545,359 research outputs found

    Evaluating how agent methodologies support the specification of the normative environment through the development process

    Full text link
    [EN] Due to the increase in collaborative work and the decentralization of processes in many domains, there is an expanding demand for large-scale, flexible and adaptive software systems to support the interactions of people and institutions distributed in heterogeneous environments. Commonly, these software applications should follow specific regulations meaning the actors using them are bound by rights, duties and restrictions. Since this normative environment determines the final design of the software system, it should be considered as an important issue during the design of the system. Some agent-oriented software engineering methodologies deal with the development of normative systems (systems that have a normative environment) by integrating the analysis of the normative environment of a system in the development process. This paper analyses to what extent these methodologies support the analysis and formalisation of the normative environment and highlights some open issues of the topic.This work is partially supported by the PROMETEOII/2013/019, TIN2012-36586-C03-01, FP7-29493, TIN2011-27652-C03-00, CSD2007-00022 projects, and the CASES project within the 7th European Community Framework Program under the grant agreement No 294931.Garcia Marques, ME.; Miles, S.; Luck, M.; Giret Boggino, AS. (2014). Evaluating how agent methodologies support the specification of the normative environment through the development process. Autonomous Agents and Multi-Agent Systems. 1-20. https://doi.org/10.1007/s10458-014-9275-zS120Cossentino, M., Hilaire, V., Molesini, A., & Seidita, V. (Eds.). (2014). Handbook on agent-oriented design processes (Vol. VIII, 569 p. 508 illus.). Berlin: Springer.Akbari, O. (2010). A survey of agent-oriented software engineering paradigm: Towards its industrial acceptance. Journal of Computer Engineering Research, 1, 14–28.Argente, E., Botti, V., Carrascosa, C., Giret, A., Julian, V., & Rebollo, M. (2011). An abstract architecture for virtual organizations: The THOMAS approach. Knowledge and Information Systems, 29(2), 379–403.Argente, E., Botti, V., & Julian, V. (2009). GORMAS: An organizational-oriented methodological guideline for open MAS. In Proceedings of AOSE’09 (pp. 440–449).Argente, E., Botti, V., & Julian, V. (2009). Organizational-oriented methodological guidelines for designing virtual organizations. In Distributed computing, artificial intelligence, bioinformatics, soft computing, and ambient assisted living. Lecture Notes in Computer Science (Vol. 5518, pp. 154–162).Boella, G., Pigozzi, G., & van der Torre, L. (2009). Normative systems in computer science—Ten guidelines for normative multiagent systems. In G. Boella, P. Noriega, G. Pigozzi, & H. Verhagen (Eds.), Normative multi-agent systems, number 09121 in Dagstuhl seminar proceedings.Boella, G., Torre, L., & Verhagen, H. (2006). Introduction to normative multiagent systems. Computational and Mathematical Organization Theory, 12(2–3), 71–79.Bogdanovych, A., Esteva, M., Simoff, S., Sierra, C., & Berger, H. (2008). A methodology for developing multiagent systems as 3d electronic institutions. In M. Luck & L. Padgham (Eds.), Agent-Oriented Software Engineering VIII (Vol. 4951, pp. 103–117). Lecture Notes in Computer Science. Berlin: Springer.Boissier, O., Padget, J., Dignum, V., Lindemann, G., Matson, E., Ossowski, S., Sichman, J., & Vazquez-Salceda, J. (2006). Coordination, organizations, institutions and norms in multi-agent systems. LNCS (LNAI) (Vol. 3913).Bordini, R. H., Fisher, M., Visser, W., & Wooldridge, M. (2006). Verifying multi-agent programs by model checking. In Autonomous agents and multi-agent systems (Vol. 12, pp. 239–256). Hingham, MA: Kluwer Academic Publishers.Botti, V., Garrido, A., Giret, A., & Noriega, P. (2011). The role of MAS as a decision support tool in a water-rights market. In Post-proceedings workshops AAMAS2011 (Vol. 7068, pp. 35–49). Berlin: Springer.Breaux, T. (2009). Exercising due diligence in legal requirements acquisition: A tool-supported, frame-based approach. In Proceedings of the IEEE international requirements engineering conference (pp. 225–230).Breaux, T. D., & Baumer, D. L. (2011). Legally reasonable security requirements: A 10-year ftc retrospective. Computers and Security, 30(4), 178–193.Breaux, T. D., Vail, M. W., & Anton, A. I. (2006). Towards regulatory compliance: Extracting rights and obligations to align requirements with regulations. In Proceedings of the 14th IEEE international requirements engineering conference, RE ’06 (pp. 46–55). Washington, DC: IEEE Computer Society.Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., & Mylopoulos, J. (2004). Tropos: An agent-oriented software development methodology. Autonomous Agents and Multi-Agent Systems, 8(3), 203–236.Cardoso, H. L., & Oliveira, E. (2008). A contract model for electronic institutions. In COIN’07: Proceedings of the 2007 international conference on Coordination, organizations, institutions, and norms in agent systems III (pp. 27–40).Castor, A., Pinto, R. C., Silva, C. T. L. L., & Castro, J. (2004). Towards requirement traceability in tropos. In WER (pp. 189–200).Chopra, A., Dalpiaz, F., Giorgini, P., & Mylopoulos, J. (2009). Modeling and reasoning about service-oriented applications via goals and commitments. ICST conference on digital business.Cliffe, O., Vos, M., & Padget, J. (2006). Specifying and analysing agent-based social institutions using answer set programming. In O. Boissier, J. Padget, V. Dignum, G. Lindemann, E. Matson, S. Ossowski, J. Sichman, & J. VĂĄzquez-Salceda (Eds.), Coordination, organizations, institutions, and norms in multi-agent systems. Lecture Notes in Computer Science (Vol. 3913, pp. 99–113). Springer. Berlin.Criado, N., Argente, E., Garrido, A., Gimeno, J. A., Igual, F., Botti, V., Noriega, P., & Giret, A. (2011). Norm enforceability in Electronic Institutions? In Coordination, organizations, institutions, and norms in agent systems VI (Vol. 6541, pp. 250–267). Springer.Dellarocas, C., & Klein, M. (2001). Contractual agent societies. In R. Conte & C. Dellarocas (Eds.), Social order in multiagent systems (Vol. 2, pp. 113–133)., Multiagent Systems, Artificial Societies, and Simulated Organizations New York: Springer.DeLoach, S. A. (2008). Developing a multiagent conference management system using the o-mase process framework. In Proceedings of the international conference on agent-oriented software engineering VIII (pp. 168–181).DeLoach, S. A., & Garcia-Ojeda, J. C. (2010). O-mase; a customisable approach to designing and building complex, adaptive multi-agent systems. International Journal of Agent-Oriented Software Engineering, 4(3), 244–280.DeLoach, S. A., Padgham, L., Perini, A., Susi, A., & Thangarajah, J. (2009). Using three aose toolkits to develop a sample design. International Journal Agent-Oriented Software Engineering, 3, 416–476.Dignum, F., Dignum, V., Thangarajah, J., Padgham, L., & Winikoff, M. (2007). Open agent systems? Eighth international workshop on agent oriented software engineering (AOSE) in AAMAS07.Dignum, V. (2003). A model for organizational interaction:based on agents, founded in logic. PhD thesis, Utrecht University.Dignum, V., Meyer, J., Dignum, F., & Weigand, H. (2003). Formal specification of interaction in agent societies. Formal approaches to agent-based systems (Vol. 2699).Dignum, V., Vazquez-Salceda, J., & Dignum, F. (2005). Omni: Introducing social structure, norms and ontologies into agent organizations. In R. Bordini, M. Dastani, J. Dix, & A. Seghrouchni (Eds.)Programming multi-agent systems. Lecture Notes in Computer Science (Vol. 3346, pp. 181–198). Berlin: Springer.d’Inverno, M., Luck, M., Noriega, P., Rodriguez-Aguilar, J., & Sierra, C. (2012). Communicating open systems, 186, 38–94.Elsenbroich, C., & Gilbert, N. (2014). Agent-based modelling. In Modelling norms (pp. 65–84). Dordrecht: Springer.Esteva, M., Rosell, B., Rodriguez, J. A., & Arcos, J. L. (2004). AMELI: An agent-based middleware for electronic institutions. In AAMAS04 (pp. 236–243).Fenech, S., Pace, G. J., & Schneider, G. (2009). Automatic conflict detection on contracts. In Proceedings of the 6th international colloquium on theoretical aspects of computing, ICTAC ’09 (pp. 200–214).Garbay, C., Badeig, F., & Caelen, J. (2012). Normative multi-agent approach to support collaborative work in distributed tangible environments. In Proceedings of the ACM 2012 conference on computer supported cooperative work companion, CSCW ’12 (pp. 83–86). New York, NY: ACM.Garcia, E., Giret, A., & Botti, V. (2011). Regulated open multi-agent systems based on contracts. In Information Systems Development (pp. 243–255).Garcia, E., Tyson, G., Miles, S., Luck, M., Taweel, A., Staa, T. V., & Delaney, B. (2012). An analysis of agent-oriented engineering of e-health systems. In 13th international eorkshop on sgent-oriented software engineering (AOSE-AAMAS).Garcia, E., Tyson, G., Miles, S., Luck, M., Taweel, A., Staa, T. V., and Delaney, B. (2013). Analysing the Suitability of Multiagent Methodologies for e-Health Systems. In Agent-Oriented Software Engineering XIII, volume 7852, pages 134–150. Springer-Verlag.Garrido, A., Giret, A., Botti, V., & Noriega, P. (2013). mWater, a case study for modeling virtual markets. In New perspectives on agreement technologies (Vol. Law, Gover, pp. 563–579). Springer.Gteau, B., Boissier, O., & Khadraoui, D. (2006). Multi-agent-based support for electronic contracting in virtual enterprises. IFAC Symposium on Information Control Problems in Manufacturing (INCOM), 150(3), 73–91.Hollander, C. D., & Wu, A. S. (2011). The current state of normative agent-based systems. Journal of Artificial Societies and Social Simulation, 14(2), 6.Hsieh, F.-S. (2005). Automated negotiation based on contract net and petri net. In E-commerce and web technologies. Lecture Notes in Computer Science (Vol. 3590, pp. 148–157).Kollingbaum, M., Jureta, I. J., Vasconcelos, W., & Sycara, K. (2008). Automated requirements-driven definition of norms for the regulation of behavior in multi-agent systems. In Proceedings of the AISB 2008 workshop on behaviour regulation in multi-agent systems, Aberdeen, Scotland, U.K., April 2008.Li, T., Balke, T., Vos, M., Satoh, K., & Padget, J. (2013). Detecting conflicts in legal systems. In Y. Motomura, A. Butler, & D. Bekki (Eds.), New Frontiers in Artificial Intelligence (Vol. 7856, pp. 174–189)., Lecture Notes in Computer Science Berlin Heidelberg: Springer.Lomuscio, A., Qu, H., & Solanki, M. (2010) Towards verifying contract regulated service composition. Journal of Autonomous Agents and Multi-Agent Systems (pp. 1–29).Lopez, F., Luck, M., & d’Inverno, M. (2006). A normative framework for agent-based systems. Computational and Mathematical Organization Theory, 12, 227–250.Lpez, F. y, Luck, M., & dInverno, M. (2006). A normative framework for agent-based systems. Computational and Mathematical Organization Theory, 12(2–3), 227–250.Mader, P., & Egyed, A. (2012). Assessing the effect of requirements traceability for software maintenance. In 28th IEEE International Conference on Software Maintenance (ICSM) (pp. 171–180), Sept 2012.Mao, X., & Yu, E. (2005). Organizational and social concepts in agent oriented software engineering. In AOSE IV. Lecture Notes in Artificial Intelligence (Vol. 3382, pp. 184–202).Meyer, J.-J. C., & Wieringa, R. J. (Eds.). (1993). Deontic logic in computer science: Normative system specification. Chichester, UK: Wiley.Okouya, D., & Dignum, V. (2008). Operetta: A prototype tool for the design, analysis and development of multi-agent organizations (demo paper). In AAMAS (pp. 1667–1678).Malone, T. W., Smith J. B., & Olson, G. M. (2001). Coordination theory and collaboration technology. Mahwah, NJ: Lawrence Erlbaum Associates.Oren, N., Panagiotidi, S., VĂĄzquez-Salceda, J., Modgil, S., Luck, M., & Miles, S. (2009). Towards a formalisation of electronic contracting environments. COIN (pp. 156–171).Osman, N., Robertson, D., & Walton, C. (2006). Run-time model checking of interaction and deontic models for multi-agent systems. In AAMAS ’06: Proceedings of the fifth international joint conference on Autonomous agents and multiagent systems (pp. 238–240). New York, NY: ACM.Pace, G., Prisacariu, C., & Schneider, G. (2007). Model checking contracts a case study. In Automated technology for verification and analysis. Lecture Notes in Computer Science (Vol. 4762, pp. 82–97).Rotolo, A., & van der Torre, L. (2011). Rules, agents and norms: Guidelines for rule-based normative multi-agent systems. RuleML Europe, 6826, 52–66.Saeki, M., & Kaiya, H. (2008). Supporting the elicitation of requirements compliant with regulations. In CAiSE ’08 (pp. 228–242).Siena, A., Mylopoulos, J., Perini, A., & Susi, A. (2009). Designing law-compliant software requirements. In Proceedings of the 28th international conference on conceptual modeling, ER ’09 (pp. 472–486).Singh, M. P. Commitments in multiagent systems: Some history, some confusions, some controversies, some prospects.Solaiman, E., Molina-Jimenez, C., & Shrivastav, S. (2003). Model checking correctness properties of electronic contracts. In Service-oriented computing—ICSOC 2003. Lecture Notes in Computer Science (Vol. 2910, pp. 303–318). Berlin: Springer.Telang, P. R., & Singh, M. P. (2009). Conceptual modeling: Foundations and applications. Enhancing tropos with commitments (pp. 417–435).VĂĄzquez-Salceda, J., Confalonieri, R., Gomez, I., Storms, P., Nick Kuijpers, S. P., & Alvarez, S. (2009). Modelling contractually-bounded interactions in the car insurance domain. DIGIBIZ 2009.ViganĂČ, F., & Colombetti, M. (2007). Symbolic model checking of institutions. In ICEC (pp. 35–44).Walton, C. D. (2007). Verifiable agent dialogues. Journal of Applied Logic, 5(2):197–213, Logic-Based Agent Verification.Winkler, S., & Pilgrim, J. (2010). A survey of traceability in requirements engineering and model-driven development. Software and Systems Modeling (SoSyM), 9(4), 529–565.Wooldridge, M., Fisher, M., Huget, M., & Parsons, S. (2002). Model checking multi-agent systems with mable. In AAMAS02 (pp. 952–959). ACM

    Mobile Application Security Platforms Survey

    Get PDF
    Nowadays Smartphone and other mobile devices have become incredibly important in every aspect of our life. Because they have practically offered same capabilities as desktop workstations as well as come to be powerful in terms of CPU (Central processing Unit), Storage and installing numerous applications. Therefore, Security is considered as an important factor in wireless communication technologies, particularly in a wireless ad-hoc network and mobile operating systems. Moreover, based on increasing the range of mobile application within variety of platforms, security is regarded as on the most valuable and considerable debate in terms of issues, trustees, reliabilities and accuracy. This paper aims to introduce a consolidated report of thriving security on mobile application platforms and providing knowledge of vital threats to the users and enterprises. Furthermore, in this paper, various techniques as well as methods for security measurements, analysis and prioritization within the peak of mobile platforms will be presented. Additionally, increases understanding and awareness of security on mobile application platforms to avoid detection, forensics and countermeasures used by the operating systems. Finally, this study also discusses security extensions for popular mobile platforms and analysis for a survey within a recent research in the area of mobile platform security

    Image Analysis Workflow for 2-D Electrophoresis Gels Based on ImageJ

    Get PDF
    A number of commercial software packages are currently available to perform digital two-dimensional electrophoresis (2D-GE) gel analysis. However, both the high cost of the commercial packages and the unavailability of a standard data analysis workflow, have prompted several groups to develop freeware systems to perform certain steps of gel analysis. Unfortunately, to the best of our knowledge none of them offer a package that performs all the steps envisaged in a 2D-GE gel analysis. Here we describe an ImageJ-based procedure, able to manage all the steps of a 2D-GE gel analysis. ImageJ is a free available image processing and analysis application developed by National Institutes of Health (NIH) and widely used in different life sciences fields as medical imaging, microscopy, western blotting and PAGE. Nevertheless no one has yet developed a procedure enabled to compare spots on 2D-GE gels. We collected all used ImageJ tools in a plug-in that allows us to perform the whole 2D-GE analysis. To test it, we performed a set of 2D-GE experiments on plasma samples from 9 patients victims of acute myocardial infarction and 8 controls, and we compared the results obtained by our procedure to those obtained using a widely diffuse commercial package, finding similar performance

    Addressing the challenges of implementation of high-order finite volume schemes for atmospheric dynamics of unstructured meshes

    Get PDF
    The solution of the non-hydrostatic compressible Euler equations using Weighted Essentially Non-Oscillatory (WENO) schemes in two and three-dimensional unstructured meshes, is presented. Their key characteristics are their simplicity; accuracy; robustness; non-oscillatory properties; versatility in handling any type of grid topology; computational and parallel efficiency. Their defining characteristic is a non-linear combination of a series of high-order reconstruction polynomials arising from a series of reconstruction stencils. In the present study an explicit TVD Runge-Kutta 3rd -order method is employed due to its lower computational resources requirement compared to implicit type time advancement methods. The WENO schemes (up to 5th -order) are applied to the two dimensional and three dimensional test cases: a 2D rising

    Exploring Maintainability Assurance Research for Service- and Microservice-Based Systems: Directions and Differences

    Get PDF
    To ensure sustainable software maintenance and evolution, a diverse set of activities and concepts like metrics, change impact analysis, or antipattern detection can be used. Special maintainability assurance techniques have been proposed for service- and microservice-based systems, but it is difficult to get a comprehensive overview of this publication landscape. We therefore conducted a systematic literature review (SLR) to collect and categorize maintainability assurance approaches for service-oriented architecture (SOA) and microservices. Our search strategy led to the selection of 223 primary studies from 2007 to 2018 which we categorized with a threefold taxonomy: a) architectural (SOA, microservices, both), b) methodical (method or contribution of the study), and c) thematic (maintainability assurance subfield). We discuss the distribution among these categories and present different research directions as well as exemplary studies per thematic category. The primary finding of our SLR is that, while very few approaches have been suggested for microservices so far (24 of 223, ?11%), we identified several thematic categories where existing SOA techniques could be adapted for the maintainability assurance of microservices

    Climate Change Impacts on Maize and Dry Bean Yields of smallholder farmers in Honduras

    Get PDF
    The rotation maize and dry bean provides the main food supply of smallholder farmers in Honduras. Crop model assessment of climate change impacts (2070?2099 compared to a 1961?1990 baseline) on a maize?dry bean rotation for several sites across a range of climatic zones and elevations in Honduras. Low productivity systems, together with an uncertain future climate, pose a high level of risk for food security. The cropping systems simulation dynamic model CropSyst was calibrated and validated upon field trail site at Zamorano, then run with baseline and future climate scenarios based upon general circulation models (GCM) and the ClimGen synthetic daily weather generator. Results indicate large uncertainty in crop production from various GCM simulations and future emissions scenarios, but generally reduced yields at low elevations by 0 % to 22 % in suitable areas for crop production and increased yield at the cooler, on the hillsides, where farming needs to reduce soil erosion with conservation techniques. Further studies are needed to investigate strategies to reduce impacts and to explore adaptation tactics

    Cluster Evaluation of Density Based Subspace Clustering

    Full text link
    Clustering real world data often faced with curse of dimensionality, where real world data often consist of many dimensions. Multidimensional data clustering evaluation can be done through a density-based approach. Density approaches based on the paradigm introduced by DBSCAN clustering. In this approach, density of each object neighbours with MinPoints will be calculated. Cluster change will occur in accordance with changes in density of each object neighbours. The neighbours of each object typically determined using a distance function, for example the Euclidean distance. In this paper SUBCLU, FIRES and INSCY methods will be applied to clustering 6x1595 dimension synthetic datasets. IO Entropy, F1 Measure, coverage, accurate and time consumption used as evaluation performance parameters. Evaluation results showed SUBCLU method requires considerable time to process subspace clustering; however, its value coverage is better. Meanwhile INSCY method is better for accuracy comparing with two other methods, although consequence time calculation was longer.Comment: 6 pages, 15 figure
    • 

    corecore