1,063 research outputs found

    Designing, Building, and Modeling Maneuverable Applications within Shared Computing Resources

    Get PDF
    Extending the military principle of maneuver into war-fighting domain of cyberspace, academic and military researchers have produced many theoretical and strategic works, though few have focused on researching actual applications and systems that apply this principle. We present our research in designing, building and modeling maneuverable applications in order to gain the system advantages of resource provisioning, application optimization, and cybersecurity improvement. We have coined the phrase “Maneuverable Applications” to be defined as distributed and parallel application that take advantage of the modification, relocation, addition or removal of computing resources, giving the perception of movement. Our work with maneuverable applications has been within shared computing resources, such as the Clemson University Palmetto cluster, where multiple users share access and time to a collection of inter-networked computers and servers. In this dissertation, we describe our implementation and analytic modeling of environments and systems to maneuver computational nodes, network capabilities, and security enhancements for overcoming challenges to a cyberspace platform. Specifically we describe our work to create a system to provision a big data computational resource within academic environments. We also present a computing testbed built to allow researchers to study network optimizations of data centers. We discuss our Petri Net model of an adaptable system, which increases its cybersecurity posture in the face of varying levels of threat from malicious actors. Lastly, we present work and investigation into integrating these technologies into a prototype resource manager for maneuverable applications and validating our model using this implementation

    TRANSIENT ANALYSIS OF A PREEMPTIVE RESUME M/D/l/2/2 THROUGH PETRI NETS

    Get PDF
    Stochastic Petri Nets (SPN) are usually designed to support exponential distributions only, with the consequence that their modelling power is restricted to Markovian systems. In recent years, some attempts have appeared in the literature aimed to define SPN models with generally distributed firing times. A particular subclass, called Deterministic and Stochastic Petri Nets (DSPN), combines into a single model both exponential and deterministic transitions. The available DSPN implementations require simplifying assumptions which limit the applicability of the model to preemptive repeat different service mechanisms only. The present paper discusses a semantical generalization of the DSPNs by including preemptive mechanisms of resume type. This generalization is crucial in connection with fault tolerant systems, where the work performed before the interruption should not be lost. By means of this new approach, the transient analysis of a M/D/1/2/2 queue (with 2 customers, 1 server, exponential thinking and deterministic service time) is fully examined under different preemptive resume policies

    Acta Cybernetica : Volume 16. Number 1.

    Get PDF

    A Framework for Online Conformance Checking

    Get PDF
    Conformance checking – a branch of process mining – focuses on establishing to what extent actual executions of a process are in line with the expected behavior of a reference model. Current conformance checking techniques only allow for a-posteriori analysis: the amount of (non-)conformant behavior is quantified after the completion of the process instance. In this paper we propose a framework for online conformance checking: not only do we quantify (non-)conformant behavior as the execution is running, we also restrict the computation to constant time complexity per event analyzed, thus enabling the online analysis of a stream of events. The framework is instantiated with ideas coming from the theory of regions, and state similarity. An implementation is available in ProM and promising results have been obtained.Peer ReviewedPostprint (author's final draft

    Adaptable processes

    Get PDF
    We propose the concept of adaptable processes as a way of overcoming the limitations that process calculi have for describing patterns of dynamic process evolution. Such patterns rely on direct ways of controlling the behavior and location of running processes, and so they are at the heart of the adaptation capabilities present in many modern concurrent systems. Adaptable processes have a location and are sensible to actions of dynamic update at runtime; this allows to express a wide range of evolvability patterns for concurrent processes. We introduce a core calculus of adaptable processes and propose two verification problems for them: bounded and eventual adaptation. While the former ensures that the number of consecutive erroneous states that can be traversed during a computation is bound by some given number k, the latter ensures that if the system enters into a state with errors then a state without errors will be eventually reached. We study the (un)decidability of these two problems in several variants of the calculus, which result from considering dynamic and static topologies of adaptable processes as well as different evolvability patterns. Rather than a specification language, our calculus intends to be a basis for investigating the fundamental properties of evolvable processes and for developing richer languages with evolvability capabilities

    Automated Game Design Learning

    Full text link
    While general game playing is an active field of research, the learning of game design has tended to be either a secondary goal of such research or it has been solely the domain of humans. We propose a field of research, Automated Game Design Learning (AGDL), with the direct purpose of learning game designs directly through interaction with games in the mode that most people experience games: via play. We detail existing work that touches the edges of this field, describe current successful projects in AGDL and the theoretical foundations that enable them, point to promising applications enabled by AGDL, and discuss next steps for this exciting area of study. The key moves of AGDL are to use game programs as the ultimate source of truth about their own design, and to make these design properties available to other systems and avenues of inquiry.Comment: 8 pages, 2 figures. Accepted for CIG 201

    Reduction of Petri net maintenance modeling complexity via Approximate Bayesian Computation

    Get PDF
    This paper is part of the ENHAnCE ITN project (https://www.h2020-enhanceitn.eu/) funded by the European Union's Horizon 2020 research and innovation programme under the Marie SklodowskaCurie grant agreement No. 859957. The authors would like to thank the Lloyd's Register Foundation (LRF), a charitable foundation in the U.K. helping to protect life and property by supporting engineeringrelated education, public engagement, and the application of research. The authors gratefully acknowledge the support of these organizations which have enabled the research reported in this paper.The accurate modeling of engineering systems and processes using Petri nets often results in complex graph representations that are computationally intensive, limiting the potential of this modeling tool in real life applications. This paper presents a methodology to properly define the optimal structure and properties of a reduced Petri net that mimic the output of a reference Petri net model. The methodology is based on Approximate Bayesian Computation to infer the plausible values of the model parameters of the reduced model in a rigorous probabilistic way. Also, the method provides a numerical measure of the level of approximation of the reduced model structure, thus allowing the selection of the optimal reduced structure among a set of potential candidates. The suitability of the proposed methodology is illustrated using a simple illustrative example and a system reliability engineering case study, showing satisfactory results. The results also show that the method allows flexible reduction of the structure of the complex Petri net model taken as reference, and provides numerical justification for the choice of the reduced model structure.European Commission 859957Lloyd's Register Foundation (LRF), a charitable foundation in the U.K
    corecore