6 research outputs found

    RANSAC for Robotic Applications: A Survey

    Get PDF
    Random Sample Consensus, most commonly abbreviated as RANSAC, is a robust estimation method for the parameters of a model contaminated by a sizable percentage of outliers. In its simplest form, the process starts with a sampling of the minimum data needed to perform an estimation, followed by an evaluation of its adequacy, and further repetitions of this process until some stopping criterion is met. Multiple variants have been proposed in which this workflow is modified, typically tweaking one or several of these steps for improvements in computing time or the quality of the estimation of the parameters. RANSAC is widely applied in the field of robotics, for example, for finding geometric shapes (planes, cylinders, spheres, etc.) in cloud points or for estimating the best transformation between different camera views. In this paper, we present a review of the current state of the art of RANSAC family methods with a special interest in applications in robotics.This work has been partially funded by the Basque Government, Spain, under Research Teams Grant number IT1427-22 and under ELKARTEK LANVERSO Grant number KK-2022/00065; the Spanish Ministry of Science (MCIU), the State Research Agency (AEI), the European Regional Development Fund (FEDER), under Grant number PID2021-122402OB-C21 (MCIU/AEI/FEDER, UE); and the Spanish Ministry of Science, Innovation and Universities, under Grant FPU18/04737

    3D Reconstruction of Indoor Corridor Models Using Single Imagery and Video Sequences

    Get PDF
    In recent years, 3D indoor modeling has gained more attention due to its role in decision-making process of maintaining the status and managing the security of building indoor spaces. In this thesis, the problem of continuous indoor corridor space modeling has been tackled through two approaches. The first approach develops a modeling method based on middle-level perceptual organization. The second approach develops a visual Simultaneous Localisation and Mapping (SLAM) system with model-based loop closure. In the first approach, the image space was searched for a corridor layout that can be converted into a geometrically accurate 3D model. Manhattan rule assumption was adopted, and indoor corridor layout hypotheses were generated through a random rule-based intersection of image physical line segments and virtual rays of orthogonal vanishing points. Volumetric reasoning, correspondences to physical edges, orientation map and geometric context of an image are all considered for scoring layout hypotheses. This approach provides physically plausible solutions while facing objects or occlusions in a corridor scene. In the second approach, Layout SLAM is introduced. Layout SLAM performs camera localization while maps layout corners and normal point features in 3D space. Here, a new feature matching cost function was proposed considering both local and global context information. In addition, a rotation compensation variable makes Layout SLAM robust against cameras orientation errors accumulations. Moreover, layout model matching of keyframes insures accurate loop closures that prevent miss-association of newly visited landmarks to previously visited scene parts. The comparison of generated single image-based 3D models to ground truth models showed that average ratio differences in widths, heights and lengths were 1.8%, 3.7% and 19.2% respectively. Moreover, Layout SLAM performed with the maximum absolute trajectory error of 2.4m in position and 8.2 degree in orientation for approximately 318m path on RAWSEEDS data set. Loop closing was strongly performed for Layout SLAM and provided 3D indoor corridor layouts with less than 1.05m displacement errors in length and less than 20cm in width and height for approximately 315m path on York University data set. The proposed methods can successfully generate 3D indoor corridor models compared to their major counterpart

    Compact Environment Modelling from Unconstrained Camera Platforms

    Get PDF
    Mobile robotic systems need to perceive their surroundings in order to act independently. In this work a perception framework is developed which interprets the data of a binocular camera in order to transform it into a compact, expressive model of the environment. This model enables a mobile system to move in a targeted way and interact with its surroundings. It is shown how the developed methods also provide a solid basis for technical assistive aids for visually impaired people
    corecore