2,432 research outputs found

    Strongly Polynomial Primal-Dual Algorithms for Concave Cost Combinatorial Optimization Problems

    Get PDF
    We introduce an algorithm design technique for a class of combinatorial optimization problems with concave costs. This technique yields a strongly polynomial primal-dual algorithm for a concave cost problem whenever such an algorithm exists for the fixed-charge counterpart of the problem. For many practical concave cost problems, the fixed-charge counterpart is a well-studied combinatorial optimization problem. Our technique preserves constant factor approximation ratios, as well as ratios that depend only on certain problem parameters, and exact algorithms yield exact algorithms. Using our technique, we obtain a new 1.61-approximation algorithm for the concave cost facility location problem. For inventory problems, we obtain a new exact algorithm for the economic lot-sizing problem with general concave ordering costs, and a 4-approximation algorithm for the joint replenishment problem with general concave individual ordering costs

    Supply chain collaboration

    Get PDF
    In the past, research in operations management focused on single-firm analysis. Its goal was to provide managers in practice with suitable tools to improve the performance of their firm by calculating optimal inventory quantities, among others. Nowadays, business decisions are dominated by the globalization of markets and increased competition among firms. Further, more and more products reach the customer through supply chains that are composed of independent firms. Following these trends, research in operations management has shifted its focus from single-firm analysis to multi-firm analysis, in particular to improving the efficiency and performance of supply chains under decentralized control. The main characteristics of such chains are that the firms in the chain are independent actors who try to optimize their individual objectives, and that the decisions taken by a firm do also affect the performance of the other parties in the supply chain. These interactions among firms’ decisions ask for alignment and coordination of actions. Therefore, game theory, the study of situations of cooperation or conflict among heterogenous actors, is very well suited to deal with these interactions. This has been recognized by researchers in the field, since there are an ever increasing number of papers that applies tools, methods and models from game theory to supply chain problems

    An Integrated Strategy for a Production Planning and Warehouse Layout Problem: Modeling and Solution Approaches

    Get PDF
    We study a real-world production warehousing case, where the company always faces the challenge to find available space for their products and to manage the items in the warehouse. To resolve the problem, an integrated strategy that combines warehouse layout with the capacitated lot-sizing problem is presented, which have been traditionally treated separately in the existing literature. We develop a mixed integer linear programming model to formulate the integrated optimization problem with the objective of minimizing the total cost of production and warehouse operations. The problem with real data is a large-scale instance that is beyond the capability of optimization solvers. A novel Lagrangian relax-and-fix heuristic approach and its variants are proposed to solve the large-scale problem. The preliminary numerical results from the heuristic approaches are reported

    Modeling Industrial Lot Sizing Problems: A Review

    Get PDF
    In this paper we give an overview of recent developments in the field of modeling single-level dynamic lot sizing problems. The focus of this paper is on the modeling various industrial extensions and not on the solution approaches. The timeliness of such a review stems from the growing industry need to solve more realistic and comprehensive production planning problems. First, several different basic lot sizing problems are defined. Many extensions of these problems have been proposed and the research basically expands in two opposite directions. The first line of research focuses on modeling the operational aspects in more detail. The discussion is organized around five aspects: the set ups, the characteristics of the production process, the inventory, demand side and rolling horizon. The second direction is towards more tactical and strategic models in which the lot sizing problem is a core substructure, such as integrated production-distribution planning or supplier selection. Recent advances in both directions are discussed. Finally, we give some concluding remarks and point out interesting areas for future research

    Integration of lot sizing and scheduling models to minimize production cost and time in the automotive industry

    Get PDF
    Lot planning and production scheduling are important processes in the manufacturing industry. This study is based on the case study of automotive spare parts manufacturing firm (Firm-A), which produces various products based on customer demand. Several complex problems have been identified due to different production process flows for different products with different machine capability considerations at each stage of the production process. Based on these problems, this study proposes three integrated models that include lot planning and scheduling to minimize production costs, production times, and production costs and time simultaneously. These can be achieved by optimizing model solutions such as job order decisions and production quantities on the production process. Next, the genetic algorithm (GA) and the Taguchi approach are used to optimize the models by finding the optimal model solution for each objective. Model testing is presented using numerical examples and actual case data from Firm-A. The model testing analysis is performed using Microsoft Excel software to develop a model based on mathematical programming to formulate all three objective functions. Meanwhile, GeneHunter software is used to represent the optimization process using GA. The results show production quantity and job sequence play an essential role in reducing the cost and time of production by Rp 42.717.200,00 and 31392.82 minutes (65.4 days), respectively. The findings of the study contribute to the production management of Firm-A in helping to make decisions to reduce the time and costs of production strategically, where it provides a guideline for complex production activities

    Mixed integer programming formulations and heuristics for joint production and transportation problems.

    Get PDF
    In this thesis we consider different joint production and transportation problems. We first study the simplest two-level problem, the uncapacitated two-level production-in-series lot-sizing problem (2L-S/LS-U). We give a new polynomial dynamic programming algorithm and a new compact extended formulation for the problem and for an extension with sales. Some computational tests are performed comparing several reformulations on a NP-Hard problem containing the 2L-S/LS-U as a relaxation. We also investigate the one-warehouse multi-retailer problem (OWMR), another NP-Hard extension of the 2L-S/LS-U. We study possible ways to tackle the problem effectively using mixed integer programming (MIP) techniques. We analyze the projection of a multi-commodity reformulation onto the space of the original variables for two special cases and characterize valid inequalities for the 2L-S/LS-U. Limited computational experiments are performed to compare several approaches. We then analyze a more general two-level production and transportation problem with multiple production sites. Relaxations for the problem for which reformulations are known are identified in order to improve the linear relaxation bounds. We show that some uncapacitated instances of the basic problem of reasonable size can often be solved to optimality. We also show that a hybrid MIP heuristic based on two different MIP formulations permits us to find solutions guaranteed to be within 10% of optimality for harder instances with limited transportation capacity and/or with additional sales. For instances with big bucket production or aggregate storage capacity constraints the gaps can be larger. In addition, we study a different type of production and transportation problem in which cllients place orders with different sizes and delivery dates and the transportation is performed by a third company. We develop a MIP formulation and an algorithm with a local search procedure that allows us to solve large instances effectively.

    A mathematical model for the product mixing and lot-sizing problem by considering stochastic demand

    Get PDF
    The product-mix planning and the lot size decisions are some of the most fundamental research themes for the operations research community. The fact that markets have become more unpredictable has increaed the importance of these issues, rapidly. Currently, directors need to work with product-mix planning and lot size decision models by introducing stochastic variables related to the demands, lead times, etc. However, some real mathematical models involving stochastic variables are not capable of obtaining good solutions within short commuting times. Several heuristics and metaheuristics have been developed to deal with lot decisions problems, in order to obtain high quality results within short commuting times. Nevertheless, the search for an efficient model by considering product mix and deal size with stochastic demand is a prominent research area. This paper aims to develop a general model for the product-mix, and lot size decision within a stochastic demand environment, by introducing the Economic Value Added (EVA) as the objective function of a product portfolio selection. The proposed stochastic model has been solved by using a Sample Average Approximation (SAA) scheme. The proposed model obtains high quality results within acceptable computing times

    The trade-off between costs and carbon emissions from economic lot-sizing decisions

    Get PDF
    Logistics decisions can have a significant impact on carbon emissions, a driver of global warming. We consider emissions reductions from better utilization of a given fleet of vehicles. We study an Economic Lot-Sizing setting in which a decision-maker determines the amount to be shipped in each period, and in which demand can fluctuate. Our paper assesses the trade-off between costs and carbon emissions. The emission parameters are based on a survey of results from empirical studies and on real-life considerations. In order to model the trade-off, we introduce a bi-objective lot-sizing model to find the Pareto optimal solutions with respect to costs and emissions. Our experiments show that it is often costly to reduce carbon emissions from the cost optimal solution, compared to carbon prices in the market. The cases in which carbon emissions can be reduced most cost-efficiently are those in which carbon emissions are large relative to costs, typically because costs are the results of past investments and can be considered sunk.</p
    corecore