2,001 research outputs found

    Tracking mobile targets through Wireless Sensor Networks

    Get PDF
    In recent years, advances in signal processing have led to small, low power, inexpensive Wireless Sensor Network (WSN). The signal processing in WSN is different from the traditional wireless networks in two critical aspects: firstly, the signal processing in WSN is performed in a fully distributed manner, unlike in traditional wireless networks; secondly, due to the limited computation capabilities of sensor networks, it is essential to develop an energy and bandwidth efficient signal processing algorithms. Target localisation and tracking problems in WSNs have received considerable attention recently, driven by the necessity to achieve higher localisation accuracy, lower cost, and the smallest form factor. Received Signal Strength (RSS) based localisation techniques are at the forefront of tracking research applications. Since tracking algorithms have been attracting research and development attention recently, prolific literature and a wide range of proposed approaches regarding the topic have emerged. This thesis is devoted to discussing the existing WSN-based localisation and tracking approaches. This thesis includes five studies. The first study leads to the design and implementation of a triangulation-based localisation approach using RSS technique for indoor tracking applications. The presented work achieves low localisation error in complex environments by predicting the environmental characteristics among beacon nodes. The second study concentrates on investigating a fingerprinting localisation method for indoor tracking applications. The proposed approach offers reasonable localisation accuracy while requiring a short period of offline computation time. The third study focuses on designing and implementing a decentralised tracking approach for tracking multiple mobile targets with low resource requirements. Despite the interest in target tracking and localisation issues, there are few systems deployed using ZigBee network standard, and no tracking system has used the full features of the ZigBee network standard. Tracking through the ZigBee is a challenging task when the density of router and end-device nodes is low, due to the limited communication capabilities of end-device nodes. The fourth study focuses on developing and designing a practical ZigBee-based tracking approach. To save energy, different strategies were adopted. The fifth study outlines designing and implementing an energy-efficient approach for tracking applications. This study consists of two main approaches: a data aggregation approach, proposed and implemented in order to reduce the total number of messages transmitted over the network; and a prediction approach, deployed to increase the lifetime of the WSN. For evaluation purposes, two environmental models were used in this thesis: firstly, real experiments, in which the proposed approaches were implemented on real sensor nodes, to test the validity for the proposed approaches; secondly, simulation experiments, in which NS-2 was used to evaluate the power-consumption issues of the two approaches proposed in this thesis

    Implementation of signal conditioning circuitry for CO2 sensor for monitoring CO2 emissions from coal fired power plant in Neyveli Lignite Corporation (Tamil Nadu, India)

    Get PDF
    The most significant anthropogenic greenhouse gas causing global warming is carbon dioxide (CO2). Due to the increase of burning of fossil fuels by industries, the atmospheric CO2 concentration increased by more than 30% in 10 years and is expected to continue to increase. This dissertation analyses a sensor unit used to monitor the emission levels of carbon dioxide from the Neyveli Lignite Corporation (NLC) coal fired power plant which is located in the southern part of India. Most of India’s power generation sectors are based on coal fired power plants. The NLC power plant is owned by the central government of India. It can produce a maximum electric power of 2490MW. The power plant lets out significant CO2 emissions while generating electricity. These carbon dioxide emissions are the root cause for the greenhouse effect. To control the carbon dioxide emissions, in this dissertation a sensor has been designed, analysed and used to monitor the CO2 emission levels from the Neyveli Lignite Corporation. This dissertation focuses on the design and implementation of the CO2 sensor using various electronic components. In NLC, this CO2 sensor was kept under observation and tested. The CO2 emissions measured by the sensor were analysed to monitor CO2 emissions from the Neyveli Lignite Corporation and to guide measures and policy for future scenarios. This dissertation identifies and examines the CO2 emission levels and the possible environmental impacts. It also describes the advantages/disadvantages of the CO2 sensor and how this could guide the possible reduction of greenhouse gases (GHGs) to meet a green environment agenda in the future. Key environmental concerns in the coal-power sector in India include air pollution (primarily from the flue gas emissions of particulates, carbon dioxide emissions, sulphur oxides, nitrous and other hazardous chemicals) which has led to increased particulate pollution and ash disposal problems. The enforcement of regulations to reduce CO2 emissions has been weak in the southern part of India

    Sensors Utilisation and Data Collection of Underground Mining

    Get PDF
    This study reviews IMU significance and performance for underground mine drone localisation. This research has designed a Kalman filter which extracts reliable information from raw data. Kalman filter for INS combines different measurements considering estimated errors to produce a trajectory including time, position and attitude. To evaluate the feasibility of the proposed method, a prototype has been designed and evaluated. Experimental results indicate that the designed Kalman filter estimates the internal states of a system

    Integrated Satellite-terrestrial networks for IoT: LoRaWAN as a Flying Gateway

    Get PDF
    When the Internet of Things (IoT) was introduced, it causes an immense change in human life. Recently, different IoT emerging use cases, which will involve an even higher number of connected devices aimed at collecting and sending data with different purposes and over different application scenarios, such as smart city, smart factory, and smart agriculture. In some cases, the terrestrial infrastructure is not enough to guarantee the typical performance indicators due to its design and intrinsic limitations. Coverage is an example, where the terrestrial infrastructure is not able to cover certain areas such as remote and rural areas. Flying technologies, such as communication satellites and Unmanned Aerial Vehicles (UAVs), can contribute to overcome the limitations of the terrestrial infrastructure, offering wider coverage, higher resilience and availability, and improving user\u2019s Quality of Experience (QoE). IoT can benefit from the UAVs and satellite integration in many ways, also beyond the coverage extension and the increase of the available bandwidth that these objects can offer. This thesis proposes the integration of both IoT and UAVs to guarantee the increased coverage in hard to reach and out of coverage areas. Its core focus addresses the development of the IoT flying gateway and data mule and testing both approaches to show their feasibility. The first approach for the integration of IoT and UAV results in the implementing of LoRa flying gateway with the aim of increasing the IoT communication protocols\u2019 coverage area to reach remote and rural areas. This flying gateway examines the feasibility for extending the coverage in a remote area and transmitting the data to the IoT cloud in real-time. Moreover, it considers the presence of a satellite between the gateway and the final destination for areas with no Internet connectivity and communication means such as WiFi, Ethernet, 4G, or LTE. The experimental results have shown that deploying a LoRa gateway on board a flying drone is an ideal option for the extension of the IoT network coverage in rural and remote areas. The second approach for the integration of the aforementioned technologies is the deployment of IoT data mule concept for LoRa networks. The difference here is the storage of the data on board of the gateway and not transmitting the data to the IoT cloud in real time. The aim of this approach is to receive the data from the LoRa sensors installed in a remote area, store them in the gateway up until this flying gateway is connected to the Internet. The experimental results have shown the feasibility of our flying data mule in terms of signal quality, data delivery, power consumption and gateway status. The third approach considers the security aspect in LoRa networks. The possible physical attacks that can be performed on any LoRa device can be performed once its location is revealed. Position estimation was carried out using one of the LoRa signal features: RSSI. The values of RSSI are fed to the Trilateration localization algorithm to estimate the device\u2019s position. Different outdoor tests were done with and without the drone, and the results have shown that RSSI is a low cost option for position estimation that can result in a slight error due to different environmental conditions that affect the signal quality. In conclusion, by adopting both IoT technology and UAV, this thesis advances the development of flying LoRa gateway and LoRa data mule for the aim of increasing the coverage of LoRa networks to reach rural and remote areas. Moreover, this research could be considered as the first step towards the development of high quality and performance LoRa flying gateway to be tested and used in massive LoRa IoT networks in rural and remote areas

    A real-time data monitoring prototype protocol to advance environmental management through a citizen science approach– A case study in Nepal

    Get PDF
    The lack of environmental monitoring data has restricted the efficiency of proper environmental management in the developing world. Although monitoring technologies have been touted for their potential to advance environmental understanding and management, there are very few examples of practical applications where this has been accomplished in the developing world. Due to the positive influx of urbanization and tourism in Siddharthanagar, South Nepal, the Nepal Study Center (NSC) from the University of New Mexico (UNM) teamed up with the poly-tech college Pratiman-Neema Health Institute (PNMHI) to address future environmental changes through a citizen science approach, known as the Danda River Monitoring Program (DEMP). The objective of this professional project is to develop and deploy a prototype protocol for monitoring air, weather, and water in a location in Nepal where environmental data is not available. This professional project identifies and executes a practical framework strategy to initiate a wireless environmental sensor network to gain access to a long-term data collection plan through a citizen science approach. Citizen science is the participation of any citizen who interacts in a data collection and monitoring process. The scientific data gathered from the monitoring sensors, combined with curricular toolkits, will be used in a digital lab setting to educate students and community members to enhance their learning and environmental awareness. Assisting in the initial implementation process was impactful, for the wireless sensors are currently collecting data, a citizen science survey was successfully administered to understand future improvements, and a robust collaborative relationship between NSC and PNMHI was established. Furthermore, an enhancement of the capabilities of the community to learn and make firm data-driven decisions focused on human and environmental health was implemented. The value that this project brings to the community is fourfold: water resource management, health management, a platform for enhanced science studies, and an established program to attract eco-tourism that will, in turn, preserve the ecosystem and natural heritage of the community. Ultimately, the study found that the efforts performed to demonstrate a positive impact on the community in Nepal. This program has strong support from various stakeholders and the potential to improve the environment and health of the people in Nepal
    • …
    corecore