30 research outputs found

    Improving the performance of horizontal axial wind turbines using Bioinspired

    Get PDF
    Small-scale wind turbines were not considered viable in the past due to their poor efficiencies, mainly because of their aerodynamic effects around the irfoil shape. Recently researchers have renewed interest in enhancing the aerodynamic performances of the blades’ designs inspired by the aerodynamic pattern of biological characteristics of insects and marine mammals such as locusts, dragonflies, damselflies, Humpback Whales etc. Bioinspired wing designs have advantages compared to conventional smooth irfoil blades as they can counter the bending forces that the wings experience during flapping. Bio-inspired corrugated airfoil based on dragonfly wing geometries have been reported to perform well compared to conventional airfoil at low Reynolds numbers. Corrugated airfoils reduce flow separation and enhance aerodynamic performance by trapping vortices in the corrugations thus drawing flow towards the airfoil’s surface. This results in the higher lift whilst incurring only marginally higher drag. Such airfoils also have an advantage when it comes to span-wise structural stiffness due to the corrugated cross-sections. Replacing conventional turbine blades by tubercles or corrugated blades could enhance turbine performance by reducing the pressure gradient along the leading edge; however, the aerodynamic effects at the leading edge will depend on the variations of wavelength and amplitude. In this study, two types of computational studies were investigated: Optimising a corrugated airfoil and investigating the aerodynamic effects of a sinusoidal shape at the leading edge of a blade. Previous studies used an idealized geometry based on the dragonfly wing cross-section profile but did not attempt to optimize the geometry. In the present study: a two-dimensional CFD model is constructed using ANSYS Fluent Workbench-Design Explorer to determine the optimal corrugated blade profile for four angles of attack (AOA) from 5° to 20° corresponding to typical AOA of small-scale wind turbine blades. Two modified blades with variations of wavelength and amplitude at the leading edge were studied to investigate the aerodynamic effects. Three-dimensional models were constructed using Qblade software and 3D points were exported to AutoCAD Inventor to generate the CAD model. The governing equations used are continuity and Navier-Stokes equations written in a frame reference rotating with the blade. The CFD package used is ANSYS FLUENT 19.0. The simulation was run under steady-state, using SST-k omega turbulence model. The modifications have improved the aerodynamic performance. The optimised corrugated blade produced a maximum increase of CL and L/D. Both modified blades (1 and 2) had their performances measured separately and compared to that of baseline blade SG6042 (Conventional blade). Modified blade 1 had a lower wavelength and amplitude at the leading edge of 14.3 % and 4 % respectively of the chord. It was noted that the aerodynamic performance decreased by 6%. Modified model 2, on the other hand had a higher wavelength and amplitude at the leading edge. of 40.4 % and 11.9 % respectively of the chord. It was also noted the aerodynamic performance increased by 6%. From the empirical evidence highlighted above, it can be observed that there is a direct correlation between wavelength, amplitude, and aerodynamic performance of the blade.Electrical and Mining EngineeringM. Tech. (Engineering

    Towards locust-inspired gliding wing prototypes for micro aerial vehicle applications

    Get PDF
    In aviation, gliding is the most economical mode of flight explicitly appreciated by natural fliers. They achieve it by high-performance wing structures evolved over millions of years in nature. Among other prehistoric beings, locust (Schistocerca gregaria) is a perfect example of such natural glider capable of endured transatlantic flights that could inspire a practical solution to achieve similar capabilities on micro aerial vehicles. This study investigates the effects of haemolymph on the flexibility of several flying insect wings further showcasing the superior structural performance of locusts. However, biomimicry of such aerodynamic and structural properties is hindered by the limitations of modern as well as conventional fabrication technologies in terms of availability and precision, respectively. Therefore, here we adopt finite element analysis (FEA) to investigate the manufacturing-worthiness of a 3D digitally reconstructed locust tandem wing, and propose novel combinations of economical and readily-available manufacturing methods to develop the model into prototypes that are structurally similar to their counterparts in nature while maintaining the optimum gliding ratio previously obtained in the aerodynamic simulations. Latter is evaluated in the future study and the former is assessed here via an experimental analysis of the flexural stiffness and maximum deformation rate. Ultimately, a comparative study of the mechanical properties reveals the feasibility of each prototype for gliding micro aerial vehicle applications

    Experimental and Numerical Modeling of Fluid Flow

    Get PDF
    This Special Issue provides an overview of the applied experimental and numerical flow, models, which are used to investigate fluid flow in complex situations. The investigated problems are related to fundamental processes or new applications. As demonstrated, the field of the application of experimental and numerical flow models is constantly expanding

    A Fluid-Structure-Interaction Simulation tool for application in rotating machinery

    Get PDF
    A tool for Fluid-Structure-Interaction simulation was developed on the basis of the in-house CFD code SPARC, the open-source CSD solver CalculiX and the specially designed coupling manager FSiM. The new development exploits the advantages of block-structured meshes related to the multigrid acceleration technique, the transfinite mesh adaption method, a block-wise mesh adaption control and an efficient volume to surface mapping

    Advanced Techniques for Design and Manufacturing in Marine Engineering

    Get PDF
    Modern engineering design processes are driven by the extensive use of numerical simulations; naval architecture and ocean engineering are no exception. Computational power has been improved over the last few decades; therefore, the integration of different tools such as CAD, FEM, CFD, and CAM has enabled complex modeling and manufacturing problems to be solved in a more feasible way. Classical naval design methodology can take advantage of this integration, giving rise to more robust designs in terms of shape, structural and hydrodynamic performances, and the manufacturing process.This Special Issue invites researchers and engineers from both academia and the industry to publish the latest progress in design and manufacturing techniques in marine engineering and to debate the current issues and future perspectives in this research area. Suitable topics for this issue include, but are not limited to, the following:CAD-based approaches for designing the hull and appendages of sailing and engine-powered boats and comparisons with traditional techniques;Finite element method applications to predict the structural performance of the whole boat or of a portion of it, with particular attention to the modeling of the material used;Embedded measurement systems for structural health monitoring;Determination of hydrodynamic efficiency using experimental, numerical, or semi-empiric methods for displacement and planning hulls;Topology optimization techniques to overcome traditional scantling criteria based on international standards;Applications of additive manufacturing to derive innovative shapes for internal reinforcements or sandwich hull structures

    Concept innovant d'échangeur/réacteur multifonctionnel par contrÎle dynamique passif par générateurs de vorticité flexibles

    Get PDF
    The aim of this study is to investigate the use of fluid-structure interaction (FSI) to improve heat transfer and mixing performances in multi-functional heat exchangers/reactors, and to evaluate configuration designs where the main target is to produce and maintain self-sustained oscillations of flexible vortex generators. At first, two dimensional laminar flow studies are numerically investigated. The results show that a minimum of three alternating flaps is needed to produce an instability that leads to large displacement oscillations. However, the introduction of two co-planar flaps upstream destabilizes the flow by creating periodic forces that act on the alternating downstream flaps. Hence, this results in artificially increasing the reduced velocity that will induce the alternating flaps to be in a lock-in state. Thus in this case, large displacement amplitudes are created with two alternating flaps only. The free flaps oscillations produce vortices of higher strength which have a positive impact on heat transfer and mixing. Secondly, a three dimensional HEV configuration with flexible trapezoidal vortex generators inclined with an angle of 45◩ with respect to the wall and reversed opposite to the flow direction is numerically investigated. Fast Fourier Transformation is applied on the temporal variation of the Proper Orthogonal Decomposition (POD) coefficientswhich displays a dominant peak in the flow and corresponds to the vortices periodic formation and detachment. This dominant frequency synchronizes well with the structural oscillation frequency and the fundamental frequency of the tabs reaching a lock-in state and leading to large oscillation amplitudes.Le but de cette Ă©tude est d’étudier l’utilisation d’interactions fluide-structure (FSI) pour amĂ©liorer le transfert de chaleur et les performances de mĂ©lange dans des Ă©changeurs-rĂ©acteurs multifonctionnels, et d’évaluer des configurations pour lesquelles l’objectif est de produire et de maintenir un rĂ©gime dynamique auto-entretenu d’oscillations des gĂ©nĂ©rateurs de tourbillons flexibles. Dans un premier temps, deux Ă©tudes numĂ©riques ont Ă©tĂ© rĂ©alisĂ©es pour des Ă©coulements laminaires bidimensionnels. Les rĂ©sultats montrent qu’un minimum de trois gĂ©nĂ©rateurs de tourbillons alternĂ©s est nĂ©cessaire pour produire une instabilitĂ© qui engendre les oscillations de larges amplitudes. L’ajout de deux promoteurs coplanaires en amont dĂ©stabilise l’écoulement en crĂ©ant des forces pĂ©riodiques agissant sur les gĂ©nĂ©rateurs de tourbillons en aval. Il en rĂ©sulte une augmentation de la vitesse rĂ©duite qui impose un blocage en frĂ©quence des oscillations des gĂ©nĂ©rateurs de tourbillons en aval. Dans cette configuration, des oscillations de larges amplitudes sont obtenues pour uniquement deux gĂ©nĂ©rateurs de tourbillons en aval. Les oscillations des gĂ©nĂ©rateurs de tourbillons produisent une vorticitĂ© intense qui a une incidence positive que le transfert de chaleur et sur le mĂ©lange. Dans un second temps, une configuration tridimensionnelle HEV incluant des gĂ©nĂ©rateurs de tourbillons trapĂ©zoĂŻdaux flexibles orientĂ©s a 45◩ vers l’amont est Ă©tudiĂ©e par simulations numĂ©riques. Une analyse FFT rĂ©alisĂ©e sur les coefficients issus d’une analyse POD montre un pic frĂ©quentiel correspondant aux formations et lĂąchers tourbillonnaires pĂ©riodiques. Cette frĂ©quence dominante correspond bien au mode propre d’oscillation des gĂ©nĂ©rateurs de tourbillons et engendre ainsi de larges amplitudes d’oscillations

    ç”Ÿç‰©æšĄć€Łă‚œăƒ•ăƒˆé­šăƒ­ăƒœăƒƒăƒˆăźç ”ç©¶é–‹ç™ș

    Get PDF
    In nature, the environment varies from day to day. Through natural selection and competition law of survival of the fittest, the winning creatures survive and their species are able to retain and persist in nature. Based on this fact, creatures existent in nature have their unique features and advantages adapt to the surrounding environment. In recent years, many researches focused on the features of the creatures in nature have been done actively to clarify their morphology and functions and apply the morphology and functions to various fields. Among these researches, the development of the biomimetic robots based on mimicking the creature’s structures and functions has become an active field in robotics recently. In the research, the development of biomimetic robotic fish is focused. So far, there are many researches on biomimetic robotic fish, but improvement on motion performances and efficiency is still an important issue for robot development. Specially, on the biomimetic soft robotic fish utilizing the flexibility of fishes, the developments have been done by the trial and error approach. That is, the design and control method of soft robotic fish has not been established currently. Therefore, it motives us to investigate the design and control of soft robotic fish by numerical simulation that takes into account the interaction between flexible structure and surrounding fluid to develop the biomimetic soft robotic fish with high performance. In order to develop the biomimetic soft robotic fish with high performance, the basic design method and corresponding numerical simulation system are firstly proposed and constructed in this dissertation. Then, based on finite element method (FEM), modelling of soft robotic fish by mimicking the soft structure and driving mechanism of fishes is carried out. The propulsion motion and propulsive force of the soft robotic fish are investigated through two kinds of numerical analyses. One is the modal and transient analysis considering the surrounding fluid as acoustic fluid. The propulsion mode and amplitude of the propulsion motion of soft robotic fish corresponding directly to the propulsion mechanism and motion performance of the robotic fish can be investigated. The other is the fluid-structure interaction (FSI) analysis. The interaction between soft robot structure and surrounding fluid including the dissipation due to fluid viscosity and influence of wake performance around the soft robotic fish are taken into account. From FSI analysis, the hydrodynamic performances of the soft robotic fish can be obtained for investigating its propulsion motion. It is possible to further improve the performance of the soft robotic fish through its design and control based on FSI analysis. Besides, based on coupling analysis by using acoustic fluid, the turning motion control of the soft robotic fish is investigated by its propulsion modes in the fluid. In order to investigate the feasibility of modelling method and numerical simulation analysis on design and control of the biomimetic soft robotic fish, the performance evaluation is carried out by comparison between the simulation and experiment on an actual prototype. Finally, the optimization and improvement are performed for developing the biomimetic soft robotic fish with higher performance based on verified coupling analysis considering the fluid as acoustic fluid, and corresponding performance evaluation on new robot prototype is presented. The performance improvement of the soft robotic fish is confirmed through the new robot prototype. The dissertation consists of six chapters and the main contents are shown as follows. Chapter 1 is an introduction. The background and relative previous work about biomimetic soft robotic fish are briefly reviewed. It summarizes the current research status and problems of biomimetic soft robotic fish, and describes the purposes of this research. Chapter 2 presents the design method, procedures and numerical simulation system in the present research for developing the biomimetic soft robotic fish with high performance. Different from previous development method, our purpose is how to design and control the soft robotic fish by utilizing interaction between the flexible structure and surrounding fluid effectively based on numerical simulations. Therefore, it is necessary to model a fish-like soft robot structure including soft actuators and an enclosed fluid. Besides, by the numerical analysis considering the interaction between flexible structure and fluid, the fish-like propulsion motion should be realized and established, and then the robot structure and control inputs are needed to be optimized for performance improvement. In order to meet these requirements of designing and developing the optimal soft robotic fish, the design method based on modelling, simulation analysis and improvement is presented and the numerical simulation system for soft robotic fish is built. In the simulation system, modelling of soft robotic fish, modal and transient analysis considering the enclosed fluid as acoustic fluid are firstly described based on FEM to realize the fish-like propulsion motion with large amplitude for the soft robotic fish. Then, the FSI analysis is performed to describe and establish the hydrodynamic performances of the soft robotic fish. Based on this numerical simulation system, it is possible to develop the biomimetic soft robotic fish with high performance effectively by optimization of design and control of the soft robotic fish. Chapter 3 describes the modelling and numerical analysis of biomimetic soft robotic fish by using the method presented in Chapter 2. The soft robotic fish uses the piezoelectric fiber composite (PFC) as soft actuator. Firstly, the relationships between the input voltage and generated stress of the PFC are derived. The generated stress can be applied on soft structure to investigate the motion performance of the soft robotic fish. To support the driving model of the PFC, the corresponding experiments on simple beam model are carried out. By comparing the simulation results with experimental results, the effectiveness of the driving model is verified. Then, the modal analysis in which the fluid is considered as acoustic fluid is performed. The structural mode frequencies and mode shapes of the soft robotic fish in the fluid are calculated. By comparing these modes’ motion with those of the real fishes, the fish-like propulsion mode is identified to realize the corresponding propulsion motion of the soft robotic fish. Furthermore, based on the verified driving model of soft actuator, the amplitude of the main propulsion motion of soft robotic fish is calculated. Through FSI analysis, the relationships of driving frequencies of input signal with propulsive force and displacement of propulsion motion, and vortex distribution in the wake around the soft robotic fish are investigated for the case of fixing robot head. Besides, the motion control of soft robot is investigated to realize turning motion in the fluid. Through controlling the input voltage amplitude on soft actuators of the robot, turning right and turning left motion are identified in the swimming when the input voltage amplitudes on two actuators are in asymmetric distribution. Chapter 4 is experiment evaluation. In order to validate the results of numerical simulation analysis described in Chapter 3, the mode shapes, amplitude of propulsion motion, propulsive force and vortex distribution around soft robotic fish for the case of fixing robot head, and turning motion are measured by using actual robot prototype. The present simulation results are congruent with experiments. By the results, the effectiveness of the modelling method and numerical analysis used in the research is verified and they are useful to predict the propulsion characteristics of the soft robotic fish in the fluid for performance improvement. Chapter 5 develops a new soft robotic fish with high performance based on above modelling method and numerical analysis by optimization. Firstly, the structural parameters of the robot are allowed to vary within a range and the amplitude of the propulsion motion for the soft robot is calculated for different parameters by the numerical analysis. Then the structural parameters of the robot capable of propulsion motion with largeramplitude are chosen for improvement. Based on this result, new soft robot is designed and evaluated by experiments. From the experimental results of the new soft robot, it is confirmed that the higher swimming speed, better fish-like swimming performance and larger turning velocity are realized. It can be said that the new soft robotic fish has been developed successfully for improvement. Chapter 6 summarizes the conclusions and future works of this research.é›»æ°—é€šäżĄć€§ć­Š201

    Effect of Atmospheric Ice Accretion on the Dynamic Performance of Wind Turbine Blades

    Get PDF
    Atmospheric icing presents serious challenges to the development of wind power of the wind energy industry in cold regions. The potential detrimental impact on the safe operation of wind turbines and the energy harvest hasn’t been fully understood and requires further investigation. This thesis presents the research on icing profiles under different weather conditions and their impact on natural frequency, fatigue life, and lift and drag of the wind turbine blade. The research aims to develop a further understanding of the effect of atmospheric ice accretion on the structural integrity and aerodynamic performance of wind turbine blades through numerical and aerodynamic investigations to address the challenges facing the industry. A 5-MW NREL (National Renewable Energy Laboratory) wind turbine blade was selected for this study, due to availability of required geometric design parameters and experimental data for verification. The turbine rotor and its three blades were modelled and numerically simulated with commercial finite element software ANSYS. Three icing scenarios were chosen according to the ISO Standard and the corresponding icing profiles were developed to investigate their influence on vibrational behaviours of the wind turbine blade and rotor under different weather conditions. Icing loads were applied on the leading edge of the blade and natural frequency results were compared between clean and iced blades. It was found that harsh icing weather drove the natural frequency down to the near resonance limit, which could lead to significant issue on structural integrity of the wind turbine. The effect of atmospheric ice accretion with additional load due to varying wind speeds on the fatigue life of the wind turbine blade has been investigated. Significant reduction of fatigue life was found due to the increase of the von Mises stresses. Finally, computational fluid dynamics (CFD) analysis was carried out to investigate the effect of atmospheric ice accretion on the aerodynamic performance of typical 1-MW and 5-MW wind turbine blades. Results of the drag and lift coefficients and power production under different icing scenarios were obtained for five angles of attack. Compared with the results of the clean aerofoil profile, remarkable reduction in the power generation was observed due to the accreted ice at various aerofoil sections in the spanwise direction of the blade, demonstrating the detrimental impact of atmospheric icing on energy harvest for the wind energy industry

    Harnessing Hydrokinetic Energy from Vortex-Induced Vibration (VIV)

    Get PDF
    In this dissertation, the application of Vortex-Induced Vibration (VIV) and Wake-Induced Vibration (WIV) of a bluff body for harnessing the kinetic energy of a fluid flow is presented. The application of induced vibration due to vortices in harnessing hydrokinetic energy of the fluid is relatively immature and this research work, which is written as a compilation of journal articles, attempts to address major scientific and technological gaps in this field. The project spans both VIV and WIV, with a particular attention to the development of a better understanding of the wake behaviour in a tandem configuration and the effect of boundary layers for harnessing the kinetic energy of the flow. Accordingly, two separate coupled test cases of tandem bodies comprising Coupled Circular-Cylinder (CCC) and Coupled Cylinder-Airfoil (CCA) configurations were proposed and investigated. In the first series of tests on the CCC, two circular cylinders were employed to investigate the unsteady wake interactions on the energy yield. The upstream cylinder was fixed, while the downstream one was mounted on a virtual elastic base with one degree of freedom. The virtual elastic system consisted of a motor and a controller, a belt-pulley transmission and a carriage. In the CCC, the influence of the Reynolds number, gap between cylinders and boundary layers on the dynamic response of the downstream cylinder were numerically and experimentally investigated. In a numerical analyse of the system, a dynamic mesh technique within the ANSYS Fluent package was utilized to simulate the dynamic response of the cylinder. The experimental tests confirmed the numerical outcomes and demonstrated that in the WIV mechanisms, a positive kinetic energy transfer from fluid flow to the cylinder was achieved. It is also observed that the dynamic response of the cylinder under the WIV mechanism differs from the dynamic response of VIV. In addition, both numerical and experimental results indicated that a staggered arrangement with 3.5 ≀ x₀/D ≀ 4.5 and 1 ≀ y₀/D ≀ 2 (here, D is the diameter of the cylinder, and x₀ and y₀ are the horizontal and vertical offsets, respectively) is the optimum arrangement among all test cases to harness the energy of vortices, resulting in a power coefficient of 28%. This was achieved due to the favourable phase lag between the velocity of the cylinder and force imposed by the fluid. The results revealed that for the staggered arrangement of the cylinders, the WIV responses can occur at frequencies outside the range in which VIV is observed. In the second series of tests utilizing a CCA, the downstream circular cylinder was replaced by a symmetric airfoil with two degrees of freedom; heave and pitch. The heave degree of freedom employed the same virtual elastic base used for the CCC experiments. The pitch angle of the foil was actively controlled, as opposed to using passive mechanical impedance, since this enables full control over the foil behaviour, thereby facilitating the adjustment of the angle of attack accurately and rapidly. The results of CCA show that both longitudinal and lateral distances play an important role in the Strouhal number, power density and, consequently, the heave response of the airfoil. In addition, it was shown that the circulation of the vortices was influenced by the gap spacing between the cylinder and the airfoil. Furthermore, it was found that an optimum angle of attack of α = 10° is the most efficient for harnessing the energy of vortices with a maximum power coefficient of 30% for cases with 3.5 ≀ x₀/D ≀ 4.5 and 1 ≀ y₀/D ≀ 1.5 arrangements. Such a range is narrower laterally when compared with the optimum arrangement of the CCC. This work provided the foundation for further work to utilize the potential of this technology and further explore the opportunity to harness the vortical power in shallow water and ocean currentsThesis (Ph.D.) -- University of Adelaide, School of Mechanical Engineering, 201

    Numerical Simulation of Wind Turbines

    Get PDF
    The book contains the research contributions belonging to the Special Issue "Numerical Simulation of Wind Turbines", published in 2020-2021. They consist of 15 original research papers and 1 editorial. Different topics are discussed, from innovative design solutions for large and small wind turbine to control, from advanced simulation techniques to noise prediction. The variety of methods used in the research contributions testifies the need for a holistic approach to the design and simulation of modern wind turbines and will be able to stimulate the interest of the wind energy community
    corecore