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 Mrub_1325, Mrub_1326, Mrub_1327, and Mrub_1328 are orthologs of B_3454, B_3455, 

B_3457, B_3458, respectively found in Escherichia coli coding for a Branched Chain Amino 

Acid ATP Binding Cassette (ABC) Transporter System 

Bennett Tomlin and Adam Buric 

Introduction: 

All of the genes in this paper are a part of a class of proteins called ABC transporters. 

ABC stands for ATP Binding Cassette, and they are called this because in order to transport 

anything ATP binds at the “cassette”.  All life depends on transporters in order to maintain the 

appropriate levels of different materials.  ABC transporters are the largest family of proteins 

discovered so far representing approximately 2% of the bacterial genomes.  (Tomil and Kenhisa 

1998)  Their ubiquity, including among higher organisms, has led to them being implicated in 

several diseases including cystic fibrosis.  (Vasiliou and Vasiliou and Nebert 2009)   ABC 

transporters are divided into three main categories including two classes of importers and a 

single class of exporter.  (Wilkens 2015)  Exporters tend to be closely related phylogenetically to 

other exporters, and importers to other importers, as those two types likely diverged once a long 

time ago in the evolution of these systems. (Saurin, Hofnung, and Dassa 1999)  There are several 

highly conserved features for these transporters including: a consensus motif (LSGGQ), and a 

phosphate binding loop.  (Wilkens 2015)  There are also several prototypical structural features 

including: two binding “cassettes”, two transmembrane domains, and up to twenty 

transmembrane helices.  (Holland and Blight 1999) 

The specific genes discussed in this study are a series of proteins involved in 

branched-chain amino acid transport.   This is an important set of genes to study because they 



have been indicated as importance for the virulence of several strains of pathogens that can affect 

humans, and interference of the genes could potentially prevent infection. (Basavanna et al. 

2009) 

System in E. Coli: 

The system of E. coli genes used in this system are B_3454, B_3455, B_3456, B_3457, 

and B_3458.  They code for LivF, LivG, LivM, LivH, and LivK, respectively.  This system of 

genes in E. coli code for a set of ABC transporters involved in branched chain amino acid 

transport.  Figure 1 depicts the system as a whole.  Figure 2 depicts the operon coding for the 

genes discussed in this paper in E coli.  

 

Figure 1: Depiction of the Branched Chain Amino Acid ABC Transporter system. (Kanehisa et al 2016)  
 

 

Figure 2: Depiction of the E. coli operon coding for this set of genes (Keseler et al. 2013). All liv genes 
are under identical transcriptional control. 
 

Meiothermus Ruber as Study Organism: 

Meiothermus ruber, first discovered in 1975, is a gram negative bacteria normally found 

in warmer temperatures.  (Loginova and Egorova 1975, Tindall et al 2010) Its shape is rod, and it 

produces a distinctive red pigmentation, with an optimal growth temperature of 60 degrees 



celsius.(Loginova et al 1984)  Meiothermus ruber became a much more widely studied organism 

after its genome sequencing in 2010.  (Tindall et al 2010)  Meiothermus ruber was discovered to 

have a GC (guanine and cysteine) concentration of over 63%, which would make sense in light 

of the greater thermostability needed for an organism in these temperature conditions.  (Tindall 

et al 2010)  The maximum temperature that it seems to be viable at seems to be around 90 

degrees celsius.  (Loginova and Egorova 1975)  The lowest viable temperature is approximately 

40 degrees celsius. (Loginova et al 1984).  From our experiments in the laboratory, we know that 

occasionally genes inserted from E. coli will not function in M. ruber due to the higher 

temperature needed for incubation.  (Dr. Scott Personal Communication)  

Purpose: To determine if Mrub_1325, Mrub_1326, Mrub_1327, and Mrub_1328 are orthologs 

of B_3454, B_3455, B_3456, B_3457, or B_3458.  

Hypothesis: Mrub_1325, Mrub_1326, Mrub_1327, and Mrub_1328 are orthologs of B_3454, 

B_3455, B_3457, B_3458, respectively.  

Materials and Methods: 

Initial identification of potential orthologs: Initially, the assigned system of ABC transporters 

was located in KEGG, and the sequences of both the E. coli coding genes and the M. ruber 

coding genes were determined.  (Kanehisa et al. 2013).  KEGG contains pathway maps along 

with information on both the M. ruber and E. coli variants of these genes and their sequences. 

These sequences were then analyzed using BLASTp in order to help further elucidate potential 

orthologs.  (Altschul et al. 1990; Madden et al. 2002)  In order to elucidate these orthologs the 

sequence of the E. coli genes were blasted against the genome of M. ruber or vice versa.  This 



allowed for similar sequences to be determined from the database in order to help identify 

potential orthologs. 

 

Determination of proper start codon: Sequences were then analyzed using IMG/M in order to 

ensure there was an appropriately placed Shine-Dalgarno sequence before the called start codon 

and to identify other potential start codons.  (Markowitz et al 2012)  If upon analyzing the start 

codon a different one was selected, the sequence beginning at the start codon would become the 

sequence that would be analyzed for the remainder of the experiment.  

 

Determination of highly conserved amino acids: For each of the amino acids they are again 

analyzed using BlastP (Altschul et al. 1990; Madden et al. 2002), with potential orthologs 

selected from several different genuses and species, and their sequences are downloaded.  These 

sequences are then aligned using T-Coffee. (Notredame and Higgins and Heringa 2000)  This 

tool outputs aligned sequences that can then be input into WebLogo which will produce a logo 

demonstrating the degree to which different amino acids are conserved. (Crooks et al. 2004) This 

provides a visual tool to better understand the important and highly conserved features. 

 

Determination of Cellular Localization: In order to better confirm that these genes were ortholog 

their cellular localization was determined.  This began by determining the number of 

transmembrane helices for each gene by using TMHMM.  (Krogh et al. 2001; Krogh and 

Rapacki 2016; Sonnhammer and von Heijne and Krogh 1998). Orthologous genes would be 

expected to have the same number of transmembrane helices.  This is followed by determining 



whether each gene is likely a signal peptide using SignalP. (Petersen et al. 2011)  LipoP can then 

be used if there is a signal peptide to determine what type of signal peptide it is and the most 

likely cleavage site. (Juncker et al. 2003)  PSORTB is then used to determine the most likely 

cellular location of the protein product of each gene. Orthologous genes would presumably have 

their protein products localized to the same part of the cell. (Yu et al. 2010)  The bioinformatic 

tool Phobius can then be used to confirm much of the earlier localization data while also showing 

the localization probabilities along the sequence.  (Kall and Krogh and Sonnhammer 2004; Kall, 

Krogh, and Sonnhammer 2007) 

 

Analysis of Structural Similarity: In order to further confirm orthology structural features are 

compared between the various proposed orthologous genes.  This begins with returning to 

BLASTp and now finding what it proposes as the highly conserved domains.  (Altschul et al. 

1990; Madden et al. 2002; Marchler-Bauer et al. 2014) The genes are then analyzed using 

TIGRFam in order to see if they belong to the same protein family.  (Haft et al. 2001)  This is 

followed by a comparison made using Pfam to determine again if they belong to the same 

family, but also to see if they belong to the same clan.  (Finn et al. 2014, Finn et al. 2016) 

Finally PDB is used to determine whether the same, or very similar structures are returned, as we 

would expect for orthologous genes.  (Berman et al. 2000a; Berman et al. 2000b)  

 

Determination of Operons: Finally in order to better understand the system of genes as a whole 

an attempt is made to determine whether or not they are all part of an operon.  IMG/M is used 

again for its chromosome viewer that allows for the operon to be colored by KEGG.  (Kanehisa 



et al. 2013; Markowitz et al 2012)  This will aid in determining whether or not the sets of genes 

in a single organism function together as part of an operon.  

Results: 

Figure 3 summarizes the proposed orthologs in this study and shows which protein is coded for 

by each gene and their shared identity.  Important to note that no ortholog was found for livM in 

the Meiothermus ruber genome.  

M. ruber locus 
tag 

E. coli ortholog 
locus tag 

Protein Function Percent 
identity 

mrub1325 b3454 livF  
 
 
ABC Transporter 

52% 

mrub1326 b3455 livG 49% 

N/A b3456 livM N/A 

mrub1327 b3457 livH 41% 

mrub1328 b3458 livK 35% 
Figure 3: Summary of proposed orthologs, their shared identity, and the proteins they code for. Function 
of all genes studied is analogous: ABC transport. Percent identity shows percent similarity in nucleotide 
identity.  
 
Figure 4 is another summary table showing the different legs of the various genes and the 

proteins they code for.  

 

 

 

 

 

 



Protein M. ruber E. coli 

 Locus tag Nucleotide 
length 

Protein length 
(amino acids) 

Locus tag Nucleotide 
length 

Protein length 
(amino acids) 

livF mrub1325 732 243 b3454 714 237 

livG mrub1326 1773 590 b3455 768 255 

livM    b3456 1278 425 

livH mrub1327 1032 343 b3457 927 308 

livK mrub1328 1164 387 b3458 1110 369 
Figure 4: Comparison information about length between M. ruber and E. coli orthologs. 

Figure 5 depicts a summary of the different cellular localization data collected.  The largest 

disparities exist between the two systems for livG.  This may be because in M. Ruber livG is 

performing a function closer to that of a combined livG and livM. 

Protein M. Ruber E. Coli 

 Locus 
Tag 

# 
TMH 

Signal 
Peptide 

Cellular 
Localization 

Locus 
Tag 

#TMH Signal 
Peptide 

Cellular 
Localization 

livF mrub
1325 

0 N/A Cytoplasmic 
Membrane 

b3454 0 N/A Cytoplasmic 
Membrane 

livG mrub
1326 

9 SP1 Cytoplasmic 
Membrane 

b3455 0 N/A Cytoplasm 

livM     b3456 10 N/A Cytoplasmic 
Membrane 

livH mrub
1327 

8 N/A Cytoplasmic 
Membrane 

b3457 8 N/A Cytoplasmic 
Membrane 

livG mrub
1328 

1 SP1 Periplasm b3458 1 SP1 Periplasm 

Figure 5:  Comparison between different cellular localization features of both sets of genes from E. coli 
and M. ruber. Number of transmembrane helices (TMH) between the orthologous genes in the two 
species is shown. Possession of signal peptide is compared between orthologous genes. Cellular 
localization differences show possible differences in functionality. 
 



Figure 6 depicts some of the structural similarities between these.  Important to consider here is 

that there are some significant differences, especially in terms of livG, which is likely again due 

to the large difference in length, and the lack of a livM protein in the M. ruber system. 

Protein M. ruber E. coli 

 Locus 
Tag 

PFam name PDB best hit Locus 
Tag 

Pfam Name PDB best hit 

livF mrub1325 ABC_tran 1JIO b3454 ABC-tran 1JI0 

livG mrub1326 BPD_transp_2 1G6H b3455 ABC tran 5L75 

livM    b3456 BPD transp 
2 

N/A 

livH mrub1327 BPD_transp_2 N/A b3457 BPD transp 
2 

N/A 

livG mrub1328 Peripla_BP_6 3TD9 b3458 Peripla BP 6 1USG 
Figure 6: Summary of structural similarities for the orthologs. Protein assignment made based on 
Conserved Domains and all proteins were identified as Urea ABC transporters by TigrFam. 
Important to note is that both of these systems were operons.  
 
Concluding Comments: 

Identification of the orthologs for this study relied on several features including shared 

identity, conserved domains, structural similarities, and cellular localization.  While we do 

believe we have identified the correct orthologous genes, there are some contradicting data we 

need to consider. 

The pair of orthologs we propose are coding for livF are Mrub_1325 and B_3454.  This 

identification was based initially on their shared identify of 52%.  It was then supported by the 

determination that they are both localized to the cytoplasmic membrane.  It was further 



strengthened by the shared conserved domain coding for livF, the shared PFAM identification, 

and the shared most likely structure from PDB. 

The pair of orthologs we propose are coding for livG are Mrub_1326 and B_3455.  This 

identification was based initially on their shared identity of 49%.  There was some contradictory 

information in the cellular localization as the M. ruber was identified as being localized to the 

cytoplasmic membrane, as the E. coli variant was localized to the cytoplasm.  Further 

complicating the analysis they also differed on the number of transmembrane helices going from 

9 in M. ruber to 0 in E. coli.  Furthermore, there was a signal peptide sequence in M. ruber that 

dd not exist for this protein in E. coli.  However, they were both identified as likely coding for 

this protein based upon their conserved domain.  However, they also did have different PFAM 

names and different “most likely” PDB hits.  Our strongest conclusion based upon this mix of 

conflicting evidence is that livG in M. ruber is having to serve the functions of both livG and 

livM in E. coli and this fact can help explain for many of the discrepancies. 

The pair of orthologs we propose are coding for livH are Mrub_1327 and B_3457.  This 

identification was based initially on their shared identify of 41%.  It was then supported by the 

determination that they are both localized to the cytoplasmic membrane.  It was further 

strengthened by the shared conserved domain coding for livH, and the shared PFAM 

identification. 

The pair of orthologs we propose are coding for livG are Mrub_1328 and B_3458.  This 

identification was based initially on their shared identify of 35%.  It was then supported by the 

determination that they are both localized to the periplasm.  Furthermore, they both have a signal 

peptide of the type SPI.  It was further strengthened by the shared conserved domain coding for 



livG, and the shared PFAM identification.  While the PDB structures were differently they are 

somewhat related in that they are both forms of ABC transporters. 

 

Site directed mutagenesis of Mrub_1325: When determining which amino acid should be 

mutated for a site directed mutagenesis study several things need to be considered.  First and 

foremost it must be a highly conserved amino acid.  Highly conserved amino acids are more 

likely to be important for either structure or function of the receptor.  In this case the highly 

conserved valine located at position 22 will be mutated to alanine.  This will require a change at 

nucleotide 17 from thymine to cysteine.  (Betts and Russell 2003; Biolabs)  The degree of 

conservation of the valine suggests that it could be a potential loss-of-function mutation. 

Changing it to an alanine is a relatively minor mutation that primarily removes a methyl group, 

potentially increasing the flexibility of the structure in that region.  More aggressive mutations 

could also be tested, perhaps glycine which is another simple amino acid, but in this case would 

be missing an entire isopropyl group, potentially increasing the degree of change.  It is always 

important to consider in what ways the amino acid substitution is likely to affect the structure, so 

the substitutions outlined here could be described as structural substitutions meant to elucidate 

the role of this valine in the structure.  There could also be “functional” substitutions in which 

amino acids with different properties are substituted, for example different polarities or pH in 

order to determine how those features affect the protein as a whole.  Figure 7 depicts the primers 

that would be used in order to make this site-directed mutagenesis study. 



 

Figure 7: Target-specific primers for site-directed mutagenesis of Mrub_1325 (Betts and Russell 2003; 
Biolabs). 
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