uses a predictor-corrector method with adaptive

step size and adaptive order, which was presented by C. William

Gear [24].

3.1Exa_Ie: A Large Space-Eased Robotic System

As an example, the dynamic equations of a large flexible

robotic system used in space operations are formulated, and the

resulting system is simulated under various disturbing inputs to

the end-effector and Joints. The system consists of a large

spacecraft with a 55 ft. manipulator which has 6 actuated

joints. The system was modeled such that the base link, (the

spacecraft) could translate relative to the inertial reference

frame. The geometry, mass, and stiffness information used for

this example is similar to that of the Remote Manipulator System

used by NASA. A truncated mode summation method will be used to

model translatlonal vibrations, and a lumped parameter method

will be used to rotational vibrations.
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Table 3.1-I

Geometric Data for Example Robot:

Ltnk W

0

L (ft)

P

-35.88

, -8.07

0.8

r o.o }
, 0.0

L 1.0

; 2O. 92

. 0.0 .

L 0.0 j

F
L

F
L

,I
i

F
L

23.1B 1
0.0 ,

0.0 j

1.S 1
0.0

0.0 J

0.0

-2.5

0.0 i

0.0 "_
I

0.0 ,

2.17 I

O_ (tad)

T[

/t

0

0

3 __
2

It

2

0

(] (tad)

0

joint type

re_o t ute

revo Iut •

revo Iute

revo Iate

revo Iute

revo Iute
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Table 3.1-2

Mass and Inertia for the Example Robot

Link #

0

2

3

1

4

6.39e3

2.198

i

9.$38

5.982

i

0.58

1

3.144

3.094

CIll (ft)

0.0

0.0

0.0 ,

0.0

w 0.0 ,

0.5

10.46 }

, 0.0

0.0
w

" 11.58 ]
0.0 ,

2.17 ]

r o.75 1
. o o ,

I

L o.o ]

F 0.0 ]
• -1 .25

L ooj
i

r 0.0
0.0 •

L 1.08 j

2
I (slug'ft)

8.9e5 1.6e4 -2.9e5

1.6e4 6.9e6 3.5e3

-2.9e5 3.5e3 7.3e8

i 1 • 37 .014 -.059
014 1.595 -.027

L- 059 -.027 ,439

2.38 -8.77 1.423

-8.77 1.8e3 -.223 =

1.423 -.223 1.8e3 .i
i i ll=

.!1.17 2.79 -.592

2.7g 8.5e2 -.059

-. 592 -.059 1.3e3

.066 0.0 0.0

0.0 .622 0.o
!

O. 0 O. 0 .622

i

'" 8.38 0.0 0.0
i

0.0 .301 o.0 J

J0.0 0.0 8.36

D

5.71 .281 -.712 |

•281 .301 0.0 {

J-.721 0.0 8.63
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Links 2 and 3 were modeled as flexible, and the other

links were considered to be rigid bodies. The translational

vibrations transverse to the length of the link were modeled by

cubic modes, and the torsion about the minor axis of the links

were modeled by simple linear rotational springs. The inertia

terms were computed using the equations derived in Appendix A.

The translatioru_l cubic mode shapes are:

o+ blCXl/L i) + Cl(XI/LI) 2 + d (xl/Ll) 3 (3 1-I)al 1 "

0

I o 1_2(_xl) = a2 + b2(xl/Ls} + c2(xl/Li) 2 + d2(xi/L1) 3 (3.1-2)

0

3

0

0

+ b3(xl/L i) + c3(xl/Li) 2 + d3(xl/Li) 3

{3.1-3)

and

a
4

o0
+ b4Cxl/L i} + c4(xl/Li) a + d4(xl/L1} 3

C3.1-4)
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The proximal end of the link is not allowed to defect relative

to the local coordinate system,

_j(O )= _j(Ol) = { 0 } (3.1-5)

therefore a = O. The slope of the deflection is also assumed to
J

be zero at the local coordinate system, therefore b = O.
J

The orthogonality condition needed to assure that these

modes are independent is expressed as

f {]Cxl) • _kCxi) dV = 0

V

(3.1-6)

ii [ )4 + (c dclc2(xt/Li I 2

0

]

)s + dld2(xi/L )6 ]dxl+ c2di) (x11Ll l "
J

(3.1-7)

IntegratinE, we find the orthogonality requirement to be

r = -(42 + 35 r ) / (35 + 30 r )
2 I I

(3.1-8)

where r I = dl/cl, and r2 = d2/c2. For this example, the first

ratio is r = O, making the second ratio, r = -1.2.
I 2
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The mode shape functions relating the local deflections

to the generalized coordinates of the local link are:

f °}__ICxl) = (xl/Li) 2 C3.1-9)

0

I o }__2(_xl) = (xl/Li) 2 - 1.2 (x|/Li)3

0

(3.1-10)

I °)a_3(x__) = o

(xl/Li)2

[3. I-II)

I o 1__4(x ) = 0 (3.1-12)

- IL )3(xl/Li)2 1.2 (xi I

These mode shapes can be organized into matrix form which gives

the local llnk translational deflections.

d(_x i) = I ¢_(_xl)] 51 (3.1-13)

ql|

q2!

q3!

q41

q5_
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The rotational mode shapes are assumed to be simple linear

functions, which is the prescribed assumption for lumped

paramter models:

xl/L i }
_ICxl) : 0

0

C3.1-14)

and may be organized into matrix form to obtain the local

rotational deflect ion.

eCxI) = o i o i 0 i 0 L _iCxl)

]

, q21 ["

q31 [
I

q4i

qS! J

(3.1-15)

The shape functions will now be used to compute the coupling

terms and vibration terms of the local inertla matricies.

From Appendix A, the inertial coupling between the translational

flexibilities and the translational motion of the link are

= _dll I Mdl2 I M I M I 0-d13 -d14 - . '

such that

(3.1-16)

Mdlj = _ p(Xl) [ __j(xl)] dV. (3.1-17)

V
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Assumlng that the mass of the llnk Is dlstrlbuted evenly along the

length of the llnk, such that _i = ml/Lt' the matrix becomes

0 0 0 0 0

c L /3 c L /30 0 0 0
1 1 2 I

0
0 0 c L /3 c L /30

1 ! 2 i

For link number 2 this matrix is:

(3.1-18)

0 0 0 0 0

3.18 c .318 c 0 0 0
1 2

0 0 3.18 c .318 c 0
% 2

and for link number 3 this matrix is:

(3.1-19)

0 0 0

1.99 c .199 c 0
% 2

0 0 1.99 c
%

0

0

.199 c
2

0

0

0

(3.1-20)

The coefflents c and c are scale factors.
1 2
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The coupl inE terms between the gross rotat ion and the

translational flexibility are presented in Appendix A as:

Lq i

(3.1-21)

such that

<dil = f p(X_i) [ -_Xt]__j(_Xi)dV . (3.1-22)

V

The resulting matrix is

IP ] = f/i
Lq!

0 0 0 0 0

0 0 - c L2/4 - c L2/I00 0
1 ! 2 i

0
c L /4 c L /100 0 0

1 ! 2 !

(3.1-22)

The coupling between the rotational vibrations and the

rotational gross motion was presented in Appendix A.

If, ]
mq! .... -Ldts

(3.1-23)

This matrix becomes

0 0

= 0 0

0 0

0 0 I /2
xxi

0 0 0

0 0 0

(3.1-24)
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By combining these matrlcles we obtain the total

between the vibrations and the rotational gross motion.

For llnk number 2 thls matrix Is

coupling

ILq ]

0 0 0

0 0 -49.8 c
1

49.8 c 1.99 c 0
1 2

and the for llnk number 3 thls matrix is

0 1.19

-1.99 c 0 ,
2

0 0

(3.1-25)

i Lq3 ] =

0 0 0 0 .585

0 0 -34.6 c -1.39 c 0
1 2

34.6 c 1.39 c 0
1 2 0 0

(3.1-26)

The generallzed tnertlas of vibration are defined In Appendix A

as

I P = _ p(X ) _j(Xi) • _k(Xi) dV,

qqlJk V

(3.1-27)

and for rotatlonal vibrations It Is given as

IB = _ I(xl) _j(xl) • _k(Xl) dr.

qq|Jk V

(3.1-28)



67

The results of this Integration may be organized into a

matrlx for each flexible link.

I Iqqsl =

2.38 c2 0 0 0 0
%

0 .05449 c2 0 0 0
2

0 0 2.38 c2 0 0
I

0 0 0 05449 c2 0• 2

0 0 0 0 .793

(3.1-29)

1.45 c2 0 0 0 0
i

0 •03419 c2 0 0 0
2

0 0 I. 45 c2 0 0
I

2 0
0 0 0 •03419 c2

0 0 0 0 .39

(3.1-30)
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The stiffness terms for these two links are obtalned from

the equations presented in Appendix B. The resulting stlffness

matrix for llnk 2 is:

4.5e3 c _ -3.5e3 c c
t 1 2

-3.5e3 c c 7.7e3
1 2

0 0

0 0

0 0

0 0 0

2
c 0 0 0
2

4.5e3 c_ -3.5e3 c c 0
1 % 2

-3.5e3 c c 7.7e3 c_ 0
I 2 2

0 0 I. le6

(3.1-31)

and for link 3:

K31

2.2e3 c2 -1.7e3 c c 0 0 0
1 i 2

2
-1.7e3 c c 3.8e3 c 0 0 0

1 2 2

0 0 2.2e3 c2 -1.7e3 c c 0
I I 2

0 0 -1.7e3 c c 3.8e3 c2 0
1 2 2

0 0 0 0 8.3e5

(3.1-32)

This system was simulated with various disturbances

applied to the point of resolution (The point of resolution is a

point at the end-effector of the manipulator). In the first

simulation, a step load of 1000 lb. and I000 ft-lb, was applied

alon E each axis of the Elobal frame. The simulation was

performed once for confIEuration #I, for which all joint

displacements are zero, and once for confiEuration #2, for which

all Joints are zero, except for joint 3, which was set at =/2
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radians. The base was allowed to translate. The magnitudes of

the first and second translational modes for each flexible link

are shown in Figures 3. l-la through 3. l-4b, for reference

position #I. The translational modes are dominated by

frequencies around 3 Hz. The impulse response of the rotational

mode was found to be much faster than that of the translational

modes. This is because of the small inertia of the system in

configuration #I. The rotational vibrations of the system near

configuration #I will be dominated by the loadings at the

end-effector. If a payload with large inertia is being moved,

the frequency of the rotational vibrations will be lower. The

simulation for configuarion #2, shown in Figure 3. l-Sa through

• 3. I-8b, shows the conflgurat ion dependence of" the system

response. These simulations reveal a much lower frequency on the

order of 0. I Hz, which modulates the amplitudes of the higher

frequencies of vibrations.

In the second simulat ion, the load was a cycl ic

disturbance of I00 Ib and I00 ft-lb, along each axis of the

global frame. The frequency of the load was 3.18 Hz. The

simulation was performed once for reference position #I, for

which all Joint dispacements are zero, and once for reference

position #2, for which all Joints are zero, except for Joint 3,

which was set at _/2 radians. The base was allowed to translate.

The position of the end effector is shown in Figures 3. l-9a and
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3.1-9b, for reference position #I. The maEnltudes of the first

and second modes for each flexible llnk are shown In Figures

3.1-10a throuEh 3.1-13b, for reference posltlon #I. The

maEnltudes of the first and second modes for each flexible llnk

are shown in Figures 3. I-14a throuEh 3.1-17b, for reference

posltlon #2.

The third set of simulations were performed for an

osclllatlng load of 1000 lb. and 1000 ft-lb., at a frequency of

.318 Hz. The results for the maEnltudes of the first and second

modes for each flexlble llnk are shown In FIEures 3.1-18a

throuEh 3. I-18b, for reference position #I. The results for the

maEnltudes of the flrst and second modes for each flexible llnk

are shown in FiEures 3. I-22a through 3. I-25b, for reference

position #1.
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4.0 Conclusions

The flexibility of a robotic manipulator may cause large

errors at the end-effector of the system. Dynamic simulation of

these vibrations and deflections is necessary to study the

control of the system so these vibrations may be eliminated, or

reduced. A general modeling method has been presented which

includes the dynamics due to gross motions of the base, motions

of the Joints, and vibrations of the Joints and links of the

system. The motions of the Joints and the base are coupled to

the vibrations of the joints and links. The vibrations may be

modeled using lumped parameters, truncated mode summation, or a

component mode synthesis method.

This model has been implemented in a simulation package

called VSim. The package was used to simulate a large

space-based manipulator system. Both mode summation and lumped

parameter techniques are used in the model. The response of the

system was seen to be configuration dependent. Very slow

frequencies were present is some configurations, and not in"

other configurations. The response of the system also was

dependent on the type and frequency content of the disturbance

applied to the system. It should be noted that the second

mode seemed to respond much the same as the lowest mode. This

indicates that the system response probably can be modeled
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sufficiently by only the first mode.

This simulation package can be easily modified to include

a control alEorlthm. Disturbances may be applied externally, or

may be created due to the motion of the links. The number of

flexibilities, links, and Joints which the simulation packaEe

may model is resticted only by the constraints imposed by the

computational resource which is used to run the simulation.



APPENDIX A

Derivation of the Local Inertia Matrix

The expression for the kinetic energy of the ith

link or sub-link is ideally expressed in integral form as

{ }{ 1_ = _ pCx__) I%(_) • __Cx) dV CA-i)

V

The velocity, "H(x ), can be written as the sum of the velocity

of a reference point and the velocity relative to the reference

point. The reference point is chosen to coincide with the local

orlgln of the link. The equation of velocity is then

(_)R(xl) = (I)_(0) +(1)_(x)i - -i + (1)_(O_) x {(1)d(xl ) + (1)x}- - - -l

= (t'_(O)+ (t'_(01)x {(t)x-| } (A-2)

_' x {'"dCx_, } (1)dCx)_-,+ ___(0_,) ) +

where _)R(O ) is the translational velocity of the local

(t)
coordinate system, _(0 ) is the rotational velocity of the

local coordinate system, (1)_!(xl) is the velocity of the point

of interest relative to the local coordinate fr_une, and (1)d_(xI)

(I)
+ x is the distance from the local coordinate frame to the

--I

point of interest. For notational brevity, define

(t)_(xl)- = (1)x-I- (llcm--1 (A-3)

Also, the pre-scrlpt (1)wlll be dropped, noting that all vectors

in this appendix wlll be referenced to the local frame.
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Substitutin E the expression for _(KI), the kinetic energy

can be expressed as:

V

V

V

V

i_ ( I( }+ 2- P(xl) _(0)_ x x I • _(0i)_ x xl

V

dV

V

V

I

+_ j" pCx_l) f _C°-13x d-C_l)t " f __CO_l
V

) x d_(x i)} dV

V

V

CA-4)
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These inteEr-als define the total kinetic energy of a link

includin E that due to gross motion, vibrations, and the couping

between the gross motion and vibrations. Each integral can be

rewritten so that the velocities are factored out of the

integral. The integratlons are performed off-llne to predict the

inertia terms that are needed for the dynamic model.

The first kinetic energy term,

V

V

{ }= I A(Oi) ml _ ,2 - f_(o) (A-S)

letting [ I ] = ml [I], this kinetic energy term becomes:
mm

(A-6)

This term is the kinetic energy of the link moving as a point

mas s.
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The second kinetic energy term is

V

V

) x cml} dV +

%,

%/

[A-7)

The second .integration in this kinetic energy term is zero because

= m cm - m cm = 0 .
i --i t --I

[A-S)

The first integration can be written in more

notation,

{___o,}.{_o,x[;o_,,o,_,)}
V

%/

convenient

(A-S)
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Noting that cyclic permutations of the vectors in the scalar

triple product do not change the value of the result,

= f p(x_) B • { C x A } dV (A-IO)

V

Expressing the vector cross product in skew-symmetrlc form,

= j" p(x) BT [_] A dV
V

Substituting the original vector functions,

outside of the integral,

V

V

(A-If)

and moving them

(A-12)

[]:Defining [LI lj.., , this kinetic energy term can be

expressed as:

This is the additional kinetic energy of a point mass

resulting from the choice of the reference point.
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The third kinetic energy term is a couping term caused by

deflections. It is similar in form to the previous term. The

derivation is the same until the original vectors are

substituted.

V

¥

N

Remembering that the deflections are the sum of the normal

modes,
B

N (A-15)

The velocities and generalized coordinates of vibration can be

moved outside of the integral:

m

)_T L

N

(A-16)

Defining the integral over the skew-symmetrlc form of the mode

shape to be

V

this kinetic energy coupling term can be rewritten as

(A-17)

B

(A-18)
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The fourth kinetic energy term is a coupling term

between the translational velocity and the velocities of

vibration.

V

V

Substituting the

(A-19)

mode shapes and generalized velocities -of

vibrations into the expression,

m

{ }'_ {'I I}
V J=l -J -_

and taking the summation and the velocities of vibrations out of

the integral, we obtain

m

--'-{_-,o-,,}+(__, I_ -,-, ]}-2 _lij pCxt) _ (x) dV

V

(A-21)

Defining the integral over the mode shape:

Mollj--J" p(XI )[ __j (XI) 3 dV ,

V

and arranging these terms into a matrix,

(A-22 )

[ ] EM,.,...,M]Imq! = -dll -d[2 -dlm i

( A-23 )

the fourth kinetic energy term can be rewritten as

-(_,o,,}+[_+]+, (A-24)
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The fifth kinetic energy term is the rotational kinetic

energy of a rigid link.

p(x i) __(0_I) x x_I • __(_l,)x x_I dV

V

V

V

V

The last integral is zero because.

_p(x_ 13 _(x_1) dV

V

= _ P{X,){ x-1 - cm}dV__1

V

= J" P(xI) x-1 dV- J" p(x_1)cm__1 d%/

%/ %/

= r. cm - m cm =' O. {A-26 )

The other two integrals in thls kinetic energy term may be

expressed in a more convenient notatlon:

,,; { }{ }p(x I) A x B • A x B dV #

V

(A-27 )
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Noting that the dot product is commutative, and the expression

can be manipulated as a scalar triple product,

=- AxB xA" BdV
2

¥

= _ p(x l) A • B x A x B dV

V

¥

= ! pCxl) A • • B A - B - A dV

V

= _ _ p(xl) AT TBA - BBTA dV

%1

= _ p(x_t) A_ TB[I] - BBT A dV

%/

where [If is the identity matrix.

(A-28)

Substituting the original vectors, the kinetic energy term can

be expressed as

V

= _ oct) _(0 c._m.mcramt [11 - c__mi c__.mI _(Oi] dV

V

• [ J--p(_l ) _(Ol) T _(KI) T _(_,)[I] -_(_l) _(_i) T _(0 ) dV

V (A-29)

Notice that the term in brackets involving _ is the three

dimensional vector form of the parallel axis theorem.



Removing terms which are const_unt wlth respect to the

integration, the integral In the first term yields the mass of

the llnk.

1 )T[ T T] (1)b)(O }= - m _(0_ cm cm [I]- cm )2 i t --t --t cml --t - --

v (A-a0 )

The first term is the kinetic energy due to the fact that the

reference point was not the center of mass _nd the parallel axls

theorem must be used to find the equivalent inertia at the

reference point. The second expression is the rotational kinetlc

energy of aun _indeflected body about the center of mass. The

integral in the expression is the definition of the rlgld-body

rotational inertia matrix for a llnk. The expresslon can be

rewritten in terms of the the rigid-body rotational inertia

matrix

= ! wCOi)r [ I
2 - L cm/cm t

] _(01)+ I __(oI)T [ ILL I ] _(0--I )

(A-31)

Defining the Inertla about the local origin as

[<3- ]+ ],
this klnetlc energy term can finally be written as

]= _!_COx_)" __CO_,)

(A-32)

(A-33 )
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The sixth kinetic energy term is similar in form to the

flfth term.

V

(A-34)

Proceeding with the derivation in a similar way,

V

¥

:_0_x___A_T_A__TA1dV
V

= ,[p(x_.|)AT[cTB[I] - BCT]A dV

V

(A-35)

where [I] is the identity mmtrlx. Introducing the origlnml

vector functions,

= _ p(Xl)_(O_l)T[ d(x_ )T _(X_)[I]- __(X_I)d(x_i)T] __(0_i)dV •

(A-as )

_w(O,) csn be removed from the integral, resulting in

= _w(O)' _pCx )[ d_Cx_)' _ZCx )[I]- __(x_I) _!(x_)')_w(O)

V

(A-37)
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The resulting expression is the rotational kinetic energy due to

the deflection of the body. Introducing the mode shapes,

! T

= _(O--i)T _- qi _ P(Xl) -_j{xl)
- J=l J - --

__(xI) [I ] (A-3B)

_(x_i) _j(x_) I dV _(0_I).

J

the integral can be defined to be

I T T[ ILdij ] = _ P(Xl) _.j(xl) __(_l)[I] - _(Xl) __j(xi )

V

and the sixth kinetic energy term can be rewritten as

-- -w(oi)T _- ILdlJ qlJ -W(O-n)
J=1

(A-40)



110

The seventh kinetic energy term is the couping between

the rigid body rotations, and the velocities of vibration.

V

(A-41)

Noting that cyclic permutations of the vectors in the scalar

triple product does not change the value of the result,

= .[ P(X-,)-_(O-n)" { x-l x _l(xl) } dV '

V

(A-42)

Expressing the vector cross product in skew-symmetric form,

V

m

Z
V =1

m,
!

V

(A-43)

Defining the integrsl scross the cross product as

¥

(A-44)

and defining a matrix,

[IP ] = [ MP I MP I ..-I !_ ] ,
Lql -Ldil -Ldl2 -Ldl,hi

(A-45)

this couplng term can be rewritten as

(A-4B)
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The eighth kinetic energy term is the extra rotational

kinetic energy due to the deflection of the link.

which is similar is form to the rigid-body kinetic energy term.

The derivation is the same up to the point where the original

term are introduced into the equation.

= !2 _P(Xt} ATIBTB[I]- BBTIA dV

V

(A-48 )

Substituting the original vectors, the kinetic energy term can

be expressed as

i _ P(xl)-_(O--|)r[ d(x!)T d(xl)[i ] _ dCxl)d(xl)T ] _w(Ol ) dV.

( A-49

Introducing the mode shapes results in

(A-50 )
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Deflning the inertia term associated with the integral as

V

the kinetic energy term becomes

(A-S1)

'[ ]]I}{ }'''
JB! k=l

(A-52)
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The nlneth kinetic energy term is

V

V

V

m

V J="

m

,_iI_,J,,_-,_1_V)
m m

( }(''
J 1 k=$ V

ak(x_) dV _ik I
(A-63}

Defining the integral to be

M_

-dd! Jk

V

(A-54)

this kinetic energy term can be rewritten as

m m

( )'Ez' z'= M~ l q_ M~__(Oi) ql J -ddiJl J -ddt12

J 1 J=1

_ooJ

B

l qiJ -ddlIm
J=l l

(A-65)

qik "
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The tenth and final kinetic energy term is

V

(A-56)

Introducing the mode shapes,

m l

{'[ ]}C_,[
V I _

(A-57)

then taking the veloclty of vibrations outside the integral,

results in

m I
i 1

i f [ ][ 1= _ Z Z G,_G,k pc%) __+cx_)• __c%)dr.
J=t k=l V

( A-58 }

Defining the generalized mass of vibrations,

IP = )] • [ _6k(x l)]dv . (A-59)qqiJk _ p(x )[ _jCx 1

V

which forms the generalized translational mass matrix of

vibrations, [ Ip l the kinetic energy term can be written as

qql j 'L

" _ gl qql l
(A-60 )
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At this point it should be noted that this derivation was

based on the translational mode shapes of the link. The kinetic

enerEy contribution of the rotational modes can be obtained via

a method analoEous to that used for translational modes.

Assumin E that the local link rotational deflections are

decoupled from the local link translational deflections, the

rotational kinetic enerEy of the link can be expressed as:

V

The anEular velocity of a reference point can be written as the

sum of the velocity of a reference point and the velocity

relative to the reference point. The reference point is chosen

to coincide with the local oriEin of the link. The equation of

velocity is then

_wCxl) = w(O_-t) + eCxl)-' (A-62)

and the rotational kinetic enerEy is

= _ I/V(x l) _w(Oi) • w(O_i) dV

V

V

V

(A-63)
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The first inteEration occured in the previous derivation,

because it is a measure of the curl of the translational

velocity field. The second integration can be expressed as:

m

{ }+{'[ _}-f,]_c_,___(o_,,Z i,_%(x, d%/
%/ I ,

I

l=s %/

(A-64 )

Definin E the InteEral to be

d I/%/(X ) Xi) d%/
[ J --[

%/

(A-6B)

and deflnin8 a matrix

It" )=[M _ ,MRhqi -Ldii -Ldl2 ... _ ] P
I I -Ldimi

(A-66 )

this coupln 8 term can be rewrltten as

+{+(o,_}[,z+]{+,}. (A-67 )
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The third, and final integration can be expressed as

(A-68)

TakinE the velocity of vibrations outside the integral,

i i
! |

I" ZZ
J=_ k-I

V

(A-69)

Next, definin E the generalized mass of vibrations,

which forms the rotational generalized mass matrix of

vibrations, [ IR ]. The final inteEration can be expressed as

L qq} J

,-,[= _ gl Iqql I
(A-71)



The kinetlc enersy can now be presented in terms of the

new mass and inertia matricles.

Defining:

and

the total kinetic energy is

]'

÷ 6(KE) + _2{KE)

(A-72)

(A-73)

{A-74)

where 3(KE) and 62(KE) are the kinetic energy term which are

functions of the llnk deflections, and are sma11.
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This expression can be organized into the desired quadratic

Form.

b

(A-75)

, T

__CO_,))I_,'"I__CO

[i..i][_.L,][i.ql]
[I.L[IL_][iLq,]

l] r I T

R_(01)

_(0).

gi

(A-76)

This local inertia matrix is used in the derlvatlon of the

equations of motion. In deriving these inertia terms, the reader

must be cautious that none of the assumptions or restrictions of

the vibrations model are violated. Due to the generality

of this modelinE method, these restrictions are not inherently

included as the equations were derived. Those unfamiliar with

the restrictions which apply to models of vibrations In

continuous systems are urEed to refer to Thomson [23].



APPENDIX B

Derivation of the Stiffness Matrix

The expression of the potential energy due to elastic

deflection of a system is given as:

PE i = _ EI/¥[x_,) a_/ax_ _ ) •

w

(B-I)

In this case, the llnk is assumed to be long and thin. The

equation for the local deflection is assumed to be the sum

of the normal modes:

I
i

Z {t)_dCx_|) = qlJ -iJ

J=l

(B-2)

such that

PEI = !2[ EI/Y(_t)

Y

m

:{ }
j=_t qiJ O2/OX_ (l)(__lj "

Q

-_jj
J=!

(B-3)

The summation and the generalized coordinates of vibrations can

be taken outside the integral,

a m
! i

%

J=% k=l

EI/V(K l) O'/Ox__{ (i)$-tj
V
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Now, define the integration to be the stiffness term relating

the potential energy due to the deflectlons qlj and q_k"

KP_jk = _ El/V(

(B-S)

analogously for the rotational deflections:

[(R

V

(B-6)

The potential energy can now be expressed in quadratic form,

,T[]PEi = 2 g_ Kl gl (B-7)

_,o_o[,. ]_[<]. [,:] (B-S)



APPEMDIX C

VSlm: A Simulation Package

The source code for the simulation resides on the Silicon

Graphics 4-D computer system in the University of Texas

Mechanlcal Systems Robotics Lab. It may be found in the

following directory:

/usr/people/phllip/VIBES

To perform a simulation, the followin E files must be altered

for the system which is to be simulated.

/usr/people/philip/VIBES/Robotdat.c

and

/usr/people/philip/VIBES/Model.c

The first contains the mass, Eeometry, and stiffness data for

the system to be simulated. The control model for the system

must be included in the second file. It is suggested that the

user be familia_- with the screen editor Vi, which is the common

editor in a Unix system. The user must also be able to program

in the computer language "C" to implement a control model. The

whole proEram must be compiled by the following comm_Lnd:

cc -03 -ZE -o VSIm VSlm. c

This compiles the program using the full optimization option.
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To execute the simulation, type:

VSlm outflle

The word "outflle" refers to the name of the file in which the

output data wlll be found, It may be replaced by any other name,

and may include a directory, uslng the common Unlx format. The

program will ask what the starting and ending times should be,

and what the minimum, and maximum time steps should be.
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.include

:include

=include

*include

,include

:include

:include

:include

=include

"maSh.b"

"stdio.h"

"RoboKda_.c"

"Exte_el.¢"

"toner.c"

"Gear,c"

"Geometry.c"
"Kinematics.c"

"_staE.c"

"Karat.c"

"Torque.c"

"Model.c"

=ain(argc,arc/v)

int a_¢:

char ,arc/v[_:

_ouble endtzme,hh,_min,bnmax,aps,printtlme,oldprint:

_ouDle t,y[8:[ordsr_,save[12][order2,ymax[order_:

_cuDle error[order],pw[order][order],told,hbold,hhnew,*aa:

_nu _,_,mf,kflag,jltar_,mexder,nq,nqold,newq,k,numdeta:

?=LE *dat file, *fopen() :

if'argc>l) (

9rintf("The output filaname is called %s n \n",*_arqv-l)):

printf("starttime- ?'n"):

scanf("%if",&t};

prln_f_"starttime- %e,n",t);

_rintf("endtims- ?\n"):

scanf("%if",&andtine):

printf("endtime_ %e\n",endtlmel:

_rintf("how many da_a points ?kn");

scanf{"%d",&numdata;:

pr_ntff"inltial step size- ?\n"):

scanf("%if",&hh):

prLntf("inltial step size- %e n",hh):

printf("minimum step s2ze- ?'n"):

scanf("%if",&hhm_n);

prin_ff"min£mum s_ep size- %e',n",hhmin) ;

printf("maximum step size- ?'n"):

scanf("%if",&hhmax):

prlntf("maximum step size- %a\n",hhmax);

printf("error constant- ?in"):

scanf("%if",&eps);

9rintf("error constant- %e\n",sps):

dat fila-fopen(*(argv_lj,"w..) ;

forfi-0:i<order;i--) y[0][il-0.:

mr-0;

for(i-0:i<order:i_) (

OR_GINAL PAGE IS
OF POOR QUALITY
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ymax[i]-1.0_

error[i]-0.0_

)

jstart-0:

maxder,-6;

prin_ime-(endtime-t)/numdata;

oldprin_-_;

prin_f("The integration is now star_ing \n");

Gear(&_0y,eave,&hh,&hhmin,&hhmax,eps,mf,ymax,error,&kflaq,&js_art,

maxder,pw,&told,&hhold,&hhnew,&nq,&nqold,&newq,&k):

jstart-l;

fprin_f(dat file,"%dkn",dof) :

while(_<end_ime && kZlag>0) I

prin_f("td",nq);

if(t>(oldprlnC+printtime)) (
oldpEin_-_:

fprintf(dat file,"%e ",_);

for(_-0;j<dof:j_) fprin_f(da_ file,"%l.4e ",y[0_[j_);

fprin_f(da__file,"\n");

)

Gear(&t,7,save,&hh,&hhmin,&hhmax,eps,mf,ymax,error,&kflaq,

&]e_ar_,maxder,pw,&_old,&hhold,&hhnew,&nq,_nqold,&newq,&k);

)

fclose(dat tile):

printf("kf[aq_%d\n",kflaq) ;

}

else pr:ntf_"Please include the name of the output file ',n");
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=define order dof*2

typedef double Vector[3], Ma_rix[3][3];

double sa[n], ca[n), $the_a[n], ctheta[n]:

O;:_iGiNAL PAGE IS
OF POOR QUALIFY
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Const(G,Gp)

, INITIALIZE THE JACOBIAN AND HESSIAN MATRICIES TO ALL ZERO */

'* COMPUTE CONSTANT VALUES IN THE JACOBIAN AND HESSIAN MATRICIES */

_ouDle G[n]C6][dof], Gp[n][6]Cdof];

int i,j,k,l;

extern int state_type[n]0 state_dir[dof], state_pos[n], mt[n], mr[n]:

extern in_ jflag[n];

exte_n double alpha[R], the_a[n], sa[n], cain], stheta[n], ctheta[n]_

t COMPUTE THE TRANSCENDENTAL FUNCTIONS OF THE CONSTANT ANGLE

LINK PARAMETERS */

for(i-0;i<n;i÷_) [

sa[ii-sin(alpha[i]);

ca[i]-cos(alpha[i]);

sthetaCi]-sin(the_a[i]);

ctheta[i]-cos(thata[i]) ;

)

..* ::_ITIALIZE THE JACOBIANS */

for(j-O;j<n;j-_) (

for(k-O;k<6;k÷-) (

for(l-O:l<dof:l_-} GCj![k][1]-O.:

for(1-0:l<dof:l_-) Gp[Jl[k][l]-O.;

. ASSEMBLE ALL CONSTANT FLEX DIRECT, ICN COSINES */

&=h:

l*state_pos{h!._flag[h_,l;

for(k-l/k<l-mt[i];k_*)

Gp[]![s_ate dir[k_[kl-l.: /* translational flex */

for(;k<state_pos[h*l];k÷-)

Gp[j]_state dir_k)-3][k!-l.: /, rotational flex */

* ASSEMBLE ALL COHSTANT 5OI_rT DIRECTION COSI_ZES */

for_-h-l:]>-0:j--) (

G[j'[5-3_state_type[h]_[statl_pos[h]i-l.0:

Gp[]''5-3*state_typa[h][[sta_e_pos[h]]-l.0:

• ASSE:._SLE ALL CO_ISTANT JOINT FLEX DIRECTION COSINES *.'

_f _flag_h ; !

for(j-h-1;]>-O;j--) I

G[_][5-3*s_ate_type[n3_state_pos[h_'l[-l.o;

Gp[j][5-3*s_ate type[hi'[state pos[h[-!i-l.O:

}

* ALL GROSS MOTION DIRECTION COSINES "/

_f 'Free) (

fzr,_-0:]<n;j--)

_or_l-6;l>0:l--) G[j][6-1][dof-l]-l.:

for(l-6:l>O;l--) Gprj][6-1][dof-[]-l.;

OF F_OO80UALrr_
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dof*2

_n= k,l,row:

printf("\n"):

for _k-0;k<i;k÷_)

rowuk*j:

prxn_f("\n"):

if(*(M_row÷l)>-O)

for(l-o:l<j:l_) printf(" %1.2e
else

for(l-O;l<j;l--) printf("%l.2e

printf ("\n") :

)

prlntf ("\n") ;

return(l):

",*(M+row÷l)):

",*(M÷row_l));

eeee*ee*eeeeeemee_e/

" :_TRIX .._LTIPLY t/

***et*te**tttQ_*ttt/

_=_':<, _, ] ,:;, k, !,O)

i_u_!e *M,*_l.*O;

_nt _,:,k,i:

:nO e,f,g:

_f ';!-k) re_urn(-l) ; /* check _o see Lf ma_rlcies are conformable *,

fzr !e-0;e<l:e--) /* row counter for matrlx M -/

_3r rf-0:f<l;f_-) /t column counter for matr:x _: *,

-_O_ite-f)-O.0;

for (g-0:g<j;g-- J *(O-l*e°f)- - *!M-_*e-g) * *(_-l*g÷f):

return{li :

* TRA:_SPOSE */

:nt :,3:
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int k,l;

_or (k-0;k<i:k*÷]

(
_or(l-O;l<j:l÷÷) _(N÷l*i÷k)- *(M÷M*J÷I);

)

retu=n(1) ;

* SCALAR .MULTIPLY _/

SM(M,i,_,S,N)

double *M, .N, S:

lnt k,l:

far _k-O;k<_:k*-)

%

for(l-0;l<j:l-_)

.(N-kej_l) = $ • *(M_k-j-l):

}

re:urn_ll :

. :ROSS PRODUCTS ./

Tr_ssx(t,r,G)

_:a_rlx t,G;

"'ectcr r:

Zr=ssy't,r,G_

::a:rlx _,G:

"'ec_or r:

_[0[[l[-_[l[[l]*r[_-t[2![l]*r[ll_

_[i_[_-_[2[[l_*r[0!°t[0:[l]'r[2]:

re_urn(1):

Trossz_t,r,G)

• _" :'_'_= _o'_
0_' _*_R QUALITy
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Matrix _,G;

Vec_o_ r_

o[o;[2]-=[1][2]*r[2]-_[2][2]*r[1];
G[1][2]-tC2][2]*r[0]-_[O][2]ir[2];

G[_:[2_=_[o]c2]*rC1]-tCl][2]*rCo]_
return[i):

.eeeeete*ee*eeeeteete*teeeeee_/

" GENERATE A ROTATION MATRIX */

ette.et.t_et*e*_Q_*t*ee*eetee/

ROT_axls,radians,M)

In_ axis;

_cuble radians:

Matrix M:

_nt i.J:

_ri_-0:£<3:£o-)

if'sxls==2)

_0::0_-cos(rad_ans]:

M[O::I_- -$in(radians);

:,_'9::_:=co$_radlans]
_:O::2:-s_n(rad_ans)

else lf!axI$=_Ol

:_:o]:o]=_.o:
:,_:l::l;-cos(rad_ans)

M:l::2:- -sin(radians} r

return_i_:

ORI...Q;;,_ALP'_GE _S
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/* MATRIX I_a_RS Z */
/* ulinq */
/* Gaus$ian°3ordan */

/* Elimination */

/.t_,t.ett*te_towet_et**/

GInverse(ti,a,nn)

/* _i points to _he matrix %o be inverted */
/* a points _o the inverted matrix */

/* nn is _he dimension of _he matrix */

_au_le *a, *_;

int ipiv[max_ele], indxr[max_elel, indxc[max_ele];

_n_ i, j, k, irow, icol, i, ii, row, col:

double big,dum,piv_nv;

for (_-o:i<nn;i _) (

_or (_-0:j<nn:j--) I

*(a_row*j)- *(ti_row+_]:

}

for_fO;j<nn;_**) *(ipiv*j)=O;

for!Im0:i<_n;i _ ) !

bl_mO.;

row_j*nn:

i_(*(ipiv+j)_=l) (

for(k-O;k<nn;k--)

if(*(ipiv_k) -- O)

L_fabs(*(a_row+k);>=b_g)

big=fabs(*_a-rew+k)) :

iCOl=k:

)

)

else If(*(ipiv_k)>l)

prin%f("singular matrix") ;
re turn ;

}

)

}

-- *[ipiv+zcol):
row_*irow_

col=nn*icol:

if(i_ow_-icol)

for[l=O:l<nn;l+_) {

dum= *(a+row_i);

*(a+row+l)= *(a-col+l);

*(a+col÷l)-dum;

)
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)
*(indxr+i)-irow:

*(indxc+i)-icol;
£f(*(a÷col+£col)--O) (

prln_f("singular matrix"):

re_UZTI:

)

pivinv-l./ *(a*col÷icol);

*(a*co2*icol)-l.;

for(l-o;1<nn:1*+) *(a_co1+1)- *(a*col+1)*pivinv:

_or(ll-O;ll<nn;ll_) (

if(ll!-i¢ol) (

col-nn*Icol;

dum- *(a+row+icol);

*(a_row_£col)=O.:

_or(l=o:l<nn;1÷_) *(a÷row÷l) -- *(a-col-ll*dum:
)

}

forIl=nn-l:l>-O;1--) q
if_*(_ndxr_l)

for(k=O:k<nn:k÷ *) I

dUm- *(a_row_ *(indxr*i));

*(a_row_ *(£ndxr_l))- *(a÷row÷ *(indxc_l));

*(a_row_ *(indxc_l))-dum;

OF POOR QUAUTY



133

Geome':ry (phi, t, _1, r)

* GIVEN THE GEOMETRY STATES, CREATE THE TRANSFORMATION MATRICIES AND

THE POSITION VECTORS */

/* NOTE THAT THE CONSTANT POSITION VECTOR r[h], THE CONSTANT TRANS-

FORMATION MATRIX _[h], THE TRANSCENDENTALS OF ALPHA[n] AND THETA[n!

ARE ALREADY ASSIGNED VALUES 8Y THE CONSTANTS ROUTINE */

double phi[doll ;
Matrix Ul[n],t[n] :

Vet=or tin]:

pni[dof_ : THE GEOMETRY STATES

=[n_3![31 : THE TRANSFORMATION FROM LOCAL SYSTEM i TO SYSTEM H

Ci[n][31:3] : THE LOCAL TRANSFORMATION MATRIX FROM _ to i-i WHEN

i>h, OR FROM i _o i_l WHEN i<h.

r[n[[3[ : THE POSITION VECTOR FROM ORIGIN H TO ORIGIN ._!

e

extern _nt s_a_e_type[n:, s_ate_pos[n_, sta_e dlr_dof_, m_[n], mr[n], h:

extern double mode[do_ 2, sa{n], cain], theta[n_, sthe_a!n_, c_heta[n]:

extern Vector L[n};
./

:=t _,j,k,l,m:

double a,$,c:

";ec=or define, rdel[n I, rl,r2:
::affix =I:

* THE ROTATION M_TRIX ASSOCIATED WITH FRA/.!E h IS THE IDE:;TITY :_ATRIX */

f:r':-O:i<_;i--)

for_]=O;_<3;]--) I

tl[n][i][3!-O.:

_[h][i][jI-O.:

)

tl[h[[i[[i_-l.:

* CE::PUTE LOCAL DEFLECTIONS OF EACH LINK '/

f=r'_-¢:k_n;_--) !

;=$tate_pos[i_-]flaq[i_÷i:

" I:;ITIALZZE THE OEFLECTIONS TO ZERO */

for(kmO;k<_:k÷ _ ) (

del[i][k]-O;

rdel[i_[k;-o;

)

_* S_ THE TRANSLATIONAL DEFLECTIONS OF LINK i */

/* k DENOTES THE STATE POSZTION ASSOCIATED WITH A DEFLECTION

OF LINK i ./

for (k-j;k(j+mt[i]_k+÷) del[i][state_dir[k]]_-p_i[k!*mode[k!:

'* SUM THE ROTATIONAL DEFLECTIONS OF LINK _ */

, k DENOTES THE STATE POSITION ASSOCIATED WITH A DEFLECTION
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OF LINK i */

for ( :k(j_m_:[ i] ÷mr[ i] "k+÷) =del[ i] [sUate_dir[k] ]--phi [k] *mode[k: :

)

• COMPUTE 3x3 ROTATION MATRICIES AND POSITION VECTORS FOR ALL > h */

for ( i-n_l; i<n; i+_) |

j,.s_a_epoe[i];

/* COMPUTE TRANSCENDENTAL FUNCTIONS OF JOINT i */

/* ZF JOINT i IS ROTATIONAL, INCLUDE JOINT i MAGNITUDE

AND DEFLECTION (theta[i] is Me constant joint rotation) */

£f['sta_e type[i]) (
c,,cos(phi[j_*phi[9+l]*j_lag[i]*theta[£]) ;

s-sin (phil j ]_phi[j÷l ] *_ flag[ i] _the_a [ i ! ) :
)

• IF JOIt_T i IS TRANSLATIONAL, OR CONSTRAINED, LEAVE OUT

JOINT i MAGNITUDE AND DEFLECTION, AND INCLUDE CONSTANT

LINK i PARAMETER TRANSCENDENTALS*/

else (

¢-c_heta[ i ] :
s-s_he_:a [ i ] :

)

: * FORM LOCAL TRANSFORM.ATION .MATRIX TO TRAZJSTORM A VECTOR FROM

LOCAL FRAME i TO LOCAL FRAME I-i. THIS TRANSFORMATION IS A

FU:JCTION OF THE TRANSCE._;DE_TALS OF JOItrT i AND ALPHA i-l,

A_D LIt_K i-I DEFLECTIONS */

k-i-l:

P.I : _.' :0 _.[ 0 ] =c-rdel [k: [2: *ca[k! *a*rdel [k: : i] *sa :k_ *s;

tl:i: :0: [I i- -s-rdel:k] [2;*ca[k:*c÷rdal:k] [l[*sa[k.:*c;

:I:i::0_ [2[-rdel[k][2'.*sa[k'.+rdal[k_ :l:*ca[k]"

:I:i: :I_ [0]-rdel [k] [2 ]-c-ca[k[*$-rdel[k: :0! *sa:k!*s:

":I:i: :I_ :I]= -rdel[k] [2]*s-ca[k_*c-rdal[k_[0:*$a_[k]*c;

:I:i! :I] [2]- -$aCk]-rdel[k_[O]*ca[k'. :

_l:i_ :2] [0]- -rdel[k] [l]*o+rdel[k] [o]*ca[k]*s+sa_:k _.*s;

tl:i'. :2].'l]=rdal[k][l]*sordel[k] [0]*ca[k_*c-sa[k_*c:

tl:i_ [2 _.[2],, -rdel[k] [0!*sa[k_-ca[k: :

• FORM THE TRANSFORMITIOt; MATRIX TO TRAVSFOP.M A VECTOR FROM

LOCAL FRAME i to GLOBAL FRAME h */

• FORM THE LOCAL POSITIO[_ VECTOR FROM ORIGI:] i-i TO ORIG[:;

THIS VECTOR IS A FUNCTIOtÁ OF THE LE:]GTH OF LI:_K £-I, THE

DEFLECTION OF LINK i-l, THE TRAt;SLATION OF JOI::T i, A:'D THE

.'PA::SLATIONAL DEFLECTIO:; OF JOI:;T i, THIS LOCAL POSZTIC::

VECTOR IS IN THE i-i LOCAL FRAME */
• IF JOI:;T i IS TRANLATZONAL, I_CLUDE JOI_;T i MAG:IITUDE A_;D

DEFLECTION */

: f :sta_e_type[ i; ) I

m-state_pom[ i] :
for (k-0 ;k<3 ;k÷_)

r_lk_=L[i-_][k]÷_ai[_-l][k]
-_[i][k] [2]*(pni_m:-pni[m-l:*]flag[z:) :

• IF JOI_T _ IS ROTATIONAL, LEAVE OUT JOINT i :4AG_ITUDE A_D

DEFLECTION */
else !

for(k-0:M<3:k_--) rl[k]-L[i-l! [k]-del[i-l:[M_ :

)

ORIGINAL PAGE. IS
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/* CONVERT LOCAL POSITION VECTOR TO FRAME H */

MM(tCi-l],3,3,rl,3,1,r2);

/* FORM THE POSITION VECTOR FROM ORIGIN H TO ORIGIN I */

for(k-0;k<3:k÷_) r[i][k]mr[i-l] [k]÷r2[k] ;

)

/* COMPUTE 3x3 ROTATION MATRICIES AND POSITION VECTORS FOR ALL < H *J

for (i-b : i>O" i÷_) (

j-state_poe[ i] :

/* COMPUTE TRANSCENDENTAL FUNCTIONS OF JOINT i */

/* IF JOINT i IS ROTATIONAL, INCLUDE 3OINT i .MAGNITUDE

AND DEFLECTION (_hsta[i] is the constant joint rotation) */

if(!state type[i]) (
c-cos(phi[j]÷phi[j÷l]*jflag[i]_thsta[i]) ;
s-sin (phi[j]+phi[j÷l]*jflag[i]÷theta[i]);

}

/* IF JOINT i IS TRANSLATIONAL, LEAVE OUT J.OINT i MAGNITUDE

AND DEFLECTION, AND INCLUDE CONSTANT LINK i PARAMETER

TRANSENDENTALS */

else (

c-cths_a [ i ] :

s-stheta[ L) "
}

/* FORM LOCAL TRANSFORMATION ,MATRIX TO TRANFORM A VECTOR FROM

LOCAL FRAME i-i TO LOCAL FRAME i. THIS TRANSFORMATION IS A

FUNCTION OF THE TRANSCENDENTALS OF JOINT _ AND ALPHA i-l,

AND LINK i-i DEFLECTIONS */

k-i-l;

tl[k_ [01 [0j-c-rdel_k] [2]*ca[k_*s-rdel[k_ [li*sa[k]*s:

tl[k] [I_ [0]- -s-rdsl[k][2]*ca[k'.*c-rdel[k] [l_*sa[k[*c;

"_l[k] :2_ [0]-rdsl[k][2_*sa[k'j-rdel[k_ [l_*ca[k];

_![k[ [O_[l]-rdsl[k] [2_-c*ca[k_*s-rdel[kl_0_*sa[k_*3:

"_![k_ [l][1] = -rdsl[k] [2],s+ca[k]*c-rdsl[k) [0 _,*sa[k]*c;

tl[k[ :2] [I]- -sa[k]-rdsl[k][0]*ca[k];

tl[k_ [I_[2) u -rdel[k)[l]*c+rdal[k I [0)*ca[k]*s÷sa[ki*s:

t![k[ [2_ [2'-rdsl[k] [l_*s÷rdel[k![O]wca[k'.*c÷sa[k_*c:

:l[_.[ [Z!:2]= -rdel[k][O]*sa[kI÷ca[k] ;

, * FORM THE TRANSFORMATION MATRIx TO TRA_ISFORM A VECTOR FROM

LOCAL FRAME i-L _O GLOBAL FRAME h */

:.",{{t:i_,3,3,tl[k],3,3,t[k]) :

• FORM THE LOCAL POSITION VECTOR FROM ORIGIN _ TO ORIGI:; z-!

THIS VECTOR IS A FUNCTION OF THE LE:IGTH OF LI)IK L-I, THE

DEFLECTION OF LINK i-l, THE TRANSLATIO)! OF IO!IIT i, A_ID THE
TRANSLATIONAL DEFLECTION OF JOINT i */

/* IF JOINT i Is TRANLATIONAL, I)ICLUDE JOINT i :*_%G)IITUDE AIID

DEFLECTION */

_."_Istats type[i]) (

m-state_poe [i] ;

for (k-O ; k<3 ;k+_)

r![k]= -L[i-l][k]-del[i-l] [k]

-t[i] [k] [2]*(pnl[m]+pnl[m_l]*j flag_ i[) :

/* IF JOINT i IS ROTATIONAL, LEAVE OUT JOINT i MAG?_ITUDE A)4D

DEFLECTION */

else I
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for(k-O_k<3;k÷+) rl[k]- -L[i-1][k]-del[i-l]Ck];

/* CONVERT LOCAL POSIT_ON VECTOR TO FRAME H */

_(t[i-1],3,3,rl,3,1,r2):

/* FORM THE POSITION VECTOR FROM ORIGIN H TO ORIGIN i-I */

for(k-0:k(3_k++) r[i-l][k]-r[i][k]+r2[k]; -

OF POOR QUALITY
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Kine_atics(t,r,G,Gp)

/_ GIVEN THE TRANSFORMATION MATRICIES t[n] AND THE POSITION VECTORS

r[n], THE JACOBIAN AND HESSIAN MATRICIES FOR EACH LOCAL FRAME ARE FORMED */

Matrix _[n];

7ector r[n]:

double G[n][6][dof],Gp[n][6][dof];

inn i, j, k, i, L1, 12, 13:

Maurix GPJKP[n_[n], GPJKD[n][n], GPJK[n][n];

Vector rl :

extern int state type[n], $tate_dir[dof], state pas[nl, mt[n i, mr_n]:

* COMPUTE ALL CROSS PRODUCTS WHICH ARE THE GEOMETRIC INFLUENCE

OF THE ROTATIONS ON THE TR_SLATIONS OP THE LOCAL FRAMES */

t COMPUTE THE CROSS PRODUCTS ASSOCIATED WITH THE GROSS MOTION

OF LINK h */

for(i-O;i<n:i--) I

Crossx(t[h],r[i],GPJK[h:[i_);

Croesyft[h],r[i!,GPJK[h_[i_):

Crossz(t[h],r[i_,GPJK[h][i]) ;

)

for_i=h-i:i<n;i÷-) (

Crcssx(t[h_,r[i],GPJK[h_[L[) ;

Crcssy(t[h],r[i_,GPJK[n][i:) ;

Crossz{t[h_,r[i_,GPJM[h:[i!):

* C3::FUTE CROSS PRODUCTS ASSOCIATED WITH JOINT MOTIONS AND VIBRATIC_;S *,'

" FCR ALL L::fKS, DEFINE THE PROXIMAL END OF LI_K i TO

COINCIDE WITH THE LOCAL REFERE!_CE FRAME i, AND THE DISTAL END

_F THE L:::}( TO COINCIDE WITH LOCAL REFERENCE FRAME i°l */

* :'OTE THAT FOR LTNKS NUMBERED • h, THE MOTIOU OF JOINT i COW,TRIBUTES

TO THE "P.OTION OF LOCAL FRAMES _, iol, ... n-l. BUT THE VIBRATIOn,S OF LINE

<:;H._CH :S DEFINED AS THE .MOTION OF FRAME i-i RELATIVE TO THE MOTIO:;

CF :OI'_T L) CONTRIBUTES TO THE MOTION OF LOCAL FRAMES i-l, i-2 .... n-l.

THEREFORE THE CROSS PRODUCTS ASSOCIATED W_TH THE MOTION OF 301:fT

:.:LL BE DIFFERENT THAN THE CROSS PRODUCTS ASSOCIATED WITH THE

"."__PATID::S OF LINK i. THE CROSS PRODUCTS ASSOCIATED WITH JOI,';T

::OTIO:_ :;ILL BE CALLED GPJKP, AND THE CROSS PRODUCTS ASSOC:ATED :;ITH

";IBPAT:O:;S WILL BE CALLED GPJ}(D. */

• : DE::_TES THE JOI_rT VELOCITY OR L_[K VIBRATIONS REFERENCED TO THE

Lt._ L_CAL FR.A2¢E */

.Ccr_i-h;i<(n-l} ;i--) (

/* " DENOTES THE LOCAL FRAME WHERE THE POSITION VECTOR TE_LMI:fATES */

for(j-i*l" j<-n;3÷÷) (

/* COMPUTE CROSS PRODUCT OF LOCAL LINK i JOI,_;T AXIS A_D

POSITION VECTORS ORIGINATING AT THE PROXIMAL END OF LINK

O? POO_ QU_:L!TY
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£÷I AND TERMINATING AT THE ORIGIN OF LINK j. THIS IS

THE CROSS PRODUCT ASSOCIATED WIT]{ _OINT MOTION Z */

for(k-0;k,3;k_-_,) r1[k]-r[J][k]-r[i][k]:

Crossz(_[i],rl,GPJKP[i] [_])-

)

for(j-i÷2- J<-n-J+*} (

/* COMPUTE CROSS PRODUCT OF LOCAL LINK £ AXES AND

POSITION VECTORS ORIGINATING AT THE DISTAL END OF

LINK i÷l AND TERMINATING AT THE ORIGIN OF LINK j.

THIS IS THE CROSS PRODUCT ASSOCIATED WITH THE

THE VIBRATIONS OF LINK i */

Eor(k-O'k<3:k÷_) r1[k]-r[j][k]-r[i][k]-

/* THE CROSS PRODUCT IN THE JOINT DIRECTION IS */

for(k,,0;k<3;k+ _-)

GPJKD[i] [j]{]¢][2]-GPJKP[i] [j] [k][2]-GPJKP[i_ [1_i] [k] [2]"

/* THE CROSS PRODUCTS IN THE X AND Y DIRECTIONS ARE */

Crossx(t[i],rl,GPJKD{i][J]) ;

Crossy(%[il,rI,GPJKD[i_[J_) :

• THE h JOINT AXIS rs A SPECIAL CASE, WHICH EFFECTS THE LINKS N%_BERED < h */

• .-HE CROSS PRODUCTS ASSOCIATED WITH THIS HAVE SEEN COMPUTED, ONLY THE SIGN

:._JST 5E CHA21GED WHEN THIS CROSS PRODUCT IS USED FOR JOI_T h MOTION */

• ::OTE THAT FOR LI_;KS _'_t_MBERED < h, THE MOTION OF JOI_T _ CO_;TRIBUTES

70 THE MOTION OF LOCAL FRAMES i-I .... 0, AND THE VIBRATIONS OF LI:IK i

_.H!CH IS DEFIrIED AS THE MOTIOn! OF FRAME i_l RELATIVE TO THE MOTIO_I

:F :OI:;T _) CONTRIBUTES TO THE MOTION OF LOCAL FRAMES i, _-i, ... O.

E'JT. THE CROSS PRODUCTS ASSOCIATED WITH THE MOTION OF JOINT i

•:_LL BE THE SAME AS THE CROSS PRODUCTS ASSOCIATED WITH THE

","__RATIONS OF LINK _, SI:_CE THEIR RELATIVE MOTIONS COI_CIDE AT THE

L:CAL ith COORDI:;ATE FRAME. */

• ' :E::OTES THE 3OINT VELOCITY OR LI_IK VIBRATIONS REFERE:_CED TO THE

.t_ L_CAL FRAME e/

_" _ DE::OTES THE LOCAL FRAME WHERE THE POSIT_ON VECTOR TERMI:_ATES */

for_j-1-1;_>-O;j -o)

/* COMPUTE CROSS PRODUCT OF LOCAL LINK i AXES AND

POSITION VECTORS ORIGINATING AT THE DISTAL END OF

LINK i-l AND TERMINATING AT THE ORIGIN OF LIt_K j.

THIS IS THE CROSS PRODUCT ASSOCIATED WITH 8OTH

THE JOINT MOTION i AND THE VIBRATIO_IS OF LI_IK _ *<

for(k=O:k<3;k-_) rl[k]-r[i][k]-r[j][k_;

Crossx(t[i],r1,GPJK[i][j][o!}:

Crossy(_[i],rl,GPJK[iI[j][l]):

Crossz(t[i],rl,GPJK[i][j][2]) :

ov Poor QuorUm'



139

/*

/*

/ *

,J,

ASSEMBLE THE 3ACOBIANS */

ALL DATA NEEDED TO FORM THE JACOBIAN IS NOW AVAILABLE FROM THE

TRANSFORMATION MATRICIES, AND THE CROSS PRODUCTS THAT WERE COMPUTED */

AT THE BEGINNING OF THE PROGRAM, ALL n JACOBIANS WERE INITIALIZED TO

ZERO, AND THE CONSTANT PARTS, ASSOCIATED WITH THE GROSS MOTION, THE

TRANSLATIONAL AND ROTATIONAL DEFLECTIONS OF LINK h (EXCEPT THE CROSS

PRODUCTS ASSOCIATED WITH THE ROTATIONS), AND THE MOTION OF JOINT h

(EXCEPT THE CROSS PRODUCTS ASSOCIATED W_TH A ROTATIONAL JOINT), ARE

COMPUTED. THE 3ACDBIAN FOR FRAME h IS ALWAYS CONSTANT. ONLY THE TIME-

VARYING ?ARTS OF THE _AOOBZANS ARE CHANGED IN THIS ROUTINE */

DENOTES THE 3ACOBIAN FOR FRAME j */

i INDICATES THAT THE JOINT MOTION OR VIBRATION IS ASSOCIATED WITH LINK i */

k DENOTES THE STATE VECTOR POSITION OF JOINT MOTIOt_, LINK VIBRATION,

OR GROSS MOTION. THE CONVENTION USED IS k EQUALS:

if i-0 Clink 0):

stats_pos[0]...stats_posCm_(0]°iI
- translational deflections of link 0.

state_posCmt[0]]...state_pos[m_[0]*mr[0]-1]
- rotational deflections of link 0.

if iml...n-1 (all other Joints and links):

stats_pos[_] - motion of joint i.

Lf jflag - I (it there is flex in join_ i)

stats pos[i]_jflag[i_ _ deflection of joint i.

if _t_i]>o _if thsr, _s• translationa_ flex in link _)

sta_s_posCi]÷jflaq[i]*l...stats posCi]-_flagCi_st_i_
- _ranslational deflections of link i.

if mr[i:>0 (if there is rotational flex in link i)

state_pos[i]-jflag[i_-l*mt[i]...state_pos[i_jflag[_-_i-mr[_i_

- rotational deflections of link i.

s:ans_pos[dof_-6 _ gross translation of link h in _he x direction

s_a_e_pos[dof]-5 - gross translation of link h in the y direction

s_aCe_pos[dof_-4 = gross translation of link h in _he : direction

stacs_pos[dof_-] - gross rotation of link h in the _ direction

s:ats_pos[dof]-2 - gross rotation of linX h in the y direc:i_n

sta_e__os[dof_-i - gross rotation of _ink h in the z direct!on

• _CR 3 • h */

,* =HE :ION*CONSTANT JOINT 0IRECTION COSINES */

* i DENOTES JOINT NUMBER */

f=r'l=h-l:i<n:i _-) I

ll=state_pos[i];
/* _F THIS $OIt_T HAS FLEX _NCLUDE _T _t; THE JACOBIAN */

if_jflag[i:) I

/* 12 _S THE STATE POSITION OF THE OF JOINT _ FLEX */

12=ll÷l;

/* j DENOTES JACOBIAN OF LOCAL FRAME 3 */

O_4 _i _ ,,,
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for(j-_:j<n_J÷_) (
/* JOINT POSITION PARTS */

/* I IS ZERO IF TRANSLATIONAL, OR THREE

IF ROTATIONAL JOINT */

1 - 3-3*s_a_e type[i]
G[J][I][ll] --t[i][O]iZ];

G[J][I÷l][I1] - _[i][1][2]:

G[J][I÷2][II] - _[i][Z][2];

GpCJ][1][ll] - t[i][0][2]:

Gp[J][l_1][11] - _Ci][l][2];

Gp[j][l÷2][11] - tCi][2][2]:

/* JOINT FLEX PARTS */

_CJ]
cCj]

GpCJ
_pCJ
GpCJ
)

)

/* IF THIS JOINT HAS

else

1]Cz2] - _Ci]CO]C2];
1+I][12] - tCl]Cl][2]:

1÷2][12] - t[i][2][2]:
Ci][121 = t[i][0][2];

Ci_I][12] - _Ci][z]C2]

C1÷2][12] - =[i][2][Z]

NO FLEX, LEAVE IT OUT OF THE JACOBIAN */

/* .j DENOTES JACOBIAN OF LOCAL FRAME j */
for[3=i:j<n:j÷*) (

/* JOINT POSITION PARTS */

/* i IS ZERO IF TRANSLATIONAL, OR THREE

IF ROTATIONAL JOINT */

I - 3-3.s_aue__ype[i];

GCj::z][11: - _:_o]c2::
GCJ;Cl÷Z:Cll] - t;_;;Z!_2]:
GCj:il-2::11: l _[_1:2_C_::

cpCJ;CZ:!11; - t[i:CO][2;_
GpCj;:I*I]ClZi l _;_]Zl;:=::

cp[j:[1-_:[ll] = tCi:[z::2_:

* ALL :JON-CONSTANT JOINT CROSS-PRODUCTS */

* I DE::OTES JOINT _'MBER */

f:r'_-h-l:i<n-l:i--) !

_* CHECK TO SEE IF THE JOINT IS ROTATIONAL */

ii - s_a_e_posC£_:

/* _F THIS JOINT HAS FLEX, INCLUDE rT =:! THE JAC:BIA::

_f (jflagCi_) I

12-ii_i:

/* ] 0ENOTES JACOBIAN OF LOCAL FRAME _ */

for(j=i_l;j<n:J_-_

/* JOI_T POSITION PARTS */

G[j][0][II_ - GFJKP!i_[j_!0_!2_;

GCj][2][II_ l GPJKP[i_j][2][2];

Gp[]][0][ll_ - GPJKP[i][jI[OI[2_:

Gp[j][1][ll] 1 GPJKP[i_[j![I![2_:

Sp[j][2][ll] - GPJKP[i_[j_[2_[2!:

/* JOINT FLEX PARTS */

G[j][0][12] - GPJKP[i][3][0][2_:

G[j][I][12] - GPJKP[i][j][I[[2!;

G[j:[2][12 ] = GRJKP[i][j][2][2];

Gp[_][O][12_ l GPJKP[ii[j][0_[2_;

ORIGt;4AL PAGE IS
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GF[J][I][12] - GPJKP[i][j][I][2]:

Gp[J][2][12] - GPffKP[i][j][2]C2]:

)

/. _p THIS JOINT HAS NO FLEX, LEAVE IT OUT OF THE JACOBIAN */

else {

/* J DENOTES JACOBIAN OF LOCAL FRAME j */
for(J-i+X;J<n;J_+) {

/* JOINT POSITION PARTS */

G[J][0][II] " GPJKP[i][j][O][2];

G[J][I_[II] " GPJKP[i]Cj][I]C2];

G[J][2][II] = GPJKP[i_[jI[2][2]:

Gp[J][0][II ] - GPJKpciICj][0_2_;

Gp(J][l][ll] " GPJKP[i][J]_I_[2]:

Gp[j]_2][ll] - GPJKP[i]_j][2][2]:

I

}

* GROSS MOTION CROSS-PRODUCTS */
'* 3 DENOTES JACOBIAN OF LOCAL FRAME J */

for(3-h÷l;j<n:j_-) {

/* x-DIRECTION */

G[j][O][dof-3]mGP3K[h][j][0][0];

G[J][I][do_-3]-UP:X[h][jI[XI[O]:
G[j][2][dof-3]-GP3K[h][j][2_[0]:

Gp[jI[O][dof-3_-GPJK[h_[j][0][0]:

/* y-DIRECTION */

G[j]II_[dof-2]'GPJK[h][j_[II[I];

G[jI[21[dof-21"GPJK[h][j][2][I];

Gp[]]_0]_dof-2]=GPJK[h_[jl_0]_l];

Gp[j][l][dof-2_-GPJK[h][jl[l][l];

Gp[j][2][doE-2]aGP3K[h][_][2][II:

/* z-DIRECTION */

G[j_[01Idof-I]'GPJK[hI[j][0][2]:

G[j_[I][dof-II=GPJK[h][j_[I][2]:

G[J_21[dof-I]'GPJK[h]CJ_[21[2];

Gp[_![0][dof-l]-GPffK[h)[j][0][2]:

Gp[j]il][dof-I]'GPJK[h][j][I][2]:

Gp!j!_2]idof-l]'GP3K[h][3!_2)[2_;

* THE :;C_;*COt;STA_T FLEX DIRECTION COSINES */

* _ DE::OTES L;:rM ASSOCIATED WITH THIS FLEX */

f=r,1=h-l;i<n-l:i_) ¢

ll-state_pos[i]_jflag[i]÷l;

12-ll_mt_il:

l]=12_mr[i]:

/* j DENOTES JACOBrAN OF LOCAL FRAME j */

for_jli-l;J<n:j_) !

/* k DENOTES STATE POSITION OF TRANSLAT:ONAL LINK FLEX

AND THE COLUMN OF THE JACOBIAN */

for(k-ll:k<12:k÷_)

Gp[j][0][k] - t[i][0][stata_dic[ki_:

Gp[j_[l_[k] = t[i_[l][state_dir[k_:
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Gp(j][2][k] - t[i][2][s_ata_dir[k]!:

)

/t k DENOTES STATE POS_T_ON OF ROTATIONAL LINK FLEX

AND THE COLUMN OF THE _ACOBIAN */

for(;k<13;k*-+) (

GpCJ][3][k] - tCi]C0][saate dir[_]];

Gp[J][4][k] - t[i][l][,%att_dir[k]];

Gp[J][5]{k] - t[i][2][state_dir[k]l:

)

J

* THE _ON-CONSTANT FLEX CROSS PRODUCTS */

* _ DENOTES LINK ASSOCIATED WITH THIS FLEX */

for(1=h:i<n-2;i-*) (

ll=s_a_e_pos[i]_1+Jtlaq(i]*m_[£];

L2=ll÷mr[i];

,'* j DENOTES JACOBIAN OF LOCAL FRAME j ./

_or(j=i*2;j<n:j**) {
/t k DENOTES STATE POSITION OF ROTATIONAL LI_IK FLEX

AND THE COLUMN OF THE _ACOBIAN */

for(k-l/;k<12;k++) {
GpCJ][O][k] - GPJKD[i][j][0][state dir[k]];

Gp[j][l][k] - GPJKD[i][j][l][sta_e dir[k_!:

Gp[J:[2]Ck] - GPJKD[i][j][2][stata dir_k_]:

* FOR j < h ./

* THE :_ON-CONSTANT FLEX DIRECTION COSINES */

_ DE_OTES LI_IK ASSOCIATED W_TH TH_S FLEX */

_:r'_-h-l:_>=Q:£--) (

il-s_aue_pos[i_jflag[i]-l:

11-12-mr[i_;

* j DE_IOTES 3AC08I_I OF LOCAL FRAME _ */

_rI:-_:j>-O:j--) t

/s k DEYOTES STATE POSITION OF TRANSLATIONAL LZ:IK FLEX

AND TH_ COLL_I_I OF THE JACO$1AN _/

G[j![0][k_ " -_[i_[0][s_a_e dir[k]i:

G[j][2:[k] - -_[i:[2_[s_ate d/r[k:::

)

.,. k DENOTES STATE POSITION OF ROTATIONAL LI_M FLEX

AND THE COLUMN OF THE JACOBIA_ */

G[j][4][k I - -t[iICl][s_a_e dir[k]_:

G(j][5][k] - -t[i][2][state _ir[k]]:

* THE ::0:;-COt_ST_T FLEX CROSS PRODUCTS */

* ; DE:;OTES LZ:_K ASSOCIATED WITH THIS FLEX */

L2-_-mr[i::" "
,* j DE:;OTES JACOBIAN OF LQCAL FRAME j */

,..'c "_* ?AGE
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_or(j-i-1;j>-o_j--}
/* k DENOTES STATE POSITION OF ROTATIONAL LINK FLEX

AND THE COLUMN OF THE JACOBIAN */

for(k-ll;k<12;k_+} {
G[J][O][k] - GP#X[i}[j][O][s=a:e_dir[k]l;

G[9][l][k ] - GPJK[i][j][l][statm_dir[k]];

G[J][2][k] - GPJK[i][j][2][state dir[k]];

)
)

)

/* THE NON-CONSTANT JOINT DIRECTION COSINES */

* i DENOTES 30INT NUMBER */

for_-h-l;i>0;i--) {

ll-sta_e_posCi]:
/* IF THERE IS JOINT FLEX, INCLUDE IT IN THE JACOBIAN */

if (jflag[i]) l

12111_i;

/* j DENOTES JACOBIAN OF LOCAL FRAME j */

for(j-i-1;_>Io;J--) L
/* JOINT POSITION PARTS */

/* I IS ZERO IF TRANSLATIO_AL, OR THREE

IF ROTATIONAL JOINT "/

i - 3-3*$ta_e__ype[i];

_[j][l][lll - -_Ci]C0]C2:;
GCJ][I-I][I¿] " -_[i][I_[21;

G[j][I-_][II] - -t[i][2][2_;

/* JOINT FLEX PARTS */

G[j:[I![12: - -tEl:[O::2::

G[ji[I-I_[12! = -t[i:[l][2];

c[j:[i*2][123 - -_[_[2][2]:
)

)
/* ;F THERE IS NO 3OI:_T FLEX, LEAVE IT OUT OF THE :ACOBIAN */

else :

/* j DENOTES 3ACOSIA_; OF LOCAL FRAME j */

for(j-i-l;j>-0;j--) {

/* 30INT POSITION PARTS */

/* i IS ZERO IF TRANSLATIONAL, OR THREE

IF ROTATIONAL JOINT */

1 - 3-3*sta_e__ype[i_:

G[_:[l_[ll] = -=Z_Zo][21;
G[_3[_*I)[ll] " -t[i][1][23:

G[j_[i-2_[ll_ - -t[i][2![2_:

)

- ALL ::C:_-C_NSTAI_ JOINT CROSS-PRODUCTS */

* = DE::CTES JOINT _tUM_ER */

/* CHECK TO SEE IF THE JOINT _$ ROTATIOZ:AL "/

:ff_stato__ype[il) I

ll-s_ate_po$[i};
/* IF THERE IF JOINT FLEX, I_ICLUDE IT I_; THE IACOBIA_; */

if (jflag[i_) (

12-11-1;

/* j DENOTES JACOSIAN OF LOCAL FRAME j */

for(j-i-1;j>-0:j--) {

/" JOINT POSITION PARTS "/

G[j][O![II_ - -GPffM[iI[j![O![2?;

c_,R OU_L_7"y
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G[J][I][11] - -GPJK[i][j][I][21:

G[J] [2][11] - -GPJK[i: [j] [2] [21 :
/* O'OIl'_ FLEX PARTS */

G[J][011123 - -GPJK[i_[3][0][2];

G[J] [i] [12] - -GPJK[i] [j] [I] [2] :

GCJ][2][12] - -GPJK[i][j][2][2] :

/* IF THERE IS NO JOINT FLEX, LEAVE IT OUT OF THE JACOBIAN */
el,to (

/* j DENOTES JACOBIAN OF LOCAL FRAME j */

_or(j=i-l:_>-o'j--) (
/* JOINT POSITION PARTS */

G[j] [0][Ii] " -GPJK[i] [j][0] [2] ;

c[J][1][iz] - -GpJx[i][j][z][2];
u[9][2][[I] - -GpJx[i]Cj![2]_2]:
}

)

f_r!i-h-!:i>0;_--) i

/* CHECK TO SEE IF THE JOINT IS ROTATIONAL */

if(sta_e _ype[i]) (

il-,_a_e_poe[i];
/'IF THERE IS JOINT FLEX, INCLUDE IT _N THE JACOBI_ */

£f(j_laq[i])

12-II_I:

/* j DENOTES SACOBIAN OF LOCAL FRAME j */

forfjmi-l:9>-0;j--) (

/* 2OI_:T POSITION PARTS ./

/* 3OI_:T FLEX PARTS */

G[]_Oi[12 _ - GPJK[i!{]IiO_[2_:

G[]_[I_[12_ - GPJK[i][jI[I_[2_;

G[]][2][12] - GPJK[i![9![2![2_:

;

/* IF THERE IS _ZO $OINT FLEX, LEAVE _T OUT O? THE JACOBEAN *_
el,re

/* ] DE:;OTES JACOBIAN OF LOCAL FRAME 3 */

for(_-_-l;j,-O:j--) I

_* 30INT POSITION PARTS */
G[3_[0][II_ - GPJK[i_[j_[0''2':

G[]![l_[lli " GPJK[i![j[[I[[2[:

G[9][2_[II_ " GPJK[i_[]_[2[[2":

}

• _RCSS MOT:ON CROSS-PRODUCTS */

* ] DE::OTES 3ACOSIAN OF LOCAL FRAME ] ,/

i: !free} !

for(]-h-l;j>-0:j--) (
/* x-DIRECTION */

G[jI[0][dof-3]'GPJKCn][j][O][0];

G[9_[Z[[doE-3]-G_JK[n][j][Z][0]:
G[]_[2_[doE-3]-GPJK[n][j][2][0]:

/* y-DIRECTION *I

G[j!!0_[dOf-2]-GPJK[_][J_[O![I]:
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G_j1_l][dof°2]-GPJK[hl_j]I1]Cll;
G_j]C2]CdOf-2]'UPJK[a_jlC2]_I];
/* z-DIRECTION */

G[J][O][dof-I]-GPJK[h][J][0][2];

G[J][I][dof-I]-GPJK[h][j][I][2]:

GIj][2][doE-I]_GPJK[h][j][2][2]:

)

-_'_._iu-'._ _;.,,_L_ _
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:s_ar(_str,l$_rc,g,t)

_ouble £$trEn-1][dof][dof], is_rc[n+l][dof][dof]:

_ou_le a[dof][dof], b[dof][dof], c[dof][dof], al,b[,ck,dl;

* _ DENOTES THE FRAME OF LINK (OR LOCAL REFERENCE) NUMBER */

* COMPUTE THE istar OF EACH LINK SEPARATELY, AND ADD THEM UP

AT THE E_rD OF THE ROUTINE TO FORM istar FOR THE SYSTEM */

for_is0;/<n;i ÷÷ ) I

/* INITIALIZE %'ME Lazar MATRIX FOR LINK i */

for(row-0;row<dof;row_*J

for(col-O:col<dof;col_÷)

Is_r[i]Crow][col]-o.;

,* FIRST, FORM THE UPPER-RZGHT SYMMETRIC PARTS OF

THE S_B-MATRICIES ON THE DIAGONAL OF THE LOCAL INERTIA

_ATRIX, THEN FORM THE LOWER-LEFT PARTS.

NEXT FORM THE OFF DIAGONAL SUB-MATRICIES IN THE UPPER-

RIGHT AREA OF THE LOCAL INERTIA ._ATRIX, M_D TRANSPOSE

THEM TO GET THE LOWER-LEFT PARTS. */

/* TRA_SLATIOt;AL MASS */
* PRE-MULTIPLY THE TRAf_SLATIOt_AL 3ACOBIAN SY ITS TRANSPOSE

_P .._LTIPLY BY THE .MASS */

for(row-o:row<dof;row *o)

for(col-0;col<dof:col-°) I

_g[i_[1_[row]*g[£][1![col]

-g{_]C2][row:_g(i]_2:[col:);

_str[i:[row][coil_-a1:

)

* _IGID BODY ROTATION */

* ?PP[R-R_GHT TERMS, TAKING ADVANTAGE OF SYMMETRY ",,

* CCMPUTE I:;ERTIA IN GLOBAL FRAME */

_:r_zol-0:col<3:col_-) I

al- _il[L_[O![O:*%{i::col_:0!

°Ill'i_[0!_l_*_[li[col_[l[

-lll:ii[O_2_*t[l" [coI_'2_:....

Of- Ill[i][l][0!*t[i_[col][O]

-Ill[i![i][l_*_[i_[col][li

-Iii[i][i_{2],t[i_[coi][2];

cl- _ll[_][2][O]*t[i_[col][0_

-_ll[i][2_[l]*_[i][col][l]

-[ii[i![2][2]*_[i][coi][2_:

for{rowmcol;row<3:rowe÷) {

a[row][colI- _[i][row][0]*al

-t[i_[row![2_*cl:
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aCcol][row]= aCrow][col]:

/* PRE- AND POST- MULTIPLY THE INERTIA BY THE ROTATIONAL

JACOBIAN */

for(col-o:col<dof;col_÷) {

al- a[0][0]*g[i][3][col]

.a[0][1]*g[i][4][c01]

_a[0][2]*g[i][5][col]:

bl= aCl][0]*g[i][3](col]

÷a[l][l]*g[i][4][col]

_a[l][2]*g[i][5][col];

cl- a[2][0]*g[i][3]Ccol]

°a[2][l]*g[£][4][col]

-aC2][2]*gCi][5][cal];

for[row-Oyrow<dof;row÷÷) (

dl-g[i][3][row]*al

-g[i][4][row]*bl

_g[i][5][row]*cl:

i$_r[i][row][col]_=dz:
)

,* ADD THE LINK FLEXIBLILITY INERTIA TE_MS TO istr "/

/* (NO TRANSFORMATIONS ARE NECESSARY) */

j=mt[i]-mr[i:;

k=sta_e_po$[i_o3flag[i]-l:

for_row-o:row<j;row_)

_or(col-O:col<j:col_-)

istr[z][row÷k_[col_k_+=lqq[i:[.rcw![col_:

• RIGID-BODY/ROTATIONAL COUPLING */

• AN OFF-DIAGONAL .MATRIX */

CCMPUTE INERTIA IN GLOBAL FRAME */

forccol=O:col<3:col_)

-zm1[i][o![l],t[_]Zcoli_z]
-Iml[l:CO][21*tCii[col][2]:

bl= Iml[i][l]:0]*_[1][col_[0_

-Iml[i][1][l],_[i_[:oZ_[ll

-Im1[i]C11[2]'_[£1[c01112]:

:I= ZmlC_1121[0]'_[£;{c01:[0]

-ImlEi]Z2]Cl]'t[i][col][l]

-Iml[i][2]C2]*t[i][col][2];

for(row-col;row<3;row÷*) (

a[row][ccl]= t[i][row][O]*al

-=[i1[row]ZZ]*bl

-t[i][row]_]*c_:

a[col_[row]=a[row][col];
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}

/* POST MULTIPY BY THE ROTATIONAL 3ACOBIAN */

for(raw_-O:row<3;row+÷)

for(col-O:col<dof;col+÷)

bCrow][col]- a[row][o]*q(i][]][col]

+a[row][1]*g[£][4][col]

+aCrow][2]*g[i][5][¢ol];

/* PRE MULTIPLY BY THE TRANSLATIONAL JACOBIAN */

for(row-O;row<dof:row+_)

for(col-0:col<dot:col÷÷)

c[row][col]- g[i]C0][row]*b[0][¢ol]

-g[i][1]Crow]*b[1][:ol]

+g[i][2][row]*b[2]Ccol]:

/* ADD THIS MATRIX AND IS TRANSPOSE TO is_r */

for(row_O;row<dof_row÷*)

for(co1-O;col<dof;col++) {

istr[i][row][col]+-c[row][col];

is_r[i][col][row]÷-cCrow][col_:

/* TRANSLATION/FLEX COUPLING */

/* .MULTIPLY THE INERTIA BY THE TRA/;SFORMATION MATRIX */

3-mu[i_mr[i]:

for(rowlO;row<3;row_*)

for(col-0:col<j:co1_-)

aCrow][col]- t[i][row][O!*Imq[i:_0![col_

°_[_][rowl[l_*Imq[i_[li[colZ

-t[i][row][2]*_mq[i][2][col!;

* L_LTIPLY BY THE TRAttSLATICNAL 3ACOBIAt# */

for{row-O:row<dof;row_-)

for(col-O;col<j:coi°-}

bIrow][col_- g[i![0_row_-a[0_[col_

-g[i_[li[row!*a[l_[col_

-g[i][2![row!*a(2![col[:

* ADD THIS M_TRIX _D ITS TRA_SPOSE TO is_r ,/

k-s_ate pos[_[o]_laq[&_ol:

forlrowm0:row<dof;row_°)

_or_col-k;col<koj;col--) :

1$trc[i_[row_[col[°-b[row[[col-k_:

istrc[i[[coli[row!--b[rowZ[col-k[;

I

* ROTAT:O_;/FLEX COUPLI_IG ,/

" .._L'LTIPLY THE It_ERTZA MITRIX BY THE TRA_;SFO_ATION .MATRIX *_

_-mt[i_-mr[l]:

fDr_row-0;row<3;row÷_)

for(col-O;col<j;col°-)

a[row][col]- t[i][row][0]*Ilq[i_[O][col!

-t[i][row][l!*Ilq[i_[l][col_

÷t[i][row][2_*Ilq[i_[2_[col_:

* .._LT:PL¥ BY THE TRA[_SLATIONAL _ACOBIAt_ */

for_r_w-O:row<dof:row_-)

for(col-O;col<j:col_-)

b[row_[col_- g[i][3][row_*a[O![col3

-g[i][4][row]*a[1][col_
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+q[i][S][row]*a[21[col];

/* ADD THIS MATRIX AND ITS TRANSPOSE TO is_r */

k=s_a_e_pos[i]+Jflaq[i]÷l;

for(row_O;row<dof;row+÷)

Eor(col=k;col<k+J;col÷ ÷) (

i6_=c[i][=ow][col]+=b[row][col-k];

is_rc[i][col][row]+=b[row][col-k[;

)

• ADD THE CONTRIBUTIONS OF EACH LINK TO FORM THE GROSS [star */

for(row-0;row<d=f:=ow÷÷)

for_col-O:_ol<dot;col÷+) {
£s_r[n][row][col]-0.:

is_rc[n][row][col]=0.;

for(i-O;i<n;i+÷)

is_r[n][row][col]+-istr[i][rowl[col];

is_rc[n][row][col!÷-istrc[i][row][col];

)

_ | ,+;,ta ,+ ,.,+_+ ,++. _.....
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Ks_ar(ks_r)

_ouble kstr[dof][dof];

Xnt i,k,l,row,col;

for(i-O_i<n;i÷+) {

if(jflag[i]--1) k$_r[k][k]=kjoin_[i];
k_-:

1-mt[1]*mr[i]:

if(l:=O)

for(row-O:row<l:row÷_)

_or(co_-O:col<l;col÷-)

ks_r[k÷row][k+col]-klink[i][row][col];

OI_IGiI_,IAL Pf_.GE IS
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Torque(tque,load,G)

iouble _que[dof],load[n][6],G[n][6][dof];

in_ i,j;
_ou_le a:

for_i_0:i<dof;i_*) I

ai0. :

for(j-0_<8_j÷-) (
a--load[n-l_[j]*G[n-l][j][i];

)

_que_i]-Imode[i]*a:

l_t_'._:,_;_._'_i<_6___?_
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:.:odel(hh,time,y,save)

_ouble *hn,*time,yCS][order]0*mave:

double phi[dof],disturb;

Matrix tl[n],t[n]:

vector r[n]:
double endload[n][6],loed[dof],jointloed[dof],_que[dof]:

_ouble G_][6][dof],Gp[n][6][doE];

_ouble istr[n_l][dof][dof],_$_ri.v[dot][doE]:

_ouble k$_r[dof:[dof],istrc[n÷l_[dof][dof]:

iouble pIUr[n_l][dof)[dof][doE]:

_or(j-O_j<n:J_*) (
endload[_][_]-O.;

)

for<i-0:i<dof_i-*) phi[i]'y_O][i]:

Cons_(G,Gp):

Gecme_ry. (phi,_,_i,r) ;

_inemaCics(_,r,G,Gp) ;

:$tar(is_r, istrc,Gp0t):

- ps_ar(G,H,Ske_G,ps_r); */

* APPL_ E:ID LOAD*/

:f_ *tlme>.3 && *time<2.) endload[n-L::0:-1000.:

::rque_tque.endload,Gp):

* :::';ERT TME !:_ERTIA MATRIX */

::nverse_&_str:_:[O][O],istr_nv,do_):

* APgL'f ZOI)_T TORQUES */

_o_ntload[O]-0.:

jo_ntload[l]-O.:

_o_ntload[2]=O.:

_oint/oadf]]-O.;

_o_ntload[4]-O.:

:_ntload[5!-O.:

• :ZMPUTE LOAD VECTOR AND ASSEMBLE RIGID BOO'{ [)_ERT!A */

lzad:L:=t_ue[l:-jointlcadr:_ :

forl]-0:_<dof:_--) !

* a_O.;

for(k.O:9<_of:j-- ) a_-y[o)[dof-k:*p$_ar[]:[i: :k':

load[_--a-y[O][dof-j];

load[i]--kstr[_][j]*y[o][j_;

ioad[£]--(alpn*istr[n][£][j!÷Deta*fabs(ks_r[i![Jl))*Y[ 0][d°f']]:

Ioad[i)--lstrc[n][i][j]* y[l][dof*9:/ *nh;

)

ORIGINAL PAC-'_ IS
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_or(i-O:i<dof_i+÷) *(save+£)-y[O][i+dof]:

f_r(:i<order_i+÷) (

*(save+i)-0.:

for(j-0_j<dof_J*÷)

*(save÷_)÷m(istrinv[i-dof][j]*load[j]):

)

/* APPLY BREAKS IF DESIRED */

for_i-l:i<Tri÷÷) (

if(_rakes[i]) (

/* SET VELOCITY - 0 */

*(save÷state_pos[i])-0.0_

/* SET ACCELERATION = 0 */

*(save*dof÷state_pos[i])-o.0;

)

ORIGI_,_s_L _,_ _,_
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