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for a large scale industrial transportation scheduling problem.
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1 Introduction

Constraint programming (CP) techniques have been quite successful in solving both academic [9, 2, 11, 8,
3] and real-world scheduling problems [14, 13, 15, 16, 7]. One of the main benefits of CP for such problems
is the presence, in most modern solvers, of very efficient filtering mechanisms in the form of constraint
abstractions for both classical job shop and generalisations such as the cumulative resource scheduling
problem. Using demand-driven filtering during search for integer solutions constitutes a powerful decision
mechanism that can even be used successfully for optimisation [10, 11]. To optimise classical job shop
problems and their cumulative generalisations efficiently it is generally also necessary to employ quite
sophisticated search heuristics.

Mixed Integer Linear Programming (MILP) is another technique for combinatorial problem solving
which has been applied to a wide variety of industrial-level problems. For scheduling problems with single
activity resources, standard linear boolean formulations also scale very well, especially for problems with
a lot of linear side conditions that can be exploited by modern MILP solvers.

For cumulative scheduling problems, however, there does not seem to exist any standard MILP for-
mulations. For certain classes of problems, e.g. where all tasks have unitary resource consumption,
formulations based on geometric placement can be used [21]. These can, as we will see, be quite efficient
for the problems they can encode.

Cumulative constraints [1] are well known in the CP community where efficient algorithms based on
sweep [6] and/or task-intervals [12] are used to prune the search space, both as a pre-processing mechanism
and on demand for variable domain reduction during search. Several variants of the constraint has been
described e.g. in [5].

These constraints normally restrict the cumulative capacity utilisation of tasks executing simultane-
ously not to exceed a fixed capacity. Capacities and capacity utilisation are normally fixed integers and
the start times and durations, decision variables. Variants where the resource consumption of each task
is also variable and possibly constrained by the start time and duration occur as well. In this paper we
focus on the case where the capacity and the resource consumption are constant integers. We have not
found this to be restrictive in practice for problem domains we have considered.

Geometric placement constraints are related to cumulative constraints. The most common form is
probably that of filtering for non-overlap of rectangles in the plane [4] which, in the context of scheduling,
corresponds to allocation of unit capacity resources to tasks with unit resource consumption combined
with a multi-resource scheduling problem. The resource allocation is represented as the placement of a
a unit height rectangle in the y-dimension and the start time as the placement of its left edge and the
duration as its length in the x-dimension.

In classical cumulative scheduling, there is no concept corresponding to the placement of the lower
edge on the y-axis, and the resource consumption is arbitrary. Still, the special case of unit resource
consumption is of considerable practical interest, and for these, the placement formulation can be used
by considering the number of resources as a cumulative capacity and just ignoring the values the y-
placement variables. Any solution to the placement problem is clearly feasible for the cumulative as well.
That any solution satisfying the cumulative can also be realised as a placement is true for the case where
heights are one but not in general.

We will, after some preliminaries, describe four different models, two for the placement formulation
and two for the the cumulative constraint, define filtering methods for each, note some of their complexity
properties and investigate their solving performance on three separate sets of problems.

The first two set of problems are derived from a practical case in rail traffic scheduling where all
the tasks have unit resource consumption. In the third, a set of random problems with a more general
structure and of varying sizes and difficulties are studied.

In addition, in a fourth empirical section, we briefly describe the results of using a selection of the
described methods in an industrial scale rail transport scheduling problem. This problem was what
originally motivated our research, and even though the problem has a quite special structure it is of great
practical importance. We conclude with a summary of our findings.

2 Preliminaries and notation

2.1 Notation for model parameters and variables

Let n denote the number of tasks in the problem and use 0 < i, j ≤ n as task indexes. Let, furthermore,
c denote the resource capacity limit and hi the resource consumption for task i. Let si denote the start
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time variable for task i, bounded by an interval si ≤ si ≤ si and di the duration variable for task i,
bounded by an interval di ≤ di ≤ di.

2.2 Maximal clique construction

In cumulative scheduling it is often useful to do an analysis of the parameters and bounds of the problem.
One of the most obvious ways to do this is to construct subsets of tasks that can overlap in time. In
CP, this type of computation is performed iteratively during search to filter the domains or bounds of
the decision variables, but it can also be used for pre-processing in MILP formulations to filter equations
and booleans that need not be maintained by the solver.

Formally, this is achieved by considering the tasks of the problem as nodes in a graph and letting two
tasks i and j, be connected by a link if and only if they can overlap in time, i.e. if either si ≤ sj < si +di

or sj ≤ si < sj + dj . Then, all maximal cliques (completely connected sub-graphs) of this graph will
have the property that, unless a task is already in the clique, it cannot overlap all the others.

This is a very useful property in cumulative scheduling since when we wish to limit the number of
simultaneously overlapping task, it is sufficient to consider each maximal clique separately. The complex-
ity of enforcing cumulative conditions on the set of all tasks is often bounded by some function of the
sizes of the maximal cliques, rather than the size of the task set itself. In practical problems this is often
of great value, since the majority of tasks cannot be arbitrarily placed in time. This makes the maximal
cliques small compared to the total number of tasks.

Note also that many tasks may appear in several maximal cliques. Therefore it makes sense to check
that equations (and booleans) relating pairs of tasks in one clique are not reproduced when analysing
another clique which happen to contain the same two tasks.

To construct the set of all maximal cliques used in the models below, we use a straightforward sweep
algorithm which has linear time complexity in the size of the set of tasks. In the model description below
we will often generate a set of equations for each maximal clique Clqk and where 1 ≤ nk ≤ n is the size
of the k’th clique.

3 Model descriptions

The first two models described below are restricted to handle tasks with unitary resource requirements.
The reason for this is that these are based on a rectangle placement approach which does not capture
the general cumulative case. They are, in fact, more close to ones for placing non-overlapping rectangles
of unit height onto the plane. In practice however, these are quite useful models since in many situations
where the cumulative constraint is used, there is an underlying problem structure of this type. E.g. in
train scheduling, a station may be modelled as a cumulative resource that allows a maximum number of
trains to occupy the station at any one time. The type of model proposed here allows us to also exclude
the use of certain tracks for a particular train, depending on track lengths or other capacity restrictions,
which is not straightforward in a pure cumulative model.

The second two models capture the semantics of a general cumulative constraint with a fixed upper
bound on resource consumption and arbitrary but fixed resource consumption for all tasks.

3.1 Explicit unitary resource allocation (integer formulation)

This model treats each cumulative resource as a collection of unitary sub-resources and explicitly allocate
tasks with unit resource consumption to the elements (sub-resources) of this collection. This is achieved
through the use of an integer decision variable yi for each task i to denote the individual sub-resource
allocated to the task. If two tasks i and j use the same sub-resource, they must be non-overlapping in
time. The model uses two boolean variables pij and wij for each pair of transports i and j. pij = 1 is
used to encode that the task i completely precedes task j and wij = 1 that they do overlap in time, and
thus must use different sub-resources.

First, let us express a non-overlap constraint: Either the end time of task i is less than or equal to the
start time of task j: si + di − sj ≤ 0 or the same is true for task j in relation to task i: si − sj − dj ≥ 0.
We reflect this disjunction in the boolean pij :

si + di − sj −M (1− pij) ≤ 0
si − sj − dj + M pij ≥ 0
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where M is any constant large enough to dominate the equation in which it occurs.
In the case where we do want to allow an overlap we need an additional boolean that cancels the

effect of the above equations. We want to do this in a way so that whenever this variable takes the value
0, our equations will be equivalent to the ones above, and cancel them completely otherwise:

si + di − sj −M (1− pij)−Mwij ≤ 0
si − sj − dj + M pij + Mwij ≥ 0.

When the two tasks do overlap, and the variable wij thus takes the value 1, we need to ensure that the
two task are allocated to different sub-resources. We can do this by ensuring that the difference between
yi and yj is nonzero:

yi − yj + M uij + M (1− wij) > 0

yj − yi + M (1− uij) + M(1− wij) > 0

where yi, yj are integer and the boolean uij encodes if yi < yj or the other way around, in the case where
wij is 0.

As noted above, it is sufficient to enforce these conditions for each pair of tasks in the maximal cliques,
so that for each clique Clqk with nk tasks, the number of integer variables will be nk, the number of
booleans 3nk(nk−1)

2 and the number of equations will be 2nk(nk − 1). Note that,since we share variables
between the cliques, the total numbers are significantly less than the sum over all cliques and is, for the
integer variables, bounded by n and for the booleans, by 3n(n−1)

2 .
In summary, the temporal non-overlap condition for tasks allocated to the same sub-resource can

(since y-variables are integer) thus be stated in linear form as:

si − sj + di + M pij −Mwij ≤ M

si − sj − dj + M pij + Mwij ≥ 0
yi − yj + M uij −M wij ≥ 1−M

yj − yi −M uij −M wij ≥ 1− 2M

for all pairs i < j ∈ Clqk of tasks and each maximal clique Clqk, where pij , wij , uij are boolean and
1 ≤ yi, yj ≤ c are integer. Note that we need to enforce the equations in the solver only when the size of
the clique is strictly larger then the resource capacity.

3.2 Explicit unitary resource allocation (boolean formulation)

This model is very similar to the one above but uses, instead of each integer variable yi, c number
of booleans mik, each being one, denoting that the task i is allocated to sub-resource k. We want to
enforce the overlap condition between two task i and j if and only if mik = mjk = 1 for some k i.e. if
(1−mik) = (1−mjk) = 0. The equations stating the non-overlap can then be formulated:

si + di − sj −M(1− pij)−M(1−mik)−M(1−mjk) ≤ 0
si − sj − dj + Mpij + M(1−mik) + M(1−mjk) ≥ 0

which in linear form becomes

si + di − sj + Mpij + Mmik + Mmjk ≤ 3M
si − sj − dj + Mpij −Mmik −Mmjk ≥ 2M

for all pairs of tasks i < j ∈ Clqk, for each maximal clique Clqk, and each 0 < k < c and where, in
addition, the resource condition is stated:

∑

0<k≤c

mik = 1

for all tasks i, i.e. essentially a set partitioning formulation.
Note that the number of booleans and overlap equations now increase by a factor of 2c to become

cnk(nk − 1) where nk is the size of the clique and c the resource capacity. The number of resource
conditions, on the other hand, now depends linearly on the product of cnk. We would expect this model
to be reasonably efficient when c is small in comparison to the clique size nk. If, on the other hand these
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parameters are of comparable size, the number of booleans is effectively cubic. The advantage of this
type of model is that the modern MILP-solvers tend to treat pure boolean formulations more efficiently
that general MILP formulations.

A similar model for a traffic (re)scheduling problem was presented in [21] as part of a larger model
capturing several more aspects of a train (re)scheduling problem but this type of model is probably more
or less a standard formulation.

3.3 Min conflicting sub-clique model

This model captures the classical cumulative constraint more exactly than the ones proposed above in the
sense that tasks may have arbitrary resource consumption and that there is no notion of sub-resources.

The idea behind this model is that for each maximal clique with tasks of sufficient cumulative resource
consumption, there exists a (possibly large) number of minimal sub-cliques such that the sum of the
resource consumptions of the involved tasks exceeds the resource capacity c. They need to be minimal
in the sense that removing any single element would make the sum of resource consumptions of the
remaining tasks less or equal to the resource capacity. This means that we can limit the number of actual
overlaps in the sub-clique to be strictly less than the number of pairs in the (minimal) clique itself.

Since each larger sub-clique that can contribute to a violation of the constraint can do so only by
violating a minimal sub-clique of itself, it is sufficient to state the resource conditions for the minimal
sub-cliques.

We will use the same formulation for the non-overlap condition as before i.e.

si + di − sj + M pij −Mwij ≤ M

si − sj − dj + M pij + Mwij ≥ 0

for all i < j ∈ Clqk and each maximal clique Clqk. We may now count and limit the number of overlaps
in each minimal sub-clique as follows

∀Mn ⊆ Clqk

0
@
 X

i∈Mn

hi > c

!
∧
 
∀Sb ⊂ Mn

X

i∈Sb

hi ≤ c

!
→

X

i≤j∈Mn

wij <

 
|Mn|

2

!1
A

for each maximal clique Clqk in the problem where the first conjunct in the antecedent of the implication
requires that the sub-clique can in fact contribute to a resource conflict, the second states the minimality
condition and the conclusion limits the number of overlap variables that can take the value one to be
strictly less than the number of pairs in the minimal sub-clique. Note that the tests for each potential
sub-clique can be done when generating the equations and only the linear sum expression

∑
i≤j∈Mn wij ≤(|Mn|

2

)− 1 needs to posted to the solver.
In this model, for each clique Clqk with nk tasks, both the number of booleans and number of overlap

equations will be nk(nk − 1). The number of minimal sub-cliques and corresponding clique equations,
for a given max clique, however, depends both on the clique size |Clqk|, the resource capacity c and the
distribution of resource consumption for the involved tasks, and may in the worst case be exponential
in the first two parameters. E.g. if the resource consumption of all tasks is one, the number of minimal
sub-cliques will be the number of sub-cliques of a given size c, i.e.

(|Clqk|
c+1

)
. Even though modern IP-solvers

are much more sensitive to the number of booleans than to the number of equations, this is clearly a
disadvantage of this model.

Even worse, the number of sub-cliques to be tested for minimality is, always exponential in the clique
size. This means that the algorithm generating the equations should be very sensitive to increase in clique
size. Still, for a typical randomly generated problem consisting of 300 tasks on a single resource, arbitrary
resource consumptions up to a resource capacity of 5, max/average clique size of 26/18 and 139 separate
cliques, all 9 752 equations are generated in about 170 seconds on a 1.6Ghz laptop, so the filtering does
scale to practical problem sizes and, for many large scale practical problems, the method performs, as we
will see in section 4, very well.

3.4 Start point clique height sum model

This model is based on the observation that for each start point of a task, it is enough to measure and
limit the resource consumptions of the other task that are possibly active at that point.

For each task i of a maximal clique with elements of sufficient size to generate a conflict, consider
each other task j in the clique that has an earliest start point less than or equal to the latest start point
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of task i and a latest end point greater than the earliest start of i. Since only these can overlap task i
we construct for each such task a boolean variable wij which will take the value 1 if and only if the start
of task i falls within the duration of task j, i.e. if sj ≤ si < sj + dj . In order to do this, consider first
the situation where this is not the case, i.e. where either sj > si or si ≥ sj + dj . Encode this disjunction
with a boolean pij such that:

si − sj −M(1− pij) < 0

si − sj − dj + Mpij ≥ 0

and use wij = 1 to encode the cancellation of these equations as follows:

si − sj + Mpij −Mwij < M

si − sj − dj + Mpij + Mwij ≥ 0.

where pij , wij are booleans and the strict inequality in the first equation would in a pure MILP formulation
be handled by the additon of a suitably small ε on the RHS.

Now, for each element i in each clique Clqk constrain the scalar products:
∑

j∈Clqk\{i} hjwij to be
less than or equal to the resource capacity c minus the resource consumption hi of the task i. I.e.:

∀i ∈ Clqk

∑

j∈Clqk\{i}
hjwij ≤ c− hi

for all maximal cliques Clqk where wij are booleans.
The number of clique equations is linear in the (maximal) clique size, but since the overlap equations

are no longer symmetric, these must be stated for each ordered pair of tasks in the clique. This means
that the number of both booleans and overlap equations will be 2nk(nk − 1), which is twice as many as
in the model of section 3.3.

4 Empirical findings

This section reports trial runs of the proposed methods on a number of different problems. Most of the
problems are derived from an application in train scheduling, but since these only have tasks with unitary
resource consumption, we have also evaluated the methods on a set of randomly generated problems where
the resource consumption varies up to the resource capacity. Two sets of examples are single resource
problems while the other two are more realistic examples consisting of jobs using several resources in
fixed sequences.

We have chosen not to include any trial runs on standard job shop examples generalised with several
instances of each job shop task as in e.g. [10, 19], since the main benefit of our methods is their ability
to utilise and profit from structure that is generally not present in the classical job shop benchmarks1.

4.1 Single resource unitary resource consumption examples

We have evaluated all four models on a set of problems derived from the domain of train time table
generation. More results on the full problem is presented in section 4.4 below. Here we consider a single
resource at the time and present results for a number of representative station resources of varying size.

In table 1 the problem parameters and properties are summarised. We note that all problems are fairly
large in terms of number of tasks but since the problems were generated by introducing a fixed amount
of slack (±15 minutes) in a given feasible solution, the number of potential conflicts and hence clique
sizes is relatively small. We would argue that this is a quite common situation in large scale practical
problems, and as shown in section 4.4, methods to solve such problems can certainly be put to very good
use. Here we try to show that the methods we have described are in fact very good at exploiting this type
of structure and scale surprisingly well considering that only default settings of the CPLEX was used to
produce the solutions.

Table 2 gives the number of equations and boolean and integer variables for each of the four models
and run-times for CPLEX 9.0 on a 2.6GHz Xenon processor. In addition, the time taken to generate the

1More precisely, unless very strict upper bounds on the latest completion time is enforced a priori or by some other
method, the resulting maximal cliques for many of these problems are few and almost as large as the number of tasks on
the resource.
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Table 1: Problem statistics for a selections of stations in the train problem
Station Capacity Tasks Cliques Max/avr clq size

KS1 1 471 246 7/3

FA 2 711 319 7/4

TÄL 2 1000 520 8/5

LLN 2 1000 591 9/5

MH 3 684 194 7/4

ÖB 3 907 356 8/5

LÅÖ 3 1000 489 9/5

GDÖ 4 717 120 7/5

SK 5 804 63 8/6

HPBG 10 1391 43 14/11

equation sets for each of the models is given in the last four rows. The short names of models used in the
table are “MC” for the “Min conflicting sub-clique model” of section 3.3, “SC” for the “Start point height
sum model” of section 3.4, “RB” for the boolean formulation of the “Explicit resource allocation model”
of section 3.2 and “RI” for the integer version presented in section 3.1.

We note that the MC model is always best in terms of CPLEX execution time but that for some of
the larger problems, the time to generate the equation set for that model does increase the total time to
solve the problem significantly. Just adding the times together does not necessarily tell the whole story
either, since the time to generate the equations may still be small in comparison with the solver time for,
e.g. problems with several distinct resources. We will next consider such a case.

Table 2: Solution statistics for a selection of stations in the train scheduling problem
Param. Method(s) KS1 FA TÄL LLN MH ÖB LÅÖ GDÖ SK HPBG

Bools MC 1588 3 108 6 532 6 666 2 416 4 820 6 448 2 040 1 644 2 780

SC 3 175 6 216 13 054 13 319 4 810 9 580 12 882 4 080 3 249 5 403

RB 1 231 2 832 5 166 5 239 2 663 4 717 5 906 2 516 2 227 3 680

RI 2 382 4 662 9 798 9 999 3 624 7 230 9 672 3 060 2 466 4 170

Integers MC, SC, RB 0 0 0 0 0 0 0 0 0 0

RI 437 639 950 953 485 769 894 374 281 229

Eqns. MC 2382 4 800 11 842 12 067 3 204 8 146 11 660 2 432 1 863 4 185

SC 3 964 7 532 15 711 16 342 5 700 11 451 15 486 4 727 3 632 5 801

RB 2 025 6 858 14 014 14 285 7 733 15 229 20 238 8 534 8 501 28 029

RI 3 176 6 216 13 064 13 332 4 832 9 640 12 896 4 080 3 288 5 560

Solve (s) MC 0.03 0.29 1.23 1.54 0.09 0.34 0.64 0.06 0.06 0.25

SC 0.14 11.16 45.07 38.04 0.73 6.42 14.00 0.20 0.18 0.39

RB 0.03 1.06 3.18 11.26 1.22 5.04 13.23 1.90 0.73 5.08

RI 0.04 3.08 23.89 22.66 0.58 1.78 17.93 0.51 0.39 1.70

Gen. (s) MC 0.17 0.69 2.42 2.52 0.63 2.47 3.87 0.54 0.47 10.86

SC 0.30 0.70 1.71 1.93 0.48 1.20 1.74 0.45 0.34 0.82

RB 0.17 0.51 1.09 1.13 0.55 1.06 1.51 0.61 0.59 1.73

RI 0.15 0.35 0.69 0.71 0.27 0.51 0.70 0.24 0.20 0.35

4.2 Multiple resource unitary resource consumption example

In this section we explore the models on a more complex scheduling problem derived from the same
domain as those above. In this case we extracted all the traffic through an area around the town of
Hässleholm in southern Sweden. The area consists of 21 distinct resources of which 12 are unitary (track)
resources, 2 are large stations with capacities of 24 and 16 respectively and the rest are smaller stations
with a capacity of either one or two. Starting from a feasible timetable consisting of 5972 individual
tasks, we reconstructed the precedence relations for all the jobs (trains) and relaxed the start times of
all tasks to a slack of 50, 70 and 90 minutes respectively. The resulting problem properties and runtime
statistics is summarised in table 3. For each problem, the resulting number of cliques, the maximum and
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Table 3: Problem and solution statistics for the 21 resource problem
Slk Clqs Mx Av Method Bools/Ints Eqtns Solv Tm Gen Tm

50 2 538 10 2.64 MC 18 766/0 32 737 5.14 2.93

SC 37 404/0 70 071 25.62 5.46

RB 14 365/0 30 946 6.08 2.78

RI 28 149/4 244 42 284 20.16 2.35

70 2 652 13 3.41 MC 28 196/0 47 802 11.27 4.65

SC 56 173/0 101 126 154.22 9.32

RB 19 553/0 42 733 36.01 3.89

RI 42 294/4 527 61 144 73.64 3.30

90 2 672 15 4.06 MC 36 280/0 61 514 22.64 6.67

SC 72 404/0 127 937 252.87 13.63

RB 23 677/0 52 382 78.55 5.07

RI 54 420/4 588 77 312 134.69 4.24

average clique size is given and then, for each model, the number of boolean and integer variables and
equations generated and runtime to produce optimal solutions is given. The last column gives the time
to generate the equations for this experiment.

For all problems the MC method is again clearly the best, even if we include the time taken to generate
the equations.

4.3 Single resource arbitrary resource consumption examples

To test and compare the two models that effectively handles tasks with arbitrary resource consumption
we generated a set of random problems with different number of tasks, upper bounds on latest completion
and slack. For each such problem size we generated 10 problems and attempted to solve each with the
two methods with a time limit of 15 minutes.

Each row in table 4 gives the number of tasks, the capacity of the resource, the latest end time and
the maximum slack size of the problem class and reports the maximum and average clique sizes for the
ten generated problems. For each model MC and SC, we then give the number of problems (out of 10) we
failed to solve in the allotted time (15 minutes) and the average solver run time for the problems were
we did manage to find and prove the optimal solution.

All the problem were fairly tight with the sum of task surfaces generally covering between 85 and
100% of the resource area. Slacks were also randomly generated from a given (non-optimal) solution but
limited by a maximum time window. These properties makes these examples quite different from those
from the train domain that consists of huge amounts of tasks but with small slacks.

We can see again that the methods exploit the given problem structure very well but that performance
degrade fairly quickly as the clique maximum sizes increase above around 10. The clique maximum and
average size are clearly functions of the slack in the start time of each task. The larger the slack, the
more tasks potentially overlap which is precisely what the clique size measures.

Once more, the MC model is clearly the best in terms of runtime of the solver and in the number of
solutions proved optimal. Accumulated time to generate the equations for each class of problems was in
this experiment small (< 4 seconds) in comparison with the runtime and, somewhat surprisingly, very
similar for the two models, even for the more difficult problems.

To explore the relative scaling of the two methods with respect to equation generation/filtering time
more closely, we also studied the effect of increasing the slack for a set of larger randomly generated
problems. We fixed the number of tasks to 200, the latest end time to 600 and the resource capacity to 5.
Plotting only the time to generate the equations against the maximum slack for the two models, yielded
the graph in figure 1. Each entry in the plot represents the mean of 10 random problems of each slack
size, from 10 to 80.

Here the exponential growth for the MC model is more clearly visible but already for a slack of 60,
typical max/average clique sizes are around 20/15 and the number of booleans for SC is about 9000. For
problems of this size the solver time completely dominates the total time. Going up to even larger cliques
, i.e. above max/average 30/20 , the generator (a Prolog program) runs out of memory for MC, so it is
no longer an option. The value of SC would still have to be questioned for problems of this size since the
solver would most likely spend hours and maybe days, to find solutions in such cases. However, it may
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Table 4: Run times for a set of random problems with varying resource consumption
Clq Sz MC SC

Tasks Cpct End Slack Mx Av Failed Avr rnTm Failed Avr rnTm

20 3 50 10 7 3 0 0.01 0 0.02

15 9 4 0 0.05 0 0.23

20 10 5 0 4.41 1 71.06

25 14 7 2 60.10 6 115.33

30 14 7 2 101.01 6 44.23

35 13 8 3 183.02 9 483.98

40 13 9 4 136.71 7 379.66

45 16 9 6 297.42 9 78.71

50 17 11 5 152.75 10 -

30 3 75 10 8 4 0 0.05 0 0.56

15 10 4 0 28.73 2 4.85

20 10 6 2 52.94 6 150.41

25 12 7 1 233.90 7 268.85

30 14 7 8 21.70 10 -

35 16 8 9 277.75 10 -

40 15 9 10 - 10 -

45 16 10 10 - 10 -

50 3 150 10 9 3 0 2.46 0 13.25

15 8 4 0 11.68 1 37.01

20 12 5 5 141.06 9 316.92

25 12 6 7 210.24 10 -

30 15 7 10 - 10 -

Figure 1: Time in seconds to generate the equations for the two models (MC=squares SC=diamonds)
and increasing start time slacks
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still be of value for other types of problems, though at this point we have not found a way to characterise
such a class of problems.

4.4 Large scale real world application

These models were originally developed as an alternative to an earlier CP-based scheduling system for
train time table generation [17, 18, 20].

For this problem we have thoroughly investigated only the MC model of section 3.3. The tests runs
was performed on a number of problems selected from the real train time table generation problem of
the Swedish rail system for two consecutive years, 2004 and 2005.

One set of problems was extracted from the actual timetable for 2004 and then relaxed with respect
to departure times. Tracks are considered unitary resources except in the case of single track lines which
accommodate trains in both directions (see [18] for details) while stations were handled as cumulative
resources accommodating from 2 up to some 20 simultaneous tasks.

Included in this set was a large area around the most important shunting yard in Sweden, Hallsberg.
This problem consists of 175 tracks and 146 stations, 2 821 trains and around 60 000 tasks. The start time
for each task was relaxed ±15 minutes from a given solution and precedence and resource constraints were
generated, resulting in a very large problem but where the size of each individual clique was fairly small.
Finding a feasible solution to this problem with CPLEX 9.0 took about 70 seconds on IBM Thinkpad
T42 with a 1.8Ghz Pentium processor. A second smaller problem generated in the same way, consisting
of some 24 000 tasks, was solved in 27 seconds on the same machine.

A second set of problems were extracted from the capacity requests for the following year. The
capacity requests come from several different sources which typically results in many unresolved resource
conflicts. Again, a slack of ±15 minutes was introduced. For one sub-problem consisting of some 15 000
tasks and with 149 unresolved conflicts, a partial solution with only 2 remaining conflicts was generated
in about 100 seconds.

For the problem in the area around Hallsberg in this set we also tried allowing the system to introduce
new low priority resource conflicts2 where it would help to eliminate 137 high priority conflicts. In this
case we introduced a smaller slack of ±5 minutes. All high priority conflicts was eliminated in 40 seconds
of execution time at the cost of introducing only one new low priority conflict.

The largest single problem we tried consists of most of the traffic in the northern part of the country,
with 3 643 trains, almost 199 620 tasks on 661 tracks and 611 stations. Initially the data contained 1 030
high priority conflicts. Running CPLEX 9.0 on a faster 2.6GHz Xenon processor for about 600 seconds
eliminated all high priority conflicts and introduced 6 new low priority conflicts. Running the solver for
several days on this problem we were able to prove that no solution exits with less than 4 such low priority
conflicts.

5 Conclusion

We have introduced two MILP models for the general cumulative scheduling constraint and two for the
special case where resource consumption is unitary based on geometric placement models. For each of
these, we have defined pre-processing filters and compared solver performance on up to three sets of
problems.

In all the experiments, the solver performance of one of the general cumulative models, the “Minimum
conflicting sub-clique (MC) model”, is clearly the best in terms of solver time. For this model, the filtering
mechanism has exponential time complexity in general but in practice this has little impact on total time
to generate and solve the problem. This is so, at least, for the type of problems considered so far, since
the filtering time becomes significant only for problems where the solver would struggle to find any integer
solution.

We have not compared these methods on standard job shop benchmarks and their generalisations to
the cumulative case since these problems generally lack the kind of structure that the filtering is designed
to exploit. In large scale practical examples, e.g. in rail transport scheduling, on the other hand, such
structure seem to be common. Combining the methods described here with methods to find good upper
bounds on the latest completion time may still yield interesting results on the classical benchmarks.

We also report briefly on a full scale industrial scheduling problem where the MC model is used
to produce feasible schedules for several hundred thousands of tasks on thousands of resources. These

2i.e. between certain cargo trains for which the uncertainty in actual arrival times and tolerance for smaller delays was
larger.
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problems are solvable only because the start time window of each task is small and the potential number
of overlaps between task on each resources are often orders of magnitude smaller than the total number
of tasks. For such problems the filtering methods proposed here are very efficient.
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