

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 20, 2017

A Framework for Online Conformance Checking

Burattin, Andrea; Carmona, Josep

Published in:
Proceedings of the 13th International Workshop on Business Process Intelligence (BPI 2017)

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Burattin, A., & Carmona, J. (2017). A Framework for Online Conformance Checking. In Proceedings of the 13th
International Workshop on Business Process Intelligence (BPI 2017)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/97180598?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/a-framework-for-online-conformance-checking(ab7a5c26-ecbb-4c3b-a28f-68607e21c6a6).html

A Framework for Online Conformance Checking

Andrea Burattin1 and Josep Carmona2

1 Technical University of Denmark, Denmark; University of Innsbruck, Austria
andbur@dtu.dk

2 Universitat Politècnica de Catalunya, Barcelona, Spain
jcarmona@cs.upc.edu

Abstract. Conformance checking – a branch of process mining – fo-
cuses on establishing to what extent actual executions of a process are
in line with the expected behavior of a reference model. Current con-
formance checking techniques only allow for a-posteriori analysis: the
amount of (non-)conformant behavior is quantified after the completion
of the process instance. In this paper we propose a framework for on-
line conformance checking : not only do we quantify (non-)conformant
behavior as the execution is running, we also restrict the computation to
constant time complexity per event analyzed, thus enabling the online
analysis of a stream of events. The framework is instantiated with ideas
coming from the theory of regions, and state similarity. An implemen-
tation is available in ProM and promising results have been obtained.

Keywords: online process mining, conformance checking, event stream.

1 Introduction

Process mining [1] represents an important research and industrial topic com-
prising the analysis of data regarding business processes in order to extract
knowledge. Within process mining, different problems are typically identified
and, in this paper, we focus on conformance checking. Conformance checking
techniques, given as input a reference process model and an execution trace,
compute the extent to which the executed actions conform the given model.
Since most information systems allow for a certain amount of flexibility and
deviations, conformance checking represents an extremely valuable tool.

All techniques available nowadays require a complete trace in order to calcu-
late their conformance. From a business point of view, however, this represents an
important limitation: if the trace is already finished, the countermeasures needed
to fix the deviation can be implemented at a very late stage (i.e., when the pro-
cess instance is already completed). In this paper, we drop such requirement and
present a technique capable of computing the conformance for running process
instances. Therefore, if a deviation from the reference behavior is observed, the
system notices immediately the problem and allows for an immediate response.
When these errors are accumulating, the “seriousness” of the process instance is
raised, thus providing stronger alerts to the process administrator. In this paper,
we focus on imperative process models, such as Petri nets.

2 Andrea Burattin and Josep Carmona

In the context of this paper, with the term online we refer to the type of input
of our technique: we assume to have an event stream which, basically, is a data
stream of events. According to [14, 4, 5], a data stream consists of an unbounded
sequence of data items which are generated at very high throughput. To cope
with such data streams, in the literature, typically the following assumptions
are made: (i) each item is assumed to contain just a small and fixed number
of attributes; (ii) algorithms processing data streams should be able to process
an infinite amount of data, without exceeding memory limits; (iii) the amount
of memory available to an algorithm is considered finite, and typically much
smaller than the data observed in a reasonable span of time; (iv) there is a small
upper bound on the time allowed to process an item, e.g. algorithms have to scale
linearly with the number of processed items: typically the algorithms work with
one pass of the data; (v) stream “concepts” (i.e. models generating data) are
assumed to be stationary or evolving. The literature reports several algorithms
for the analysis of data stream [12, 4, 13]. However, typically these works cope
with different problems, such as classification, frequency counting, time series
analysis, and changes diagnosis (concept drift detection).

In the remainder of the paper, Sec. 2 presents the state of the art. Sec. 3
describes the technical details of our proposal, while Sec. 4 presents the imple-
mentation and performance results. Sec. 5 concludes the paper.

2 Related work

In [22], authors compared an event log with a Petri net to compute fitness and ap-
propriateness measures. A different family of approaches relies on alignments [3]:
in [2] the idea is to “align” a given trace with the most similar one that can be
generated by the given model. Optimized versions have also been proposed [20,
6, 19]. All these techniques, however, cannot be applied in online settings since
they require a complete trace. The main contribution of this paper is to drop
this requirement, as we can compute the conformance during the execution of
the process, and not a-posteriori.

Online process mining has also been investigated, but just concerning the
control-flow discovery problem: algorithms generating Petri nets [7, 11, 23] as well
as Declare models [9, 10, 16] have been proposed. These approaches, however,
are not capable of checking the conformance. Mixed approaches to discovery
and guarantee conformance values with one pass over data are available [15] but
these still require a finite log with complete traces.

A related field of research is operational support. In this case, the system
is capable of providing contextual information for running process instances,
e.g. [17, 18] for the Declare context. However, as soon as a deviation is observed,
corresponding Declare constraint are marked as permanently violated. In con-
formance checking, instead, the behavior might come back to a normal state.

3 Proposed Approach

Given a process model, we want to analyze an event stream, in order to detect
(and notify to the process analyst) running cases that are deviating from the

A Framework for Online Conformance Checking 3

Construction of enriched model

(with region theory and state distance)
111

E F E G F E

EventSstream:

...

112

Online conformance checking

CostSconfigurationsSfor
deviationsSfromScompliantSbehavior

A

B

C

D 1 2
A

3B

4

C
5

C

B

6
D

Process model
into transition system

OnlineSConformance
TransitionSSystemS(OCTS)1 2

A

3B

4

C
5

C

B
6

D

B

C

D

C

B

D

D

A

B,CA

A

C

A

A

D

Fig. 1: Approach representation. Circled numbers represent the involved steps.

behavior prescribed by the model. We assume our input process model is rep-
resented as a Petri net [21] and we are going to leverage the notion of region
theory and states similarity to achieve our goal.

The strictness of the rules governing the online scenario is playing a funda-
mental role in this case. In particular, most recent approaches for conformance
checking on Petri nets are based on finding the optimal alignment between an
observed trace and the closest possible trace allowed by the model. By moving
into the online scenario, we know in advance the impossibility to achieve the
same goal (i.e., find the optimal alignment). This is due to the impracticability
of backtracking operations while analyzing an event of the stream. To avoid these
operations, we devised a two-steps approach as depicted in Fig. 1: we first (i.e.,
offline, before the analysis) embed all computations in an augmented model, and
then we perform the online analysis on such augmented model. The model exten-
sion has to provide information on how to deal with any uncompliant scenarios
and these “wrong behaviors” are associated with costs larger than 0. Then, with
such a model, it is possible to process the stream by analyzing one event at a
time in constant time and, therefore, fulfilling the requirements for online algo-
rithms. The online analysis consists of replaying the events of each trace of the
stream on the model and accumulating the costs associated with each execu-
tion. All running process instances with costs larger than 0 are deviating from
the reference model. Additionally, the larger the cost the more problematic is
the process instance.

In online scenarios, it is not always relevant to mimic the concept of align-
ments. For example, in very critical environments, we might want to immediately
raise alarms when deviations take place. In such cases, we need to extend the
model with sink states collecting all deviations. We might also associate different
costs to different sink connections, thus providing fine-grained alarm levels. In
this paper, however, we would like to leverage some alignments concepts. In or-
der to precompute sub-optimal solutions that are similar to optimal alignments,
we will use both region theory and states similarity. For example, considering the
model depicted in Fig. 2a, and corresponding reachability graph in Fig. 2b we
can highlight the corresponding 8 minimal regions (in dashed line). Informally, a
region (e.g., the set of states {2, 3} in Fig. 2b), denotes a set of states for which

4 Andrea Burattin and Josep Carmona

C E

G

B

A

D

F

(a) Petri net model

0 1
A

2
B

3C

4
D

C

5

D

C

6
E

7
G

F

(b) Reachability graph, minimal regions,
and one “extension edge” (dotted red)

Fig. 2: A simple Petri net and the corresponding reachability graph.

arcs have an homogeneous relation. Each region corresponds to a place in the
Petri net (e.g., the aforementioned region corresponds to place between tran-
sition B and D in Fig. 2a. Let’s now assume the following trace 〈A,B,C,C〉.
After executing 〈A,B,C〉 the trace reaches state 3. From this state, however,
a new execution of C (which represents a deviation from reference behavior)
should remain in state 3 since such state belongs to a region where C does not
change the behavior of the model. Therefore, we extended our transition system
with such self loop (highlighted in dotted red). Consider now a partial execution
〈A,C〉. After executing A we have uncompliant behavior and we would like to
synchronize the execution with the model again. To do that, we should connect
state 1 with a state which has a transition labeled C entering (i.e., 3 or 5). In this
case, it is important to check the “similarity” of the assumptions of two target
states. In this paper, we analyze these cases by checking the activities that lead
to the possible states and considering the most likely configuration.

Concerning the computation of regions, please note this is a very expensive
operation. However, the transition system we use as input is actually generated
from a Petri net. And, in this case, each place of the Petri net defines a region.
Therefore, given the set of reachable states and a place, all those states where
the place has a token define the corresponding region.

The rest of the paper uses these preliminary definitions:

Definition 1 (Sequence). Given the first n positive natural numbers N+
n =

{1, 2, . . . , n} and a target set A, a sequence σ is a function σ : N+
n → A. We

say that σ maps indexes to the corresponding elements of A. For simplicity, in
this text, we refer a sequence using its string interpretation: σ = 〈a1, a2, . . . , an〉,
where ai = σ(i) and ai ∈ A.

We assume typical operators are available over sequences and behave as ex-
pected. For example, given a sequence σ = 〈a1, a2, . . . , an〉 and an element a, we
have a ∈ σ (reads “element a is contained in σ”) if ∃ i ∈ N+

n such that ai = a. In
the context of this work, we refer to a trace as a sequence of events. Formally:

Definition 2 (Trace). Given a set of activities A (e.g., the tasks of a process
model), a trace T of length n is a sequence T : N+

n → A. Activities are grouped
in the same trace when they are part of the same process instance.

Please note that, in the online context, though we assume an infinite number of
traces, the length of each of them is typically assumed finite.

A Framework for Online Conformance Checking 5

Definition 3 (Event Stream). Given the event universe E = A×C, where A
is the set of activities and C is the set of possible case ids, an event stream Ψ is
an infinite sequence Ψ : N+ → E.

3.1 Construction of the Enriched Model

The input of our approach is a Petri net:

Definition 4 (Petri net). A Petri net N is a tuple N = (P, T, F) where P is
a set of places; T is a non-empty, finite, set of transitions, such that P ∪ T = ∅;
and F ⊆ (P × T) ∪ (T × P) is a flow relation.

Given a Petri net N = (P, T, F), a marking of N is a function M : P → N0

mapping each places to the number of tokens it contains. The set of all possible
markings is denoted with M.

Definition 5 (Petri net system). A Petri net system PS is a tuple PS =
(P, T, F,m0) where N = (P, T, F) represents a given a Petri net and m0 ∈M is
the initial marking of N .

As explained before, in order to compute in advance all possible configura-
tions we may have to deal with, it is necessary to construct a behavioral model
describing the different configurations and their interactions. To represent such
model, we use a labeled transition system:

Definition 6 (Labeled transition system). A labeled transition system TS
is a tuple TS = (S,Σ, δ) where S is a finite set of states; Σ is a finite alphabet;
and δ ⊆ S ×Σ × S is a state transition relation.

Converting a Petri net into a labeled transition system is a well-studied operation
and, in particular, it results in the construction of the so-called reachability graph.
The reachability graph is finite only if the starting Petri net is bounded, but
algorithms which deal with unbounded cases to create a coverability graph3 have
been proposed. The idea is to map reachable markings of the Petri net system
into states of the transition system (i.e., S represents the subset of M which
is reachable). State transitions, in turn, connect different reachable markings
and are labeled according to the Petri net transition leading to the target state.
In order to compute online conformance checking, however, we need to extend
the transition system definition in order to deal with initial state and costs.
Therefore, we define:

Definition 7 (Extended transition system). Given a transition system T =
(S,Σ, δ) we define an extended transition system as Text = (S,Σ, δ, w, s0) where
w : δ → N0 is a cost function which associates transitions to a cost, and s0 ∈ S
is an initial state.

3 The coverability graph, actually, does not represent a good transition system for
conformance purposes, as it allows for more behavior with respect to the original
Petri nets. Therefore, in this paper, we assume that the given Petri net is bounded.
This assumption is typically fulfilled in many real-world applications.

6 Andrea Burattin and Josep Carmona

Moreover, given a Petri net system PS = (P, T, F,m0), and the corresponding
transition system TS = (S,Σ, δ) (e.g., the reachability graph) we can construct
its extended transition system by considering all states, all transitions and all
labels of the transition systems and setting all initial weights to 0 (i.e., w =
{(d, 0) | d ∈ δ}) and associating si to the state corresponding to m0. On top of
an (extended) transition system, it is possible to define the concept of region.

Definition 8. Given a transition system TS = (S,Σ, δ), let S′ ⊆ S be a subset
of states and σ ∈ Σ be a letter of the alphabet. We define:

nocross(σ, S′) ≡ ∃(s1, σ, s2) ∈ δ : s1 ∈ S′ ⇔ s2 ∈ S′

enter(σ, S′) ≡ ∃(s1, σ, s2) ∈ δ : s1 6∈ S′ ∧ s2 ∈ S′

exit(σ, S′) ≡ ∃(s1, σ, s2) ∈ δ : s1 ∈ S′ ∧ s2 6∈ S′

Based on these conditions, we can define a region:

Definition 9 (Region). Given a transition system TS = (S,Σ, δ), a set of
states R ⊆ S is called region if, for all σ ∈ Σ, both these conditions are fulfilled:

– enter(σ,R)⇒ ¬nocross(σ,R) ∧ ¬ exit(σ,R);
– exit(σ,R)⇒ ¬nocross(σ,R) ∧ ¬ enter(σ,R).

Let R and R′ be regions of TS. R is minimal if there is no R′ such that R′ ⊂ R.

Informally, a region is a subset of states where all transitions with the same
label share the same enter/exit relationship. Algorithms for the identification of
minimal regions have been proposed in the literature.

An extended transition system of a Petri net allows for the replay just of
traces that conform the process and, to be general enough, we have to consider
deviations. To do so, we add additional transitions to the system, associating
them with costs larger than 0. In the end, the transition system has to allow
the execution of all possible events from any given state. We call such transition
system an online conformance transition system (OCTS):

Definition 10 (Online Conformance Transition System (OCTS)). An
extended transition system Text = (S,Σ, δ, w, si) is an OCTS if: ∀s ∈ S, ∀σ ∈ Σ
we have |δ(s, σ)| = 1.

An OCTS is always deterministic since, for each state, it has exactly one
transition for each label in our alphabet of possible transitions. An OCTS can
be used to replay traces:

Definition 11 (Replay). Given an OCTS O = (S,Σ, δ, w, si) and a (partial)
trace t = 〈t1, . . . , tn〉, a replay of trace t in O is RO

t = 〈δ1, . . . , δn〉 such that for
all (ssi , li, s

t
i) ∈ RO

t we have li = ti (i.e., the transitions of the replay correspond
to the activities of the trace) and ∀j ∈ {1, . . . , n − 1}stj = ssj+1 (i.e., the target
state of each transition corresponds to the source state of the following one). The
cost of the replay RO

t is: cost
(
RO

t

)
=
∑

d∈RO
t
w(d).

A Framework for Online Conformance Checking 7

Since OCTSs are deterministic, given an OCTS O and a trace t, the replay
RO

t is unique. Necessary additional properties of an OCTS O are: (i) given a
conformant trace t, then cost

(
RO

t

)
= 0; (ii) given a non-conformant trace t,

then cost
(
RO

t

)
> 0.

The way a transition system of a Petri net is extended into an OCTS repre-
sents how we are dealing with deviations. Different ways of dealing with devia-
tions might be implemented in this framework and, in the rest of this section,
we suggest one. Let’s, for example, consider the process in Fig. 2a with its cor-
responding reachability graph (cf. Fig. 2b) and the scenario in which the replay
reached state 1 (i.e., the trace 〈A〉 was observed). At this point, if the stream
contains activity C, there are three choices: (i) to ignore C, or to execute C by
assuming to go into state (ii) 3 or (iii) 5. In this case, we prefer to execute C to
state 3 and this is due to the “contextual” information: considering the past his-
tories of the traces leading to the two states, 3 is more similar to 1 with respect
to 5. In some other situations, instead, we’ll stay in the same state even though
we did observe an unexpected activity. This option (i.e., what we indicate with
option (i)) is considered if in any of the regions the current state belongs to there
is a transition that is labeled as the observed activity and that does not cross
the border of the region. The rationale is that the occurrence of activities that
do not cross regions are not affecting the local state of the underlying system,
and therefore it can be assumed that whilst an activity was observed, the system
remains in the current state.

A formal representation of the enrichment approach is reported in Alg. 1.
It takes as input an extended transition system (e.g., created starting from the
reachability graph), and 3 cost parameters. The procedure is structured in 3
parts: the first (line 1) is in charge of setting the costs to 0 (i.e., correct behavior)
for the transitions already in place. The second part (lines 2-5) adds to each state
the possibility to replay any activity not belonging to the process alphabet (i.e.,
∗\Σ).The third part of the algorithm (lines 6-19) is in charge of extending the set
of transitions to cope with deviations. The algorithm needs to process each state
(line 6) in order to allow the execution of any event (line 8, which filter those not
already in place). At this stage there are two options. The first case deals with
transitions that are not crossing the regions the current state belongs to (lines 7
and 9-12). In this case, we just add a self-loop (line 10) and set the proper cost
(line 11). If there’s no transition with the same label in the region, then we first
select the candidate states (line 13, those with and incoming transition labeled as
the activity we’re dealing with) and then we pick the candidate maximizing the
cosine similarity of the vector representation of the candidate with the current
state (line 14). Corresponding edges and costs (lines 15 and 16) are added to
create the OCTS.

The vectorial representation of a state s, considering the target activity
execution e, indicated as vec(s, e), consists of an n-dimensional vector, where
n = |Σ| (i.e., the size of the alphabet, which is the number of different transition
labels in the original Petri net) and where components correspond to letters of
our alphabet. Each vi, referring to letter Σi, is valued as follow:
– if Σi = e (i.e., if the letter refers to the target activity), then the value is 0;

8 Andrea Burattin and Josep Carmona

Algorithm 1: Enrich an extended transition system into an OCTS

Input: T = (S,Σ, δ, w, si): an extended transition system
cs: cost of skipping the activity
cj : cost of jumping to the next synchronous move
cu: cost of activities not in the alphabet

. Set initial costs to 0 for all conformant transitions

1 foreach d ∈ δ do w(d)← 0

. Add self loops for activities not in the alphabet

2 foreach s ∈ S do
3 δ ← δ ∪ (s, ∗ \Σ, s)
4 w ← w ∪ ((s, ∗ \Σ, s), cu)

5 end

. Add transitions to deal with deviations

6 foreach s ∈ S do
. Construct the set of states sharing a region with s

7 R←
⋃

S′∈Regions(T){s
′ ∈ S | s ∈ S′ ∧ s′ ∈ S′}

. Consider all possible following activities except those allowed by the model

8 foreach e ∈ Σ \ {e′ | (s, e′, s′) ∈ δ} do
. Check if at least 1 transition labeled e connects 2 states in the regions of s

9 if e ∈ {e′ | (ss, e′, st) ∈ δ ∧ ss ∈ R ∧ st ∈ R} then
. Option 1: Skipping the activity

10 δ ← δ ∪ (s, e, s) . Add a self loop when e is observed

11 w ← w ∪ ((s, e, s), cs) . Add proper cost for the self loop

12 else
. Option 2: Align to synchronous move

13 C ← {st | (ss, e, st) ∈ δ} . Set of candidate states

. State maximizing cosine similarity with s. Details about vec on the text

14 sgoal ← argmaxc∈C
vec(c, e) · vec(s, e)/‖vec(c, e)‖‖vec(s, e)‖

15 δ ← δ ∪ (s, e, sgoal)
16 w ← w ∪ ((s, e, sgoal), cj)

17 end

18 end

19 end

– if there exists a path from the start state to the current state s, containing
label Σi, then the value is 1;

– in all other cases, the value is 0.

Considering again the example reported in Fig. 2b, given state 1 and activity C,
we have the following representations:

A B C D E F G
[]vec(1, C) = 1 0 0 0 0 0 0

A B C D E F G
[]vec(3, C) = 1 1 0 0 0 0 0
[]vec(5, C) = 1 1 0 1 0 0 0

The cosine similarity between vec(1, C) and vec(3, C) is 0.71, whereas the simi-
larity between vec(1, C) and vec(5, C) is 0.58. For this reason, state 3 is preferred.
Therefore, the algorithm will introduce the edge with label C connecting state
1 and state 3.4

Mapping the construction of an OCTS to alignments, please note that edges
with cost 0 correspond to synchronous moves. Self loops with cost larger than
0 correspond to log moves. Those edges with cost larger than 0 that are not
self loops, correspond to model moves on silent actions (i.e., there’s a change in
the model state) followed by a synchronous move. By using such mapping an

4 The OCTS of the system reported in Fig. 2b is available at https://andrea.

burattin.net/public-files/online-conformance/octs.pdf.

A Framework for Online Conformance Checking 9

Algorithm 2: Online conformance checking

Input: O = (S,Σ, δ, w, si): the OCTS of the reference model
Ψ : event stream
m: maximum number of parallel instances

1 MO : C → S × N+ × N+ . Hash map which, given a case id, returns a tuple with a pointer to the

current state in O, the cost of the process instance so far, and the time of last update

2 forever do
3 (a, c)← observe(Ψ) . Obtain a new event from stream Ψ
4 if analyze((a, c)) then

. Obtain the replayer status for the given process instance

5 (state, cost, time)←MO(c)
6 if (state, cost, time) = ⊥ then

. There is no replayer associated, a new one is needed

7 MO(c)← (state, cost, time)← (si, 0,now)

8 end

. Fetch the transition to follow (OCTSs are deterministic: only one transition is labeled a)
9 (state, a,new-state) ∈ {(ds, σ, dt) ∈ δ | ds = si, σ = a}

10 MO(c)← (new-state, cost + w((state, a,new-state)),now) . Replay

. Cleanup the map, removing old elements

11 if |MO| > m then
12 R← argmin(c,s,c,t)∈MO

{t} . Get oldest elements in MO

13 Remove R from MO

14 end

15 end

16 end

alignment can be provided for the latest events observed. Please note, however,
this alignment might be sub-optimal.

3.2 Online conformance

Given an OCTS, the actual online conformance procedure is reported in details in
Alg. 2. Specifically, the algorithm expects an OCTS and an infinite event stream
as input, as well as the maximum number of process instances that we expect to
have in parallel. Then, the algorithm constructs a hash map MO (line 1) which,
given the case id of an observed event, returns a tuple containing, for that specific
instance, the state of the OCTS reached so far, the deviations cost until now,
and a numerical representation of the last update (e.g., the Unix timestamp).
The algorithm, then, begins the actual online procedure by repeating forever
(line 2) the main loop which consists of the observation of a new event from the
stream (line 3), a decision whether the event has to be analyzed or not (line 4)
and the actual analysis (lines 5-14).

The analysis starts obtaining the state of the current process instance from
MO (line 5). If the map does not contain information (e.g., because this is the
first event with this case id ever observed) then a new process instance is assumed
(line 7). After that, the algorithm computes which is the next state reachable
with the lowest cost (line 9) and updates the status of the current process in-
stance with the new state, new total cost, and last update time (line 10). The
last operation performed by the algorithm is a cleanup: this is necessary to keep
the memory bounded and consists in dropping all states referring to the old
executions (lines 12-13). This is necessary to keep the memory bounded and to
avoid that an infinite stream causes an infinite memory usage.

10 Andrea Burattin and Josep Carmona

40

50

60

70

80

90

100

00:00 00:10 00:20 00:30 00:40 00:50 01:00 01:10
0

50000

100000

150000

200000

250000

300000

Ev
en

ts
ip

er
is

ec
o

n
d

To
ta

lin
u

m
b

er
io

fi
ev

en
ts

Streamirunningitimei(hh:mm)

Eventsiprocessed
Eventsigenerated

Totalinumberiofieventsiproduced

Fig. 3: Performance evaluation: events generated versus the events processed.

Please note that the operations not requiring constant time are the selection
of the next state (line 9) and the removal of old elements from MO (line 12).
Since OCTS is a deterministic transition system, the former has complexity
linear on the alphabet size (i.e., the number of transitions in the original Petri
net), which is assumed to be constant over time. The latter has linear complexity
on the size of MO which, again, is constant over time. Therefore, the theoretical
computational complexity of the algorithm makes it a viable solution for online
applications.

4 Implementation and Results

The entire approach has been implemented5 in the process mining toolkit ProM.
As for other online plugins, the current implementation connects to a stream
source that emits events (via a TCP connection) and processes each of them
independently. This approach allows a strong decoupling between the source of
the events and the actual online process mining tool.

In order to assess the feasibility of our approach, we simulated the stream
of a process model comprising 26 tasks, and 20 gateways using PLG2 [8]6. We
have been able to simulate an unlimited event stream, with events referring to
the given model. Specifically, we configured PLG to generate up to 90 events
per second. Then, we tested the capabilities of our implementation, by running
the conformance checker for about 1 hour and 10 minutes. As plotted in Fig. 3,
after this period of time, 256110 events were generated. The generator, however,
was not capable of keeping the given pace (we used a standard office laptop
machine), and the system stabilized in simulating about 65 events per second. As
the chart reports, all generated events were processed in time by our prototype.
This demonstrates the actual feasibility of the approach, even in prototypical
implementations.

5 The implementation is available at https://andrea.burattin.net/public-files/
online-conformance/source.zip. It will be moved into the ProM repository.

6 The BPMN model is available at https://andrea.burattin.net/public-files/

online-conformance/model.pdf.

A Framework for Online Conformance Checking 11

(a) Main dashboard of the plugin (b) Routing of frequent errors

Fig. 4: Screenshots of the ProM plugin implementing the approach.

The ProM plugin implemented comprises a “dashboard” (cf. Fig. 4a) which
shows, on its left-hand side, the running process instances (color-coded by sever-
ity and sorted by update time or by severity). The right-hand side of the dash-
board contains system charts with number of errors every 5 seconds, number
of processed events per second, number of traces in memory, and total memory
consumption. The second component (cf. Fig. 4b) reports the frequent deviations
on top of the behavioral model.

5 Conclusion and Future Work

This paper presents the first approach to compute conformance checking for on-
line data streams. The fundamental advantage of this technique, with respect to
previous off-line approaches, is the ability to check deviations from the reference
behavior in real-time, i.e., immediately after they occurred. This way, possible
corrections can be immediately enacted. The input of the presented technique is
a Petri net, which is converted into a transition system. Such transition system
is decorated with additional arcs in order to allow for deviations. Non-zero costs
are associated with transitions representing deviations. Behavioral properties are
employed to detect the target state of deviating transitions. The whole approach
has been implemented in ProM.

We plan to continue the work presented on this paper by improving the
conversion from Petri net to transition system using more conformance-oriented
techniques as well as by exploiting contextual information (e.g., data associated
with states).

Acknowledgements. We would like to thank Jorge Munoz-Gama for discussing early

stage ideas of the approach. This work was partially funded by the Spanish Ministry for

Economy and Competitiveness (MINECO) and the EU (FEDER funds) under grant

COMMAS (TIN2013-46181-C2-1-R).

12 Andrea Burattin and Josep Carmona

References

1. van der Aalst, W.M.: Process Mining: Discovery, Conformance and Enhancement
of Business Processes. Springer Berlin / Heidelberg (2011)

2. van der Aalst, W.M., Adriansyah, A., van Dongen, B.: Replaying History on Pro-
cess Models for Conformance Checking and Performance Analysis. Wiley Interdis-
ciplinary Reviews: Data Mining and Knowledge Discovery 2(2), 182–192 (2012)

3. Adriansyah, A.: Aligning observed and modeled behavior. Phd thesis, Technische
Universiteit Eindhoven (2014)

4. Aggarwal, C.C.: Data Streams: Models and Algorithms, Advances in Database
Systems, vol. 31. Springer US, Boston, MA (2007)

5. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: Massive Online Analysis
Learning Examples. Journal of Machine Learning Research 11, 1601–1604 (2010)

6. vanden Broucke, S., Munoz-Gama, J., Carmona, J., Baesens, B., Vanthienen, J.:
Event-based Real-time Decomposed Conformance Analysis. In: Proceedings of
Confederated International Conferences: CoopIS. pp. 345–363 (2014)

7. Burattin, A.: Process Mining Techniques in Business Environments, LNBIP, vol.
207. Springer International Publishing (2015)

8. Burattin, A.: PLG2 : Multiperspective Process Randomization with Online and Of-
fline Simulations. In: Proceedings of the BPM Demo Track. CEUR-WS.org (2016)

9. Burattin, A., Cimitile, M., Maggi, F.M., Sperduti, A.: Online Discovery of Declar-
ative Process Models from Event Streams. IEEE TSC 8(6), 833–846 (2015)

10. Burattin, A., Maggi, F.M., Cimitile, M.: Lights, Camera, Action! Business Process
Movies for Online Process Discovery. In: Proceedings of TAProViz (2014)

11. Burattin, A., Sperduti, A., van der Aalst, W.M.: Control-flow Discovery from Event
Streams. In: Proceedings of IEEE CEC. pp. 2420–2427. IEEE (2014)

12. Gaber, M.M., Zaslavsky, A., Krishnaswamy, S.: Mining Data Streams: a Review.
ACM Sigmod Record 34(2), 18–26 (jun 2005)

13. Gama, J.: Knowledge Discovery from Data Streams. Chapman & Hall/CRC (2010)
14. Golab, L., Özsu, M.T.: Issues in Data Stream Management. ACM SIGMOD Record

32(2), 5–14 (jun 2003)
15. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Scalable process discovery

and conformance checking. Software & Systems Modeling pp. 1–33 (2016)
16. Maggi, F.M., Burattin, A., Cimitile, M., Sperduti, A.: Online Process Discovery to

Detect Concept Drifts in LTL-Based Declarative Process Models. In: On the Move
to Meaningful Internet Systems. pp. 94–111. Springer Berlin Heidelberg (2013)

17. Maggi, F.M., Montali, M., van der Aalst, W.M.: An operational decision support
framework for monitoring business constraints. In: Proc. of FASE (2012)

18. Maggi, F.M., Montali, M., Westergaard, M., van der Aalst, W.M.: Monitoring
Business Constraints with Linear Temporal Logic : An Approach Based on Colored
Automata. In: Proceedings BPM. pp. 132–147. Springer (2011)

19. Munoz-Gama, J.: Conformance Checking and Diagnosis in Process Mining - Com-
paring Observed and Modeled Processes. Springer (2016)

20. Munoz-Gama, J., Carmona, J., van der Aalst, W.M.: Conformance checking in the
large: Partitioning and topology. In: Proc. of BPM. pp. 130–145. Springer (2013)

21. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77(4), 541–580 (1989)

22. Rozinat, A., van der Aalst, W.M.: Conformance checking of processes based on
monitoring real behavior. Information Systems 33(1), 64–95 (2008)

23. van Zelst, S.J., van Dongen, B.F., van der Aalst, W.M.P.: Event stream-based
process discovery using abstract representations. Knowl Inf Syst (May 2017)

