52,133 research outputs found

    Decompositions of Grammar Constraints

    Full text link
    A wide range of constraints can be compactly specified using automata or formal languages. In a sequence of recent papers, we have shown that an effective means to reason with such specifications is to decompose them into primitive constraints. We can then, for instance, use state of the art SAT solvers and profit from their advanced features like fast unit propagation, clause learning, and conflict-based search heuristics. This approach holds promise for solving combinatorial problems in scheduling, rostering, and configuration, as well as problems in more diverse areas like bioinformatics, software testing and natural language processing. In addition, decomposition may be an effective method to propagate other global constraints.Comment: Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligenc

    An off-line dual maximum resource bin packing model for solving the maintenance problem in the aviation industry

    Get PDF
    In the aviation industry, propeller motor engines have a lifecycle of several thousand hours of flight and the maintenance is an important part of their lifecycle. The present article considers a multi-resource, priority-based case scheduling problem, which is applied in a Romanian manufacturing company, that repairs and maintains helicopter and airplane engines at a certain quality level imposed by the aviation standards. Given a reduced budget constraint, the management’s goal is to maximize the utilization of their resources (financial, material, space, workers), by maintaining a prior known priority rule. An Off-Line Dual Maximum Resource Bin Packing model, based on a Mixed Integer Programming model is thus presented. The obtained results show an increase with approx. 25% of the Just in Time shipping of the engines to the customers and approx. 12,5% increase in the utilization of the working area

    Mixed integer-linear formulations of cumulative scheduling constraints - A comparative study

    Get PDF
    This paper introduces two MILP models for the cumulative scheduling constraint and associated pre-processing filters. We compare standard solver performance for these models on three sets of problems and for two of them, where tasks have unitary resource consumption, we also compare them with two models based on a geometric placement constraint. In the experiments, the solver performance of one of the cumulative models, is clearly the best and is also shown to scale very well for a large scale industrial transportation scheduling problem

    Detecting semantic groups in MIP models

    Get PDF

    Comparative study of different approaches to solve batch process scheduling and optimisation problems

    Get PDF
    Effective approaches are important to batch process scheduling problems, especially those with complex constraints. However, most research focus on improving optimisation techniques, and those concentrate on comparing their difference are inadequate. This study develops an optimisation model of batch process scheduling problems with complex constraints and investigates the performance of different optimisation techniques, such as Genetic Algorithm (GA) and Constraint Programming (CP). It finds that CP has a better capacity to handle batch process problems with complex constraints but it costs longer time

    The Lazy Bureaucrat Scheduling Problem

    Full text link
    We introduce a new class of scheduling problems in which the optimization is performed by the worker (single ``machine'') who performs the tasks. A typical worker's objective is to minimize the amount of work he does (he is ``lazy''), or more generally, to schedule as inefficiently (in some sense) as possible. The worker is subject to the constraint that he must be busy when there is work that he can do; we make this notion precise both in the preemptive and nonpreemptive settings. The resulting class of ``perverse'' scheduling problems, which we denote ``Lazy Bureaucrat Problems,'' gives rise to a rich set of new questions that explore the distinction between maximization and minimization in computing optimal schedules.Comment: 19 pages, 2 figures, Latex. To appear, Information and Computatio

    A Constraint-directed Local Search Approach to Nurse Rostering Problems

    Full text link
    In this paper, we investigate the hybridization of constraint programming and local search techniques within a large neighbourhood search scheme for solving highly constrained nurse rostering problems. As identified by the research, a crucial part of the large neighbourhood search is the selection of the fragment (neighbourhood, i.e. the set of variables), to be relaxed and re-optimized iteratively. The success of the large neighbourhood search depends on the adequacy of this identified neighbourhood with regard to the problematic part of the solution assignment and the choice of the neighbourhood size. We investigate three strategies to choose the fragment of different sizes within the large neighbourhood search scheme. The first two strategies are tailored concerning the problem properties. The third strategy is more general, using the information of the cost from the soft constraint violations and their propagation as the indicator to choose the variables added into the fragment. The three strategies are analyzed and compared upon a benchmark nurse rostering problem. Promising results demonstrate the possibility of future work in the hybrid approach

    Survey on Combinatorial Register Allocation and Instruction Scheduling

    Full text link
    Register allocation (mapping variables to processor registers or memory) and instruction scheduling (reordering instructions to increase instruction-level parallelism) are essential tasks for generating efficient assembly code in a compiler. In the last three decades, combinatorial optimization has emerged as an alternative to traditional, heuristic algorithms for these two tasks. Combinatorial optimization approaches can deliver optimal solutions according to a model, can precisely capture trade-offs between conflicting decisions, and are more flexible at the expense of increased compilation time. This paper provides an exhaustive literature review and a classification of combinatorial optimization approaches to register allocation and instruction scheduling, with a focus on the techniques that are most applied in this context: integer programming, constraint programming, partitioned Boolean quadratic programming, and enumeration. Researchers in compilers and combinatorial optimization can benefit from identifying developments, trends, and challenges in the area; compiler practitioners may discern opportunities and grasp the potential benefit of applying combinatorial optimization
    • …
    corecore