791 research outputs found

    Deep Transcriptomic Profiling of M1 Macrophages Lacking Trpc3

    Get PDF
    In previous studies using mice with macrophage-specific loss of TRPC3 we found a significant, selective effect of TRPC3 on the biology of M1, or inflammatory macrophages. Whereas activation of some components of the unfolded protein response and the pro-apoptotic mediators CamkII and Stat1 was impaired in Trpc3-deficient M1 cells, gathering insight about other molecular signatures within macrophages that might be affected by Trpc3 expression requires an alternative approach. In the present study we conducted RNA-seq analysis to interrogate the transcriptome of M1 macrophages derived from mice with macrophage-specific loss of TRPC3 and their littermate controls. We identified 160 significantly differentially expressed genes between the two groups, of which 62 were upregulated and 98 downregulated in control vs. Trpc3-deficient M1 macrophages. Gene ontology analysis revealed enrichment in processes associated to cellular movement and lipid signaling, whereas the enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways included networks for calcium signaling and cell adhesion molecules, among others. This is the first deep transcriptomic analysis of macrophages in the context of Trpc3 deficiency and the data presented constitutes a unique resource to further explore functions of TRPC3 in macrophage biology.Fil: Kumarasamy, Sivarajan. University of Toledo; Estados UnidosFil: Solanki, Sumeet. University of Toledo; Estados UnidosFil: Atolagbe, Oluwatomisin T.. University of Toledo; Estados UnidosFil: Joe, Bina. University of Toledo; Estados UnidosFil: Birnbaumer, Lutz. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires". Instituto de Investigaciones Biomédicas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas; ArgentinaFil: Vazquez, Guillermo. University of Toledo; Estados Unido

    Cameo: A Python Library for Computer Aided Metabolic Engineering and Optimization of Cell Factories

    Get PDF
    Computational systems biology methods enable rational design of cell factories on a genome-scale and thus accelerate the engineering of cells for the production of valuable chemicals and proteins. Unfortunately, the majority of these methods’ implementations are either not published, rely on proprietary software, or do not provide documented interfaces, which has precluded their mainstream adoption in the field. In this work we present cameo, a platform-independent software that enables <i>in silico</i> design of cell factories and targets both experienced modelers as well as users new to the field. It is written in Python and implements state-of-the-art methods for enumerating and prioritizing knockout, knock-in, overexpression, and down-regulation strategies and combinations thereof. Cameo is an open source software project and is freely available under the Apache License 2.0. A dedicated Web site including documentation, examples, and installation instructions can be found at http://cameo.bio. Users can also give cameo a try at http://try.cameo.bio

    Confirmation that mrub_1751 is homologous to \u3cem\u3eE. coli\u3c/em\u3e xylF, mrub_1752 is homologous to \u3cem\u3eE. coli\u3c/em\u3e xylH, and mrub_1753 is homologous to \u3cem\u3eE. coli\u3c/em\u3e xylG

    Get PDF
    In this project we investigated the biological function of the genes Mrub_1751, Mrub_1752 and Mrub_1753 (KEGG map number 02010). We predict these genes encode components of a D-xylose ATP Binding Cassette (ABC) transporter: 1) Mrub_1752 (DNA coordinates 1809004-1810224 on the forward strand) encodes the permease component (aka transmembrane domain), predicted to be an ortholog and 2) Mrub_1753 (DNA coordinates 1810227-1811000 on the forward strand) encodes the ATP-binding domain (aka nucleotide binding domain); and 3) Mrub_1751 (DNA coordinates 1807855-1808892 on the forward strand) encodes the solute binding protein. The ABC-transporter for M. ruber to transport D-xylose is homologous with the transporter found in E. coli, allowing for the transport of D-xylose into the cell. Of interest is the finding that Mrub_1753 and E. coli xylG appear to be partly embedded in the cell membrane, unlike most ATP-binding domains. This project is part of the Meiothermus ruber genome analysis project, which predicts gene function using the bioinformatics tools collected under the umbrella of the Guiding Education through Novel Investigation –Annotation Collaboration Toolkit (GENI-ACT)

    mVOC 2.0: a database of microbial volatiles

    Get PDF
    Metabolic capabilities of microorganisms include the production of secondary metabolites (e.g. antibiotics). The analysis of microbial volatile organic compounds (mVOCs) is an emerging research field with huge impact on medical, agricultural and biotechnical applied and basic science. The mVOC database (v1) has grown with microbiome research and integrated species information with data on emitted volatiles. Here, we present the mVOC 2.0 database with about 2000 compounds from almost 1000 species and new features to work with the database. The extended collection of compounds was augmented with data regarding mVOC-mediated effects on plants, fungi, bacteria and (in-)vertebrates. The mVOC database 2.0 now features a mass spectrum finder, which allows a quick mass spectrum comparison for compound identification and the generation of species-specific VOC signatures. Automatic updates, useful links and search for mVOC literature are also included. The mVOC database aggregates and refines available information regarding microbial volatiles, with the ultimate aim to provide a comprehensive and informative platform for scientists working in this research field. To address this need, we maintain a publicly available mVOC database at: http://bioinformatics.charite.de/mvoc

    Mrub_1325, Mrub_1326, Mrub_1327, and Mrub_1328 are orthologs of B_3454, B_3455, B_3457, B_3458, respectively found in \u3cem\u3eEscherichia coli\u3c/em\u3e coding for a Branched Chain Amino Acid ATP Binding Cassette (ABC) Transporter System

    Get PDF
    In this project we investigated the biological function of the genes Mrub_1325, Mrub_1326, Mrub_1327, and Mrub_1328 (KEGG map number 02010). We predict these genes encode components of a Branched Chain Amino Acid ATP Binding Cassette (ABC) transporter: 1) Mrub_1325 (DNA coordinates 1357399-1358130 on the reverse strand) encodes the ATP binding domain; 2) Mrub_1326 (DNA coordinates 1358127-1359899 on the reverse strand) encodes the ATP-binding domain and permease domain; 3) Mrub_1327 (DNA coordinates 1359899-1360930 on the reverse strand) encodes a permease domain; and 4)Mrub_1328 (DNA coordinates 1711022-1712185 on the reverse strand) encodes the substrate binding domain. This system is not predicted to have a solute binding protein, which is a component of most ABC transporters. This transport system is found in E. coli K12 MG1655, the predicted orthologs of Mrub_1325, Mrub_1326, Mrub_1327, and Mrub_1328, livF, livG, livH, and livK respectively, are b3454, b3455, b3457, and b3458, form a livFGHK operon encoding an ABC transporter for branched chain amino acid transport. Mrub_1326 is likely a fused protein of both livG and livM suggesting it may also be orthologous to b3456. This project is part of the Meiothermus ruber genome analysis project, which predicts gene function using the bioinformatics tools collected under the umbrella of the Guiding Education through Novel Investigation –Annotation Collaboration Toolkit (GENI-ACT)

    Annotation and Identification of Several Glycerolipid Metabolic Related Ortholog Genes; Mrub_0437, Mrub_1813 and Mrub_2759 In The Organism \u3cem\u3eMeithermus Ruber\u3c/em\u3e and Their Predicted Respective Orthologs b3926, b4042 and BO514 Found In \u3cem\u3eE.coli\u3c/em\u3e.

    Get PDF
    We predict Mrub_0437 encodes the enzyme glycerol kinase (DNA coordinates [417621..419183), which is an intermediary step of the glycerolipid metabolic pathway (KEGG map00561), It catalyzes the conversion of glycerol to sn-Glycerol-3-phosphate. The E. coli K12 MG1655 ortholog is predicted to be b3926. We predict Mrub_1813 encodes the enzyme diacylglycerol kinase (DNA coordinates [1864659..1865063), which is an intermediary step of the glycerolipid metabolic pathway (KEGG map00561), It catalyzes the conversion of 1,2-diacyl-sn-glycerol to 1,2-diacyl-sn-glycerol 3-phosphate. The E. coli K12 MG1655 ortholog is predicted to be b4042. We predict Mrub_2759 encodes the enzyme glycerol kinase (DNA coordinates [2799712..2800665), which is an intermediary step of the glycerolipid metabolic pathway (KEGG map00561), It catalyzes the conversion of d-Glycerate to 2-phospho-d-glycerate. The E. coli K12 MG1655 ortholog is predicted to be B0514

    proGenomes: a resource for consistent functional and taxonomic annotations of prokaryotic genomes

    Get PDF
    The availability of microbial genomes has opened many new avenues of research within microbiology. This has been driven primarily by comparative genomics approaches, which rely on accurate and consistent characterization of genomic sequences. It is nevertheless difficult to obtain consistent taxonomic and integrated functional annotations for defined prokaryotic clades. Thus, we developed proGenomes, a resource that provides user-friendly access to currently 25 038 high-quality genomes whose sequences and consistent annotations can be retrieved individually or by taxonomic clade. These genomes are assigned to 5306 consistent and accurate taxonomic species clusters based on previously established methodology. proGenomes also contains functional information for almost 80 million protein-coding genes, including a comprehensive set of general annotations and more focused annotations for carbohydrate-active enzymes and antibiotic resistance genes. Additionally, broad habitat information is provided for many genomes. All genomes and associated information can be downloaded by user-selected clade or multiple habitat-specific sets of representative genomes. We expect that the availability of high-quality genomes with comprehensive functional annotations will promote advances in clinical microbial genomics, functional evolution and other subfields of microbiology. proGenomes is available at http://progenomes.embl.de

    A Tree Frog (\u3cem\u3eBoana pugnax\u3c/em\u3e) Dataset of Skin Transcriptome for the Identification of Biomolecules with Potential Antimicrobial Activities

    Get PDF
    Increases in the prevalence of multiply resistant microbes have necessitated the search for new molecules with antimicrobial properties. One noteworthy avenue in this search is inspired by the presence of native antimicrobial peptides in the skin of amphibians. Having the second highest diversity of frogs worldwide, Colombian anurans represent an extensive natural reservoir that could be tapped in this search. Among this diversity, species such as Boana pugnax (the Chirique-Flusse Treefrog) are particularly notable, in that they thrive in a diversity of marginal habitats, utilize both aquatic and arboreal habitats, and are members of one of few genera that are known to mount a robust immunological response against the fungus Batrachochytrium dendrobatidis, which has decimated the population of frogs worldwide. To search for molecules with potential antimicrobial activity, we have assembled and annotated a reference transcriptome from the skin of four wild captured B. pugnax from Antioquia, Colombia. Analysis of potential antimicrobial and immunological components was performed using ontology analyses, we identified several antimicrobial chemokines with particularly strong potential for exhibiting broadscale antimicrobial activities, as well as several genes related to rapid alteration of transcriptional (KRAB zinc finger protein) and phosphorylation (MAPK) responses to exogenous stressors. We also found eight families of transmembrane transport proteins, including sodium, potassium and voltage-dependent calcium channels, which will be invaluable in future studies aimed at more precisely defining the diversity and function of cationic antimicrobial peptides with alpha-helical structures. These data highlight the utility of frogs such as Boana pugnax in the search of new antimicrobial molecules. Moreover, the molecular datasets presented here allow us to expand our knowledge of this species and illustrate the importance of preserving the vast potential of Colombian biodiversity for the identification of useful biomolecules

    Specific Tuning Parameter for Directed Random Walk Algorithm Cancer Classification

    Get PDF
    Accuracy of cancerous gene classification is a central challenge in clinical cancer research. Microarray-based gene biomarkers have proved the performance and its ability over traditional clinical parameters. However, gene biomarkers of an individual are less robustness due to litter reproducibility between different cohorts of patients. Several methods incorporating pathway information such as directed random walk have been proposed to infer the pathway activity. This paper discusses the implementation of group specific tuning parameter in directed random walk algorithm. In this experiment, gene expression data and pathway data are used as input data. Throughout this experiment, more significant pathway activities can be identified which increases the accuracy of cancer classification. The lung cancer gene is used as the experimental dataset, with which, the sDRW is used in determining significant pathways. More risk-active pathways are identified throughout this experiment
    corecore