We introduce an algorithm design technique for a class of combinatorial
optimization problems with concave costs. This technique yields a strongly
polynomial primal-dual algorithm for a concave cost problem whenever such an
algorithm exists for the fixed-charge counterpart of the problem. For many
practical concave cost problems, the fixed-charge counterpart is a well-studied
combinatorial optimization problem. Our technique preserves constant factor
approximation ratios, as well as ratios that depend only on certain problem
parameters, and exact algorithms yield exact algorithms.
Using our technique, we obtain a new 1.61-approximation algorithm for the
concave cost facility location problem. For inventory problems, we obtain a new
exact algorithm for the economic lot-sizing problem with general concave
ordering costs, and a 4-approximation algorithm for the joint replenishment
problem with general concave individual ordering costs