178 research outputs found

    Tailored virtual reality for smart physiotherapy

    Get PDF
    Remote sensing and Virtual Reality (VR) are technologies that create new development opportunities in the field of serious games with application in physiotherapy. Thus, during a physiotherapy training session expressed by a game around the remote sensing of user body motion provides measurements that can be used for objective evaluation of physical therapy outcomes. In this work is presented a serious game for physiotherapy characterized by Kinect natural user interface and a set of VR games developed in the Unity3D. To provide patient electronic health record, game remote configuration as well as for data presentation for physiotherapist a mobile application was developed. Additionally, several training results expressed by upper limb, neck and spine angles are included in the paper.info:eu-repo/semantics/acceptedVersio

    A review of computer vision-based approaches for physical rehabilitation and assessment

    Get PDF
    The computer vision community has extensively researched the area of human motion analysis, which primarily focuses on pose estimation, activity recognition, pose or gesture recognition and so on. However for many applications, like monitoring of functional rehabilitation of patients with musculo skeletal or physical impairments, the requirement is to comparatively evaluate human motion. In this survey, we capture important literature on vision-based monitoring and physical rehabilitation that focuses on comparative evaluation of human motion during the past two decades and discuss the state of current research in this area. Unlike other reviews in this area, which are written from a clinical objective, this article presents research in this area from a computer vision application perspective. We propose our own taxonomy of computer vision-based rehabilitation and assessment research which are further divided into sub-categories to capture novelties of each research. The review discusses the challenges of this domain due to the wide ranging human motion abnormalities and difficulty in automatically assessing those abnormalities. Finally, suggestions on the future direction of research are offered

    Automated Analysis and Quantification of Human Mobility using a Depth Sensor

    Get PDF
    Analysis and quantification of human motion to support clinicians in the decision-making process is the desired outcome for many clinical-based approaches. However, generating statistical models that are free from human interpretation and yet representative is a difficult task. In this work, we propose a framework that automatically recognises and evaluates human mobility impairments using the Microsoft Kinect One depth sensor. The framework is composed of two parts. Firstly, it recognises motions, such as sit-to-stand or walking 4 metres, using abstract feature representation techniques and machine learning. Secondly, evaluation of the motion sequence in the temporal domain by comparing the test participant with a statistical mobility model, generated from tracking movements of healthy people. To complement the framework, we propose an automatic method to enable a fairer, unbiased approach to label motion capture data. Finally, we demonstrate the ability of the framework to recognise and provide clinically relevant feedback to highlight mobility concerns, hence providing a route towards stratified rehabilitation pathways and clinician led interventions

    Kvantitativna analiza pokreta u rehabilitaciji neuroloških poremećaja korišćenjem vizuelnih i nosivih senzora.

    Get PDF
    Neuroloska oboljenja, kao sto su Parkinsonova bolest i slog, dovode do ozbiljnih motornih poremecaja, smanjuju kvalitet zivota pacijenata i mogu da uzrokuju smrt. Rana dijagnoza i adekvatno lecenje su krucijalni faktori za drzanje bolesti pod kontrolom, kako bi se omogucio normalan svakodnevni zivot pacijenata. Lecenje neurolo skih bolesti obicno ukljucuje rehabilitacionu terapiju i terapiju lekovima, koje se prilagodavaju u skladu sa stanjem pacijenta tokom vremena. Tradicionalne tehnike evaluacije u dijagnozi i monitoringu neuroloskih bolesti oslanjaju se na klinicke evaluacione alate, tacnije specijalno dizajnirane klinicke testove i skale. Medutim, iako su korisne i najcesce koriscene, klinicke skale su sklone subjektivnim ocenama i nepreciznoj interpretaciji performanse pacijenta...Neurological disorders, such as Parkinson's disease (PD) and stroke, lead to serious motor disabilities, decrease the patients' quality of life and can cause the mortality. Early diagnosis and adequate disease treatment are thus crucial factors towards keeping the disease under control in order to enable the normal every-day life of patients. The treatment of neurological disorders usually includes the rehabilitation therapy and drug treatment, that are adapted based on the evaluation of the patient state over time. Conventional evaluation techniques for diagnosis and monitoring in neurological disorders rely on the clinical assessment tools i.e. specially designed clinical tests and scales. However, although benecial and commonly used, those scales are descriptive (qualitative), primarily intended to be carried out by a trained neurologist, and are prone to subjective rating and imprecise interpretation of patient's performance..

    Automated Assessment of Balance Rehabilitation Exercises With a Data-Driven Scoring Model: Algorithm Development and Validation Study

    Get PDF
    BACKGROUND: Balance rehabilitation programs represent the most common treatments for balance disorders. Nonetheless, lack of resources and lack of highly expert physiotherapists are barriers for patients to undergo individualized rehabilitation sessions. Therefore, balance rehabilitation programs are often transferred to the home environment, with a considerable risk of the patient misperforming the exercises or failing to follow the program at all. Holobalance is a persuasive coaching system with the capacity to offer full-scale rehabilitation services at home. Holobalance involves several modules, from rehabilitation program management to augmented reality coach presentation. OBJECTIVE: The aim of this study was to design, implement, test, and evaluate a scoring model for the accurate assessment of balance rehabilitation exercises, based on data-driven techniques. METHODS: The data-driven scoring module is based on an extensive data set (approximately 1300 rehabilitation exercise sessions) collected during the Holobalance pilot study. It can be used as a training and testing data set for training machine learning (ML) models, which can infer the scoring components of all physical rehabilitation exercises. In that direction, for creating the data set, 2 independent experts monitored (in the clinic) 19 patients performing 1313 balance rehabilitation exercises and scored their performance based on a predefined scoring rubric. On the collected data, preprocessing, data cleansing, and normalization techniques were applied before deploying feature selection techniques. Finally, a wide set of ML algorithms, like random forests and neural networks, were used to identify the most suitable model for each scoring component. RESULTS: The results of the trained model improved the performance of the scoring module in terms of more accurate assessment of a performed exercise, when compared with a rule-based scoring model deployed at an early phase of the system (k-statistic value of 15.9% for sitting exercises, 20.8% for standing exercises, and 26.8% for walking exercises). Finally, the resulting performance of the model resembled the threshold of the interobserver variability, enabling trustworthy usage of the scoring module in the closed-loop chain of the Holobalance coaching system. CONCLUSIONS: The proposed set of ML models can effectively score the balance rehabilitation exercises of the Holobalance system. The models had similar accuracy in terms of Cohen kappa analysis, with interobserver variability, enabling the scoring module to infer the score of an exercise based on the collected signals from sensing devices. More specifically, for sitting exercises, the scoring model had high classification accuracy, ranging from 0.86 to 0.90. Similarly, for standing exercises, the classification accuracy ranged from 0.85 to 0.92, while for walking exercises, it ranged from 0.81 to 0.90. TRIAL REGISTRATION: ClinicalTrials.gov NCT04053829; https://clinicaltrials.gov/ct2/show/NCT04053829

    Review of three-dimensional human-computer interaction with focus on the leap motion controller

    Get PDF
    Modern hardware and software development has led to an evolution of user interfaces from command-line to natural user interfaces for virtual immersive environments. Gestures imitating real-world interaction tasks increasingly replace classical two-dimensional interfaces based on Windows/Icons/Menus/Pointers (WIMP) or touch metaphors. Thus, the purpose of this paper is to survey the state-of-the-art Human-Computer Interaction (HCI) techniques with a focus on the special field of three-dimensional interaction. This includes an overview of currently available interaction devices, their applications of usage and underlying methods for gesture design and recognition. Focus is on interfaces based on the Leap Motion Controller (LMC) and corresponding methods of gesture design and recognition. Further, a review of evaluation methods for the proposed natural user interfaces is given

    A Comparative Study of the Clinical use of Motion Analysis from Kinect Skeleton Data

    Get PDF
    The analysis of human motion as a clinical tool can bring many benefits such as the early detection of disease and the monitoring of recovery, so in turn helping people to lead independent lives. However, it is currently under used. Developments in depth cameras, such as Kinect, have opened up the use of motion analysis in settings such as GP surgeries, care homes and private homes. To provide an insight into the use of Kinect in the healthcare domain, we present a review of the current state of the art. We then propose a method that can represent human motions from time-series data of arbitrary length, as a single vector. Finally, we demonstrate the utility of this method by extracting a set of clinically significant features and using them to detect the age related changes in the motions of a set of 54 individuals, with a high degree of certainty (F1- score between 0.9 - 1.0). Indicating its potential application in the detection of a range of age-related motion impairments

    Eldo-care: EEG with Kinect sensor based telehealthcare for the disabled and the elderly

    Get PDF
    Telehealthcare systems are nowadays becoming a massive daily helping kit for elderly and disabled people. By using the Kinect sensors, remote monitoring has become easy. Also, the sensors' data are useful for the further improvement of the device. In this paper, we have discussed our newly developed “Eldo-care” system. This system is designed for the assessment and management of diverse neurological illnesses. The telemedical system is developed to monitor the psycho-neurological condition. People with disabilities and the elderly frequently experience access issues to essential services. Researchers today are concentrating on rehabilitative technologies based on human-computer interfaces that are closer to social-emotional intelligence. The goal of the study is to help old and disabled persons with cognitive rehabilitation using machine learning techniques. Human brain activity is observed using electroencephalograms, while user movement is tracked using Kinect sensors. Chebyshev filter is used for feature extraction and noise reduction. Utilizing the autoencoder technique, categorization is carried out by a Convolutional neural network with an accuracy of 95% and higher based on transfer learning. A better quality of life for older and disabled persons will be attained through the application of the suggested system in real time. The proposed device is attached to the subject under monitoring
    corecore