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Abstract

We introduce an algorithm design technique for a class of combinatorial optimization
problems with concave costs. This technique yields a strongly polynomial primal-dual
algorithm for a concave cost problem whenever such an algorithm exists for the fixed-
charge counterpart of the problem. For many practical concave cost problems, the
fixed-charge counterpart is a well-studied combinatorial optimization problem. Our
technique preserves constant factor approximation ratios, as well as ratios that depend
only on certain problem parameters, and exact algorithms yield exact algorithms.

Using our technique, we obtain a new 1.61-approximation algorithm for the concave
cost facility location problem. For inventory problems, we obtain a new exact algo-
rithm for the economic lot-sizing problem with general concave ordering costs, and a
4-approximation algorithm for the joint replenishment problem with general concave
individual ordering costs.

1 Introduction

We introduce a general technique for designing strongly polynomial primal-dual algorithms
for a class of combinatorial optimization problems with concave costs. We apply the tech-
nique to study three such problems: the concave cost facility location problem, the economic
lot-sizing problem with general concave ordering costs, and the joint replenishment problem
with general concave individual ordering costs.

In the second author’s Ph.D. thesis [Str08] (see also [MS12]), we developed a general
approach for approximating an optimization problem with a separable concave objective
by an optimization problem with a piecewise-linear objective and the same feasible set.
When we are minimizing a nonnegative cost function over a polyhedron, and would like
the resulting problem to provide a 1 + ε approximation to the original problem in optimal
cost, the size of the resulting problem is polynomial in the size of the original problem

∗This research is based on the second author’s Ph.D. thesis at the Massachusetts Institute of Technology
[Str08].

†School of Engineering and Sloan School of Management, Massachusetts Institute of Technology, 77
Massachusetts Avenue, Room 32-D784, Cambridge, MA 02139. E-mail: magnanti@mit.edu.

‡Rutgers Center for Operations Research and Rutgers Business School, Rutgers University, 640
Bartholomew Road, Room 107, Piscataway, NJ 08854. E-mail: dstrat@rci.rutgers.edu.

1



and linear in 1/ε. This bound implies that a variety of polynomial-time exact algorithms,
approximation algorithms, and polynomial-time heuristics for combinatorial optimization
problems immediately yield fully polynomial-time approximation schemes, approximation
algorithms, and polynomial-time heuristics for the corresponding concave cost problems.

However, the piecewise-linear approach developed in [Str08] cannot fully address several
difficulties involving concave cost combinatorial optimization problems. First, the approach
adds a relative error of 1+ε in optimal cost. For example, using the approach together with
an exact algorithm for the classical lot-sizing problem, we can obtain a fully polynomial-
time approximation scheme for the lot-sizing problem with general concave ordering costs.
However, there are exact algorithms for lot-sizing with general concave ordering costs [e.g.
Wag60, AP93], making fully polynomial-time approximation schemes of limited interest.

Second, suppose that we are computing near-optimal solutions to a concave cost problem
by performing a 1 + ε piecewise-linear approximation, and then using a heuristic for the
resulting combinatorial optimization problem. We are facing a trade-off between choosing
a larger value of ε and introducing an additional approximation error, or choosing a smaller
value of ε and having to solve larger combinatorial optimization problems. For example,
in [Str08], we computed near-optimal solutions to large-scale concave cost multicommodity
flow problems by performing piecewise-linear approximations with ε = 1%, and then solving
the resulting fixed-charge multicommodity flow problems with a primal-dual heuristic. The
primal-dual heuristic itself yielded an average approximation guarantee of 3.24%. Since we
chose ε = 1%, the overall approximation guarantee averaged 4.27%. If we were to choose
ε = 0.1% in an effort to lower the overall guarantee, the size of the resulting problems would
increase by approximately a factor of 10.

Third, in some cases, after we approximate the concave cost problem by a piecewise-
linear problem, the resulting problem does not reduce polynomially to the corresponding
combinatorial optimization problem. As a result, the piecewise-linear approach in [Str08]
cannot obtain fully polynomial-time approximation schemes, approximation algorithms,
and polynomial-time heuristics for the concave cost problem. For example, when we carry
out a piecewise-linear approximation of the joint replenishment problem with general con-
cave individual ordering costs, the resulting joint replenishment problem with piecewise-
linear individual ordering costs can be reduced only to an exponentially-sized classical joint
replenishment problem.

These difficulties are inherent in any piecewise-linear approximation approach, and can-
not be addressed fully without making use of the problem structure.

The technique developed in this paper yields a strongly polynomial primal-dual algo-
rithm for a concave cost problem whenever such an algorithm exists for the corresponding
combinatorial optimization problem. The resulting algorithm runs directly on the concave
cost problem, yet can be viewed as the original algorithm running on an exponentially or
infinitely-sized combinatorial optimization problem. Therefore, exact algorithms yield ex-
act algorithms, and constant factor approximation ratios are preserved. Since the execution
of the resulting algorithm mirrors that of the original algorithm, we can also expect the
aposteriori approximation guarantees of heuristics to be similar in many cases.
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1.1 Literature Review

1.1.1 Concave Cost Facility Location

In the classical facility location problem, there are m customers and n facilities. Each
customer i has a demand di > 0, and needs to be connected to an open facility to satisfy
this demand. Connecting a customer i to a facility j incurs a connection cost cijdi; we
assume that the connection costs are nonnegative and satisfy the metric inequality. Each
facility j has an associated opening cost fj ∈ R+. Let xij = 1 if customer i is connected to
facility j, and xij = 0 otherwise. Also let yj = 1 if facility j is open, and yj = 0 otherwise.
Then the total cost is

∑n
j=1 fjyj +

∑m
i=1

∑n
j=1 cijdixij . The goal is to assign each customer

to one facility, while minimizing the total cost.
The classical facility location problem is one of the fundamental problems in operations

research [CNW90, NW99]. The reference book edited by Mirchandani and Francis [MF90]
introduces and reviews the literature for a number of location problems, including classical
facility location. Since in this paper, our main contributions to facility location problems
are in the area of approximation algorithms, we next provide a brief survey of previous
approximation algorithms for classical facility location.

Hochbaum [Hoc82] showed that the greedy algorithm provides a O(log n) approxima-
tion for this problem, even when the connection costs cij are not metric. Shmoys et al.
[STA97] gave the first constant-factor approximation algorithm, with a guarantee of 3.16.
More recently, Jain et al. introduced primal-dual 1.861 and 1.61-approximation algorithms
[JMM+03]. Sviridenko [Svi02] obtained a 1.582-approximation algorithm based on LP
rounding. Mahdian et al [MYZ06] developed a 1.52-approximation algorithm that com-
bines a primal-dual stage with a scaling stage. Currently, the best known ratio is 1.4991,
achieved by an algorithm that employs a combination of LP rounding and primal-dual
techniques, due to Byrka [Byr07].

Concerning complexity of approximation, the more general problem where the connec-
tion costs need not be metric has the set cover problem as a special case, and therefore is not
approximable to within a certain logarithmic factor unless P = NP [RS97]. The problem
with metric costs does not have a polynomial-time approximation scheme unless P = NP,
and is not approximable to within a factor of 1.463 unless NP ⊆ DTIME

(
ηO(log log η)

)
[GK99].

A central feature of location models is the economies of scale that can be achieved by
connecting multiple customers to the same facility. The classical facility location problem
models this effect by including a fixed charge fj for opening each facility j. As one of
the simplest forms of concave functions, fixed charge costs enable the model to capture
the trade-off between opening many facilities in order to decrease the connection costs
and opening few facilities to decrease the facility costs. The concave cost facility location
problem generalizes this model by assigning to each facility j a nondecreasing concave cost
function φj : R+ → R+, capturing a wider variety of phenomena than is possible with
fixed charges. We assume without loss of generality that φj(0) = 0 for all j. The cost at
facility j is a function of the total demand at j, that is φj

(∑m
i=1 dixij

)
, and the total cost

is
∑n

j=1 φj

(∑m
i=1 dixij

)
+

∑m
i=1

∑n
j=1 cijdixij .

Researchers have studied the concave cost facility location problem since at least the
1960’s [KH63, FLR66]. Since it contains classical facility location as a special case, the

3



previously mentioned complexity results hold for this problem—the more general non-metric
problem cannot be approximated to within a certain logarithmic factor unless P = NP,
and the metric problem cannot be approximated to within a factor of 1.463 unless NP ⊆
DTIME

(
ηO(log log η)

)
.

To the best of our knowledge, previously the only constant factor approximation al-
gorithm for concave cost facility location was obtained by Mahdian and Pal [MP03], who
developed a 3 + ε approximation algorithm based on local search.

When the concave cost facility location problem has uniform demands, that is d1 = d2 =
· · · = dm, a wider variety of results become available. Hajiaghayi et al. [HMM03] obtained
a 1.861-approximation algorithm. A number of results become available due to the fact
that concave cost facility location with uniform demands can be reduced polynomially to
classical facility location. For example, Hajiaghayi et al. [HMM03] and Mahdian et al.
[MYZ06] described a 1.52-approximation algorithm.

In the second author’s Ph.D. thesis [Str08] (see also [MS12]), we obtain a 1.4991 + ε
approximation algorithm for concave cost facility location by using piecewise-linear approx-
imation. The running time of this algorithm depends polynomially on 1/ε; when ε is fixed,
the running time is not strongly polynomial.

Independently, Romeijn et al. [RSSZ10] developed strongly polynomial 1.61 and 1.52-
approximation algorithms for this problem, each with a running time of O(n4 log n). Here
n is the higher of the number of customers and the number of facilities. They consider
the algorithms for classical facility location from [JMM+03, MYZ06] through a greedy
perspective. Since this paper uses a primal-dual perspective, establishing a connection
between the research of Romeijn et al. and ours is an interesting question.

1.1.2 Concave Cost Lot-Sizing

In the classical lot-sizing problem, we have n discrete time periods, and a single item
(sometimes referred to as a product, or commodity). In each time period t = 1, . . . , n,
there is a demand dt ∈ R+ for the product, and this demand must be supplied from
product ordered at time t, or from product ordered at a time s < t and held until time t.
In the inventory literature this requirement is known as no backlogging and no lost sales.
The cost of placing an order at time t consists of a fixed cost ft ∈ R+ and a per-unit cost
ct ∈ R+: ordering ξt units costs ft + ctξt. Holding inventory from time t to time t + 1
involves a per-unit holding cost ht ∈ R+: holding ξt units costs htξt. The goal is to satisfy
all demand, while minimizing the total ordering and holding cost.

The classical lot-sizing problem is one of the basic problems in inventory management
and was introduced by Manne [Man58], and Wagner and Whitin [WW58]. The literature
on lot-sizing is extensive and here we provide only a brief survey of algorithmic results; for a
broader overview, the reader may refer to the book by Pochet and Wolsey [PW06]. Wagner
and Whitin [WW58] provided a O(n2) algorithm under the assumption that ct ≤ ct−1+ht−1;
this assumption is also known as the Wagner-Whitin condition, or the non-speculative
condition. Zabel [Zab64], and Eppen et al [EGP69] obtained O(n2) algorithms for the
general case. Federgruen and Tzur [FT91], Wagelmans et al. [WvHK92], and Aggarwal
and Park [AP93] independently obtained O(n log n) algorithms for the general case.

Krarup and Bilde [KB77] showed that integer programming formulation used in Section
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3 is integral. Levi et al. [LRS06] also showed that this formulation is integral, and gave a
primal-dual algorithm to compute an optimal solution. (They do not evaluate the running
time of their algorithm.)

The concave cost lot-sizing problem generalizes classical lot-sizing by replacing the fixed
and per-unit ordering costs ft and ct with nondecreasing concave cost functions φt : R+ →
R+. The cost of ordering ξt units at time t is now φt(ξt). We assume without loss of
generality that φt(0) = 0 for all t. This problem has also been studied since at least the
1960’s. Wagner [Wag60] obtained an exact algorithm for this problem. Aggarwal and Park
[AP93] obtain another exact algorithm with a running time of O(n2).

1.1.3 Concave Cost Joint Replenishment

In the classical joint replenishment problem (JRP), we have n discrete time periods, and
K items (which may also be referred to as products, or commodities). For each item k, the
set-up is similar to the classical lot-sizing problem. There is a demand dk

t ∈ R+ of item k in
time period t, and the demand must be satisfied from an order at time t, or from inventory
held from orders at times before t. There is a per-unit cost hk

t ∈ R+ for holding a unit
of item k from time t to t + 1. For each order of item k at time t, we incur a fixed cost
fk ∈ R+. Distinguishing the classical JRP from K separate classical lot-sizing problems
is the fixed joint ordering cost—for each order at time t, we pay a fixed cost of f0 ∈ R+,
independent of the number of items or units ordered at time t. Note that f0 and fk do
not depend on the time t. The goal is to satisfy all demand, while minimizing the total
ordering and holding cost.

The classical JRP is a basic model in inventory theory [Jon87, AE88]. The problem
is NP-hard [AJR89]. When the number of items or number of time periods is fixed, the
problem can be solved in polynomial time [Zan66, Vei69]. Federgruen and Tzur [FT94]
developed a heuristic that computes 1 + ε approximate solutions provided certain input
parameters are bounded. Shen et al [SSLT] obtained a O(log n + log K) approximation
algorithm for the one-warehouse multi-retailer problem, which has the classical JRP as a
special case. Levi et al. [LRS06] provided the first constant factor approximation algo-
rithm for the classical JRP, a 2-approximation primal-dual algorithm. Levi et al. [LRS05]
obtained a 2.398-approximation algorithm for the one-warehouse multi-retailer problem.
Levi and Sviridenko [LS06] improved the approximation guarantee for the one-warehouse
multi-retailer problem to 1.8.

The concave cost joint replenishment problem generalizes the classical JRP by re-
placing the fixed individual ordering costs fk by nondecreasing concave cost functions
φk : R+ → R+. We assume without loss of generality that φk(0) = 0 for all k. The methods
employed by Zangwill [Zan66] and Veinott [Vei69] for the classical JRP with a fixed number
of items or fixed number of time periods can also be employed on the concave cost JRP.
We are not aware of results for the concave cost JRP that go beyond those available for the
classical JRP. Since prior to the work of Levi et al. [LRS06], a constant factor approxima-
tion algorithm for the classical JRP was not known, we conclude that no constant factor
approximation algorithms are known for the concave cost JRP.
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1.2 Our Contribution

In Section 2, we develop our algorithm design technique for the concave cost facility location
problem. In Section 2.1, we describe preliminary concepts. In Sections 2.2 and 2.3, we
obtain the key technical insights on which our approach is based. In Section 2.4, we obtain
a strongly polynomial 1.61-approximation algorithm for concave cost facility location with
a running time of O(m3n + mn log n). We can also obtain a strongly polynomial 1.861-
approximation algorithm with a running time of O(m2n + mn log n). Here m denotes the
number of customers and n the number of facilities.

In Section 3, we apply our technique to the concave cost lot-sizing problem. We first
adapt the algorithm of Levi et al. [LRS06] to work for the classical lot-sizing problem as
defined in this paper. Levi et al. derive their algorithm in a slightly different setting that
is neither a generalization nor a special case of the setting in this paper. In Section 3.1,
we obtain a strongly polynomial exact algorithm for concave cost lot-sizing with a running
time of O(n2). Here n is the number of time periods. While the running time matches
that of the fastest previous algorithm [AP93], our main goal is to use this algorithm as
a stepping stone in the development of our approximation algorithm for the concave cost
JRP in the following section.

In Section 4, we apply our technique to the concave cost JRP. We first describe the
difficulty in using piecewise-linear approximation on the concave cost JRP. We then intro-
duce a more general version of the classical JRP, which we call generalized JRP, and an
exponentially-sized integer programming formulation for it. In Section 4.1, using the 2-
approximation algorithm of Levi et al. [LRS06] as the basis, we obtain an algorithm for the
generalized JRP that provides a 4-approximation guarantee and has exponential running
time. In Section 4.2, we obtain a strongly polynomial 4-approximation algorithm for the
concave cost JRP.

2 Concave Cost Facility Location

We first develop our technique for concave cost facility location, and then apply it to other
problems. We begin by describing the 1.61-approximation algorithm for classical facility
location due to Jain et al. [JMM+03]. We assume the reader is familiar with the primal-dual
method for approximation algorithms [see e.g. GW97].

Let [n] = {1, . . . , n}. The classical facility location problem, defined in Section 1.1.1,
can be formulated as an integer program as follows:

min
n∑

j=1

fjyj +
m∑

i=1

n∑

j=1

cijdixij , (1a)

s.t.
n∑

j=1

xij = 1, i ∈ [m], (1b)

0 ≤ xij ≤ yj , i ∈ [m], j ∈ [n], (1c)
yj ∈ {0, 1}, j ∈ [n]. (1d)

Recall that fj ∈ R+ are the facility opening costs, cij ∈ R+ are the costs of connecting
customers to facilities, and di ∈ R+ are the customer demands. We assume that the
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connection costs cij obey the metric inequality, and that the demands di are positive. Note
that we do not need the constrains xij ∈ {0, 1}, since for any fixed y ∈ {0, 1}n, the resulting
feasible polyhedron is integral.

Consider the linear programming relaxation of problem (1) obtained by replacing the
constraints yj ∈ {0, 1} with yj ≥ 0. The dual of this LP relaxation is:

max
m∑

i=1

vi, (2a)

s.t. vi ≤ cijdi + wij , i ∈ [m], j ∈ [n], (2b)
m∑

i=1

wij ≤ fj , j ∈ [n], (2c)

wij ≥ 0, i ∈ [m], j ∈ [n]. (2d)

Since wij do not appear in the objective, we can assume that they are as small as possible
without violating constraint (2b). In other words, we assume the invariant wij = max{0, vi−
cijdi}. We will refer to dual variable vi as the budget of customer i. If vi ≥ cijdi, we say
that customer i contributes to facility j, and wij is its contribution. The total contribution
received by a facility j is

∑m
i=1 wij . A facility j is tight if

∑m
i=1 wij = fj and over-tight if∑m

i=1 wij > fj .
The primal complementary slackness constraints are:

xij(vi − cijdi − wij) = 0, i ∈ [m], j ∈ [n], (3a)

yj

(
n∑

i=1

wij − fj

)
= 0, j ∈ [n]. (3b)

Suppose that (x, y) is an integral primal feasible solution, and (v, w) is a dual feasible
solution. Then, constraint (3a) says that customer i can connect to facility j (i.e. xij = 1)
in the primal solution only if j is the closest to i with respect to the modified connection
costs cij + wij/di. Constraint (3b) says that facility j can be opened in the primal solution
(i.e. yj = 1) only if it is tight in the dual solution.

The algorithm of Jain et al. starts with dual feasible solution (v, w) = 0 and iteratively
updates it, while maintaining dual feasibility and increasing the dual objective. (The in-
crease in the dual objective is not necessarily monotonic.) At the same time, guided by the
primal complementary slackness constraints, the algorithm constructs an integral primal
solution. The algorithm concludes when the integral primal solution becomes feasible; at
this point the dual feasible solution provides a lower bound on the optimal value.

We introduce the notion of time, and associate to each step of the algorithm the time
when it occurs. In the algorithm, we denote the time by t.
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Algorithm FLPD(m,n ∈ Z+; c ∈ Rmn
+ , f ∈ Rn

+, d ∈ Rm
+ )

(1) Start at time t = 0 with the dual solution (v, w) = 0. All facilities are
closed and all customers are unconnected, i.e. (x, y) = 0.

(2) While there are unconnected customers:
(3) Increase t continuously. At the same time increase vi and wij for un-

connected customers i so as to maintain vi = tdi and wij = max{0, vi−
cijdi}. The increase stops when a closed facility becomes tight, or an
unconnected customer begins contributing to an open facility.

(4) If a closed facility j became tight, open it. For each customer i that
contributes to j, connect i to j, set vi = cijdi, and set wij′ = max{0, vi−
cij′di} for all facilities j′.

(5) If an unconnected customer i began contributing to an open facility j,
connect i to j.

(6) Return (x, y) and (v, w).

In case of a tie between tight facilities in step (4), between customers in step (5), or
between steps (4) and (5), we break the tie arbitrarily. Depending on the customers that
remain unconnected, in the next iteration of loop (2), another one of the facilities involved
in the tie may open immediately, or another one of the customers involved in the tie may
connect immediately.

Theorem 1 (JMM+03). Algorithm FLPD is a 1.61-approximation algorithm for the clas-
sical facility location problem.

Note that the integer program and the algorithm in our presentation are different from
those in [JMM+03]. However both the integer program and the algorithm are equivalent
to those in the original presentation.

2.1 The Technique

The concave cost facility location problem, also defined in Section 1.1.1, can be written as
a mathematical program:

min
n∑

j=1

φj

(
m∑

i=1

dixij

)
+

m∑

i=1

n∑

j=1

cijdixij , (4a)

s.t.
n∑

j=1

xij = 1, i ∈ [m], (4b)

xij ≥ 0, i ∈ [m], j ∈ [n]. (4c)

Here, φj : R+ → R+ are the facility cost functions, with each function being concave
nondecreasing. Assume without loss of generality that φj(0) = 0 for all cost functions.
We omit the constraints xij ∈ {0, 1}, which are automatically satisfied at any vertex of
the feasible polyhedron. Since the objective is concave, this problem always has a vertex
optimal solution [HH61].

Suppose that the concave functions φj are piecewise linear on (0,+∞) with P pieces.
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The functions can be written as

φj(ξj) =

{
min{fjp + sjpξj : p ∈ [P ]}, ξj > 0,

0, ξj = 0.
(5)

As is well-known [e.g. FLR66], in this case problem (4) can be written as the following
integer program:

min
n∑

j=1

P∑

p=1

fjpyjp +
m∑

i=1

n∑

j=1

P∑

p=1

(cij + sjp)dixijp, (6a)

s.t.
n∑

j=1

P∑

p=1

xijp = 1, i ∈ [m], (6b)

0 ≤ xijp ≤ yjp, i ∈ [m], j ∈ [n], p ∈ [P ], (6c)
yjp ∈ {0, 1}, j ∈ [n], p ∈ [P ]. (6d)

This integer program is a classical facility location problem with Pn facilities and m cus-
tomers. Every piece p in the cost function φj of every facility j in problem (4) corresponds
to a facility {j, p} in this problem. The new facility has opening cost fjp. The set of cus-
tomers is the same, and the connection cost from facility {j, p} to customer i is cij + sjp.
Note that the new connection costs again satisfy the metric inequality.

We now return to the general case, when the functions φj need not be piecewise linear.
Assume that φj are given by an oracle that returns the function value φj(ξj) and derivative
φ′j(ξj) in time O(1) for ξj > 0. If the derivative at ξj does not exist, the oracle returns the

right derivative, and we denote φ′j(ξj) = limζ→ξj+
φj(ζ)−φj(ξj)

ζ−ξj
. The right derivative always

exists at ξj > 0, since φj is concave on [0, +∞).
We interpret each concave function φj as a piecewise-linear function with an infinite

number of pieces. For each p > 0, we introduce a tangent fjp + sjpξj to φj at p, with

sjp = φ′j(p), fjp = φj(p)− psjp. (7)

We also introduce a tangent fj0 + sj0ξj to φj at 0, with fj0 = limp→0+ fjp and sj0 =
limp→0+ sjp. The limit limp→0+ fjp is finite because fjp are nondecreasing in p and bounded
from below. The limit limp→0+ sjp is either finite or +∞ because sjp are nonincreasing in
p, and we assume that this limit is finite.

Our technique also applies when limp→0+ sjp = +∞, in which case we introduce tangents
to φj only at points p > 0, and then proceed in similar fashion. In some computational
settings, using derivatives is computationally expensive. In such cases, we can assume that
the demands are rational, and let di = d′i

d′′i
with d′′i > 0, and d′i and d′′i coprime integers.

Also let ∆ = 1
d′′1d′′2 ...d′′m

. Then, we can use the quantity φj(bξj+∆c)−φj(bξjc)
∆ instead of φ′j(ξj)

throughout.
The functions φj can now be expressed as:

φj(ξj) =

{
min{fjp + sjpξj : p ≥ 0}, ξj > 0,

0, ξj = 0.
(8)
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When φj is linear on an interval [ζ1, ζ2], all points p ∈ [ζ1, ζ2) yield the same tangent, that
is (fjp, sjp) = (fjq, sjq) for any p, q ∈ [ζ1, ζ2). For convenience, we consider the tangents
(fjp, sjp) for all p ≥ 0, regardless of the shape of φj . Sometimes, we will refer to a tangent
(fjp, sjp) by the point p that gave rise to it.

We apply formulation (6), and obtain a classical facility location problem with m cus-
tomers and an infinite number of facilities. Each tangent p to cost function φj of facility j
in problem (4) corresponds to a facility {j, p} in the resulting problem. Due to their origin,
we will sometimes refer to facilities in the resulting problem as tangents.

The resulting integer program is:

min
n∑

j=1

∑

p≥0

fjpyjp +
m∑

i=1

n∑

j=1

∑

p≥0

(cij + sjp)dixijp, (9a)

s.t.
n∑

j=1

∑

p≥0

xijp = 1, i ∈ [m], (9b)

0 ≤ xijp ≤ yjp, i ∈ [m], j ∈ [n], p ≥ 0, (9c)
yjp ∈ {0, 1}, j ∈ [n], p ≥ 0. (9d)

Of course, we cannot run Algorithm FLPD on this problem directly, as it is infinitely-sized.
Instead, we will show how to execute Algorithm FLPD on this problem implicitly. Formally,
we will devise an algorithm that takes problem (4) as input, runs in polynomial time, and
produces the same assignment of customers to facilities as if Algorithm FLPD were run on
problem (9). Thereby, we will obtain a 1.61-approximation algorithm for problem (4). We
will call the new algorithm ConcaveFLPD.

The LP relaxation of problem (9) is obtained by replacing the constraints yjp ∈ {0, 1}
with yjp ≥ 0. The dual of the LP relaxation is:

max
m∑

i=1

vi, (10a)

s.t. vi ≤ (cij + sjp)di + wijp, i ∈ [m], j ∈ [n], p ≥ 0, (10b)
m∑

i=1

wijp ≤ fjp, j ∈ [n], p ≥ 0, (10c)

wijp ≥ 0, i ∈ [m], j ∈ [n], p ≥ 0. (10d)

Since the LP relaxation and its dual are infinitely-sized, the strong duality property does
not hold automatically, as in the finite LP case. However, we do not need strong duality
for our approach. We rely only on the fact that the optimal value of integer program (9) is
at least that of its LP relaxation, and on weak duality between the LP relaxation and its
dual.

2.2 Analysis of a Single Facility

In this section, we prove several key lemmas that will enable us to execute Algorithm
FLPD implicitly. We prove the lemmas in a simplified setting when problem (4) has only

10



one facility, and all connection costs cij are zero. To simplify the notation, we omit the
facility subscript j.

Imagine that we are at the beginning of step (3) of the algorithm. To execute this step,
we need to compute the time when the increase in the dual variables stops. The increase
may stop because a closed tangent became tight, or because an unconnected customer
began contributing to an open tangent. We assume that there are no open tangents, which
implies that the increase stops because a closed tangent became tight.

Let t = 0 at the beginning of the step, and imagine that t is increasing to +∞. The
customer budgets start at vi ≥ 0 and increase over time at rates δi. At time t, the budget
for customer i has increased to vi + tδi. Connected customers are modeled by taking δi = 0,
and unconnected customers by taking δi = di. Denote the set of connected customers by
C and the set of unconnected customers by U , and let µ = |U |.

First, we consider the case when all customers have zero starting budgets.

Lemma 1. If vi = 0 for i ∈ [m], then tangent p∗ =
∑

i∈U di becomes tight first, at time
t∗ = sp∗ + fp∗

p∗ . If there is a tie, it is between at most two tangents.

Proof. A given tangent p becomes tight at time sp + fp∑
i∈U di

. Therefore,

p∗ = argmin
p≥0

{
sp +

fp∑
i∈U di

}
= argmin

p≥0

{
sp

∑

i∈U

di + fp

}
. (11)

The quantity sp
∑

i∈U di + fp can be viewed as the value of the affine function fp + spξ at
ξ =

∑
i∈U di. Since fp + spξ is tangent to φ, and φ is concave,

fp + sp

∑

i∈U

di ≥ φ

(∑

i∈U

di

)
for p ≥ 0. (12)

On the other hand, for tangent p∗ =
∑

i∈U di, we have fp∗ + sp∗
∑

i∈U di = φ
(∑

i∈U di

)
.

Therefore, tangent p∗ becomes tight first, at time t∗ = sp∗ + fp∗
p∗ . (See Figure 1.)

Concerning ties, for a tangent p to become tight first, it has to satisfy fp +sp
∑

i∈U di =
φ
(∑

i∈U di

)
, or in other words it has to be tangent to φ at

∑
i∈U di. We consider two cases.

First, let ζ2 be as large as possible so that φ is linear on [p∗, ζ2]. Then, any point p ∈ [p∗, ζ2)
yields the same tangent as p∗, that is (fp, sp) = (fp∗ , sp∗). Second, let ζ1 be as small as
possible so that φ is linear on [ζ1, p

∗]. Then, any point p ∈ [ζ1, p
∗) yields the same tangent

as ζ1, that is (fp, sp) = (fζ1 , sζ1). Tangent ζ1 is also tangent to φ at
∑

i∈U di, and may
be different from tangent p∗. Tangents p 6∈ [ζ1, ζ2] have fp + sp

∑
i∈U di > φ

(∑
i∈U di

)
.

Therefore, in a tie, at most two tangents, ζ1 and p∗, become tight first.

Next, we return to the more general case when customers have nonnegative starting
budgets. Define

pi(t) = min{p ≥ 0 : vi + tδi ≥ spdi}, i ∈ [m], (13)

If vi + tδi < spdi for every p ≥ 0, let pi(t) = +∞. Otherwise, the minimum is well-defined,
since sp is right-continuous in p.

11



p ∑

i∈U di

fp + sp

∑

i∈U di

φ
(
∑

i∈U di

)

ξ

φ(ξ)

0

Figure 1: Illustration of the proof of Lemma 1.

Intuitively, pi(t) is the leftmost tangent to which customer i is contributing at time
t. Note that sp is decreasing in p, since φ is a concave function. Therefore, customer i
contributes to every tangent to the right of pi(t), and does not contribute to any tangent
to the left of pi(t). For any two customers i and j,

(vi + tδi)/di > (vj + tδj)/dj ⇒ pi(t) ≤ pj(t), (14a)
(vi + tδi)/di = (vj + tδj)/dj ⇒ pi(t) = pj(t), (14b)
(vi + tδi)/di < (vj + tδj)/dj ⇒ pi(t) ≥ pj(t). (14c)

Assume without loss of generality that the set of customers is ordered so that customers
1, . . . , µ are unconnected, customers µ + 1, . . . , m are connected, and

v1/d1 ≥ v2/d2 ≥ · · · ≥ vµ/dµ, (15a)
vµ+1/dµ+1 ≥ vµ+2/dµ+2 ≥ · · · ≥ vm/dm. (15b)

Note that (vi + tδi)/di = vi/di for connected customers, and (vi + tδi)/di = vi/di + t for
unconnected ones. By property (14), at all times t, we have p1(t) ≤ p2(t) ≤ · · · ≤ pµ(t) and
pµ+1(t) ≤ pµ+2(t) ≤ · · · ≤ pm(t). As t increases, pi(t) for i ∈ C are unchanged, while pi(t)
for i ∈ U decrease. (See Figure 2.)

Let

Iu
k (t) = [pk(t), pk+1(t)), 1 ≤ k < µ, (16a)

Ic
l (t) = [pl(t), pl+1(t)), µ + 1 ≤ l < m, (16b)

with Iu
0 (t) = [0, p1(t)) and Iu

µ(t) = [pµ(t), +∞), as well as Ic
µ(t) = [0, pµ+1(t)) and Ic

m(t) =
[pm(t),+∞). When an interval has the form [+∞,+∞), we interpret it to be empty.

12



p3(t) p1(t) p4(t) p2(t)

v3 ≥ spd3

v1 + td1 ≥ spd1

v3 ≥ spd3

v4 ≥ spd4

v1 + td1 ≥ spd1

v3 ≥ spd3

v2 + td2 ≥ spd2

v4 ≥ spd4

v1 + td1 ≥ spd1

v3 ≥ spd3

ξ

φ(ξ)

0

Figure 2: Illustration of the definition of pi(t). Here U = {1, 2} and C = {3, 4}. The gray
arrows show how pi(t) change as t increases. The inequalities show the set of customers
that contribute to the tangents in each of the intervals defined by pi(t).

Consider the intervals

Ikl(t) = Iu
k (t) ∩ Ic

l (t), 0 ≤ k ≤ µ ≤ l ≤ m. (17)

At any given time t, some of the intervals Ikl(t) may be empty. As time increases, these
intervals may vary in size, empty intervals may become non-empty, and non-empty intervals
may become empty. The intervals partition [0, +∞), that is ∪0≤k≤µ≤l≤mIkl(t) = [0, +∞),
and Ikl(t) ∩ Irs(t) = ∅ for (k, l) 6= (r, s).

Let ωp(t) be the total contribution received by tangent p at time t. The tangents on each
interval Ikl(t) receive contributions from unconnected customers {1, . . . , k} and connected
customers {µ + 1, . . . , l}. We define C(k, l) = {1, . . . , k} ∪ {µ + 1, . . . , l} to be the set of
customers that contribute to tangents in Ikl(t).

For each interval Ikl(t) with k ≥ 1, we define an alternate setting A(k, l), where all
starting budgets are zero, customers in C(k, l) increase their budgets at rates di, and the
remaining customers do not change their budgets. Let ωkl

p (τkl) be the total contribution
received by tangent p at time τkl in the alternate setting A(k, l). We establish a correspon-
dence between times t in the original setting and times τkl in A(k, l), given by τkl = βkl+αklt,
with αkl =

∑k
i=1 di

/∑
i∈C(k,l) di and βkl =

∑
i∈C(k,l) vi

/∑
i∈C(k,l) di. Since αkl > 0, times

t ∈ [0, +∞) are mapped one-to-one to times τkl ∈ [βkl, +∞).
The following two lemmas relate the original setting to the alternate settings A(k, l).

Lemma 2. Given a time t and an interval Ikl(t) with k ≥ 1, any tangent p ∈ Ikl(t) receives
the same total contribution at time t in the original setting as at time τkl in A(k, l), that is
ωp(t) = ωkl

p (τkl).
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Proof. The total contribution to p at time t in the original setting is

ωp(t) =
k∑

i=1

(vi + tdi − spdi) +
l∑

i=µ+1

(vi − spdi)

=
∑

i∈C(k,l)

(vi − spdi) + t
k∑

i=1

di =
∑

i∈C(k,l)

(vi + αkltdi − spdi)

= (βkl + αklt− sp)
∑

i∈C(k,l)

di = (τkl − sp)
∑

i∈C(k,l)

di.

(18)

Since ωp(t) ≥ 0, it follows that τkl − sp ≥ 0, and therefore

(τkl − sp)
∑

i∈C(k,l)

di =
∑

i∈C(k,l)

max{0, τkldi − spdi} = ωkl
p (τkl). (19)

Lemma 3. Given a time t and an interval Ikl(t) with k ≥ 1, a tangent p receives at least
as large a total contribution at time t in the original setting as at time τkl in A(k, l), that
is ωp(t) ≥ ωkl

p (τkl).

Proof. If τkl − sp < 0, then ωkl
p (τkl) = 0, and thus ωp(t) ≥ ωkl

p (τkl). If τkl − sp ≥ 0, then
ωkl

p (τkl) = (τkl− sp)
∑

i∈C(k,l) di =
∑k

i=1(vi + tdi− spdi)+
∑l

i=µ+1(vi− spdi). Let p ∈ Irs(t)
for some r and s, and note that ωp(t) =

∑r
i=1(vi + tdi − spdi) +

∑s
i=µ+1(vi − spdi).

The difference between the two contributions can be written as

ωp(t)− ωkl
p (τkl) =

r∑

i=k+1

(vi + tdi − spdi)−
k∑

i=r+1

(vi + tdi − spdi)

+
s∑

i=l+1

(vi − spdi)−
l∑

i=s+1

(vi − spdi). (20)

Note that at least two of the four summations in this expression are always empty. We now
examine the summations one by one:

1.
∑r

i=k+1(vi + tdi−spdi). This summation is nonempty when r > k. In this case, in the
original setting, customers k + 1, . . . , r do contribute to tangents in Irs(t) at time t.
Therefore, vi + tdi − spdi ≥ 0 for i = k + 1, . . . , r, and the summation is nonnegative.

2. −∑k
i=r+1(vi + tdi − spdi). This summation is nonempty when r < k. In this case,

in the original setting, customers r + 1, . . . , k do not contribute to tangents in Irs(t)
at time t. Therefore, vi + tdi − spdi ≤ 0 for i = r + 1, . . . , k, and the summation is
nonnegative.

3.
∑s

i=l+1(vi − spdi). This summation is nonempty when s > l. In this case, in the
original setting, customers l + 1, . . . , s do contribute to tangents in Irs(t) at time t.
Therefore, vi − spdi ≥ 0 for i = l + 1, . . . , s, and the summation is nonnegative.

4. −∑l
i=s+1(vi − spdi). This summation is nonempty when s < l. In this case, in the

original setting, customers s + 1, . . . , l do not contribute to tangents in Irs(t) at time
t. Therefore, vi − spdi ≤ 0 for i = s + 1, . . . , l, and the summation is nonnegative.
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As a result of the above cases, we obtain that ωp(t)− ωkl
p (τkl) ≥ 0.

When k ≥ 1, we can apply Lemma 1 to compute the first tangent to become tight in
A(k, l), and the time when this occurs. Denote the computed tangent and time by p′kl and

τ ′kl, and note that p′kl =
∑

i∈C(k,l) di and τ ′kl = sp′kl
+

fp′
kl

p′kl
. Let t′kl = τ ′kl−βkl

αkl
be the time in

the original setting that corresponds to time τ ′kl in A(k, l). Let t∗ = min{t′kl : 1 ≤ k ≤ µ ≤
l ≤ m}, and p∗ = p′argmin{t′kl:1≤k≤µ≤l≤m}. The following two lemmas will enable us to show
that tangent p∗ becomes tight first in the original setting, at time t∗.

Lemma 4. If a tangent p becomes tight at a time t in the original setting, then t ≥ t∗.

Proof. Since ∪0≤r≤µ≤s≤mIrs(t) = [0, +∞), there is an interval Ikl(t) that contains p. Since
the contributions to tangents in the interval I0l(t) do not increase over time, k ≥ 1.

Tangent p is tight at time t in the original setting, and therefore ωp(t) = fp. By Lemma
2, p ∈ Ikl(t) implies that ωkl

p (τkl) = fp, and hence p is tight at time τkl in A(k, l). It follows
that τkl ≥ τ ′kl, and therefore t ≥ t′kl ≥ t∗.

Lemma 5. Each tangent p′kl with k ≥ 1 becomes tight at a time t ≤ t′kl in the original
setting.

Proof. Since tangent p′kl is tight at time τ ′kl in A(k, l), we have ωkl
p′kl

(τ ′kl) = fp′kl
. By Lemma

3, ωp′kl
(t′kl) ≥ fp′kl

, which means that p′kl is tight or over-tight at time t′kl in the original
setting. Therefore, p′kl becomes tight at a time t ≤ t′kl in the original setting.

We now obtain the main result of this section.

Lemma 6. Tangent p∗ becomes tight first in the original setting, at time t∗. The quantities
p∗ and t∗ can be computed in time O(m2).

Proof. Lemma 4 implies that tangents become tight only at times t ≥ t∗. Lemma 5 implies
that tangent p∗ = p′argmin{t′kl:1≤k≤µ≤l≤m} becomes tight at a time t ≤ min{t′kl : 1 ≤ k ≤ µ ≤
l ≤ m} = t∗. Therefore, tangent p∗ becomes tight first, at time t∗.

To evaluate the running time, note that the di and vi can be sorted in O(m log m) time.
Once the di and vi are sorted, we can compute all quantities αkl and βkl in O(m2), and
then compute all t′kl and p′kl in O(m2) via Lemma 1. Therefore, the total running time is
O(m2).

In case of a tie, Lemma 6 enables us to compute one of the tangents that become tight
first. It is possible to obtain additional results about ties, starting with that of Lemma 1.
However, we do not need such results in this paper, as Algorithm FLPD, as well as the
algorithms in Sections 3 and 4, allow us to break ties arbitrarily.

For many primal-dual algorithms, we can perform the computation in Lemma 6 faster
than in O(m2), by taking into account the details of how the algorithm increases the dual
variables. We will illustrate this with three algorithms in Sections 2.4, 3, and 4.
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2.3 Other Rules for Changing the Dual Variables

In this section, we consider the same setting as in the previous one, but in addition allow
each customer i to change its budget at an arbitrary rate δi ≥ 0. The rate is no longer
limited to the set {0, di}, and we assume that at least one customer has δi > 0. The
following results are not needed to obtain the algorithms in this paper. We include them
since they embody a more general version of our approach, and may be useful in developing
primal-dual algorithms in the future.

Consider the quantities pi(t) as defined in equation (13). Since δi need not equal di,
the order of the pi(t) may change as t increases from 0 to +∞. At any given time t, the
pi(t) divide [0, +∞) into at most m + 1 intervals. For each set of customers K ⊆ [m], we
introduce an interval

IK(t) = [aK(t), bK(t)) =
[
max
i∈K

pi(t), min
i 6∈K

pi(t)
)
. (21)

If K = ∅, we set aK(t) = 0, and if K = [m], we set bK(t) = +∞. If aK(t) ≥ bK(t) or
aK(t) = bK(t) = +∞, we take IK(t) to be empty. Note that

⋃
K⊆[m] IK(t) = [0, +∞), and

IK(t) ∩ IL(t) = ∅ for K 6= L. Any interval that is formed by the pi(t) as t increases from 0
to +∞ is among the intervals IK(t). The set of customers contributing to tangents on an
interval IK(t) is precisely K.

As in the previous section, for each interval IK(t) with
∑

i∈K δi > 0, we define an al-
ternate setting A(K), where all starting budgets are zero, customers in K increase their
budgets at rates di, and the remaining customers keep their budgets unchanged. We de-
note the total contribution received by tangent p at time τK in A(K) by ωK

p (τK). The
correspondence between times t in the original setting and times τK in A(K) is given by
τK = βK +αKt, with αK =

∑
i∈K δi/

∑
i∈K di and βK =

∑
i∈K vi/

∑
i∈K di. Since αK > 0,

the correspondence is one-to-one between times t ∈ [0,+∞) and τK ∈ [βK , +∞).

Lemma 7. Given a time t and an interval IK(t) with
∑

i∈K δi > 0, a tangent p ∈ IK(t)
receives the same total contribution at time t in the original setting as at time τK in A(K),
that is ωp(t) = ωK

p (τK).

Proof. The total contribution in the original setting is

ωp(t) =
∑

i∈K

(vi + tδi − spdi) =
∑

i∈K

(vi + αKtdi − spdi)

= (βK + αKt− sp)
∑

i∈K

di = (τK − sp)
∑

i∈K

di = ωK
p (τK).

(22)

Lemma 8. Given a time t and an interval IK(t) with
∑

i∈K δi > 0, a tangent p receives at
least as large a total contribution at time t in the original setting as at time τK in A(K),
that is ωp(t) ≥ ωK

p (τK).

Proof. If τK − sp < 0, then ωp(t) ≥ ωK
p (τK). If τK − sp ≥ 0, let p ∈ IL(t) for some

L ⊆ [m], and note that ωK
p (τK) = (τK − sp)

∑
i∈K di =

∑
i∈K(vi + tδi − spdi), while

ωp(t) =
∑

i∈L(vi + tδi − spdi).
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The difference between the two contributions is

ωp(t)− ωK
p (τK) =

∑

i∈L\K
(vi + tδi − spdi)−

∑

i∈K\L
(vi + tδi − spdi). (23)

Since p ∈ IL(t), in the original setting, customers in L contribute to tangent p at time t,
and therefore vi + tδi − spdi ≥ 0 for i ∈ L, which implies that

∑
i∈L\K(vi + tδi − spdi) ≥ 0.

Conversely, customers not in L do not contribute to p at time t, implying that vi+tδi−spdi ≤
0 for i 6∈ L, and therefore

∑
i∈K\L(vi + tδispdi) ≤ 0. As a result, ωp(t)− ωK

p (τK) ≥ 0.

Unlike in the previous section, we have exponentially many alternative settings A(K).
The following derivations will enable us to compute the first tangent to become tight in
the original setting, and the time when this occurs using only a polynomial number of
alternative settings.

As t increases from 0 to +∞, the order of the quantities (vi + tδi)/di may change. Since
the quantities are linear in t, as t → +∞, they assume an order that no longer changes. We
use this order to define a permutation π(+∞) = (π1(+∞), . . . , πm(+∞)), with πi(+∞) = j
meaning that (vj + tδj)dj is the i-th largest quantity. If two quantities are tied as t → +∞,
we break the tie arbitrarily. Similarly, for any time t ∈ [0, +∞), we define a permutation
π(t) = (π1(t), . . . , πm(t)). In this case, if two quantities are tied, we break the tie according
to π(+∞). For example, suppose that the two largest quantities at time t are tied, that
they are (v1 + tδ1)/d1 = (v2 + tδ2)/d2, and that πi(+∞) = 1 and πj(+∞) = 2 with i < j.
Then we take π1(t) = 1 and π2(t) = 2.

Compare two quantities

(vi + tδi)/di vs. (vj + tδj)/dj . (24)

If their order changes as t increases from 0 to +∞, then there is a θ > 0 such that the
sign between the quantities is ‘<’ on [0, θ), ‘=’ at θ, and ‘>’ on (θ, +∞), or vice-versa.
Let θ1 < · · · < θR be all such times when the sign between two quantities changes, and let
θ0 = 0 and θR+1 = +∞. Since there are m(m− 1)/2 pairs of quantities, R ≤ m(m− 1)/2.

The proof of the following lemma follows from these definitions.

Lemma 9. As t increases from 0 to +∞, the permutation π(t) changes at times θ1, . . . , θR.
Moreover, π(t) is unchanged on the intervals [θr, θr+1) for r = 0, . . . , R.

We now bound the number of intervals IK(t) that ever become nonempty. Let K(t) =
{{π1(t), . . . , πi(t)} : i = 0, . . . ,m} and K = ∪R

r=0K(θr), and note that |K(t)| ≤ m + 1 and
|K| ≤ (m + 1)(m(m− 1)/2 + 1) = O(m3).

Lemma 10. As t increases from 0 to +∞, only intervals IK(t) with K ∈ K ever become
nonempty, that is {K : ∃t ≥ 0 s.t. IK(t) 6= ∅} ⊆ K.

Proof. Fix a time t, and note that by property (14), we have pπ1(t)(t) ≤ pπ2(t)(t) ≤ · · · ≤
pπm(t)(t). Therefore, the intervals IK(t) may be nonempty only when K ∈ K(t). Since π(t)
is unchanged on the intervals [θr, θr+1) for r = 0, . . . , R, if an interval IK(t) ever becomes
nonempty, then K ∈ K.
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As in the previous section, when
∑

i∈K δi > 0, we can compute the first tangent to
become tight in A(K), and the time when this occurs using Lemma 1. Let the computed

tangent and time be p′K =
∑

i∈K di and τ ′K = sp′K +
fp′

K
p′K

, and let t′K = τ ′K−βK

αK
be the time

in the original setting corresponding to time τ ′K in A(K). Next, we show that tangent p∗ =
p′
argmin{t′K :

∑
i∈K δi>0,K∈K} becomes tight first, at time t∗ = min

{
t′K :

∑
i∈K δi > 0,K ∈ K}

.

Lemma 11. If a tangent p becomes tight at a time t in the original setting, then t ≥ t∗.

Proof. Let IK(t) be the interval that contains p. Since this interval is nonempty, K ∈ K,
and since the contribution to p must be increasing over time,

∑
i∈K δi > 0.

Tangent p is tight at time t in the original setting, and therefore ωp(t) = fp. By Lemma
7, ωK

p (τK) = fp, and hence p is tight at time τK in A(K). It follows that τK ≥ τ ′K , and
therefore t ≥ t′K ≥ t∗.

Lemma 12. Each tangent p′K with
∑

i∈K δi > 0 becomes tight at a time t ≤ t′K in the
original setting.

Proof. Since p′K is tight at time τ ′K in A(K), we have ωK
p′K

(τ ′K) = fp′K
. By Lemma 8,

ωp′K (t′K) ≥ fp′K , which means that p′K is tight or over-tight at time t′K in the original
setting. Therefore, p′K becomes tight at a time t ≤ t′K in the original setting.

Lemma 13. Tangent p∗ becomes tight first in the original setting, at time t∗. The quantities
p∗ and t∗ can be computed in time O(m3).

Proof. By Lemma 11, tangents only become tight at times t ≥ t∗, while by Lemma 12, p∗ =
p′
argmin{t′K :

∑
i∈K δi>0,K∈K} becomes tight at a time t ≤ min

{
t′K :

∑
i∈K δi > 0,K ∈ K}

= t∗.

Therefore, p∗ becomes tight first, at time t∗.
Concerning the running time, note that the θr can be computed in O(m2) and sorted in

O(m2 log m) time. The permutations π(+∞) and π(0) can be computed in O(m log m) time.
Processing the θr in increasing order, we can compute each π(θr) in O(m) time amortized
over all θr. Computing p′K and t′K for all K ∈ K(θr) takes O(m) time. Therefore, the total
running time is O(m3).

The results in this section can be generalized further to allow the rates δi to be negative.

2.4 Analysis of Multiple Facilities

We now show how to execute Algorithm FLPD implicitly when problem (4) has multiple
facilities. In Section 2.2, in addition to assuming the presence of only one facility, we
assumed that the connection costs cij were 0. We remove this assumptions as well.

In this section, we continue to refer to facilities of infinitely-sized problem (9) as tan-
gents, and reserve the term facility for facilities of concave cost problem (4). We say that
customer i contributes to concave cost facility j if vi ≥ cij . We distinguish between when
a customer contributes to a concave cost facility j and when the customer contributes to a
tangent p belonging to concave cost facility j.
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When executing Algorithm FLPD implicitly, the input consists of m, n, the connection
costs cij , the demands di, and the cost functions φj , given by an oracle. As intermediate
variables, we maintain the time t, and the vectors v, x, and y. For x and y, we maintain
only the non-zero entries. The algorithm returns v, x, and y. We also maintain standard
data structures to manipulate these quantities as necessary. Note that we do not maintain
nor return the vector w, as any one of its entries can be computed through the invariant
wijp = max{0, vi − (cij + sjp)di}.

Clearly, step (1) can be executed in polynomial time. In order to use induction, suppose
that we have executed at most m−1 iterations of loop (2) so far. Since the algorithm opens
at most one tangent at each iteration, at any point at most m − 1 tangents are open. To
analyze step (3), we consider three events that may occur as this step is executed:

1. A closed tangent becomes tight.

2. An unconnected customer begins contributing to an open tangent.

3. An unconnected customer begins contributing to a facility.

When step (3) is executed, the time t stops increasing when event 1 or 2 occurs. For
the purpose of analyzing this step, we assume that t increases to +∞ and that vi for
unconnected customers are increased so as to maintain vi = tdi.

Lemma 14. Suppose that event e at facility j is the first to occur after the beginning of
step (3). Then we can compute the time t′ when this event occurs in polynomial time.

Proof. If e = 1, we use Lemma 6 to compute t′. The lemma’s assumptions can be satisfied
as follows. Since no events occur at other facilities until time t′, we can assume that j is
the only facility. Since the set of customers contributing to facility j will not change until
time t′, we can satisfy the assumption that cij = 0 by subtracting cij from each vi having
vi ≥ cij . Since an unconnected customer will not begin contributing to an open tangent
until time t′, we can assume that there are no open tangents. We can satisfy the assumption
that t = 0 at the beginning of step (3) by adding tdi to each vi.

If e = 2, we compute t′ by iterating over all unconnected customers and open tangents
of facility j. If e = 3, we compute t′ by iterating over all unconnected customers.

When other events occur between the beginning of step (3) and time t′, the computation
in this lemma may be incorrect, however we can still perform it. Let t′e(j) be the time
computed in this manner for a given e and j, and let t∗ = min{t′e(j) : e ∈ [3], j ∈ [n]} and
(e∗, j∗) = argmin{t′e(j) : e ∈ [3], j ∈ [n]}.
Lemma 15. Event e∗ at facility j∗ is the first to occur after the beginning of step (3). This
event occurs at time t∗.

Proof. Suppose that an event e′ at a facility j′ occurs at a time t′ < t∗. If e′ ∈ {2, 3}, then
t′ ≥ t′e′(j

′) ≥ t∗. This is a contradiction, and therefore this case cannot occur.
If e′ = 1, then we consider two cases. If there is an event e′′ ∈ {2, 3} that occurs at a

facility j′′ at a time t′′ < t′, then we use t′′ ≥ t′e′′(j
′′) ≥ t∗ to obtain a contradiction. If

there is no such event e′′, then no new customer begins contributing to facility j′ between
the beginning of step (3) and time t′. Therefore, t′ ≥ t′e′(j

′) ≥ t∗, and we again obtain a
contradiction.
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Once we have computed t∗, e∗, and j∗, we finish executing step (3) as follows. If e∗ = 3,
that is if the first event to occur is an unconnected customer beginning to contribute to
j∗, we update the list of customers contributing to j∗ and recompute t∗, e∗, and j∗. Since
there are n facilities and at most m unconnected customers, event 3 can occur at most mn
times before event 1 or 2 takes place.

Once event 1 or 2 takes place, step (3) is complete, and we have to execute step (4)
or (5). It is easy to see that these steps can be executed in polynomial time. Therefore,
an additional iteration of loop (2) can be executed in polynomial time. By induction,
each of the first m iterations of loop (2) can be executed in polynomial time. At each
iteration, an unconnected customer is connected, either in step (4) or (5). Therefore, loop
(2) iterates at most m times. Obviously, step (6) can be executed in polynomial time, and
therefore Algorithm FLPD can be executed implicitly in polynomial time. Recall that we
called the algorithm obtained by executing FLPD implicitly on infinitely-sized problem (9)
ConcaveFLPD.

Theorem 2. Algorithm ConcaveFLPD is a 1.61-approximation algorithm for concave
cost facility location, with a running time of O(m3n + mn log n).

Proof. At the beginning of the algorithm, we sort the connection costs cij , which can be
done in O(mn log(mn)) time. Next, we bound the time needed for one iteration of loop
(2). Note that since loop (2) iterates at most m times, there are at most m open tangents
at any point in the algorithm.

In step (3), we first compute min{t′1(j) : j ∈ [n]}. Computing each t′1(j) requires O(m2)
per facility, and thus this part takes O(m2n) overall. Next, we compute min{t′2(j) : j ∈ [n]},
using O(1) per customer and open tangent, and thus O(m2) overall. Finally, we compute
min{t′3(j) : j ∈ [n]}. Since min{t′3(j) : j ∈ [n]} = min{cij : cij ≥ t}, we have sorted the
values cij , and t only increases as the algorithm runs, this operation takes O(mn) over
the entire run of the algorithm. Therefore, we can determine the next event to occur in
O(m2n).

If event 1 or 2 is the next one, step (3) is complete. If event 3 is next, an uncon-
nected customer begins to contribute to facility j∗. In this case, we recompute t′1(j

∗) and
min{t′1(j) : j ∈ [n]}. Recomputing t′1(j

∗) can be done in O(m), since we only have to add
one customer to the setting of Lemma 6. Recomputing min{t′1(j) : j ∈ [n]} takes O(1), as
t′1(j

∗) does not increase when an unconnected customer begins contributing to facility j∗.
Note that min{t′2(j) : j ∈ [n]} does not change. Next, we recompute min{t′3(j) : j ∈ [n]},
which takes O(mn) over the entire run of the algorithm. The total time to process event
3 and determine the next event to occur is O(m). Event 3 occurs at most mn times be-
fore event 1 or 2 occurs, and therefore the total time for processing event 3 occurrences is
O(m2n).

Step (4) can be done in O(m), and step (5) in O(1). Therefore, the time for one iteration
of loop (2) is O(m2n). Since there are at most m iterations of loop (2), the running time
of the algorithm is O(m3n + mn log n).

By Theorem 1, Algorithm FLPD is a 1.61-approximation algorithm for problem (1).
The approximation ratio for problem (4) follows directly from the fact that we execute
Algorithm FLPD implicitly on infinitely-sized problem (9).
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By a similar application of our technique to the 1.861-approximation algorithm for
classical facility location of Mahdian et al. [JMM+03], we obtain a 1.861-approximation
algorithm for concave cost facility location with a running time of O(m2n + mn log n).

3 Concave Cost Lot-Sizing

In this section, we apply the technique developed in Section 2 to concave cost lot-sizing.
The classical lot-sizing problem is defined in Section 1.1.2, and can be written as a linear
program:

min
n∑

s=1

fsys +
n∑

s=1

n∑
t=s

(cs + hst)dtxst, (25a)

s.t.
t∑

s=1

xst = 1, 1 ≤ t ≤ n, (25b)

0 ≤ xst ≤ ys, 1 ≤ s ≤ t ≤ n. (25c)

Recall that ft ∈ R+ and ct ∈ R+ are the fixed and per-unit costs of placing an order at time
t, and dt ∈ R+ is the demand at time t. The per-unit holding cost at time t is ht ∈ R+, and
for convenience, we defined hst =

∑t−1
i=s hi. Note that we omit the constraints ys ∈ {0, 1},

as there is always an optimal extreme point solution that satisfies them [KB77].
We now adapt the algorithm of Levi et al. [LRS06] to work in the setting of problem

(25). Levi et al. derive their algorithm in a slightly different setting, where the costs hst

are not necessarily the sum of period holding costs ht, but rather satisfy an additional
monotonicity condition.

The dual of problem (25) is given by:

max
n∑

t=1

vt, (26a)

s.t. vt ≤ (cs + hst)dt + wst, 1 ≤ s ≤ t ≤ n, (26b)
n∑

t=s

wst ≤ fs, 1 ≤ s ≤ n, (26c)

wst ≥ 0, 1 ≤ s ≤ t ≤ n. (26d)

As with facility location, since the variables wst do not appear in the objective, we assume
the invariant wst = max{0, vt−(cs+hst)dt}. Note that lot-sizing orders correspond to facil-
ities in the facility location problem, and lot-sizing demand points correspond to customers
in the facility location problem.

We refer to dual variable vt as the budget of demand point t. If vt ≥ (cs + hst)dt,
we say that demand point t contributes to order s, and wst is its contribution. The total
contribution received by an order s is

∑n
t=s wst. An order t is tight if

∑n
t=s wst = fs and

over-tight if
∑n

t=s wst > fs.
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The primal complementary slackness constraints are:

xst(vt − (cs + hst)dt − wst) = 0, 1 ≤ s ≤ t ≤ n, (27a)

ys

(
n∑

t=s

wst − fs

)
= 0, 1 ≤ s ≤ n. (27b)

Let (x, y) be an integral primal feasible solution, and (v, w) be a dual feasible solution.
Constraint (27a) says that demand point t can be served from order s in the primal solution
only if s is the closest to t with respect to the modified costs cs + hst + wst/dt. Constraint
(27b) says that order t can be placed in the primal solution only if it is tight in the dual
solution.

The algorithm of Levi et al., as adapted here, starts with dual feasible solution (v, w) =
0 and iteratively updates it, while maintaining dual feasibility and increasing the dual
objective. At the same time, guided by the primal complementary slackness constraints,
the algorithm constructs an integral primal solution. The algorithm concludes when the
integral primal solution becomes feasible. An additional postprocessing step decreases the
cost of the primal solution to the point where it equals that of the dual solution. At this
point, the algorithm has computed an optimal solution to the lot-sizing problem.

We introduce the notion of a wave, which corresponds to the notion of time in the primal-
dual algorithm for facility location. In the algorithm, we will denote the wave position by
W , and it will decrease continuously from h1n to 0, and then possibly to a negative value
not less than −c1 − f1. We associate to each step of the algorithm the wave position when
it occurred.

Algorithm LSPD(n ∈ Z+; c, f, d ∈ Rn
+, h ∈ Rn−1

+ )
(1) Start with the wave at W = h1n and the dual solution (v, w) = 0. All

orders are closed, and all demand points are unserved, i.e. (x, y) = 0.
(2) While there are unserved demand points:
(3) Decrease W continuously. At the same time increase vt and wst for

unserved demand points t so as to maintain vt = max{0, dt(h1t −W )}
and wst = max{0, vt − (cs + hst)dt}. The wave stops when an order
becomes tight.

(4) Open the order s that became tight. For each unserved demand point
t contributing to s, serve t from s.

(5) For each open order s from 1 to n:
(6) If there is a demand point t that contributes to s and to another open

order s′ with s′ < s, close s. Reassign all demand points previously
served from s to s′.

(7) Return (x, y) and (v, w).

In case of a tie between order points in step (4), we break the tie arbitrarily. Depending
on the demand points that remain unserved, another one of the tied orders may open
immediately in the next iteration of loop (2).

The proof of the following theorem is almost identical to that from [LRS06], and there-
fore for this proof we assume the reader is familiar with the lot-sizing results from [LRS06].

Theorem 3. Algorithm LSPD is an exact algorithm for the classical lot-sizing problem.
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Proof. We will show that after we have considered open order s, at the end of step (6), we
maintain two invariants. First, each demand point is contributing to the fixed cost of at
most one open order from the set {1, . . . , s}. Second, each demand point is assigned to an
open order and contributes to its fixed cost.

The first invariant follows from the definition of the algorithm. Indeed, if a demand
point t′ is contributing to s′ and s with s′ < s, then the algorithm would have closed s.

Clearly the second invariant holds at the beginning of loop (5). It continues to hold
after we review order s if we have not closed s. Let us now consider the case when we
have closed s. The demand points that have contributed to s can be classified into two
categories. The first category contains the demand points whose dual variables stopped
due to s becoming tight—these demand points were served from s and are now served from
s′. Since t contributes to s′, so do these demand points. The second category contains the
demand points whose dual variables stopped due to another order s′′ becoming tight. The
case s′′ < s cannot happen, or s would have never opened. Hence, s < s′′, and therefore
s′′ is currently open. Moreover, these demand points are currently served from s′′ and are
contributing to it.

Therefore, at the end of loop (5), each demand point is contributing to the fixed cost of
at most one open order. Therefore, the fixed cost of opening orders is fully paid for by the
dual solution. Moreover, each demand point is served from an open order, and therefore
the primal solution is feasible. Since each demand point contributes to the fixed cost of the
order it is served from, the holding and variable connection cost is also fully paid for by
the dual solution. Since the primal and dual solutions have the same cost, the algorithm is
exact.

3.1 Applying the Technique

We now proceed to develop an exact primal-dual algorithm for concave cost lot-sizing. The
concave cost lot-sizing problem is defined in Section 1.1.2:

min
n∑

s=1

φs

(
n∑

t=s

dtxst

)
+

n∑

s=1

n∑
t=s

hstdtxst, (28a)

s.t.
t∑

s=1

xst = 1, 1 ≤ t ≤ n, (28b)

xst ≥ 0, 1 ≤ s ≤ t ≤ n. (28c)

Here, the cost of placing an order at time t is given by a nondecreasing concave cost function
φt : R+ → R+. We assume without loss of generality that φt(0) = 0 for all t.

The application of our technique to the lot-sizing problem is similar to its application to
the facility location problem in Section 2. First, we reduce concave cost lot-sizing problem
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(28) to the following infinitely-sized classical lot-sizing problem.

min
n∑

s=1

∑

p≥0

fspysp +
n∑

s=1

n∑
t=s

∑

p≥0

(csp + hst)dtxspt, (29a)

s.t.
t∑

s=1

∑

p≥0

xspt = 1, 1 ≤ t ≤ n, (29b)

0 ≤ xspt ≤ ysp, 1 ≤ s ≤ t ≤ n, p ≥ 0. (29c)

Again we note that since LP (29) is infinitely-sized, strongly duality does not hold auto-
matically for it and its dual. However, the proof of Algorithm LSPD relies only on weak
duality. The fact that the algorithm produces a primal solution and a dual solution with
the same cost implies that both solutions are optimal and that strong duality holds.

Following Section 2, let ConcaveLSPD be the algorithm obtained by executing Algo-
rithm LSPD implicitly on infinitely-sized problem (29).

Theorem 4. Algorithm ConcaveLSPD is an exact algorithm for concave cost lot-sizing,
with a running time of O(n2).

Proof. We consider the following events that may occur as step (3) of Algorithm LSPD is
executed:

Time Event
W1(t) The wave reaches demand point t, i.e. W = h1t.
W2(t) A tangent p of order point t becomes tight.

If for an order point t, no tangents become tight in the course of the algorithm, we let
W2(t) = +∞. The wave positions W1(t) can be computed for all t at the beginning of the
algorithm in O(n).

We compute the positions W2(t) by employing a set of intermediate values W ′
2(t). Each

value W ′
2(t) is defined as the time when a tangent of order point t becomes tight in a

truncated problem consisting of time periods t, t + 1, . . . , n. We compute a subset of these
values as follows. First, we compute W ′

2(n), which requires O(1) time by Lemma 1. To
compute W ′

2(t) given that W ′
2(t + 1), . . . , W ′

2(n) are computed, we can employ Lemma 6.
The dual variables representing demand points t, . . . , n can be divided into three con-

secutive intervals. First are the dual variables that are increasing at the same rate as part
of the wave, then the dual variables vk that are not increasing but exceed htk, and finally
the dual variables vk that are not increasing, do not exceed htk, and therefore play no role
in this computation. We employ Lemma 6 and distinguish two cases:

1. Lemma 6 can be used to detect if a tangent is overtight. This indicates that W ′
2(t) is

an earlier wave position than W ′
2(t + 1), . . . , W ′

2(k) for some k. In this case, we delete
W ′

2(t + 1) from our subset and repeat the computation of W ′
2(t) as if order point t + 1

does not exist.

2. There are no overtight tangents. Thus, a tangent becomes tight at a wave position
less than or equal to W ′

2(t + 1). In this case we set W ′
2(t) to this wave position, and

proceed to the computation of W ′
2(t− 1).
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After computing W ′
2(t), consider the values that remain in our subset and denote them

by W ′
2(t),W

′
2(π(1)), . . . , W ′

2(π(k)) for some k. By induction, these values yield the correct
times when tangents become tight for the truncated problem consisting of time periods
t, . . . , n. After we have computed W ′

2(1), the values W ′
2(t) remaining in our subset yield

the correct times W2(t), with the other values W2(t) = +∞. Therefore, loop (2) is complete.
A computation by Lemma 6 requires O(n2) time in the worst case. Since in this setting,

all dual variables that are increasing exceed all dual variables that are stopped, each W ′
2(t)

can be computed by Lemma 6 in O(n). Each time we use Lemma 6 for a computation,
a value W ′

2(t) is either removed from the list or inserted into the list. Since each value is
inserted into the list only once, the total number of computations is O(n), and the total
running time for loop (2) is O(n2).

At the beginning of step (5), there are at most n open tangents, and n demand points,
and therefore this loop can be implemented in O(n2) as well.

Note that the values W2(t) also yield a dual optimal solution to the infinitely-sized LP.
The solution can be computed from the W2(t)-s in time O(n) by taking vt = h1t−W2(σ(t)),
where σ(t) is the latest time period less than or equal to t that has W2(σ(t)) < +∞.

4 Concave Cost Joint Replenishment

In this section, we apply our technique to the concave cost joint replenishment problem
(JRP). The classical JRP is defined in Section 1.1.3, and can be formulated as an integer
program:

min
n∑

s=1

f0y0
s +

n∑

s=1

K∑

k=1

fkyk
s +

n∑

s=1

n∑
t=s

K∑

k=1

hk
std

k
t x

k
st, (30a)

s.t.
t∑

s=1

xk
st = 1, 1 ≤ t ≤ n, k ∈ [K], (30b)

0 ≤ xk
st ≤ y0

s , 1 ≤ s ≤ t ≤ n, k ∈ [K], (30c)

0 ≤ xk
st ≤ yk

s , 1 ≤ s ≤ t ≤ n, k ∈ [K], (30d)

y0
s ∈ {0, 1}, yk

s ∈ {0, 1}, 1 ≤ s ≤ n, k ∈ [K]. (30e)

Recall that f0 ∈ R+ is the fixed joint ordering cost, fk ∈ R+ is the fixed individual ordering
cost for item k, and dk

t ∈ R+ is the demand for item k at time t. The per-unit holding cost
for item k at time t is hk

t ; for convenience we defined hk
st =

∑t−1
i=s hk

i .
The concave cost JRP, also defined in Section 1.1.3, can be written as a mathematical

program as follows:

min
n∑

s=1

φ0

(
n∑

t=s

K∑

k=1

dk
t x

k
st

)
+

n∑

s=1

K∑

k=1

φk

(
n∑

t=s

dk
t x

k
st

)
+

n∑

s=1

n∑
t=s

K∑

k=1

hk
std

k
t x

k
st, (31a)

s.t.
t∑

s=1

xk
st = 1, 1 ≤ t ≤ n, k ∈ [K], (31b)

xk
st ≥ 0, 1 ≤ s ≤ t ≤ n, k ∈ [K]. (31c)
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Here the individual ordering cost for item k at time t is given by a nondecreasing concave
function φk : R+ → R+. We assume without loss of generality that φk(0) = 0 for all k.
The joint ordering cost at time t is given by the function φ0 : R+ → R+. To reflect the fact
that only the individual ordering costs are general concave, φ0 has the form φ0(0) = 0 and
φ0(ξ) = f0 for ξ > 0.

Consider the case when the individual ordering cost functions φk are piecewise linear
with P pieces:

φk(ξk
t ) =

{
min{fk

p + ck
pξ

k
t : p ∈ [P ]}, ξk

t > 0,

0, ξk
t = 0,

(32)

Unlike with concave cost facility location and concave cost lot-sizing, the piecewise-linear
concave cost JRP does not reduce polynomially to the classical JRP. Since there are multiple
items, different pieces of the individual ordering cost functions φk may be employed by
different items k as part of the same order at time t. When each cost function consists of
P pieces, we would need PK time periods to represent each possible combination, thereby
leading to an exponentially-sized IP formulation.

We could devise a polynomially-sized IP formulation for the piecewise-linear concave
cost JRP, however such a formulation would have a different structure from the classical
JRP, and would not enable us to apply our technique together with the primal-dual algo-
rithm of Levi et al. [LRS06] for the classical JRP. Instead, we reduce the piecewise-linear
concave cost JRP to the following exponentially-sized integer programming formulation,
which we call the generalized joint replenishment problem. Let π = (p1, . . . , pK), and let
[P ]K = {(p1, . . . , pK) : pi ∈ [P ]}.

min
∑

s∈[n]
π∈[P ]K

f0y0
sπ +

∑

s∈[n],k∈[K]
π∈[P ]K

fk
pk

yk
sπ +

∑

1≤s≤t≤n
k∈[K],π∈[P ]K

(ck
pk

+ hk
st)d

k
t x

k
sπt, (33a)

s.t.
∑

s∈[t]

π∈[P ]K

xk
sπt = 1, 1 ≤ t ≤ n, k ∈ [K], (33b)

0 ≤ xk
sπt ≤ y0

sπ, 1 ≤ s ≤ t ≤ n, k ∈ [K], π ∈ [P ]K , (33c)

0 ≤ xk
sπt ≤ yk

sπ, 1 ≤ s ≤ t ≤ n, k ∈ [K], π ∈ [P ]K , (33d)

y0
sπ ∈ {0, 1}, yk

sπ ∈ {0, 1}, 1 ≤ s ≤ n, k ∈ [K], π ∈ [P ]K . (33e)

The intuition behind the generalized JRP is that each time period t in the piecewise-linear
concave cost JRP corresponds to PK time periods (t, π) in the generalized JRP. Each time
period (t, π) allows us to use a different combination π = (p1, . . . , pK) of pieces of the
individual order cost functions φ1, . . . , φK .

This formulation does not satisfy the cost assumptions required for the 2-approximation
algorithm of Levi et al. [LRS06]. In the next section, we will devise, starting from the algo-
rithm of Levi et al, an algorithm for the generalized JRP that provides a 4-approximation
guarantee and runs in exponential time. In Section 4.2, we will employ our technique to
obtain a strongly polynomial 4-approximation algorithm for the concave cost JRP.
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4.1 An Algorithm for the Generalized JRP

Consider the LP relaxation of IP (33) obtained by replacing the constraints y0
sπ ∈ {0, 1},

yk
sπ ∈ {0, 1} with y0

sπ ≥ 0, yk
sπ ≥ 0. The dual of this LP relaxation is:

max
K∑

k=1

n∑

t=1

vk
t , (34a)

s.t. vk
t ≤ (ck

pk
+ hk

st)d
k
t + wk

sπt + uk
sπt,

1≤s≤t≤n,k∈[K],

π∈[P ]K ,
(34b)

n∑
t=s

wk
sπt ≤ fk

pk
,

1≤s≤n,k∈[K],
π∈[P ]K ,

(34c)

K∑

k=1

n∑
t=s

uk
sπt ≤ f0, 1 ≤ s ≤ n, π ∈ [P ]K , (34d)

wk
sπt ≥ 0, uk

sπt ≥ 0,
1≤s≤t≤n,k∈[K],

π∈[P ]K .
(34e)

Since now both wk
sπt and uk

sπt are not present in the objective, the invariants for them
become more involved. When

∑n
t=s max{0, vk

t − (ck
pk

+ hk
st)d

k
t } ≤ fk

pk
, we let as before

wk
sπt = max{0, vk

t − (ck
pk

+ hk
st)d

k
t } ≤ fk

pk
. (35a)

When
∑n

t=s max{0, vk
t − (ck

pk
+ hk

st)d
k
t } > fk

pk
, the algorithm will have fixed the values wk

sπt

at the point when
∑n

t=s max{0, vk
t − (ck

pk
+ hk

st)d
k
t } = fk

pk
. In this situation, we let

uk
sπt = max{0, vk

t − (ck
pk

+ hk
st)d

k
t − wk

sπt}. (35b)

We now have demand points for every time-item pair, and we refer to vk
t as the budget of

item k at time t. Given π, if vk
t ≥ (ck

pk
+hk

st)dt, we say that demand point (k, t) contributes
to the fixed cost of individual order (s, k, π) and wk

sπt is its contribution. If vk
t ≥ (ck

pk
+hk

st)dt

and
∑n

t=s wk
sπt = fk

pk
, we say that demand point (k, t) contributes to the fixed cost of joint

order (s, π) and uk
sπt is its contribution.

Since we now have several items, each with its own holding costs, we think of W as a
“master” wave, and decrease it from n to 1 and then to a bounded amount below 1. For
each item k, we maintain an item wave

W k = h1bW c + hbW c(W − bW c). (36)

Intuitively, the W k are computed so that the item waves arrive together at time periods
1, . . . , n− 1 and advance linearly inbetween.
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Algorithm JRPPD(n,K, P ∈ Z+; f0 ∈ R+; f, c ∈ RKP
+ ;

d ∈ RnK
+ ; h ∈ R(n−1)K

+ )
(1) Start with the wave at W = n and the dual solution (v, w, u) = 0. All

orders are closed, and all demand points are unserved, i.e. (x, y) = 0.
(2) While there are unserved demand points:
(3) Decrease W continuously and update W k according to (36). At the same

time, for unserved demand points (t, k), increase vk
t = max{0, dk

t (h1t −
W k), and update wsπt and usπt so as to maintain (35). The wave stops
when a joint or individual order becomes tight.

(4) If an individual order (s, k, π) became tight, fix the variables wk
sπt as

described in (35). If the joint order (s, π) is also tight, serve all demand
points contributing to (s, k, π) from (s, π).

(5) If a joint order (s, π) became tight, open the joint order and all tight
individual orders (s, π, k). For each unserved demand point (t, k) that
contributes to joint order (s, π), serve (t, k) from (s, π).

(6) For each open joint order s from 1 to n:
(7) If there is a demand point (t, k) that contributes to s and to another

open joint order s′ with s′ < s, close s.
(8) For each item k:
(9) While not all demand points have been processed in step (11):
(10) Select the latest such demand point (t, k). Let freeze(t, k) be the

location of W k when vk
t was stopped, and let s be the earliest open

joint order in [freeze(t, k), t].
(11) Open individual order (s, k). Serve all demand points (t′, k) with

s ≤ t′ ≤ t from (s, k).
(12) Return (x, y) and (v, w).

A direct implementation of this algorithm will have an exponential running time. It
is possible to implement this algorithm to have a polynomial running time, however we
will not do so here. Instead, we only prove that it provides a 4-approximation guarantee.
The proof closely resembles that from [LRS06], and therefore for this proof we assume the
reader is fully familiar with the joint replenishment results from [LRS06].

Theorem 5. Algorithm JRPPD provides a 4-approximation guarantee for the generalized
JRP.

Proof. First, similarly to the proof of Levi et al. and Theorem 3, after loop (6), each
demand point contributes to at most one open joint order. Since we do not open any
other joint orders after this step, the joint order cost is fully paid by the dual solution, i.e.∑n

s=1

∑
π∈[P ]K f0y0

sπ ≤ ∑K
k=1

∑n
t=1 vk

t . Out of 4 times the cost of the dual solution, we
allocate one toward the cost of the joint orders. Therefore, we need not consider the cost
of the joint orders further in this proof.

Second, also similarly to the proof of Levi et al. and Theorem 3, after loop (6), for each
demand point (t, k) there is at least one open joint order in [freeze(t, k), t]. Therefore, after
loop (8), the algorithm produces a feasible primal solution.

Since we have already covered the cost of joint orders, we now consider each item k
separately. We bound the holding cost and the cost of individual orders in terms of the dual
value, similarly to Levi et al. Due to the different cost structure of the JRP and generalized
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JRP, we are only able to bound the holding and individual order cost by 3 times the cost
of the dual solution, i.e.

∑n
s=1

∑
π∈[P ]K fk

pk
yk

sπ +
∑n

s=1

∑n
t=s

∑
π∈[P ]K (ck

pk
+ hk

st)d
k
t x

k
sπt ≤

3
∑n

t=1 vk
t .

Therefore, we obtain a 4 approximation algorithm.

4.2 Applying the Technique

Finally, we obtain the strongly polynomial algorithm for the concave cost JRP. First, we
reduce the concave cost JRP to an infinitely-sized generalized JRP:

min
∑

s∈[n]
π∈RK

+

f0y0
sπ +

∑

s∈[n],k∈[K]
π∈RK

+

fk
pk

yk
sπ +

∑

1≤s≤t≤n
k∈[K],π∈RK

+

(ck
pk

+ hk
st)d

k
t x

k
sπt, (37a)

s.t.
∑

s∈[t]

π∈RK
+

xk
sπt = 1, 1 ≤ t ≤ n, k ∈ [K], (37b)

0 ≤ xk
sπt ≤ y0

sπ, 1 ≤ s ≤ t ≤ n, k ∈ [K], π ∈ RK
+ , (37c)

0 ≤ xk
sπt ≤ yk

sπ, 1 ≤ s ≤ t ≤ n, k ∈ [K], π ∈ RK
+ , (37d)

y0
sπ ∈ {0, 1}, yk

sπ ∈ {0, 1}, 1 ≤ s ≤ n, k ∈ [K], π ∈ RK
+ . (37e)

As before, let ConcaveJRPPD be the algorithm obtained by executing Algorithm JRPPD
implicitly on infinitely-sized problem (37).

Theorem 6. Algorithm ConcaveJRPPD is a strongly polynomial 4-approximation algo-
rithm for the concave cost JRP.

Proof. Although in this setting all ordering costs are the same over time, we will need to
refer to ordering costs and groups of tangents at specific times. With this in mind, we will
refer to the ordering cost of item k at time t by (φk, t) and to the joint ordering cost at
time t by (φ0, t).

Note that we do not need to keep track of variables for each π ∈ RK
+ explicitly. Denote

the tangent to the individual ordering cost (φk, s) that becomes tight first by p∗ks. Then all
the other tangents to this individual ordering cost at this time are no longer relevant:

1. Concerning individual ordering costs. For any item l 6= k, the behavior of demand
points (t, l) or tangents to costs (φl, t) does not depend on item k, except through the
joint ordering cost.

2. Concerning the joint ordering cost. For any wave position, the contribution to the
joint ordering cost

∑K
k=1

∑n
t=s uk

sπt is highest for π with pk = p∗ks.

Therefore, it suffices to keep track, for each item k and time s, of the wave position when
the first tangent to (φk, s) becomes tight. When this occurs, we can stop considering all
other tangents to (φk, s). When computing the wave position when the joint ordering cost
becomes tight, we need to consider only the tangents that became tight for individual
ordering costs (φk, s). Through this transformation, the wave position when the joint
ordering cost becomes tight can be computed by Lemma 6.

We now define the following events and wave positions when they occurred:
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Wave Pos. Event
W1(t) The wave reaches time period t, i.e. W = t.
W2(t, k) A tangent p of order point (t, k) becomes tight.
W3(t) The joint order at time t becomes tight.

The computation now proceeds similarly to the lot-sizing case. We compute the largest of
the wave positions W1(t), W2(t, k), and W3(t) (which corresponds to the smallest time in
the facility location problem). After the computation we update the other W -values, and
iterate.
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