
Reliability Engineering and System Safety 222 (2022) 108365

A
0
n

Contents lists available at ScienceDirect

Reliability Engineering and System Safety

journal homepage: www.elsevier.com/locate/ress

Reduction of Petri net maintenance modeling complexity via Approximate
Bayesian Computation
Manuel Chiachío a,b,∗, Ali Saleh a,b, Susannah Naybour c, Juan Chiachío a,b, John Andrews c

a Andalusian Research Institute in Data Science and Computational Intelligence, University of Granada, 18071 Granada, Spain
b Dept. Structural Mechanics & Hydraulics Engineering, University of Granada, 18071 Granada, Spain
c Resilience Engineering Group, University of Nottingham, University Park, Nottingham, UK

A R T I C L E I N F O

Keywords:
Petri nets
Model similarity
Bayesian inference
Approximate Bayesian Computation
Maintenance models

A B S T R A C T

The accurate modeling of engineering systems and processes using Petri nets often results in complex graph
representations that are computationally intensive, limiting the potential of this modeling tool in real life
applications. This paper presents a methodology to properly define the optimal structure and properties of
a reduced Petri net that mimic the output of a reference Petri net model. The methodology is based on
Approximate Bayesian Computation to infer the plausible values of the model parameters of the reduced model
in a rigorous probabilistic way. Also, the method provides a numerical measure of the level of approximation
of the reduced model structure, thus allowing the selection of the optimal reduced structure among a set
of potential candidates. The suitability of the proposed methodology is illustrated using a simple illustrative
example and a system reliability engineering case study, showing satisfactory results. The results also show
that the method allows flexible reduction of the structure of the complex Petri net model taken as reference,
and provides numerical justification for the choice of the reduced model structure.
1. Introduction

In most countries of the developed world, the lifespan of a large part
of critical infrastructures (such as transportation and energy assets) is
approaching their end. Methods and models for optimal asset manage-
ment are thus a necessity to avoid an uncontrolled increase of system
failures and unexpected downtimes, whilst keeping maintenance and
inspection costs under reasonably lower levels [1].

In the literature, a number of mathematical and computational
techniques for optimal asset management have matured over the last
decades aiming at optimizing the maintenance and operational costs
[2]. Some of these methods include soft-computing techniques such
as genetic algorithms [3], neural networks [4], and support vector
machines [5]; along with event-based models like Markov chains [6],
Bayesian networks [7], and Petri nets [8–11], to name but the most
relevant ones.

Among the aforementioned approaches, Petri nets (PNs) [12] are
typically regarded as powerful modeling tools for maintenance and
inspection modeling due to their ability to account for resource avail-
ability, concurrency, and synchronization, which are common aspects
that underline the majority of the asset management models [13,14].
The basic concepts relative to the theory of PNs are summarized
in [15], whereas practical reliability engineering applications of PNs

∗ Corresponding author at: Andalusian Research Institute in Data Science and Computational Intelligence, University of Granada, 18071 Granada, Spain.
E-mail address: mchiachio@ugr.es (M. Chiachío).

can be found in [16,17]. Moreover, PNs can be combined with other
computational techniques such as object-oriented programming [9],
fuzzy sets [18], expert system modeling [13,19], etc., which greatly
increase their suitability for maintenance and inspection modeling in
engineering problems.

Irrespectively, one of the main challenges in adopting PNs to model
maintenance of engineering systems is the handling of complex pro-
cesses, including their inter-dependencies and workflows, such as those
appearing in real-world reliability engineering and maintenance do-
main. The latter requires large PN representations which are difficult
(if not impossible) to interpret graphically, and also heavy computa-
tional resources for their numerical evaluation [31,32]. To efficiently
approach this practical challenge, an increasing number of researchers
have reported progress towards the improvement of the efficiency of PN
simulation of large maintenance models [33]. These methods require
specialist computational hardware and still can be expensive in terms
of cost and computational time. Other existing alternatives consist in
reducing the PN complexity to partially alleviate their computational
cost [21]. These techniques share the common principle of using a set
of rules to shorten specific graphical sub-structures commonly found
in PNs while preserving the overall PN behavior unviolated. Table 1
lists the main recent contributions to the literature on this topic and
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Table 1
Summary of recent relevant works about PN reduction methodologies.

Method Description Benefits Limitations Refs.

Reduction of PN structure
following defined rules.

PN reduction in a rule-based way,
considering model sub-structures.

Reduction rules are well
understood preventing illogical
reductions by the user.

Reductions limited to the
pre-defined rules. Reduction error
not always quantified and limited
transitions types considered.

[20–24]

Symmetry reduction for
time Petri net state classes

Explore the symmetries in the
system to enumerate equivalence
states instead of all the reachable
states

It can be used with state class
abstraction. Can be applied to
construct State Class Graph of
TPNs

Beneficial only for the cases
where symmetries exists

[25]

Counting PN markings
from reduction equations.

Reduction by removing redundant
places and transitions and
representing the effects of
reductions by linear equations

Can be combined with other
techniques like symmetry
reductions. Keep track between
the markings of initial and
reduced PN.

The method can only reduce PNs
with specific properties
(redundant transitions, redundant
places, or place agglomerations).

[26,27]

Discovering PNs from
event logs

The firing sequence of transitions
in PN structures is used to
recreate event logs.

PN structures and firing times can
be discovered. Not limited to PNs
with exponential probability
models.

Methods can yield different
equivalent PN structures. Limited
probability models governing the
PN delay times are considered.

[28]

Identification of PN time
parameters through
comparison to event
sequences.

PN time parameters are
discovered for two normal
transitions, in conflict, to match a
pre-known event sequence.

The algorithm shows good
convergence for simple event
sequences.

Normal distribution for the
transitions of the PN is assumed.
Large event sequences lead to a
low computational efficiency.

[29]

Reconstructing PN model
parameters through
comparison to data.

PN model parameters are
discovered by matching the model
output to an expected output.

Allows constant probability values
within the PN model to be
discovered.

The approach is not used to
discover probability distributions
governing PN transition firing
times.

[30]
briefly indicates their key benefits and limitations. From a generic
perspective, the existing methods are capable of effectively reducing
the model complexity, however this is at the cost of adopting a number
of assumptions about the types of nodes that can be used and their
parameters, which limit their applicability to real-world cases, precisely
where the benefits of these methods can be fully exploited. Hence,
there is a need for more versatile and efficient PN reduction techniques
to deal with large and complex system reliability and maintenance
models.

In this context, this paper proposes a novel methodology for PN
complexity reduction based on model similarity with respect to a
reference PN model through Bayesian learning. More specifically, the
proposed approach finds the most plausible values of a set of model
parameters governing the reduced PN by comparing both model out-
puts, namely the reduced and the reference one, within an Approx-
imate Bayesian Computation framework [34,35]. The resulting infer-
ence equations are analytically intractable, hence the ABC-SubSim
algorithm [36] is adopted whereby the probability density functions
(PDFs) of the model parameters are approximated by samples which
represent random realizations of the parameter values from the reduced
network. The ABC-SubSim method, which is used in this work due to
its ability to perform the parameter inference within multi-dimensional
parameter spaces and under very low approximation error [36], pro-
duces parameter samples through Markov Chain Monte Carlo (MCMC)
sampling over a nested sequence of subsets until a predefined ap-
proximation error is reached. To overcome the well-known manual
scaling required in MCMC sampling [37], this paper also provides
an improved version of the ABC-SubSim algorithm with respect to
the original one in [36] by adaptive scaling of the MCMC sampling
across the subsets. Finally, and as by product, the proposed inference
method also produces a quantitative measure of the reduced model
suitability through Bayesian evidence computation [38], which aids the
task of model selection in the frequent case of multiple reduced models
available.

The resulting methodology is versatile enough to be applied to
any generic PN model with firing times governed by any probability
distribution, or even to high-level PN variants like the referred high-
level Petri Nets (HLPN) [39], which allow consideration of nodes with
2

complex behavior like reset and probability transitions, inhibitor arcs, [
numerical and predicate places, etc. Here, the proposed approach is
tested on a real-world case study about a two-pump lube oil hydraulic
system whose inspection, maintenance, and renewal process is modeled
through a reference, yet complex, HLPN. Three candidate reduced
PN models are defined following a criteria of increasing complexity
allowing their suitability to be evaluated. The results show that the pro-
posed reduction methodology is able to infer the parameters governing
the inspection, maintenance and renewal processes of the equivalent
reduced PN models in liaison with the reference HLPN, demonstrating
a high level of accuracy in approximation to the reference model
alongside a significant reduction in computational cost. The results also
show that the reduced models can provide the reliability curves of the
two-pump engineering system with high accuracy with respect to the
one obtained using the reference HLPN.

The remainder of the paper is organized as follows. Section 2
presents the fundamentals behind the proposed computational method
from basic principles of PNs to the ABC-SubSim method. Section 3 pro-
vides description of the adaptive scaling method for the ABC-SubSim
algorithm. The mathematical basis and computational aspects of the
PN reduction by ABC-SubSim method is given in Section 4. Section 5
illustrates the approach over a simple PN architecture before presenting
the approach in application to an engineering case study in Section 6.
Section 7 discusses the main findings and provides a comparative
analysis, and finally Section 8 gives concluding remarks.

2. Fundamentals

2.1. Petri net modeling

A PN is a directed bipartite graph consisting of two types of nodes,
known as places and transitions. The transitions, which are symbolized
using boxes, are responsible of the dynamic behavior of the PN, and
enable the system to move from one state to another. The places, which
are symbolized using circles, represent particular states of the system
(e.g. a component in a failure state or an inspection activity which is
currently in progress) [15]. The distribution of tokens over the places
at a specific execution time determines the state of the PN, and is
expressed as a vector of integer values referred to as marking.

Mathematically, a PN can be defined as a tuple N =
⟨

𝐏,𝐓,𝐅,𝐖,𝐌0
⟩

15], where 𝐏 and 𝐓 denote the set of 𝑛𝑝 places and 𝑛𝑡 transitions
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of the PN, whose connections are expressed through the set of edges
𝐅 ⊆ (𝐏 × 𝐓) ∪ (𝐓 × 𝐏). 𝐖 ∶ 𝐅 → N>0 is a weight function which
ssigns a natural number (1 by default) to each arc within 𝐅, and finally
0 ∈ N𝑛𝑝 is the initial marking. Additionally, in this work the term

𝐏𝑡 will be used to denote the pre-set of 𝑡, namely the set of input
laces of transition 𝑡, and 𝐏∙

𝑡 for the set of output places of transition
, also referred to as the post-set of 𝑡. The dynamics of a PN can be
athematically described through a state equation defined as follows:

𝑘+1 = 𝐌𝑘 + 𝐀𝑇 𝐮𝑘 (1)

here 𝐌𝑘 is the marking at time step 𝑘, being 𝑘 ∈ N a time index. 𝐀 is
the incidence matrix, which can be obtained as the result of subtracting
the backward incidence matrix 𝐀− =

[

𝑎−𝑖𝑗
]

from the forward incidence

matrix 𝐀+ =
[

𝑎+𝑖𝑗
]

. The terms 𝑎−𝑖𝑗 and 𝑎+𝑖𝑗 coincide with the weights

𝑤−
𝑖𝑗 and 𝑤+

𝑖𝑗 of the arcs of transition 𝑡𝑖 from its pre-set and post-set
places 𝑝𝑗 , respectively, where 𝑖 = 1,… , 𝑛𝑡, 𝑗 = 1,… , 𝑛𝑝. Finally, the term
𝐮𝑘 = (𝑢1,𝑘, 𝑢2,𝑘,… , 𝑢𝑛𝑡 ,𝑘)

𝑇 in Eq. (1) is the firing vector whose elements
are binary values which adopt the unity if the transition is fired and 0
otherwise, according to the firing rule [15].

In practical applications dealing with the modeling of dynamical
systems, transitions are typically assigned time delays, referred to as
𝜏. The resulting PNs are called Timed Petri Nets (TPN) if the delays are
deterministic, and Stochastic Petri Nets (SPN) if the delays are specified
by a probability model [15].

In this work, PN variants referred to as high-level Petri nets (HLPN)
[39] are used to consider higher complexities in the systems. One of the
variants is the probability transitions whose production of tokens to their
output arcs is carried out under a specified probability. In mathematical
terms, if 𝑡𝑖 is a so-called probability transition, then a probability value
𝜋𝑖𝑧 is assigned to every 𝑧th output arc from its post-set 𝐏∙

𝑡𝑖
. Thus, the

associated elements to 𝑡𝑖 from the forward matrix can be expressed as:

𝑎+𝑖𝑧 = 𝑤+
𝑖𝑧I𝑧 (2)

where 𝑤+
𝑖𝑧 is the output arc weight from transition 𝑡𝑖 to place 𝑝𝑧 ∈ 𝐏∙

𝑡𝑖
,

and I𝑧 is a Boolean indicator given as follows:

I𝑧 =

{

1, if 𝑧 = 𝑧′

0, otherwise
(3)

In the last equation, 𝑧′ is the index of the output arc chosen according
to the associated probability of each output arc. Finally note that
HLPN models used in this work make also use of inhibitor arcs [15]
(represented with a small circle as ending, like those depicted in Fig. 4)
which produce the opposite effect of the firing rule, i.e. they prevent a
transition from being enabled once its pre-set places are marked.

Fig. 1 is provided to illustrate a sample HLPN of five places and
four transitions to model the maintenance of an engineering component
under abnormal condition. Places 𝑝1, 𝑝2, 𝑝3 and 𝑝4 describe the nor-
mal, degraded, critical, and failed states of a component, respectively,
whereas place 𝑝5 accounts for the number of times the component
changes to any malfunction state. To represent the probability of mov-
ing from the normal to any abnormal state, the probability transition 𝑡1
is used, whose delay time 𝜏1 accounts for the time required before the
component malfunction. Transitions 𝑡2, 𝑡3 and 𝑡4 describe maintenance
actions to return the component to its normal condition, and their delay
times 𝜏2, 𝜏3 and 𝜏4, describe the times of the maintenance operations.

2.2. Approximate Bayesian computation method

The approximate Bayesian computation (ABC) method [34] is under
the category of Bayesian statistics and related to the Bayesian model
updating approach [38] in those cases where the likelihood function is
difficult, or analytically intractable. In Bayesian model updating, the
interest is about updating the prior knowledge about a set parameters
𝜃 ∈ 𝜣 ⊂ R𝑑 of a parameterized model based on the information
3

gained from a set of data, 𝑦 ∈  ⊂ R𝓁 . The term  is the observation
space which contains all possible observational outcomes according to
a specific model class . If multiple candidate models classes are
available, this methodology also provides a framework to assess the
plausibility of each model class.

The ABC technique produces posterior samples of the pairs (𝜃, 𝑥) ∈
 ⊆ 𝜣 ×  which makes the model response 𝑥 = 𝑥(𝜃) ∼ 𝑝(𝑥|𝜃)𝑝(𝜃) lay

ithin a defined region around the data 𝑦. This region can be formally
efined as:

𝜖(𝑦) =
{

𝑥 ∈  ∶ 𝜌
(

𝜂(𝑥), 𝜂(𝑦)
)

⩽ 𝜖
}

(4)

here 𝜌(⋅) ∶ R𝑑×𝓁 → R is a metric function to evaluate the closeness of
he simulated model output 𝑥 to the data 𝑦, 𝜖 is a tolerance parameter,
nd 𝜂(⋅) is a summary statistic [40] which, if required, allows the
omparison between 𝑥 and 𝑦 in a weak manner. The referred posterior
amples produce an approximation of the posterior PDF 𝑝𝜖(𝜃, 𝑥|𝑦) =
(

𝜃, 𝑥|𝑥 ∈ 𝜖(𝑦)
)

which assigns higher probability density values to
hose pairs (𝜃, 𝑥) ∈  that satisfy the condition 𝜌

(

𝜂(𝑥), 𝜂(𝑦)
)

⩽ 𝜖.

.3. ABC-SubSim method

As previously mentioned, the success of an ABC method is de-
endent on the choice of certain hyper-parameters like the summary
tatistic 𝜂(⋅), the metric 𝜌, and a tolerance value 𝜖. Among them, the
olerance hyper-parameter is of special importance since it entails a
ritical trade-off between accuracy of the posterior approximation and
omputational cost. In the literature, a number of techniques can be
ound to address this trade-off by combining the ABC principles with
fficient sampling algorithms. The reader is referred to [35] for a com-
rehensive overview of the ABC methods. Irrespective of the efficiency
emonstrated by some of the referred methods, using 𝜖 → 0 still
ranslates into heavy computation except for those which sequentially
dapt 𝜖 until reaching a desirable small value [41]. Among those, the
o called approximate Bayesian computation by subset simulation, also
eferred to as ABC-SubSim algorithm [36], has been proved to be one of
he most efficient ABC algorithms in the literature having been included
n several well-known ABC user-platforms such as ABCpy [42] and
i4U [43] (https://github.com/cselab/pi4u), and thus is the algorithm
dopted for the PN reduction methodology presented in this paper.

The ABC-SubSim depends on the SubSet Simulation, originally pre-
ented in [44] as a method to avoid costly or inaccurate rare event
imulation that arises due to the existence of one or several small failure
egions. By Subset Simulation, the rare event simulation is avoided by
he introduction of several intermediate regions 𝑗 ⊂  with larger
robabilities by generating conditional samples (𝜃, 𝑥) ∈ 𝑗 , 𝑗 = 1,… , 𝑚,
here:

𝑗 =
{

(𝜃, 𝑥) ∈  ∶ 𝜌(𝜂(𝑥), 𝜂(𝑦)) ≤ 𝜖𝑗
}

(5)

n the last equation, the intermediate tolerances 𝜖𝑗 follow a decreasing
equence 𝜖1 ⩾ 𝜖2 … ⩾ 𝜖𝑚 ≡ 𝜖.

A practical way to implement the ABC-SubSim is by fixing the size
f the samples generated in 𝑗−1 that lie in 𝑗 as 𝑁𝑃0, where 𝑁
s the amount of samples that populate the 𝑗th simulation level, and
0 is a conditional probability acting as algorithm hyper-parameter
efined by the modeler [45]. The outcome of this algorithm is a set
f (𝜃, 𝑥) ∈  samples that populate the posterior PDF 𝑝𝜖(𝜃, 𝑥|𝑦). Also,
nd as by-product, the algorithm straightforwardly produces a measure
f the evidence (also referred to as marginal likelihood) of a candidate
educed PN model via the conditional probabilities involved in the
imulation [36], as follows:

𝜖(𝑦|𝑗 ) = 𝑃 (1)
𝑚
∏

𝑗=2
𝑃 (𝑗 |𝑗−1) ≈ 𝑃𝑚

0 (6)

here 𝑗 indicates the 𝑗th model class within a set of available models,
hich in our case, corresponds to any available reduced PN model. In
ection 4, a pseudo-code implementation of the ABC-SubSim algorithm
s given within the context of the PN reduction methodology proposed
n this work.

https://github.com/cselab/pi4u
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3. ABC-SubSim with adaptive sampling

As stated in the last section, in ABC-SubSim algorithm 𝑁𝑃0 samples
are selected at every 𝑗th simulation level acting as seeds of the 𝑗 subset,
which generate new samples via MCMC sampling. In this work, the
Modified Metropolis Hastings algorithm [44] (MMA) is used as MCMC
method to generate successive chain values from each seed.

Irrespectively, this method requires a tricky selection of a proposal
PDF used to evolve values in each Markov chain due its strong impact
on the quality of the ABC posterior approximation along with on the
speed of convergence of the algorithm [46]. In the literature, the
optimal scaling of the standard deviation of the proposal PDF has
been considered within the context of Subset Simulation by manual
calibration and preliminary trials, thus increasing the computational
cost [36,37,45].

To avoid the aforementioned drawback, Vakilzadeh et al. [47]
proposed an adaptive method to tune the proposal standard deviation
per simulation level for the ABC-SubSim algorithm with soundly results.
However the performance of the method in [47] requires the intro-
duction of three new sensible hyper-parameter to the algorithm (see
inputs 𝑁𝑎, 𝜉1 and 𝜆𝑗 in [47, Algorithm 2]), which again needs modeler
expertise to tune them. More recently, [48] proposed an adaptive
method to tune the conditional probability hyper-parameter 𝑃0 which
also helps to scale the proposal standard deviation, as by product. As
in [47], the resulting sampling scheme in [48] is automatic, however it
is not efficient in avoiding high sampling rejections in subsets of small
size.

In this section, a method based on samples’ values distributions is
presented to obtain appropriate standard deviation automatically, thus
avoiding the modeler’s intervention. The method is based on the idea
that each dimension of the seeds has its own standard deviation. Also
the method assumes that the best region to search the value of the
proposals is located around their seed, but should not include another
seeds. To obtain the seed 𝑘′ closest to the 𝑘th seed, the distances from
each seed to all the remaining seeds are calculated. Note that the closest
seed to another is the seed with the minimum-strictly positive distance
to it, because otherwise a zero distance would imply repetition of the
seed, which cannot be properly considered as a seed. In this work, the
L2-distance is used for calculating distance 𝚥(⋅) between two seeds as
follows:

𝚥𝑘−𝑘′ =

[ 𝑑
∑

𝑞=1

⎛

⎜

⎜

⎝

𝜃(𝑘)𝑗(𝑞) − 𝜃(𝑘
′)

𝑗(𝑞)

𝜃𝑗(𝑞)

⎞

⎟

⎟

⎠

2
]1∕2

(7)

here 𝜃(𝑘)𝑗(𝑞) and 𝜃(𝑘
′)

𝑗(𝑞) are the 𝑞th-components of the 𝜃-values of seeds 𝑘
nd 𝑘′, respectively, where 𝑞 = 1,… , 𝑑, and 𝑘 = 1,… , 𝑘′,… , 𝑁𝑃0. The
erm 𝜃𝑞 is the range of the seed parameter values in the 𝑞th-dimension,
hich is calculated as follows:

(̃𝑞) = ‖max
{

𝜃(𝑘)(𝑞)
}𝑁𝑃0
𝑘=1 − min

{

𝜃(𝑘)(𝑞)
}𝑁𝑃0
𝑘=1 ‖ (8)

here the subscript 𝑗 has been avoided for simpler notation. Then, for
ach of the seeds of the 𝑗th simulation level, the standard deviation in
ach dimension is obtained as the component of the distance from the
eed to its closest seed in that dimension, as follows:
(𝑘)
(𝑞) = 𝜃(𝑘)(𝑞) − 𝜃(𝑘

′)
(𝑞) (9)

emark 1. Since the 𝜃-values are not equally distributed within the
arameter space 𝜣, hence the normalization in Eqs. (7) through 𝜃𝑞
nables the parameter components 𝑞 = 1,… , 𝑑 to equally contribute
o the distance 𝚥. Otherwise, if 𝜃𝑞 were discarded, then the effect of
ach dimension 𝑞 on 𝚥 would be larger as the 𝜃-values in that dimension
4

ncrease.
emark 2. A limitation of Eq. (9) is that in case that the closest
eed 𝑘′ has the same value as seed 𝑘 within any dimension 𝑞, then
(𝑘)
𝑞 will result in zero leading to a lack of exploration for this seed
n this dimension. To avoid this critical situation, and in order for the
roposals to be fairly distributed in all dimensions around any 𝑘th seed,

then the proposal standard deviations for each seed in all dimension are
normalized, as follows:

̃ (𝑘)𝑞 =
𝜎(𝑘)𝑞

𝜃𝑞
(10)

Finally, the standard deviations are recalculated based on the maximum
normalized standard deviation among all dimensions. Mathematically:

𝜎(𝑘)𝑞 = 𝜃𝑞 ⋅max
{

�̃�(𝑘)𝑞
}𝑑
𝑞=1 (11)

The application of this automatic scaling method for the proposal
tandard deviation results in an algorithm that gives a step-wise im-
rovement to the intermediate posterior regions which are broadly
ampled at increasingly higher resolutions. This differs from existing
ersions of the ABC-SubSim algorithm and MCMC algorithms for Subset
imulation [37], where the whole possible region is sampled uniformly
esulting in repeated sampling of unnecessary areas, thus increasing
he amount of dependent samples and decreasing the acceptance rate.
he advantages of using the proposed method for calculating standard
eviation are shown in the illustrative example given in Section 5.

. Petri Net model similarity by ABC-SubSim

This section introduces the method that allows a reduced PN mim-
cs a bigger reference one with quantified uncertainty. The proposed
N reduction method implements the ABC-Subsim inference method
xplained above to allow the reduced PN, referred to as  (𝑟), to closely

approximate the behavior of a reference one, denoted here as  (𝑠),
o that its signal outputs from a selection of places can be closely
eplicated over time by those from  (𝑟).

The method assumes that a reduced PN  (𝑟), whose behavior wants
to be mimicked with respect to  (𝑠), is available. At this standpoint is
important to note that  (𝑟) must be chosen in a manner that retains
the capability to sufficiently reproduce the reliability estimators along
with the maintenance activities to be modeled whilst reducing the
complexity of the reference one  (𝑠). Indeed, the reduced PN must have
the capacity to reproduce the key outputs of  (𝑠) and incorporate any
behaviors for optimization of the system under consideration, thus it
is recommended that the net structure of  (𝑟) is decided based on the
knowledge of the modeler. Irrespective to the previous comments, this
work is not focused on the methods for net reduction of PNs and the
reader is referred to [49] for rules for optimal simplification of PN
models.

Thus, let us assume that  (𝑟) is available and that its behavior
is intended to reproduce the reference one based on a selection of
comparison places 𝐏(𝑟) = {𝑝(𝑟)𝑢 }𝑛𝑟𝑢=1 for the reduced PN, and 𝐏(𝑠) =
{𝑝(𝑠)𝑣 }𝑛𝑠𝑣=1 for the reference one, where 𝐏(𝑟) and 𝐏(𝑠) are not necessarily of
same size. The basis of comparison for both PN models is their marking
at a specific prediction time 𝑛 restricted to the referred comparison
places, namely 𝐌(𝑟)

𝑛 =
(

𝑀 (𝑟)
𝑛 (1),… ,𝑀 (𝑟)

𝑛 (𝑢),… ,𝑀 (𝑟)
𝑛 (𝑛𝑟)

)

and 𝐌(𝑠)
𝑛 =

(

𝑀 (𝑠)
𝑛 (1),… ,𝑀 (𝑠)

𝑛 (𝑣),… ,𝑀 (𝑠)
𝑛 (𝑛𝑠)

)

for the reduced and reference PNs,
espectively.

Next, let us assume that a subset of the 𝑛(𝑟)𝑡 transitions of  (𝑟) are
elected such that their delay times are parameterized through a set
f uncertain parameter vector 𝜃 = {𝜃1, 𝜃2,… , 𝜃𝑑} ∈ 𝜣 ⊂ R𝑑 whose
rior information is known through their component-wise prior PDF
(𝜃1),… , 𝑝(𝜃𝑑 ), so that 𝑝(𝜃) = 𝑝(𝜃1) ⋅ 𝑝(𝜃2) ⋅ … ⋅ 𝑝(𝜃𝑑 ). Therefore, the
arking of the reduced PN depends upon the uncertain parameters 𝜃,

.e., 𝐌(𝑟)
𝑛 = 𝐌(𝑟)

𝑛 (𝜃) henceforth the challenge relies on obtaining the set
f 𝜃-values which makes 𝐌(𝑟)

𝑛 (𝜃) ≈ 𝐌(𝑠)
𝑛 , ∀𝑛.
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Algorithm 1 Petri net similarity algorithm by ABC-SubSim method
Inputs:
𝑝0 ∈ [0, 1] {𝑃0 = 0.2 is recommended}. 𝑁, {number of samples per
intermediate level}; 𝜖,
{tolerance}; 𝑛𝑟, {number of output places to compare}; 𝑑, {dimension of
the 𝜃-parameter space}.
Algorithm:

1: Sample
[

(

𝜃(1)0 , 𝑥(1)0

)

,… ,
(

𝜃(𝑛)0 , 𝑥(𝑛)0

)

,… ,
(

𝜃(𝑁)
0 , 𝑥(𝑁)

0

)

]

, where (𝜃, 𝑥) ∼ 𝑝(𝜃)𝑝(𝑥|𝜃)
2: Set 𝑗 = 0, 𝜖𝑗 = ∞
3: while 𝜖𝑗 > 𝜖 do
4: 𝑗 ← 𝑗 + 1
5: for 𝑛 ∶ 1,… , 𝑁 do
6: for 𝑢 ∶ 1,… , 𝑛𝑟 do
7: Evaluate the centroid linkage distance 𝑑(𝑢) according to Eq. (12)
8: end for
9: Obtain 𝑚𝑎𝑥{𝑑(𝑢)} and 𝑚𝑖𝑛{𝑑(𝑢)} and normalize the distances

according to Eq. (13) to obtain 𝜌𝑗 (𝜃(𝑛))
0: end for
1: Renumber

[

(

𝜃(𝑛)𝑗−1, 𝑥
(𝑛)
𝑗−1

)

, 𝑛 ∶ 1,… , 𝑁
]

so that 𝜌(1)𝑗 ⩽ 𝜌(2)𝑗 ⩽ … 𝜌(𝑁)
𝑗

12: Fix 𝜖𝑗 =
1
2

(

𝜌(𝑁𝑃0)
𝑗 + 𝜌(𝑁𝑃0+1)

𝑗

)

13: if 𝜖𝑗 ⩽ 𝜖 then
14: End algorithm
15: end if
16: for 𝑘 = 1,… , 𝑁𝑃0 do
17: Select as a seed

(

𝜃(𝑘),1𝑗 , 𝑥(𝑘),1𝑗
)

=
(

𝜃(𝑘)𝑗−1, 𝑥
(𝑘)
𝑗−1

)

∼ 𝑝
(

𝜃, 𝑥|(𝜃, 𝑥) ∈ 𝑗
)

18: (Requires 𝑘 > 1) Calculate the distance 𝚥𝑘−𝑘′ , according to Eq. (7),
where 𝑘′ = 1,… , 𝑁𝑃0, 𝑘′ ≠ 𝑘

19: Set 𝜃𝑘′𝑗 as the closest seed by min(𝚥𝑘−𝑘′ ), excluding repeated seeds
0: for q= 1,. . . , 𝑑 do
1: Obtain 𝜎(𝑘)

(𝑞) = 𝜃(𝑘)(𝑞) − 𝜃(𝑘
′)

(𝑞)

2: Obtain 𝜃𝑞 according to Eq. (8) and normalize �̃�(𝑘)
𝑞 = 𝜎(𝑘)

𝑞 ∕̃𝜃𝑞
3: end for
4: Set component-wise proposal standard deviation 𝜎(𝑘)

(𝑞) = 𝜃𝑞 ⋅

max
{

�̃�(𝑘)
𝑞

}

, 𝑞 = 1,… , 𝑑
5: Run MMA [44] with proposal standard deviation 𝜎(𝑘)

(𝑞) to generate 1∕𝑃0

states of a Markov chain lying in 𝑗 :
[

(

𝜃(𝑘),1𝑗 , 𝑥(𝑘),1𝑗
)

,… ,
(

𝜃(𝑘),1∕𝑃0
𝑗 , 𝑥(𝑘),1∕𝑃0

𝑗
)

]

6: end for
7: Renumber

[

(𝜃(𝑘),𝑖𝑗 , 𝑥(𝑘),𝑖𝑗 ) ∶ 𝑘 = 1,… , 𝑁𝑃0; 𝑖 = 1,… , 1∕𝑃0

]

as

8:
[

(𝜃(1)𝑗 , 𝑥(1)𝑗 ),… , (𝜃(𝑁)
𝑗 , 𝑥(𝑁)

𝑗 )
]

9: end while

Under the Approximate Bayesian computation perspective, the lat-
er implies obtaining the posterior PDF of the model parameters and
heir corresponding marking response (𝜃, 𝑥) ∈  as 𝑝𝜖(𝜃, 𝑥|𝑦), where
𝑥 = 𝑥(𝜃) ≐ 𝐌(𝑟)

0−𝑛, the simulated marking of the reduced PN  (𝑟) from
nitial time to 𝑛, and 𝑦 refers to the data which, in this case, correspond
o the marking of the reference one  (𝑠) from 0 to 𝑛, i.e, 𝑦 ≐ 𝐌(𝑠)

0−𝑛. As
ith any ABC method, the marking similarity 𝑥(𝜃) ≈ 𝑦 is established
nder a tolerance value 𝜖, along with through a metric 𝜌(⋅) and a
ummary statistic 𝜂(⋅).

Thus, the next step to apply the ABC inference method is to define
(⋅) and 𝜂(⋅) to properly compare the response markings from  (𝑟) and
(𝑠). Several distance measures are available in the literature, and
mong them, the centroid linkage distance [50] was revealed as the
ost suitable one since it involves quantifying the distance between

he mean values of two comparable clusters. To apply this specific
etric, the amount of comparison places from 𝐏(𝑟) and 𝐏(𝑠) should be

equal, thus the comparison is carried out through the marking of the
respective places in a one-by-one basis. Since 𝑛𝑟 = 𝑛𝑠 in this particular
case, the indexes 𝑢 and 𝑣 can be fused into a single one (e.g., 𝑢), thus
𝑥(𝑢, 𝜃) and 𝑦(𝑢) denote the markings up to time 𝑛 for the reduced and
reference PN model, respectively. Let us now split the markings 𝑥(𝑢, 𝜃)
and 𝑦(𝑢) into a number of overlapping sub-vectors 𝑥ℎ(𝑢, 𝜃) and 𝑦ℎ(𝑢), ℎ =
1,… ,𝐻 , each of same length and with an overlapping percentage of
40%. Then, the centroid linkage distance applied to places 𝑝(𝑟) and 𝑝(𝑠),
5

𝑢 𝑢
Fig. 1. High Level Petri net used as illustrative example. The figure provides indication
of the arc weights and production probabilities of probability transition 𝑡1.

eferred to here as 𝑑(𝑢) ≡ 𝑑(𝑢, 𝑢) = 𝑑(𝑣, 𝑣), 𝑢 = 1,… , 𝑛𝑟, compares the
ean values of the sliding markings under a L2-norm, mathematically:

(𝑢) =

( 𝐻
∑

ℎ=1

(

𝑥ℎ(𝑢, 𝜃) − 𝑦ℎ(𝑢)
)2

)1∕2

(12)

where 𝑥(⋅) and 𝑦(⋅) refer to the mean of the ℎth sliding marking of the
reduced and reference PN models, respectively. Note that calculating
the metric 𝑑(𝑢) from each comparison places 𝑝(𝑟)𝑢 and 𝑝(𝑠)𝑢 , where 𝑢 =
1,… , 𝑛𝑟, will result in a vector of metrics whereby an overall metric
𝜌 = 𝜌(𝜃) can be obtained as follows:

𝜌(𝜃) =
𝑛𝑟
∑

𝑢=1

𝑑(𝑢) − min{𝑑(𝑢)}𝑛𝑟𝑢=1
∥ max{𝑑(𝑢)}𝑛𝑟𝑢=1 − min{𝑑(𝑢)}𝑛𝑟𝑢=1 ∥

(13)

where 𝜌 only depends upon the model parameters 𝜃 through 𝑑(𝑢), as
can be seen from Eq. (12). Note also that in Eq. (13), the individual
distances 𝑑(𝑢) are normalized such that their influences for the overall
metric 𝜌 vary within [0, 1].

At this standpoint, the ABC-SubSim method can be applied whereby
posterior samples of the model parameters 𝜃 and their corresponding
marking response 𝑥 = 𝑥(𝜃), are obtained as output. A pseudo-code
implementation of the PN model similarity method by ABC-SubSim has
been provided as Algorithm 1. To produce the initial subset (see Step 1
of the Algorithm 1), samples of the model parameters are drawn from
the prior PDF 𝑝(𝜃) by which  (𝑟) can be simulated via Monte Carlo
simulation to obtain 𝑥 = 𝑥(𝜃) over a time duration 𝑛. The process
continues with the production of subsets until the metric falls below
a specified threshold 𝜖, meaning that ABC-SubSim has reached the
posterior region of the model parameters. Once a posterior region in the
parameter space has been found, the error associated with the reduced
PN can be straightforwardly identified from the ABC-SubSim tolerance
value 𝜖.

In summary, the proposed method updates a number of uncertain
parameters from a proposed reduced PN such that the signal outputs
over time of a reference PN can be closely replicated. In this method,
care must be taken on which parameters to update within the reduced
PN, since it is possible to fit multiple parameters involving high model
complexity and over-fitting to the reference PN. On the contrary, using
few of them can imply very low accuracy of the marking from the
reduced model with respect to the reference one, thus obtaining mean-
ingless results from a reliability engineering point of view. Through
the evidence calculation presented in Eq. (6), a trade-off between
complexity and accuracy can be established, not only at the level of
possible parameterizations of a reduced PN model, but also at the level
of different potential reduced PN schemes with respect to a reference
one. This will be explored in the example presented in Section 6.
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Fig. 2. Parameter updating of the 𝜃1 and 𝜃2 parameters from the illustrative Petri net example of Section 5. Top panels show the results when using the classical proposal standard
deviation method, whereas the bottom ones present the results using the proposed adaptive method for scaling the standard deviation. The shaded areas drawn using yellow color
indicate the proposal’s areas.
5. Illustrative example

This section gives an example to illustrate the use of the proposed
method on a simple PN architecture. The example also illustrates the
advantages of using the proposed adaptive sampling method for the
ABC-SubSim algorithm.

To this end, the PN structure shown in Fig. 1 is considered again.
The reader is referred to Section 2.1 for a description of the PN
structure. Here, all arcs’ weights are set to 1, and the production prob-
abilities from 𝑡1 to {𝑝2, 𝑝3, 𝑝4} are chosen so that {𝜋12 = 0.9999, 𝜋13 =
0.00009, 𝜋14 = 0.00001}, respectively. The delay times of transitions 𝑡1,
𝑡2, 𝑡3 and 𝑡4 are chosen as {𝜏1 = 40, 𝜏2 = 0.05, 𝜏3 = 0.1, 𝜏4 = 10},
respectively, which are used to obtain synthetic reference data. Then,
{𝜏1, 𝜏2} are assumed to be unknown and updatable parameters using the
proposed method. Their prior distributions are assumed as uniforms,
as follows: 𝜃1 ∼  [10, 100], 𝜃2 ∼  [0.01, 1]. In this example, the delay
time of 𝑡1 is chosen to be much greater than that of 𝑡2 in the reference
case, to show the ability of the model in solving critical cases where the
algorithm has to infer parameters whose components belong to very
different ranges of values.

In this example, the places 𝑝1, 𝑝2 and 𝑝5 were considered as com-
parison places thus their markings 𝐌(𝑠)

𝑛 and 𝐌(𝑟)
𝑛 (𝜃) for the reference

and reduced PN model, respectively, were used to compute the ABC-
SubSim metric. The centroid linkage metric with one sliding region for
each signal was used for places 𝑝1 and 𝑝2. However, since that 𝑝5 is a
counter place, only its last marking was considered when calculating its
metric. The original ABC-SubSim algorithm and the one with adaptive
sampling presented in Section 2.3, were used to comparatively examine
their performance. Each ABC-SubSim run employed 𝑁 = 1000 samples
per simulation level and a maximum of eight simulation levels.

Fig. 2 shows plots of posterior samples of the 𝜃1, 𝜃2 parameters
produced at the second, fifth, and eighth simulation level of the ABC-
SubSim algorithm. The plots also depict the seeds with their accepted
and rejected proposals, along with their proposals’ areas. The proposal
area for each seed is represented by a yellow color shade ellipse whose
dimension-wise semi-axis is twice the standard deviation in that dimen-
sion, in order for the ellipse to contain 95th percentile of the proposals.
The results show that the posterior samples lie around 𝜃1 = 40 and
𝜃 = 0.05 for both, the classical proposal standard deviation method and
6

2

the proposed method to adaptive select the aforementioned algorithm
hyper-parameter. Top panels (obtained using the classical standard
deviation method) reveal that the amount of rejected samples highly
increases as the algorithm progresses towards deeper simulation levels,
which is a well-known drawback of the original ABC-SubSim algorithm.
These rejected samples, which are drawn as repeating samples, conform
the majority of samples within the final posterior PDF, thus signifi-
cantly decreasing the acceptance rate and the statistical information of
the posterior. However, posterior samples obtained using the proposed
adaptive method for the ABC-SubSim are drawn around the seeds’ area
leading to an increased acceptance rate of new samples even when the
range of values is very small, as shown in the 6th simulation level from
Fig. 2 (bottom-right panel). As overall consequence, higher resolution
for the ABC-SubSim inference is achieved by adopting lower tolerance
values 𝜖, since the statistical noise of the sampling method of the
algorithm is reduced at a minimum.

6. Case study

The previous section illustrated a case where a SPN model with two
uncertain parameters was compared by itself using synthetic data ob-
tained by taking the parameters as known. In this section, the proposed
Bayesian methodology is applied to infer the model parameters of a set
of reduced PN models based on the response of a larger reference PN
model of an engineering system.

6.1. Description of the engineering system and its maintenance model

The engineering system to be modeled corresponds to a two-pumps
system to support the pressure of a lube oil supply facility which
operates in a continuous regimen, as depicted in Fig. 3. The system
contains a main pump, that is usually in operation except when a
failure occurs whereupon a drop in pressure would be observed since
the supply flow would be less than the demand flow. In this case, an
auxiliary pump will then come into play to recover the pressure of the
system. Further details on this system along with their physical data
can be found in [51, Chapter 7].

In this case study, an insufficient system pressure is classified as
a failed system state, which can occur only if both pumps fail. The
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Fig. 3. Engineering diagram of the two pumps system considered as case study. The
diagram shows a duty/standby arrangement of the pumps with indication of the
auxiliary components of the system, like valves, starters, pressure sensor controllers,
and connections.

failure of a pump occurs when there is insufficient outflow from the
pump to maintain the oil pressure, and it is revealed through a pressure
sensor over the main pump. In this example, the back-up pump is
assumed to have unrevealed failures, since it is usually not in operation.
Both pumps are assumed to be inspected on a periodic basis whose
results can reveal either a failure or a degraded condition in any or
both pumps. Here, degradation can happen at a different rate in each
pump and is defined as a state where the pump has sufficient capacity
to support the system, but maintenance is required. Mathematically,
the pump degradation is assumed to be modeled as a two parameter
Weibull PDF representing the time to failure, namely (12, 1) for the
main pump, and (30, 2) for the auxiliary one.

After inspection, a maintenance action is activated if both pumps
are in the failed state or, one of them is in the failed state whilst
the other is in a degraded state. Another option is that any of the
pumps was in a degraded state, then an opportunistic maintenance
action is activated under a probability, which in this case study equals
0.2. After maintenance, each pump is returned to the working state,
thus recovering the overall system to normal operation. The following
assumptions are also adopted for modeling the maintenance of the
system under study:

(a) The rate of degradation of the back-up pump does not change
when the main pump fails;

(b) The pressure sensor associated with the main pump will always
immediately reveal a failed state of the main pump;

(c) The components in the remaining parts of the system are always
in the working state;

(d) Inspection is always successful in discovering a degraded or failed
state;

(e) If a degraded state is identified but not rectified in time, then a
failure can occur;

(f) If there is a failed state in either of the pumps, then maintenance
occurs as soon as a maintenance team is available.

6.2. Petri net maintenance model acting as reference

In this section, a HLPN is proposed to model the system behavior
along with its inspection and maintenance actions, as previously de-
scribed in Section 6.1. The HLPN model is depicted in Fig. 4, and it will
be used as the reference net for the reduction by ABC-SubSim numerical
experiments that will be shown further below.
7

In this HLPN, places 𝑝1 and 𝑝2 model the overall working and failed
states of the system, respectively. Since the pumps are assumed to
operate in parallel, thus both must be in the failed state for a system
failure to occur. In such a case, transition 𝑡1 immediately marks place
𝑝2. Then, if any of the pumps returns to the working state, the marking
of place 𝑝2 is removed and place 𝑝1 is marked again by either transition
𝑡2 or 𝑡3.

For the back-up pump, places 𝑝3, 𝑝4, and 𝑝5 represent the working,
degraded, and failed states, respectively. When place 𝑝9 is marked then
an inspection action is enabled which lasts until place 𝑝8 is marked. If
degradation is discovered, then place 𝑝7 is marked and maintenance
is requested. Analogously, when place 𝑝6 is marked then there is a
discovered failure of the pump and, as well, maintenance is required.

The main pump states are represented on the right hand side of the
graph. In this part of the model, places 𝑝10, 𝑝11 and 𝑝12 corresponds to
the good, degraded, and fail states, respectively. Similarly to the archi-
tecture described for the back-up pump, a token in place 𝑝15 indicates
that inspection is enabled for the main pump, which is underway until
place 𝑝14 is marked. If a degradation is discovered, then place 𝑝13 is
marked whereupon maintenance is requested.

The remaining nodes of the model govern the maintenance schedul-
ing for the pumps. Specifically, place 𝑝18 and transition 𝑡25 model the
availability of maintenance resources which produce a token in 𝑝19
indicating that maintenance is possible. When place 𝑝17 is marked then
maintenance is requested for a pump in the system due to an identified
failure in one of the pumps. A token in 𝑝22 indicates that maintenance
is available to any of the pumps to improve a degraded state, whereas,
in an analogous way, a token in 𝑝23 then indicates maintenance to
repair a failure state of any pump. If neither of the pumps are in the
failed state, then the available maintenance resources can be assigned
to repair a degraded state, which is modeled by the marking of place 𝑝21
after enabling of transitions 𝑡26 and 𝑡27. In this model, inspections are
assumed to be carried out every 6 weeks with a maintenance interval
of 3 weeks, taken both terms in average. The rest of parameters are
described in Table 5.

Initially, the system starts in the working state represented by one
token in places 𝑝1, 𝑝3, 𝑝10, 𝑝9, 𝑝15 and 𝑝18. The Monte Carlo simulation
has been used to simulate the response of the reference PN model
described above using 𝑁 = 4000 samples for every stochastic transitions
of the model. The results, which have been produced in week units, are
shown using dark line in Fig. 6 for places 𝑝1 and 𝑝2, and also in Fig. 9
for places 𝑝5 and 𝑝12.

6.3. Reduced Petri net maintenance models

This section presents three different reduced SPN models, namely
 (𝑟)
1 , (𝑟)

2 , and  (𝑟)
3 , to approximate the reference one,  (𝑠), defined in

the previous section. The reduced models are parameterized with a
set of uncertain parameters that will be described in the following
subsections, which together with their prior information, conform the
model classes 1,2, and 3. The uncertain parameters are updated
using the proposed Bayesian methodology using the marking of the
places 𝑝1, 𝑝2, 𝑝5, and 𝑝12, from  (𝑠), as data. Algorithm 1 is applied
using 𝑃0 = 0.2, 𝑁 = 4000 samples per simulation level, and a
tolerance 𝜖 = 0.035. Gaussian densities are used as proposal PDFs for the
MCMC sampling of Algorithm 1 using adaptive scaling of their standard
deviations, as proposed in Section 3.

6.3.1. Reduced model 1
Fig. 1 shows the first reduced model  (𝑟)

1 which is based on a
simple net structure of two transitions, 𝑡1 and 𝑡2, and two places, 𝑝1
and 𝑝2. This reduced SPN extracts the overall behavior of both pumps
in the system along with their maintenance and inspection strategies
to solely provide an estimate of the system states, namely working or
failed state, represented by places 𝑝1 and 𝑝2, respectively. The transition
𝑡 governs the time to total system failure whereas 𝑡 stands for the
1 2
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Fig. 4. Reference HLPN model of the case study presented in Section 6. The dashed rectangles indicate nodes representing the state of the main and back-up pumps. The
remaining places and transitions model maintenance scheduling on the system level. The dark small rectangles indicate instant transitions whereas the blue text labels provide
some explanatory information about key places.
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Table 2
Description of the transitions from the PN model shown in Fig. 1.

Transition Type Distribution Parameters Description of action

𝑡1 Stochastic Normal 𝜃1 , 20 Initiates system failure
𝑡2 Stochastic Normal 𝜃2 , 1 Initiates system repair

time to repair of the system. Both transition times, namely 𝜏1 and
𝜏2 (expressed in week units), are modeled as stochastic transitions
assumed as Gaussians, i.e., 𝜏1 ∼  (𝜃1, 20) and 𝜏2 ∼  (𝜃2, 20), where
𝜃1, 𝜃2 are considered as the uncertain parameters of this reduced model
(Table 2 provides an overview about the transitions). The prior PDFs of
the model parameters are modeled as uniform PDFs within the [0, 200]
and [0, 18] intervals, namely 𝑝(𝜃1|1) =  (0, 200) and 𝑝(𝜃2|1) =
 (0, 18), respectively. The metric values are obtained by comparing the
marking of places 𝑝1 and 𝑝2 of  (𝑠) with respect to places 𝑝1 and 𝑝2 in
the reduced one.
8

P

Fig. 5 shows the resulting posterior PDF of the uncertain param-
eters 𝜃1, 𝜃2 after the application of algorithm 1. The values within
the posterior region that represent the Maximum a posteriori (MAP)
were selected as point-valued estimates of 𝜃 that make the reduced
model better match the behavior of the reference one. These values
are 𝜃1,𝑀𝐴𝑃 = 36.9, and 𝜃2,𝑀𝐴𝑃 = 1.0 in weeks units, for transitions 𝑡1
and 𝑡2, respectively. The MAP values were then used to comparatively
reproduce the marking sequence of the output places of  (𝑟)

1 during
a 500 weeks time. Additionally, the 10th and 90th percentiles of the
results were calculated after simulating the reduced model using all
the 𝜃-samples from the posterior region given in Fig. 5. The results
are shown in Fig. 6 for reference places 𝑝1 (left panel) and 𝑝2 (right
ne). These results demonstrate that the inferred reduced model  (𝑟)

1
valuated using 𝜃𝑀𝐴𝑃 is able to capture the throughput of tokens
assing through the comparison places 𝑝1 and 𝑝2 with good accuracy.
ote also from Fig. 6 that the overall response of  (𝑟)

1 when using
ll possible model parameters values taken from the inferred posterior
DF, under-predicts the reference model response since there are some



Reliability Engineering and System Safety 222 (2022) 108365M. Chiachío et al.
Fig. 5. Scatter plot representation of posterior samples in the 𝜃-space as ABC-SubSim
output for the first reduced SPN model. On the diagonal, kernel density estimates
are shown for the marginal posterior PDF of 𝜃1 and 𝜃2 at different simulation levels,
differentiated using a color scale indicated at the right side of the plot.

Table 3
Description of the transitions from the SPN model shown in Fig. 7.

Transition Type Distribution Parameters Description of action

𝑡1 Symbolic None – Fires instantaneously
𝑡2 Symbolic None – Fires instantaneously
𝑡3 Symbolic None – Fires instantaneously
𝑡4 Stochastic Gaussian 𝜃1 , 2 Initiates failure (back-up pump)
𝑡5 Stochastic Gaussian 𝜃2 , 1 Initiates repair (back-up pump)
𝑡6 Stochastic Gaussian 𝜃3 , 1 Initiates failure (main pump)
𝑡7 Stochastic Gaussian 𝜃4 , 1 Initiates repair (main pump)

outliers which are not well covered within the 10th and 90th probabil-
ity band. The latter can be viewed as a consequence of the extremely
reduced net structure of  (𝑟)

1 with respect to the reference one, since
this model summarizes the behavior of the entire system into a single
cycle (failure–repair) of transitions for both pumps.

6.3.2. Reduced model 2
The second reduced model slightly increases the complexity of the

previous one by considering simple sub-nets for each of the pumps
in the system, specifically {𝑝3, 𝑝4, 𝑡4, 𝑡5} for the back-up pump, and
{𝑝5, 𝑝6, 𝑡6, 𝑡7} for the main one, as depicted in Fig. 7. These sub-nets are
complemented with three transitions {𝑡1, 𝑡2, 𝑡3} that govern the overall
system states, namely working and failed states, represented by places
𝑝1 and 𝑝2, respectively. Similarly to the reference model, the pumps
are operating in parallel such that both must be in the failed state for
a failure to occur.

In this reduced structure, each of the pump’s sub-net only consists of
the working and failed states, corresponding to 𝑝3 and 𝑝4 for the back-
up pump, and to 𝑝5 and 𝑝6 for the main one, respectively. Transitions
𝑡4, 𝑡5 and 𝑡6, 𝑡7 govern the times to failure and times to repair of
the respective pumps, which are assumed to be modeled as Gaussian
PDFs as follows: 𝜏4 ∼  (𝜃1, 2); 𝜏5 ∼  (𝜃2, 1); 𝜏6 ∼  (𝜃3, 1); 𝜏7 ∼
 (𝜃4, 1), where 𝜃 = {𝜃1,… , 𝜃4} are considered as the uncertain model
parameters of this model. The component-wise prior PDFs of these
uncertain parameters are known and considered as uniforms, given
by: 𝜃1 ∼  [0, 100], 𝜃2 ∼  [0, 20], 𝜃3 ∼  [0, 80] and 𝜃4 ∼  [0, 20],
respectively, where these values have been considered sufficiently large
to allow the method to obtain the posterior values within them. Ta-
ble 3 gives further information about the referred transitions. In this
model the marking sequences of places 𝐏(𝑠) = {𝑝 , 𝑝 , 𝑝 , 𝑝 } in the
9

1 2 5 12
reference model were compared with the sequences of places 𝐏(𝑟)
2 =

{𝑝1, 𝑝2, 𝑝4, 𝑝6} in the reduced model respectively, since they hold the
same interpretation. The data for the Bayesian inference are gathered
here as the vector 𝑦 =

[

𝑀(1)(𝑠)0−500,𝑀(2)(𝑠)0−500,𝑀(5)(𝑠)0−500,𝑀(12)(𝑠)0−500

]

,
where 𝑀(⋅)(𝑠)0−500 refers to the marking of a specific place of the reference
PN for a 500 weeks-period.

Algorithm 1 was used to update the uncertain parameters 𝜃 so as
to make  (𝑟)

2 (𝜃) working similar to  (𝑠). Fig. 8 shows the output of the
Bayesian inference of 𝜃 with respect to the data 𝑦 taken from  (𝑠). These
results disclose MAP values for 𝜃 given by 𝜃1,𝑀𝐴𝑃 = 11.96, 𝜃2,𝑀𝐴𝑃 =
6.07, 𝜃3,𝑀𝐴𝑃 = 4.38 and 𝜃4,𝑀𝐴𝑃 = 0.002 weeks, respectively. As with
the previous section, the reduced model was simulated using the MAP
values to comparatively obtain the marking sequences of the output
places from  (𝑟)

2 with respect to those from  (𝑠), and the results are
shown in Fig. 9. This figure also represent the 90th and 10th percentile
for the average markings sequences obtained through the use of all
posterior samples from Fig. 8. The results show that the simulations
from the reduced model can capture the response from the reference
one when performing a posterior statistical averaging from the poste-
rior samples. However, when observing the model response from the
𝜃𝑀𝐴𝑃 (in green), there are periodic peaks in the marking sequence of
the reduced model that cannot be seen in that of the reference one
(in gray). This reflects that this reduced model has limited capacity to
reliably reproduce the behavior of the reference model, perhaps due to
lack of extra nodes to better capture the system behavior including not
only failure and recovering, but also maintenance actions. The latter
will be tested in the following section.

6.3.3. Reduced model 3
The third reduced model  (𝑟)

3 considered in this study is based on
an extension of the reduced model  (𝑟)

2 presented before by adding
three extra nodes to the sub-nets on the lower left hand side and the
lower right hand side of the graph, as depicted in Fig. 10. The new
nodes correspond to {𝑡5, 𝑝5, 𝑡7} for the sub-net of the back-up pump
and to {𝑡9, 𝑝8, 𝑡11} for the one of main pump, and allow each pump
operation being modeled through three states: working, degraded, and
the failed state, respectively. As with the previous reduced models
presented above, the pumps operate in parallel such that both must
be in the failed state for a system failure to occur. The system failure
is manifested through a token in 𝑝2, otherwise the system is in the
working state, represented by one token in 𝑝1.

In this reduced model, the times to degradation and failure are
governed by the transitions 𝑡4 and 𝑡5 for the back-up pump, and by
transitions 𝑡8 and 𝑡9 for the main one. Transitions 𝑡6, 𝑡7 and 𝑡10, 𝑡11,
model the respective maintenance after a degraded and failed state
are revealed in the back-up and main pump, respectively. The time
delays associated to the aforementioned maintenance transitions are
assumed to be modeled as Gaussian PDFs as follows: 𝜏6 ∼  (𝜃1, 1); 𝜏7 ∼
 (𝜃2, 1); 𝜏10 ∼  (𝜃3, 1); 𝜏11 ∼  (𝜃4, 1), being 𝜃 = {𝜃1,… , 𝜃4} the
uncertain model parameters. Similarly to the previous reduced model,
the component-wise prior PDFs of these uncertain parameters are con-
sidered as uniforms, which in this case are given by: 𝜃1 ∼  [0, 20],
𝜃2 ∼  [0, 40], 𝜃3 ∼  [0, 40] and 𝜃4 ∼  [0, 4], respectively. Note that
the prior interval for 𝜃4 is significantly smaller than the rest, and the
reason is due to shorter repair times expected for the main pump under
failure.

Under these settings, Algorithm 1 has been applied to obtain the
posterior PDF of 𝜃 that makes the response of model  (𝑟)

3 similar to
the that from the reference one,  (𝑠). The model response is evalu-
ated through the marking sequences of places 𝐏(𝑟)

3 = {𝑝1, 𝑝2, 𝑝5, 𝑝8} in
comparison to the marking from places 𝐏(𝑠) = {𝑝1, 𝑝2, 𝑝5, 𝑝12}, in the
reference model. Likewise the previous cases, the data for the Bayesian
inference are given by the marking of the comparison places 𝐏(𝑠) over
500 weeks-period simulation, i.e, 𝑦 =

[

𝑀(1)(𝑠)0−500,𝑀(2)(𝑠)0−500,𝑀(5)(𝑠)0−500,

𝑀(12)(𝑠)
]

. The ABC-SubSim algorithm led to the posterior inference
0−500
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Fig. 6. Outputs of the evaluation of reference Petri net shown in Fig. 4 (in dark color) and the first reduced Petri net model  (𝑟)
1 , represented using green line. The results are

shown for places 𝑝1 and 𝑝2 from both PN models.
Fig. 7. Second reduced SPN model of the case study presented in Section 6. The dashed rectangles indicate nodes representing the state of the main and back-up pumps. The
dark small rectangles indicate instant transitions whereas the blue text labels provide some explanatory information about key places.
E
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results shown in Fig. 11. Note from these results that the posterior PDF
of parameters depicts a curved region around 𝜃1, 𝜃2, and 𝜃3, 𝜃4. The
latter means that these parameters (two-by-two) are highly correlated
under an inversely decreasing correspondence, which is a consequence
of the maintenance structure applied to each of the pumps, such that
the higher the maintenance time applied during the degraded state of a
pump (before the failure occurs), the lower the maintenance is required
for recovering failures. Note also that there is no clear correlations
between any of the parameters 𝜃1, 𝜃2, with respect to any from the duo
𝜃3, 𝜃4, which reflects the assumption that failure or degradation in any
of the pumps can appear and progress independently in each of them.

Finally, the MAP estimates from the posterior PDF, namely 𝜃𝑀𝐴𝑃 =
{8.99, 14.15, 9.57, 1.66} expressed in weeks units, were used to com-
paratively obtain the response of the reduced model with respect to
the reference one, as shown in Fig. 12, with a shade between the
10th and 90th percentile of the results in the background. The results
show that the reduced model follows similar average values and has a
similar level of noise to the output from the reference model. Indeed,
the average markings reveal closer matching than their corresponding
outputs from the two previous reduced models (see Fig. 6, Fig. 9).
10

r

7. Discussion

This section provides discussion on the results obtained above along
with on the limitations of the methodology.

7.1. Discussion on the results

The results obtained in the previous section have shown that the
proposed method, via ABC-SubSim algorithm, allows us obtaining re-
duced PN models whose behavior are approximately equal to the one
of a bigger reference model. Further insights about the suitability of the
three reduced PN models  (𝑟)

1 , (𝑟)
2 , and  (𝑟)

3 , are given in Table 4 under
a comparative perspective. This table also summarizes some technical
information about the reduced models and their updating procedure.

One of the main performance indicators of the reduced models is
given through the fitting error with respect to the reference one. This
can be obtained as the lowest possible distance value 𝜌 = 𝜌(𝜃) (recall
q. (13)) obtained using the posterior PDF of 𝜃. A lower fitting error
ndicates a better approximation to the reference model, and vice-versa.
n this case study, the reduced models  (𝑟)

1 to  (𝑟)
3 have been inferred

sing the ABC approach under the same tolerance value, namely 𝜖 =
.035, hence their fitting errors with respect to the marking 𝑦 from the
eference model, will be approximately the same.
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Fig. 8. Scatter plot representation of posterior samples in the 𝜃-space as ABC-SubSim output for the second reduced Petri net model. On the diagonal, kernel density estimates
are shown for the marginal posterior PDF of 𝜃1 ,… , 𝜃4 at different simulation levels, differentiated using a color scale indicated at the right side of the plot.
Table 4
Summary of the comparative results obtained in Section 7.1 for the three reduced
models considered in the case study presented in Section 6.3. The computational costs
values presented in the fifth, sixth, fourteenth, and fifteenth rows are expressed in
seconds.

 (𝑟)
1  (𝑟)

2  (𝑟)
3  (𝑠)

# of transitions/(timed transitions) 2/(2) 7/(4) 11/(8) 30/(22)
# of uncertain parameters 2 4 4 –
# of comparison places 2 4 4 –
Class evidence 0.23 0.214 0.24 –
Computational cost for inference 18,494 221,519 278,418 –
Computational cost for simulation 1.19 25.90 16.85 270.30
𝑃 (ROB)
𝑓,𝑆𝑌 𝑆 0.0290 0.0290 0.0279 0.0289

𝑃 (MAP)
𝑓,𝑆𝑌 𝑆 0.030 0.0283 0.0274 0.0289

𝑃 ∗
𝑓,𝑆𝑌 𝑆 0.0286 0.0286 0.0281 0.0289

# of uncertain parameters 2 4 4 –
# of comparison places 2 2 2 –
Class evidence 0.25 0.25 0.22 –
Computational cost for inference 22,804 160,616 121,343 –
Computational cost for simulation 1.28 15.40 14.72 270.30
𝑃 (ROB)
𝑓,𝑆𝑌 𝑆 0.0288 0.0288 0.0288 0.0289

𝑃 (MAP)
𝑓,𝑆𝑌 𝑆 0.0297 0.0279 0.0301 0.0289

𝑃 ∗
𝑓,𝑆𝑌 𝑆 0.0283 0.0281 0.0290 0.0289

Thus, a more insightful manner to compare the performance of
the three candidates is through Bayesian model class selection [38],
and particularly through their evidence calculation 𝑃𝜖(𝑦|𝑗 ) (recall
Eq. (6)), assuming that the model candidates have the same prior prob-
ability. In this case, the class candidates  , 𝑗 = 1, 2, 3 correspond to
11

𝑗

 (𝑟)
1 , (𝑟)

2 , and  (𝑟)
3 , respectively. The results shown in Table 4, indicate

that  (𝑟)
1 has higher evidence than the rest of competing candidates.

From a practical point of view, the latter implies that if a sample
response evaluation is requested from each of the reduced models,
then  (𝑟)

1 would produce, with higher probability, a marking sequence
approximately equal to data 𝑦, taken as reference. However, the latter
result should be discussed in line with the complexity of data taken
as reference for each of the candidate model classes. Note that  (𝑟)

1
is inferred taking into consideration the marking of only two places
(𝑝1 and 𝑝2), in contrast to the four places taken as reference for
 (𝑟)
2 and  (𝑟)

3 . Since the evidence computation is benefited by simpler
models [38], then a new evidence calculation is presented in Table 4
under consideration of only two reference places (𝑝1 and 𝑝2) for all
the model candidates. The results, which are presented below the
horizontal dashed line of the table and under a tolerance value of
𝜖 = 0.015, indicate that  (𝑟)

3 is the preferred model among the candidate
ones. This is because it showed the highest evidence among the three
models when considering the same number of places. Also,  (𝑟)

3 is more
explanatory since it is more descriptive to the real case example while
having a low simulation-computational cost.

The computational cost to obtain the inference of the reduced
models is also considered here for discussion. The results show that
in general, the cost of inferring a reduced PN model increases in a
non-linear manner with increasing model size. These results, which
have been obtained using an Intel® 𝑖7 3.2 GHz CPU, suggest that
inferring a reduced model with respect to a reference one can be
computationally expensive if the reduced model has some complexity in

terms of amount of PN nodes. Notwithstanding, it is worth mentioning
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Fig. 9. Outputs of the evaluation of reference Petri net  (𝑠) shown in Fig. 4 (in dark color), and the second reduced Petri net model  (𝑟)
2 , represented using green line. The results

are shown for places 𝑝1 , 𝑝2 , 𝑝5 , 𝑝12 from the reference model, and 𝑝1 , 𝑝2 , 𝑝4 , 𝑝6, from the reduced one.

Fig. 10. Third reduced SPN model of the case study presented in Section 6. The dashed rectangles indicate nodes representing the state of the main and back-up pumps. The dark
small rectangles indicate instant transitions whereas the blue text labels provide some explanatory information about key places.
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Fig. 11. Scatter plot representation of posterior samples in the 𝜃-space as ABC-SubSim output for the third reduced Petri net model. On the diagonal, kernel density estimates are
shown for the marginal posterior PDF of 𝜃1 ,… , 𝜃4 at different simulation levels, differentiated using a color scale indicated at the right side of the plot.
Table 5
Description of the transitions from the HLPN shown in Fig. 4.
Transition Type Distribution Parameters Description of action

𝑡1 Symbolic None – Fires instantaneously
𝑡2 Symbolic None – Fires instantaneously
𝑡3 Symbolic None – Fires instantaneously
𝑡4 Stochastic 2-Parameter Weibull 20, 2 Initiates degradation (back-up pump)
𝑡5 Stochastic 2-Parameter Weibull 3, 1 Initiates failure (back-up pump)
𝑡6 Symbolic None – Fires instantaneously
𝑡7 Timed (reset) Constant 0.1 Initiates maintenance on degradation (back-up pump)
𝑡8 Timed Constant 0.01 Initiates inspection (back-up pump)
𝑡9 Stochastic Gaussian 6, 0.5 Inspection delay (back-up pump)
𝑡10 Stochastic 2-Parameter Weibull 12, 1 Initiates degradation (main pump)
𝑡11 Stochastic 2-Parameter Weibull 2, 1 Initiates failure (main pump)
𝑡12 Symbolic None – Fires instantaneously
𝑡13 Timed (reset) Constant 0.1 Initiates maintenance on degradation (back-up pump)
𝑡14 Timed Constant 0.01 Initiates inspection (main pump)
𝑡15 Stochastic Gaussian 6, 0.5 Inspection delay (main pump)
𝑡16 Timed (reset) Constant 0.1 Initiates maintenance on failure (main pump)
𝑡17 Timed Constant 0.1 Initiates maintenance on failure (back-up pump)
𝑡18 Timed Constant 0.01 Request maintenance on failure (back-up pump)
𝑡19 Timed Constant 0.01 Request maintenance on degradation (back-up pump)
𝑡20 Timed Constant 0.01 Request maintenance on degradation (main pump)
𝑡21 Timed Constant 0.01 Request maintenance on failure (back-up pump)
𝑡22 Timed Constant 0.01 Request maintenance on failure (main pump)
𝑡23 Symbolic None – Fires instantaneously
𝑡24 Symbolic None – Fires instantaneously
𝑡25 Stochastic Gaussian 3, 0.25 Initiates a periodic maintenance
𝑡26 Timed Constant 0.01 Assigns maintenance resources for degraded pump state
𝑡27 Probability None 𝑝𝑟𝑜𝑏1 = 0.2 Assigns maintenance resources
𝑡28 Timed Constant 0.2 Removes maintenance resource
𝑡29 Timed Constant 0.2 Removes maintenance resource
𝑡30 Timed Constant 0.01 Removes maintenance resource
13
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Fig. 12. Outputs of the evaluation of reference Petri net  (𝑠) shown in Fig. 4 (in dark color), and the third reduced Petri net model  (𝑟)
3 , represented using green line. The results

are shown for places 𝑝1 , 𝑝2 , 𝑝5 , 𝑝12 from the reference model, and 𝑝1 , 𝑝2 , 𝑝5 , 𝑝8, from the reduced one.
Table 6
Description of the transitions from the SPN model shown in Fig. 10.
Transition Type Distribution Parameters Description of action

𝑡1 Symbolic None – Fires instantaneously
𝑡2 Symbolic None – Fires instantaneously
𝑡3 Symbolic None – Fires instantaneously
𝑡4 Stochastic 2-Parameter Weibull 30, 2 Initiates degradation (back-up pump)
𝑡5 Stochastic 2-Parameter Weibull 5, 1 Initiates failure (back-up pump)
𝑡6 Stochastic Gaussian 𝜃1 , 1 Initiates repair on degradation (back-up pump)
𝑡7 Stochastic Gaussian 𝜃2 , 1 Initiates repair on failure (back-up pump)
𝑡8 Stochastic 2-Parameter Weibull 12, 1 Initiates failure (main pump)
𝑡9 Stochastic 2-Parameter Weibull 3, 1 Initiates failure (main pump)
𝑡10 Stochastic Gaussian 𝜃3 , 1 Initiates repair on degradation (main pump)
𝑡11 Stochastic Gaussian 𝜃4 , 1 Initiates repair on failure (main pump)
that this operation is only carried out once during the model inference
for the reduction of the PN reference model.

The computational cost is also evaluated through the time required
to produce a number of independent forward simulations of each
reduced model. Table 4 shows simulation time of 1000 repetitive runs
of each corresponding model for a 500-weeks period evaluation. Note
that the computational cost of model simulation also increases in a non-
linear manner with the number of transitions, and is specially affected
by the delay time of each transition to fire. The latter explains that  (𝑟)

3 ,
whose delay times are higher than those from  (𝑟)

2 as can be seen by the
posterior 𝜃 values in Fig. 11 and also in Table 6, takes less simulation
time than the second one although it has more transitions. In any case,
14
the computational cost of simulation of any of the reduced PN models
is significantly lower than that of the reference model.

Next, the average probability of system failure for each model is
provided for comparison. The probability of system failure, denoted
here as 𝑃𝑓,𝑆𝑌 𝑆 , has been obtained as a Monte Carlo estimator through
the amount of visiting tokens in place 𝑝2 with respect to all amount of
model evaluations. 𝑃 (ROB)

𝑓,𝑆𝑌 𝑆 in Table 4 shows the robust probability of
system failure, obtained by Bayesian averaging of the model response
evaluated using the posterior samples of 𝜃 obtained through the in-
ference. Whereas, 𝑃 (MAP)

𝑓,𝑆𝑌 𝑆 and 𝑃 ∗
𝑓,𝑆𝑌 𝑆 are the average probabilities of

failure of each reduced model by adopting the maximum a posteriori
sample (𝜃MAP) and the best sample (closest to  (𝑠)), respectively. These
values have been averaged after 1000 independent runs of every PN
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model response. The results show that the third reduced model shows
the best approximation when using the MAP sample.

Finally, observe also for the third model that the parameters gov-
erning the maintenance transitions of the main pump, 𝜃3 and 𝜃4, largely
show the reduction of the delay parameter governing transition 𝑡11. The
atter corresponds to the time to repair on failure of the main pump,
nd this result is in line with expectations. Indeed, since the failure is
evealed, maintenance is expected shortly after the failure.

.2. Discussion on the methodology

The previous section provided a summary of the analysis completed
n the different reduced PN models presented in this case study, and
iscussed how this procedure can be used to rank the reduced models to
id in decision making. The proposed method overcomes bucket of lim-
tations found in the literature summarized by limitations to predefined
ules [20–23], difficulties in dealing with complexities [52,53], and
imitations to the type of transition used [20–23,52,53]. On the other
and, this section highlights the challenges faced by this methodology
long with its main limitations.

The proposed reduced PN methodology has revealed that the lower
he size of comparison places in the reference model, the greater the
evel of approximation by the reduced one. By the contrary, it is
ossible to fit every parameter in the reduced PN to gain the closest
ossible approximation to the reference one, however, the computa-
ional effort counteracts the gain made by reducing the model size.
urthermore, inferring multiple parameters can result in an scenario
hereby the reference output can be closely approximated but the
arameters might not be inline with reality. Hence, a counterbalance
etween computational efficiency and efficacy should be considered.
n this regards, a special consideration must be undertaken to the
hoice of a proper summary statistic and metric function for the model
omparison, overall in those situations where the solution space is not
mooth; for example, when a change in a parameter value causes a
pike in the metric value. A proper summary statistic could include both
he system state and the maintenance history, although this aspect is
eft as further research steps on this work.

Finally, with the reduced model, there may be dependencies that
re contained in the reference model that are not considered during the
eduction process. This could be problematic if the reduced PN alone
s used for optimization of maintenance and inspection planning. To
ddress this, the use of an ad-hoc metric for the parameter updating
rocess can be explored, like for example, the failure probability of the
ystem at each time. Another option is to combine the maintenance
ctions at each time to give a summary statistic for each proposed set
f parameter values. These potential solutions to the referred particular
ituations can be considered as desirable extensions of this research
ork.

. Concluding remarks

A novel methodology was presented to allow the reduction of the
omplexity of PN models while retaining the behavior of the models
or key outputs. Given a proposed reduced PN model, the reduction
as carried out through Approximate Bayesian Computation whereby
number of uncertain parameters from the reduced model were in-

erred based on the response of a reference PN. The inference was
erformed through an adaptive version of the ABC-SubSim algorithm
hich included a new method for sampling MCMC chain values to
void manual calibration and preliminary trials beside preserving the
tatistical quality of the samples. An illustrative example has been
rovided to help the reader to easily conceptualize the procedure, and a
ase study has been used to demonstrate some of the challenges faced in
15

real-world application. The following are some concluding remarks:
(i) The methodology can be applied to complex PN without re-
strictions (like HLPN) on the type of transitions that can be
reduced;

(ii) A set of candidate reduced models proposed by the modeler can
be assessed to give a comparative measure of their suitability;

(iii) Further work can consider combining the proposed approach with
alternative methods for quantifying the model similarity;

(iv) More research is needed to explore optimal summary statistics
to extend the application of the proposed method to extremely
complex PN models.
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