

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Cameo: A Python Library for Computer Aided Metabolic Engineering and Optimization
of Cell Factories

Cardoso, Joao; Jensen, Kristian; Lieven, Christian; Hansen, Anne Sofie Lærke; Galkina, Svetlana;
Beber, Moritz Emanuel; Özdemir, Emre; Herrgard, Markus; Redestig, Nils Henning; Sonnenschein,
Nikolaus
Published in:
bioRxiv

Link to article, DOI:
10.1101/147199

Publication date:
2017

Document Version
Early version, also known as pre-print

Link back to DTU Orbit

Citation (APA):
Cardoso, J., Jensen, K., Lieven, C., Hansen, A. S. L., Galkina, S., Beber, M. E., ... Sonnenschein, N. (2017).
Cameo: A Python Library for Computer Aided Metabolic Engineering and Optimization of Cell Factories. bioRxiv.
DOI: 10.1101/147199

http://dx.doi.org/10.1101/147199
http://orbit.dtu.dk/en/publications/cameo-a-python-library-for-computer-aided-metabolic-engineering-and-optimization-of-cell-factories(1e11ec7e-5d81-4f4e-ad78-a44ef05be0be).html

Cameo: A Python Library for Computer
Aided Metabolic Engineering and
Optimization of Cell Factories
João G. R. Cardoso, Kristian Jensen, Christian Lieven, Anne Sofie Lærke
Hansen, Svetlana Galkina, Moritz Beber, Emre Özdemir, Markus J.
Herrgård, Henning Redestig, and Nikolaus Sonnenschein*

The Novo Nordisk Foundation Center for Biosustainability, Technical University of
Denmark, Lyngby, Denmark

ABSTRACT

Computational systems biology methods enable rational design of cell factories on a genome-
scale and thus accelerate the engineering of cells for the production of valuable chemicals
and proteins. Unfortunately, for the majority of these methods’ implementations are either
not published, rely on proprietary software, or do not provide documented interfaces, which
has precluded their mainstream adoption in the field. In this work we present cameo, a
platform-independent software that enables in silico design of cell factories and targets both
experienced modelers as well as users new to the field. It is written in Python and implements
state-of-the-art methods for enumerating and prioritizing knock-out, knock-in, over-expression,
and down-regulation strategies and combinations thereof. Cameo is an open source software
project and is freely available under the Apache License 2.0. A dedicated website including
documentation, examples, and installation instructions can be found at http://cameo.bio.
Users can also give cameo a try at http://try.cameo.bio.

INTRODUCTION
The engineering of cells for the production of chemicals and proteins affects all areas of our
modern lives. Beer, yogurt, flavoring, detergents, and insulin represent just a few products
which are unimaginable without biotechnology. Engineered cells may further provide solutions
to many of mankind’s greatest challenges like global climate, multiple drug resistance, and
overpopulation, by producing fuels, novel antibiotics, and food from renewable feedstocks.
Manipulating cells to perform tasks that they did not evolved for, however, is challenging and
requires significant investments and personnel in order to reach economically viable production
of target molecules (Lee and Kim, 2015).

A central task in developing biotechnological production processes is to reroute metabolic
fluxes towards desired products in cells. This task is particularly prone to failure due to our
limited understanding of the underlying biology and the complexity of the metabolic networks in
even the simplest of organisms. In line with other recent technological advancements, like high-
fidelity genome editing through CRISPR/Cas9 (Sander and Joung, 2014) and DNA synthesis
costs dropping (Kosuri and Church, 2014), modeling methods are increasingly used to accelerate
cell factory engineering, helping to reduce development time and cost (Meadows et al., 2016).

Genome-scale models of metabolism (GEMs) (McCloskey et al., 2013) are of particular
interest in this context as they predict phenotypic consequences of genetic and environmental

*Corresponding author niso@biosustain.dtu.dk

.CC-BY 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/147199doi: bioRxiv preprint first posted online Jun. 9, 2017;

http://cameo.bio
http://try.cameo.bio
mailto:niso@biosustain.dtu.dk
http://dx.doi.org/10.1101/147199
http://creativecommons.org/licenses/by/4.0/

perturbations affecting cellular metabolism (O’Brien et al., 2015). These models have been
developed throughout the past 15 years for the majority of potential cell factory host organisms
ranging from bacteria to mammalian cells. A large repertoire of algorithms has been published
that utilize GEMs to compute cell factory engineering strategies composed of over-expression,
down-regulation, deletion, and addition of genes (see Maia et al., 2016; Machado and Herrgård,
2015). Unfortunately, most of these algorithms are not easily accessible to users as they have
either been published without implementation (e.g. using pseudo code or mathematical equations
to describe the method) or the implementation provided by the authors is undocumented or
hard to install. These problems significantly limit the ability of metabolic engineers to utilize
computational design tools as part of their workflow.

RESULTS
Cameo is open source software written in Python that alleviates these problems and aims to
make in silico cell factory design broadly accessible. On the one hand it enables cell factory
engineers to enumerate and prioritize designs without having to be experts in metabolic modeling
themselves. On the other hand it aims to become a comprehensive library of published methods
by providing method developers with a library that simplifies the implementation of new cell
factory design methods.

Cameo provides a high-level interface that can be used without knowing any metabolic
modeling or how different algorithms are implemented (see Supplementary Notebook 8 [v0.10.3,
current]). In fact, the most minimal form of input that cameo requires is simply the desired
product, for example vanillin.

from cameo import api
api.design(product='vanillin')

This function call will run the workflow depicted in Figure 1. It is also possible to call
the same functionality from the command line. Firstly, it enumerates native and heterologous
production pathways for a series of commonly used host organisms and carbon sources. Then
it runs a whole suite of design algorithms available in cameo to generate a list of metabolic
engineering strategies, which can then be ranked by different criteria (maximum theoretical yield,
number of genetic modifications etc.).

More advanced users can easily customize this workflow by providing models for other host
organisms, changing parameters and algorithms, and of course by including their own methods.

In order to become a community project and attract further developers, cameo has been
developed as a modular Python package that has been extensively documented and tested using
modern software engineering practices like test-driven development and continuous integra-
tion/deployment on travis-ci.org (Figure 2 shows an overview of the package organization).

To avoid duplication of effort, cameo is based on the constraint-based modeling tool cobrapy
(Ebrahim et al., 2013) thus providing its users with already familiar objects and methods (see also
Figure 2a). Furthermore, cameo takes advantage of other popular tools of the scientific Python
stack, like for example Jupyter notebooks for providing an interactive modeling environment
(Pérez and Granger, 2007) and pandas for the representation, querying, and visualization of
results (McKinney, 2010).

Accessing published GEMs can be a challenging task as they are often made available in
formats that are not supported by existing modeling software (Ebrahim et al., 2015). Cameo
provides programmatic access to collections of models (Figure 2b) hosted by BiGG (King et al.,
2016) and the University of Minho darwin.di.uminho.pt/models. Furthermore, by relying on the
common namespace for reaction and metabolite identifiers provided by the MetaNetX.org project

2/6

.CC-BY 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/147199doi: bioRxiv preprint first posted online Jun. 9, 2017;

https://nbviewer.jupyter.org/github/biosustain/cameo-notebooks/blob/0.10.3/08-high-level-API.ipynb
https://nbviewer.jupyter.org/github/biosustain/cameo-notebooks/blob/master/08-high-level-API.ipynb
https://travis-ci.org/biosustain/cameo/
http://bigg.ucsd.edu/
http://darwin.di.uminho.pt/models
http://www.metanetx.org/
http://dx.doi.org/10.1101/147199
http://creativecommons.org/licenses/by/4.0/

Target
chemicals

Production
 hosts

load genome-scale model

MetaNetX
Database

ESCHER

vgrowth

v p
ro

du
ct

0 vmaxvmin

R1
R2
R3
R4
R5
R6

find target compound

heterologous reactions

production envelope

flux variability analysis

production envelope

vgrowth

v p
ro

du
ct

pathway visualization

PFK

TPI

FBA

FBP

f6p_c

g3p_c

atp_c

adp_c

fdp_c

h_c
h2o_c

pi_c

analysis

pathway
prediction

na
tiv

e
pr

od
uc

t

non-native

product

kn
ok

co
ut

s

m
od

ul
at

io
n

kn
ok

co
ut

s+
m

od
ul

at
io

n

analysis
and

prioritization

manipulations score
+pfkΔfru 10
+pfkΔfbaΔtrpD
–fbaΔtrpD

7
7
......

GEM

Metabolite
Reaction

overexpression
downregulation
knockout

Economically
 feasible

+
–
Δ

Figure 1. Cell factory design workflow with cameo. The first step is to import a metabolic model from
a file or using a web service. Next, the user needs to select a target product. If the target product is a
non-native chemical, shortest heterologous production pathways can be enumerated to determine a
suitable route to the product (Pharkya et al., 2004). Potential production pathways can then be compared
using production envelopes, i.e., visualizations of the trade-off between production rate and organism
growth rate (see Supplementary Notebook 4 [v0.10.3, current]). After a production pathway has been
chosen, a number of different design methods are used to compute the genetic modifications (designs)
necessary to achieve the production goal (see Supplementary Notebooks 5 [v0.10.3, current] and 6
[v0.10.3, current]). In the end, the computed designs can be sorted using different criteria relevant to the
actual implementation in the lab and economic considerations such as the number of genetic
modifications needed and maximum theoretical product yield. Furthermore, a number of results can be
further visualized using the pathway visualization tool Escher (King et al., 2015)

.
3/6

.CC-BY 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/147199doi: bioRxiv preprint first posted online Jun. 9, 2017;

https://nbviewer.jupyter.org/github/biosustain/cameo-notebooks/blob/0.10.3/04-analyze-models.ipynb
https://nbviewer.jupyter.org/github/biosustain/cameo-notebooks/blob/master/04-analyze-models.ipynb
https://nbviewer.jupyter.org/github/biosustain/cameo-notebooks/blob/0.10.3/05-predict-gene-knockout-strategies.ipynb
https://nbviewer.jupyter.org/github/biosustain/cameo-notebooks/blob/master/05-predict-gene-knockout-strategies.ipynb
https://nbviewer.jupyter.org/github/biosustain/cameo-notebooks/blob/0.10.3/06-predict-gene-modulation-targets.ipynb
https://nbviewer.jupyter.org/github/biosustain/cameo-notebooks/blob/master/06-predict-gene-modulation-targets.ipynb
http://dx.doi.org/10.1101/147199
http://creativecommons.org/licenses/by/4.0/

Cameo

core

cobrapy.core

flux_analysis strain_design

analysis

optlang bigg
bigg.ucsd.edu

minho
darwin.di.uminho.pt

universal
metanetx.org

models

deterministicheuristic

OptSwap DifferentialFVA

simulation

structural

room

parallel

visualization

SolverBasedModel

OptGene

OptKnock

pfba

fva

(l)moma

fba

ShortestElementary
Pathways

find_blocked_reactions

phenotypic_phase_plane

Reaction Gene

api

products

hosts

design

MinimalCutSets

(b)
Utilities & IO

(d) Design
(c) COBRA

(a) Objects

(e) High-level UI

Figure 2. Package organization and functionality overview. The cameo package is organized into a
number of sub-packages: core extends cobrapy’s own core package (Ebrahim et al., 2015) to use optlang
(Jensen et al., 2017) as interface to a number of optimization solvers. models enables programmatic
access to models hosted on the internet. parallel provides tools for the parallelization of design methods.
visualization provides a number of high-level visualization functions, e.g., production envelopes.
flux analysis implements many basic simulation and analysis methods needed for higher-level design
methods and the evaluation of production goals etc. strain design provides a collection of in silico design
methods and is subdivided into methods that use deterministic and heuristic optimization approaches. At
last, api provides a high-level interface for computing designs.

(Bernard et al., 2014) that covers commonly used pathway databases like KEGG (Kanehisa et al.,
2016), RHEA (Morgat et al., 2015), and BRENDA (Chang et al., 2015), a universal reaction
database can be used to predict heterologous pathways (see Supplementary Notebook 7 [v0.10.3,
current].

Most design algorithms rely on solving optimization problems. In order to speed up simula-
tions and ease the formulation of optimization problems, cameo replaces the solver interfaces
utilized in cobrapy with optlang (Jensen et al., 2017), a Python interface to commonly used
optimization solvers and symbolic modeling language that is maintained by the authors of cameo.
Cameo always maintains a one-to-one correspondence of the GEM and its underlying optimiza-
tion problem, greatly facilitating debugging and efficient solving by enabling warm starts from
previously found solutions (Gelius-Dietrich et al., 2013). Furthermore, being based on sympy
(SymPy Development Team, 2016), optlang enables the formulation of complicated optimization
problems using symbolic math expressions, making the implementation of published design
methods straightforward.

Runtimes of design methods are usually on the order of seconds to minutes. Nevertheless,
scanning large numbers of potential products, host organisms, and feedstocks, can quickly
make computations challenging (running the entire workflow using the high-level API takes

4/6

.CC-BY 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/147199doi: bioRxiv preprint first posted online Jun. 9, 2017;

http://www.genome.jp/kegg/
http://www.rhea-db.org/
http://www.brenda-enzymes.org/
https://nbviewer.jupyter.org/github/biosustain/cameo-notebooks/blob/0.10.3/07-predict-heterologous-pathways.ipynb
https://nbviewer.jupyter.org/github/biosustain/cameo-notebooks/blob/master/07-predict-heterologous-pathways.ipynb
http://dx.doi.org/10.1101/147199
http://creativecommons.org/licenses/by/4.0/

on the order of hours). As described above, cameo makes unit operations as fast as possible
by implementing an efficient interface to the underlying optimization software. In addition, a
number of methods in cameo can be parallelized, and can thus take advantage of multicore CPUs
and HPC infrastructure if available (see documentation).

With this broad overview of capabilities, we would like to emphasize the role of cameo
as a useful resource to the modeling community and wish to support its development as a
community effort in the long run. The majority of published strain design algorithms have
not been experimentally validated (Machado and Herrgård, 2015) and we believe that their
inaccessibility to users is a major factor for the lack of validation. With cameo we hope to
counteract this problem by making these methods accessible to the entire metabolic engineering
community and also providing a platform for modelers to implement and publish novel methods.

CONCLUSIONS

With cameo version 0.10.3 we release a tool that is ready to be used in metabolic engineering
projects. It is under active development and future work will include interfacing cameo with
genome-editing tools to streamline the translation of computed strain designs into laboratory
protocols, modeling of fermentation processes to get estimates on titers and productivities, and
include pathway predictions based on retrobiosynthesis including hypothetical biochemical
conversions (Campodonico et al., 2014).

ACKNOWLEDGMENTS

We would like to thank Kai Zhuang, Miguel Campodonico and Sumesh Sukumura for providing
valuable feedback and bug reports as early users of cameo. This project has received funding
from the European Union’s Horizon 2020 research and innovation programme under grant
agreement No 686070. Furthermore, we acknowledge financial support from the Novo Nordisk
Foundation.

REFERENCES

Bernard, T., Bridge, A., Morgat, A., Moretti, S., Xenarios, I., and Pagni, M. (2014). Rec-
onciliation of metabolites and biochemical reactions for metabolic networks. Briefings in
Bioinformatics, 15(1):123–135.

Campodonico, M. A., Andrews, B. A., Asenjo, J. A., Palsson, B. O., and Feist, A. M. (2014).
Generation of an atlas for commodity chemical production in Escherichia coli and a novel
pathway prediction algorithm, GEM-Path. Metabolic Engineering, 25:140–158.

Chang, A., Schomburg, I., Placzek, S., Jeske, L., Ulbrich, M., Xiao, M., Sensen, C. W., and
Schomburg, D. (2015). BRENDA in 2015: Exciting developments in its 25th year of existence.
Nucleic Acids Research, 43(D1):D439–D446.

Ebrahim, A., Almaas, E., Bauer, E., Bordbar, A., Burgard, A. P., Chang, R. L., Dräger, A., Famili,
I., Feist, A. M., Fleming, R. M., Fong, S. S., Hatzimanikatis, V., Herrgard, M. J., Holder,
A., Hucka, M., Hyduke, D., Jamshidi, N., Lee, S. Y., Le Novere, N., Lerman, J. A., Lewis,
N. E., Ma, D., Mahadevan, R., Maranas, C., Nagarajan, H., Navid, A., Nielsen, J., Nielsen,
L. K., Nogales, J., Noronha, A., Pal, C., Palsson, B. O., Papin, J. A., Patil, K. R., Price, N. D.,
Reed, J. L., Saunders, M., Senger, R. S., Sonnenschein, N., Sun, Y., and Thiele, I. (2015). Do
genome-scale models need exact solvers or clearer standards? Molecular Systems Biology,
11(10):831–831.

Ebrahim, A., Lerman, J., Palsson, B., and Hyduke, D. (2013). COBRApy: COnstraints-Based
Reconstruction and Analysis for Python. BMC Syst Biol, 7:74.

5/6

.CC-BY 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/147199doi: bioRxiv preprint first posted online Jun. 9, 2017;

http://dx.doi.org/10.1101/147199
http://creativecommons.org/licenses/by/4.0/

Gelius-Dietrich, G., Desouki, A. A., Fritzemeier, C. J., and Lercher, M. J. (2013). Sybil–efficient
constraint-based modelling in R. BMC systems biology, 7:125.

Jensen, K., Cardoso, J. G., and Sonnenschein, N. (2017). Optlang: An algebraic modeling
language for mathematical optimization. The Journal of Open Source Software, 2(9).

Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., and Tanabe, M. (2016). KEGG as a
reference resource for gene and protein annotation. Nucleic Acids Research, 44(D1):D457–
D462.

King, Z. A., Dräger, A., Ebrahim, A., Sonnenschein, N., Lewis, N. E., and Palsson, B. O. (2015).
Escher: A Web Application for Building, Sharing, and Embedding Data-Rich Visualizations
of Biological Pathways. PLOS Computational Biology, 11(8):e1004321.

King, Z. A., Lu, J., Dräger, A., Miller, P., Federowicz, S., Lerman, J. A., Ebrahim, A., Palsson,
B. O., and Lewis, N. E. (2016). BiGG Models: A platform for integrating, standardizing and
sharing genome-scale models. Nucleic Acids Research, 44(D1):D515–D522.

Kosuri, S. and Church, G. M. (2014). Large-scale de novo DNA synthesis: technologies and
applications. Nature methods, 11(5):499–507.

Lee, S. Y. and Kim, H. U. (2015). Systems strategies for developing industrial microbial strains.
Nat Biotech, 33(10):1061–1072.

Machado, D. and Herrgård, M. J. (2015). Co-evolution of strain design methods based on flux
balance and elementary mode analysis. Metabolic Engineering Communications, 2:85 – 92.

Maia, P., Rocha, M., and Rocha, I. (2016). In Silico Constraint-Based Strain Optimization
Methods: the Quest for Optimal Cell Factories. Microbiology and molecular biology reviews :
MMBR, 80(1):45–67.

McCloskey, D., Palsson, B. O., and Feist, A. M. (2013). Basic and applied uses of genome-
scale metabolic network reconstructions of Escherichia coli. Molecular Systems Biology,
9(661):661.

McKinney, W. (2010). Data structures for statistical computing in python. In van der Walt, S.
and Millman, J., editors, Proceedings of the 9th Python in Science Conference, pages 51 – 56.

Meadows, A. L., Hawkins, K. M., Tsegaye, Y., Antipov, E., Kim, Y., Raetz, L., Dahl, R. H., Tai,
A., Mahatdejkul-Meadows, T., Xu, L., Zhao, L., Dasika, M. S., Murarka, A., Lenihan, J., Eng,
D., Leng, J. S., Liu, C.-L., Wenger, J. W., Jiang, H., Chao, L., Westfall, P., Lai, J., Ganesan,
S., Jackson, P., Mans, R., Platt, D., Reeves, C. D., Saija, P. R., Wichmann, G., Holmes, V. F.,
Benjamin, K., Hill, P. W., Gardner, T. S., and Tsong, A. E. (2016). Rewriting yeast central
carbon metabolism for industrial isoprenoid production. Nature, pages 1–16.

Morgat, A., Axelsen, K. B., Lombardot, T., Alcántara, R., Aimo, L., Zerara, M., Niknejad,
A., Belda, E., Hyka-Nouspikel, N., Coudert, E., Redaschi, N., Bougueleret, L., Steinbeck,
C., Xenarios, I., and Bridge, A. (2015). Updates in Rhea-a manually curated resource of
biochemical reactions. Nucleic Acids Research, 43(D1):D459–D464.

O’Brien, E. J., Monk, J. M., and Palsson, B. O. (2015). Using genome-scale models to predict
biological capabilities. Cell, 161(5):971–987.

Pérez, F. and Granger, B. E. (2007). IPython: a system for interactive scientific computing.
Computing in Science and Engineering, 9(3):21–29.

Pharkya, P., Burgard, A. P., and Maranas, C. D. (2004). OptStrain: A computational framework
for redesign of microbial production systems. Genome Research, 14(11):2367–2376.

Sander, J. D. and Joung, J. K. (2014). CRISPR-Cas systems for editing, regulating and targeting
genomes. Nature biotechnology, 32(4):347–55.

SymPy Development Team (2016). SymPy: Python library for symbolic mathematics.

6/6

.CC-BY 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/147199doi: bioRxiv preprint first posted online Jun. 9, 2017;

http://dx.doi.org/10.1101/147199
http://creativecommons.org/licenses/by/4.0/

	References

