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Stéphane, Claudia, Mikel, Abdel, Mady, Catherine, Raphaël and Laurent. I
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Chapter 1
Introduction

In this thesis we study different integrated production and transportation prob-
lems.

Production planning problems consist in determining when and how much
to produce in a production site in order to satisfy certain demands. We deal
here only with problems with deterministic time varying demand, meaning
that the demand is known beforehand and it varies over a discrete set of time
periods.

Supply chain problems are more general problems. In supply chain problems
the places in which production takes place (production sites) and the places
in which these products are required (clients) are often in different localities.
The transportation decision in these problems consists in determining how
much to transport in each time period. Therefore the production of goods
and their transportation to the customers (or clients) is a common problem
faced by many industries and is an essential feature of a supply chain. Often
such problems are treated in two separate stages, first a production plan is
elaborated and then based on it a transportation plan is created. However,
this approach can generate solutions that are far from optimal. In recent years,
studies have shown that considerable gains can be obtained when production
and transportation are planned in an integrated manner. These integrated
production and transportation problems can be seen as two-level problems
in which one level represents the production while the other represents the
transportation.

Dynamic programming algorithms have been developed for the small num-
ber of polynomially solvable problems, but heuristics are among the most used
approaches for most of the problems with multiple production sites or clients
that are usually NP-Hard. Mixed integer programming has been applied suc-
cessfully over the years to solve production planning problems mainly through

1



2 CHAPTER 1. INTRODUCTION

the use of cutting plane algorithms and reformulations. For supply chain prob-
lems, on the other hand, much less effort has been made to use mixed integer
programming approaches.

We consider several different problems in this thesis. We first study the
simplest two-level problem, namely the uncapacitated two-level production-in-
series lot-sizing problem that is polynomially solvable. Some NP-Hard exten-
sions are also studied in the subsequent chapters. An extension with multiple
clients, the one-warehouse multi-retailer problem is considered next. This in
turn leads us to a more general problem with multiple production sites and
multiple clients. Finally, a slightly different production and transportation
model with orders having different sizes and delivery dates is considered.

For each problem studied the goal is to analyze the structure of the solutions
and develop solution methods based on mixed integer programming techniques.
We aim at the development of algorithmic methods to solve these problems to
optimality whenever possible. In case we cannot solve the problem to optimality
the aim is to try to generate good heuristic solutions with some guarantee of
the quality of these solutions.

We now give an outline of the thesis. In Chapter 2 we introduce some con-
cepts that will help the reader to understand the results obtained. Definitions
and results in mixed integer programming and some results for the simplest
single-level production planning model (the uncapacitated lot-sizing problem)
are presented along with some definitions and formulations for a variety of
supply chain problems appearing in the literature.

In Chapter 3 we study the simplest possible two-level problem, the uncapac-
itated two-level production-in-series lot-sizing problem. It is known that the
problem can be solved in O(NT 3) and the ”smallest” extended formulation
solving the problem has O(NT 4) variables and O(NT 3) constraints where NT
is the number of periods. We propose a new dynamic programming algorithm
that runs in O(NT 2 logNT ) and a new compact extended formulation with
O(NT 3) variables and O(NT 2) constraints. We also propose a dynamic pro-
gramming algorithm and a compact extended formulation for an extension in
which an additional limited amount can be produced for each period in order to
obtain some extra revenue. In this case, our algorithm runs in O(NT 4) and the
resulting extended formulation has O(NT 4) variables and O(NT 3) constraints.

In Chapter 4 we study the one-warehouse multi-retailer problem (OWMR),
which is a NP-Hard extension of the uncapacitated two-level production-in-
series lot-sizing problem. A considerable amount of work has been done with
the use of approximation algorithms for the problem and some recent work has
been carried out comparing extended formulations. We study possible ways to
tackle the problem effectively by using mixed integer programming techniques.
We analyze the projection of the multi-commodity formulation (a reformula-
tion in which the demands of different clients in different periods are viewed as
different commodities) into the space of the original variables for two special
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cases, the joint-replenishment problem (a special case of the OWMR in which
storage is not allowed in the production site) and the uncapacitated two-level
production-in-series lot-sizing problem. We relate its projection to some well
known inequalities called dicut inequalities by showing it is composed of only
simple dicut inequalities for the joint-replenishment problem but this is not
the case for the uncapacitated two-level production-in-series lot-sizing prob-
lem. We also consider some valid inequalities in a reduced space of variables.
Very limited computational experiments are performed comparing first differ-
ent reformulations (multi-commodity, transportation and shortest path) for
the problem and second the use of valid inequalities with the multi-commodity
reformulation and an echelon stock formulation which is obtained by adding
reformulations to relaxations of a standard formulation for the problem.

In Chapter 5 we analyze a more general two-level production and trans-
portation problem with multiple production sites. Problems with multiple
production sites have not received much attention in the literature and most of
the problems treated are very case specific, thus there is not much done in the
direction of treating more general problems. Here we treat a general problem
with multiple production sites which extends the one-warehouse multi-retailer
problem. Relaxations for the problem for which results are available in the
literature are identified in order to improve the linear relaxation bounds ob-
tained. We show that some uncapacitated instances with reasonable sizes of a
basic problem can often be solved to optimality. On the other hand we show
that a hybrid MIP heuristic based on two different MIP formulations permits us
to find solutions guaranteed to be within 10% of optimality for instances with
limited transportation capacity and/or with additional sales. For instances
with big bucket production or aggregate storage capacity constraints the gaps
can be larger (up to 40%).

In Chapter 6 we study a slightly different type of production and transporta-
tion problem. It was treated in a paper entitled Production and transportation
Integration for a Make-to-Order Manufacturing Company with a Commit-to-
Delivery Business Mode. In this problem one has orders with different sizes
and delivery dates and the transportation is considered to be performed by a
third company. The authors of the mentioned paper proposed a formulation
that solves a polynomial case of the problem and for a more general NP-Hard
version they developed a formulation capable of solving very small instances
and a heuristic to deal with larger instances. We develop a mixed integer
programming formulation that allows us to solve large instances within a few
seconds. An algorithm with a local search phase is proposed to tackle more
difficult instances.

In Chapter 7 we summarize the contributions of this thesis and indicate
possible directions for further research.
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Chapter 2
Basics

The goal of this chapter is to provide the reader with basic concepts that will
be used throughout this thesis. In Section 2.1 we introduce some basic con-
cepts in mixed integer linear programming. In Section 2.2 we introduce totally
unimodular matrices and present some well-known ways to characterize them.
In Section 2.3 we introduce the uncapacitated lot-sizing problem which is a
basic problem in the production planning literature and present valid inequal-
ities and a reformulation. In Section 2.4 we give some concepts and results for
fixed charge network flow problems of which production planning problems are
special cases. In Section 2.5 we introduce the dicut collection inequalities, that
are inequalities available for fixed charge network flow problems. In Section
2.6 we give some notation that will be used throughout the thesis. In Sections
2.7 and 2.8 we present basic MIP formulations for a variety of two-level supply
chain problems studied in the literature. In Section 2.9 we shortly overview
other problem variations.

2.1 Basic Concepts in Mixed Integer Program-
ming

A mixed integer linear problem (MIP) is an optimization problem

zMIP = min{cx+ fy : (x, y) ∈ X}

in which X is the set of feasible solutions with continuous variables x and
integer variables y. zMIP denotes the optimal mixed integer solution value.

In case all variables are integer we say that we have an integer program
(IP)

zIP = min{fy : (y) ∈ X ′}.

5



6 CHAPTER 2. BASICS

A polyhedron P is a subset of Rn described by a finite set of linear con-
straints P = {x ∈ R

n : Ax ≥ b}. A polyhedron

P ′ = {(x, y) ∈ R
n
+ × R

p
+ : Ax+By ≥ b}

is a formulation for X if X = P ′ ∩ (Rn × Z
p).

The linear relaxation of a mixed integer problem min{cx+ fy : (x, y) ∈
X} associated to the formulation P ′ of X is given by

zLP = min{cx+ fy : (x, y) ∈ R
n
+ × R

p
+ : Ax+By ≥ b}.

zLP denotes the linear relaxation bound.
The convex hull of X , denoted conv(X), is the set of all points

that are convex combinations of points in X , i.e. conv(X) = {x : x =
∑t

i=1 λix
i,
∑t

i=1 λi = 1, λi ≥ 0 for i = 1, . . . , t over all finite subsets
{x1, . . . , xt} of X}.

The convex hull is a polyhedron if the data is rational. Note that min{cx+
fy : (x, y) ∈ X} = min{cx+ fy : (x, y) ∈ conv(X)}.

A valid inequality for a set X is an inequality αx+ βy ≥ γ with α ∈ R
n,

β ∈ R
p and γ ∈ R, satisfied by all points in X , i.e. αx̄ + βȳ ≥ γ for every

(x̄, ȳ) ∈ X .
Consider Q = {(x, z) ∈ R

n
+ × R

q : Bx + Gz ≥ d}. The projection of Q
into the x−space is given by

projxQ = {x ∈ R
n : there exists z for which (x, z) ∈ Q}.

An extended formulation for a set X ⊆ R
n × Z

p is a formulation

PE = {(x, y, z) ∈ R
n
+ × R

p
+ × R

q
+ : Cx+Dy + Ez ≥ d}

where

proj(x,y)P
E ∩ (Rn

+ × Z
p
+) = X.

An extended formulation is tight if proj(x,y)P
E = conv(X).

2.2 Totally Unimodular Matrices

Definition 2.1. A matrix A is totally unimodular (TU) if each square sub-
matrix of A has determinant −1, 0, or +1.

Definition 2.2. A nonempty polyhedron P ⊆ R
n is said to be integral if each

of its nonempty faces contains an integral point.

We now present a result that characterizes totally unimodular matrices.
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Theorem 2.1. (Hoffman and Kruskal [23]) An integral matrix A is totally
unimodular if and only if the polyhedron {x : Ax ≤ b, x ≥ 0} (when it is
nonempty) is integral for each integral vector b.

The next two results give well-known ways to identify totally unimodular
matrices.

Proposition 2.2. (Hoffman and Kruskal [23]) A matrix A is TU if and only
if
(a) the transpose matrix AT is TU if and only if
(b) the matrix (A, I) is TU.

Theorem 2.3. (Ghouila-Houri [21]) A matrix A is TU if:
(a) aij ∈ {−1, 0,+1} for all i, j,
(b) for any subset M of the rows, there exists a partition (M1,M2) of M such
that each column j satisfies

|
∑

i∈M1

aij −
∑

i∈M2

aij | ≤ 1.

2.3 Single-item Uncapacitated Lot-sizing Prob-
lem

The single-item uncapacitated lot-sizing problem (LS-U) is a basic problem in
the production planning literature. There is a planning horizon of NT periods
with time varying demands and the goal is to determine a production plan
minimizing the total cost while satisfying the demands. The problem data is
as follows:

• pt: unit production cost in period t,

• ft: fixed setup cost in period t,

• ht: unit storage cost in period t,

• dt: demand in period t (we may use dkt to denote
∑t

j=k dj).

It is assumed here that there are no initial or end stocks and that the
demands are nonnegative. The single item lot-sizing problem is a special case
of the fixed charge network flow problem that will be introduced in Section
2.4. The following variables are used in order to model the problem as a mixed
integer program:

• xt: amount produced in period t,

• yt: is equal to 1 if production occurs in period t and 0 otherwise,
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• st: amount of stock in the end of period t.

The problem can be formulated by using the described variables as follows:

(LS − U) min
∑

t ptxt +
∑

t ftyt +
∑

t htst (2.1)

st−1 + xt = dt + st ∀t, (2.2)

xt ≤Myt ∀t, (2.3)

x, s ∈ R
NT
+ , y ∈ [0, 1]NT , (2.4)

y ∈ Z
NT , (2.5)

where M is a very large number. The objective function minimizes the total
cost. Constraints (2.2) are balance constraints. Constraints (2.3) set the fixed
set-up variables to 1 in case production occurs. Constraints (2.4) and (2.5) are
bound constraints on the variables.

We now introduce a form of the valid inequalities for the problem, namely
the (l, S) inequalities. Let XLS−U be the set of feasible solutions for LS-U.

Proposition 2.4. (Barany et al. [4]) Let 1 ≤ l ≤ n, L = {1, . . . , l} and S ⊆ L,
then the (l, S) inequality

∑

j∈L\S

xj +
∑

j∈S

djlyj ≥ d1l (2.6)

is valid for XLS−U .

Theorem 2.5. (Barany et al. [4]) When s0 = sNT = 0, the original con-
straints (2.2)-(2.4) plus the (l,S) inequalities (2.6) give a complete linear in-
equality description of conv(XLS−U ).

Dynamic programming approaches are often used to tackle polynomial solv-
able production planning problems. We use this simplest possible production
planning problem in order to illustrate the use of a dynamic programming al-
gorithm. We will state some properties of the problem and then present a
dynamic programming recursion for it.

Observation 2.1. Since st =
∑t

k=1 xt − d1t, we can eliminate the stock vari-
ables from the objective function (2.1) and alternatively write it as

∑

t

ptxt +
∑

t

ftyt +K, (2.7)

where pt = p′t +
∑NT

k=t h
′
t and K = −

∑

t htd1t.

The following proposition characterizes optimal feasible solutions.
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Proposition 2.6. (Wagner and Whitin [54])
(1) There exists an optimal solution with st−1xt = 0 for all t. (There is pro-
duction only if the stock is zero.)

(2) There exists an optimal solution such that if xt > 0, xt =
∑t+k

i=t di for
some k ≥ 0. (If there is production in t, the amount produced exactly satisfies
demand for periods t to t+ k)

Let {t1, t2, . . . , tk} be the set of periods in which production occurs. A basic
solution will have the format [t1, . . . , t2−1], [t2, . . . , t3−1], . . . , [tk, . . . , tNT ] such
that the production for each interval only happens in the production period in
the beginning of that interval. Each of these intervals is called a regeneration
interval.

Observe that we can assume ft ≥ 0, since whenever ft < 0 we can add the
constant ft to the objective function and use a new setup cost f̄t = 0. Let
H(k) be the optimal cost for periods 1, . . . , k. Consider the following forward
recursion:

H(k) = min
1≤j≤k

{H(j − 1) + fj + pjdjk}, (2.8)

with H(0) = 0.
The problem can be solved by solving recursion (2.8). The optimal solution

value is given by H(NT ) and the optimal solution can be obtained by keeping
track of the periods j chosen at each step until the calculation of H(NT ).
Observe that choosing a given j in the recursion means that the regeneration
interval [j, k] will be part of the solution.

We now present an extended shortest path formulation for the single-item
uncapacitated lot-sizing. In this formulation we have variables representing the
different regeneration intervals of a solution. We have the following variables:

• φkt is equal to 1 if an amount dkt is produced in period k, and is 0
otherwise.

We formulate the problem using the described variables as follows:

(SP − LS − U) min
∑

t(ftyt + ptxt) (2.9)
∑NT

t=1 φ1t = 1, (2.10)
∑t−1

u=1 φu,t−1 −
∑NT

u=t φtu = 0 ∀t ≥ 2, (2.11)
∑NT

u=t φtu ≤ yt ∀t, (2.12)
∑NT

u=t dtuφtu = xt ∀t, (2.13)

φ ∈ R
NT×NT
+ , y ∈ [0, 1]NT . (2.14)

Constraints (2.10)-(2.11) are flow conservation constraints. Constraints (2.12)
define the fixed setup variables. Constraints (2.13) link the shortest path vari-
ables with the original production variables. Denote QSP−LS−U the set of
feasible solutions of SP-LS-U.
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Theorem 2.7. (Eppen and Martin [14]) The linear program

min{px+ qy : (x, y, φ) ∈ QSP−LS−U}

has an optimal solution with y integer, and thus solves LS-U.

2.4 Network Flow Problems

In this section we will introduce a class of problems of which production plan-
ning problems are particular cases. Consider a directed network G = (N,A)
with a set N of n nodes and a set A of m arcs (i, j). To each arc (i, j) ∈ A
there is an associated cost cij as well as a lower bound lij and a capacity uij .
Each node i ∈ N has an associated weight bi representing supply/demand (we
consider a node i with bi > 0 a demand node and a node i with bi < 0 a supply
node). The minimum cost network flow problem is formulated as follows.

min
∑

(i,j)∈A cijxij (2.15)
∑

j:(j,i)∈A xji −
∑

j:(i,j)∈A xij = bi ∀i ∈ N, (2.16)

lij ≤ xij ≤ uij ∀(i, j) ∈ A, (2.17)

where
∑

i∈N bi = 0 is a necessary condition for feasibility. The objective func-
tion (2.15) minimizes the total cost of the flow. Constraints (2.16) are called
the flow conservation constraints. Constraints (2.17) bound the flow at each
arc. An example of a network flow problem can be seen in Figure 2.1, in which
there are two demand nodes (nodes 2 and 3) and one supply node (node 1).

Figure 2.1: Example of a network flow problem

The fixed charge network flow problem is the problem in which we
additionally impose a fixed cost fij whenever there is a positive flow on an arc
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(i, j).

min
∑

(i,j)∈A cijxij + fijyij (2.18)
∑

j:(j,i)∈A xji −
∑

j:(i,j)∈A xij = bi ∀i ∈ N, (2.19)

lij ≤ xij ≤ uijyij ∀(i, j) ∈ A. (2.20)

The single-item uncapacitated lot-sizing problem is an example of fixed
charge network flow problem in which there is a source node and the other
nodes correspond to periods with their corresponding demands. An illustration
of the network of a four period problem is presented in Figure 2.2.

Figure 2.2: Network representation of a four period lot-sizing problem illus-
trating the fixed charge arcs (corresponding to y variables) separated from the
continuous arcs (corresponding to x and s variables)

2.4.1 Some Properties of Network Flows

We now present some results on network flow problems that will be useful in
later chapters. The first result gives information about the structure of extreme
feasible solutions.

Observation 2.2. (see Zangwill [56]) In a basic or extreme feasible solution
of a minimum cost network flow problem, the arcs corresponding to variables
with flows strictly between their lower and upper bounds form an acyclic graph.

Figure 2.3(a) shows an example of a basic feasible solution while Figure
2.3(b) shows an example of a cyclic and thus nonbasic feasible solution.

The next result states the property of decomposability of flows in a network.
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(a) Basic feasible solution (b) Cyclic solution

Figure 2.3: Example of basic feasible and cyclic solutions

Theorem 2.8. (see Ford and Fulkerson [19]) Flow Decomposition Theo-

rem: Every path and cycle flow has a unique representation as nonnegative
arc flows. Conversely, every nonnegative arc flow x can be represented as a
path and cycle flow (though not necessarily uniquely) with the following two
properties:
(a) Every directed path with positive flow connects a supply node to a demand
node.
(b) At most n+m paths and cycles have nonzero flow; out of these, at most m
cycles have nonzero flow.

An illustration of the flow decomposition theorem is depicted in Figure
2.4. The feasible flow in Figure 2.4(a), represented by the bold arcs, can be
decomposed in the two paths illustrated in Figures 2.4(b) and 2.4(c).

2.5 Dicut Collection Inequalities

Rardin and Wolsey [41] introduced the dicut collection inequalities for uncapac-
itated fixed charge network flow problems (FCN). Given a graph G = (N,A)
with A = (F, F̄ ) where F represents the set of arcs with fixed charge and F̄
represents the set of continuous arcs (when an arc has both fixed and variable
costs two arcs are used, one in F and one in F̄ as in Figure 2.2), a t−dicut for
t ∈ T is a set of arcs whose removal from A blocks all flow from the source s to a
sink t, where T is the set of considered sinks. A dicut collection Γ , {Γt}t∈T

is a set of such t−dicuts. A simple dicut collection is a dicut collection with
|Γt| ≤ 1, for all t ∈ T , which means that at most one dicut is employed for each
sink t. Given the values

• γtij = number of t-dicuts in Γt containing the arc (i, j),

• γij = max{γtij : t ∈ T },

• γt = |Γt|,
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(a) Feasible flow

(b) Path 1 (c) Path 2

Figure 2.4: Example of the decomposition flow theorem

the proposition follows.

Proposition 2.9. (Rardin and Wolsey [41]) Every inequality
∑

(i,j)∈F̄

γijxij +
∑

(i,j)∈F

∑

t∈T

dtγ
t
ijyij ≥

∑

t∈T

γtdt

derived from a dicut collection Γ , {Γt}t∈T is valid for the uncapacitated fixed
charge network flow problem.

In Figure 2.5 we have F = {y1, y2, y3, y4} F̄ = {x1, x2, x3, x4, s1, s2, s3, s4}.
By taking T = {1, 2, 3, 4} and the following t-dicuts Γ1 = {x1}, Γ2 = {x1, y2},
Γ3 = {x1, y2, x3} and Γ4 = {x1, y2, x3, y4}, we get the dicut collection inequality

x1 + (d2 + d3 + d4)y2 + x3 + d4y4 ≥ d1 + d2 + d3 + d4.

Observe that this is a simple dicut inequality.

2.6 Notation used for Supply Chain Problems

A supply chain is a set of inter-related operations that provides goods and/or
services to end customers. Such operations may include the production, the
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Figure 2.5: Example of dicut collection with t-dicuts Γ1 = {x1}, Γ2 = {x1, y2},
Γ3 = {x1, y2, x3} and Γ4 = {x1, y2, x3, y4}

packing and the transportation of goods to the clients among others.
In the next two sections we will review some particular cases of two-level

supply chains, namely some joint production and transportation problems. The
purpose of presenting these problems is to familiarize the reader with the sort
of problems studied in the literature of joint production and transportation,
some of which will be treated specifically in this thesis. These problems have as
goal the satisfaction of customer demands while optimizing a certain objective
function.

Now we introduce some notation that will be used in the remainder of this
thesis. The problem dimensions are denoted by:

• NI: number of items,

• NP : number of production sites,

• NC: number of client areas,

• NT : number of time periods.

Next we introduce some data used to describe the problem and variables
that will be used to formulate them as mixed integer programs. The description
of the parameters and the variables is very general so that for each specific
problem the indices that are not going to be used will be dropped.

There are some costs that may appear in the problems:

• p0ipt : per unit manufacturing cost of product i at production site p in
period t,

• p1ipct : cost to transport a unit of product i from production site p to client
c in period t,
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• f0ip
t : fixed cost of manufacturing product i at production site p in period
t,

• f1pc
t : fixed cost of transporting products between production site p and
client c in period t,

• h0ipt : per unit storage cost of product i at production site p in period t,

• h1ict : per unit storage cost of product i at client c in period t,

• eict : per unit cost of backlogging product i at client c in period t.

It is possible that some resources are capacity constrained:

• Kip
0 : manufacturing capacity for product i in production site p,

• K1: capacity of each transportation vehicle,

• LKp
t : manufacturing joint capacity (big bucket) at production site p in

period t,

• SKc
t : upper bound on stocks at client c in period t,

• M : very big number used to determine unlimited capacity.

Different variables can be present in the formulation of the problems:

• x0ipt : amount manufactured of product i at production site p in period t,

• x1ipct : amount transported of product i between production site p and
client c in period t,

• yipt : is equal to 1 if there is manufacture of product i at production site
p in period t,

• Y pc
t : number of vehicles used for transportation between production site
p and client c in period t,

• s0ipt : amount of product i stored at production site p in the end of period
t,

• s1ict : amount of product i stored at client c in the end of period t,

• rict : amount of product i backlogged at client c in period t,

• vict : amount of product i to be sold at client c in period t.

In the next two sections we will present some two-level problems studied
in the literature along with basic formulations as mixed integer programs. In
Section 2.7 we present problems with a single production site while in Section
2.8 we overview problems with multiple production sites.
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2.7 Single Production Site Supply Chain Prob-

lems

2.7.1 Uncapacitated Two-level Production-in-series Lot-
sizing Problem

NI = NP = NC = 1
Production setup
Transportation setup

The Uncapacitated two-level production-in-series lot-sizing problem (2L-
S/LS-U), which will be studied in details in Chapter 3, is a polynomial solv-
able problem that can be thought of as a production/transportation problem
in which a production site is said to be at level zero and a client site at level
one. There is a single item with time varying deterministic demands (dt) over a
discrete horizon of NT time periods that have to be satisfied without backlog-
ging. Production and transportation are unlimited and we have the following
costs:

• fixed set-up cost (f0
t /f

1
t ) in case production/transportation occurs,

• variable production/transportation cost (p0t /p
1
t ) that depends on the

amount produced,

• storage costs at both the production (h0t ) and the client site (h1t ).

The goal is to find a feasible schedule minimizing the total cost. Consider the
variables:

• x0t : amount manufactured at the production site in period t,

• x1t : amount transported between the production site and the client in
period t,

• yt: is equal to 1 if there is production in period t,

• Yt: is equal to 1 if there is transportation between the production site
and the client in period t,

• s0t : amount stored at the production site in the end of period t,

• s1t : amount stored at the client in the end of period t.
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The problem can be formulated as follows:

(2L− S/LS − U)

min
∑

t(f
0
t yt + p0tx

0
t + h0t s

0
t ) +

∑

t(f
1
t Yt + p1tx

1
t + h1t s

1
t ) (2.21)

s0t−1 + x0t = x1t + s0t ∀t, (2.22)

s1t−1 + x1t = dt + s1t ∀t, (2.23)

x0t ≤Myt ∀t, (2.24)

x1t ≤MYt ∀t, (2.25)

x0, s0 ∈ R
NT
+ , x1, s1 ∈ R

NT
+ , y, Y ∈ {0, 1}NT . (2.26)

The objective function minimizes the total production, transportation and stor-
age costs. Constraints (2.22) and (2.23) are balance constraints for the produc-
tion and for the client sites respectively. Constraints (2.24) and (2.25) are setup
constraints for the production and for the client sites respectively. Constraints
(2.26) are the bound and integrality constraints on the variables. An illustra-
tive example of a fixed charge network, with fixed charges on the production
and on the transportation arcs, representing the problem can be viewed in Fig-
ure 2.6. The square nodes correspond to the production site and the circular
nodes represent the client.

Figure 2.6: Fixed charge network of the uncapacitated two-level production-
in-series lot-sizing problem with four periods

The uncapacitated two-level production-in-series lot-sizing problem is a spe-
cial case of the multi-level production-in-series lot-sizing problem studied in
Zangwill [56]. In this more general problem, there are L levels {0, 1, . . . , L− 1}
such that the production at each level l is subject to a fixed setup cost and to
unit production costs and depends on the production of level l−1 and demand
is present only at level L− 1.

The standard algorithm for the uncapacitated production-in-series lot-sizing
problem is a dynamic programming algorithm due to Zangwill [56] whose run-
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ning time for L > 2 levels is O(L×NT 4). Using the approach proposed by Ep-
pen and Martin [14, 31], the dynamic programming recursion can be converted
into a linear program whose dual provides a tight polynomial size extended
formulation for the convex hull of solutions – for the recursion of Zangwill [56]
the resulting formulation has O(L × NT 4) variables and O(L × NT 3) con-
straints for general L. In van Hoesel et al. [51], the authors treat two-level
and multi-level problems in which there are capacity restrictions at all but the
initial production level. Polynomial dynamic programming algorithms are de-
rived when the capacities are constant and it is observed that when L = 2, the
backward dynamic program of Zangwill [56] runs in O(NT 3). In Lee et al. [25]
a two-level problem with more complicated transportation costs is studied and
a polynomial dynamic program is derived.

Under certain assumptions on the costs, optimal solutions are known to be
nested (i.e. x0t > 0 implies x1t > 0), see Love [30]. For L > 2, the running
times of the corresponding algorithms of Zangwill [56] reduce to O(L ×NT 3)
in this case. Specifically when L = 2, if the costs at level zero satisfy the
Wagner-Whitin condition (p0t + h0t ≥ p0t+1 for all t) and the fixed costs are
non-increasing (f0

t ≥ f0
t+1 for all t), then there is an optimal nested solution.

Various researchers have tried to devise compact tight extended formula-
tions. Using echelon stocks it is shown in Pochet [38] that the (l, S) inequalities
from Barany et al. [4] provide a computationally effective approach for multi-
level production-in-series problems. Another alternative is to generalize the fa-
cility location of Krarup and Bilde [24] or shortest path extended formulations
of Eppen and Martin [14] that are known to be tight for the single-level prob-
lem. Various authors have observed that these reformulations with O(NT 2)
variables are also effective in practice, but even in the two-level case there are
instances that are not tight, see Pochet and Wolsey [39].

In Chapter 3, we analyze the uncapacitated two-level production-in-series
lot-sizing problem. We present a new dynamic programming algorithm and
a tight extended formulation. Denizel et al. [10] have very recently given an
alternative network formulation for the problems with two and three levels.

2.7.2 Joint-replenishment Problem

NI = NP = 1
Production setup
Transportation setup
No storage at the production site

The Joint-replenishment problem (JRP) is a NP-Hard problem that can be
viewed as a multi-client two-level production/transportation problem. There
are NC clients with deterministic demand (dct) for each of the NT time peri-
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ods. Production and transportation for the different clients are unlimited and
storage is not allowed at the production site. The costs are:

• fixed production (f0
t ) and transportation costs (f1c

t ),

• variable production (p0t ) and transportation costs (p1ct ),

• holding costs at each client (h1ct ).

The goal is to determine an ordering policy minimizing the total cost and
satisfying demands without backlogging. We define the variables:

• x0t : amount manufactured at the production site in period t,

• x1ct : amount transported between the production site and client c in
period t,

• yt: is equal to 1 if there is manufacture at the production site in period
t,

• Y c
t : is equal to 1 if transportation occurs between the production site

and client c in period t,

• s1ct : amount stored at client c in the end of period t.

The problem can be formulated as follows:

(JRP ) min
∑

t(f
0
t yt + p0tx

0
t ) +

∑

c,t(f
1c
t Y c

t + p1ct x
1c
t + h1ct s

1c
t ) (2.27)

x0t =
∑

c x
1c
t ∀t, (2.28)

s1ct−1 + x1ct = dct + s1ct ∀c, t, (2.29)

x0t ≤Myt ∀t, (2.30)

x1ct ≤MY c
t ∀c, t, (2.31)

s0, x0 ∈ R
NT
+ , s1, x1 ∈ R

NC×NT
+ , (2.32)

y ∈ {0, 1}NT , Y ∈ {0, 1}NC×NT . (2.33)

The objective function minimizes the total production, transportation and stor-
age costs. Constraints (2.28) are balance constraints for the production site
while constraints (2.29) are balance constraints for each of the clients. Con-
straints (2.30) are setup constraints for the production site. Constraints (2.31)
are setup constraints for each of the client areas. Constraints (2.32) and (2.33)
are bound and integrality constraints on the variables. An illustrative example
of a network representing the problem can be viewed in Figure 2.7. We have
the production site represented by square nodes and the clients by the circular
nodes.

The uncapacitated joint-replenishment problem (JRP) has been studied by
numerous authors, see Robinson et al. [42]. It has been shown to be NP-Hard
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Figure 2.7: Example of the joint-replenishment problem with two clients and
four periods

in Arkin et al. [3] by a reduction from the 3-SAT problem. In Federgruen and
Tzur [16] the authors elaborated a problem specific exact branch-and-bound
algorithm and a partitioning heuristic. Some works propose approximation
algorithms for the problem. Levi et al. [27] propose a primal-dual framework
for dealing with general deterministic inventory problems. Their approach
yields a 2-approximation algorithm when applied to the JRP. Levi et al. [26]
present a new 1.8-approximation algorithm based on a linear programming
rounding procedure.

Observe that the Joint-replenishment problem can also be considered as a
single-level multi-item lot-sizing problem with joint-setup costs.

2.7.3 One-warehouse Multi-retailer Problem

NI = NP = 1
Production setup
Transportation setup

The One-warehouse multi-retailer problem (OWMR), which will be studied
in more details in Chapter 4, is a generalization of the Joint-replenishment
problem in which storage is allowed at the production site. The OWMR is NP-
Hard since it is a generalization of the JRP. There is one production site which
replenishes multiple (NC) clients over a finite time horizon of NT periods.
Each client has a time varying deterministic demand (dct ) for each period t
in the time horizon. The amount manufactured by the production site and
the amount transported from it to the clients are unlimited. We define the
variables:

• x0t : amount manufactured at the production site in period t,
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• x1ct :amount transported between the production site and client c in period
t,

• yt: is equal to 1 if there is manufacture at the production site in period
t,

• Y c
t : is equal to 1 if transportation occurs between the production site

and client c in period t,

• s0t : amount stored at the production site in the end of period t,

• s1ct : amount stored at client c in the end of period t.

The problem can be formulated as follows:

(OWMR)

min
∑

t

(f0
t yt + p0tx

0
t + h0t s

0
t ) +

∑

c,t

(f1c
t Y c

t + p1ct x
1c
t + h1ct s

1c
t ) (2.34)

s0t−1 + x0t =
∑

c x
1c
t + s0t ∀t, (2.35)

s1ct−1 + x1ct = dct + s1ct ∀c, t, (2.36)

x0t ≤Myt ∀t, (2.37)

x1ct ≤MY c
t ∀c, t, (2.38)

s0, x0 ∈ R
NT
+ , s1, x1 ∈ R

NC×NT
+ , (2.39)

y ∈ {0, 1}NT , Y ∈ {0, 1}NC×NT . (2.40)

The objective function minimizes the total production, transportation and stor-
age costs. Constraints (2.35)-(2.40) are similar to constraints (2.28)-(2.33) with
the difference that constraints (2.35) take into account the storage variables at
the production site. An illustrative example of a network representing the
problem can be viewed in Figure 2.8. We have the production site represented
by square nodes and the clients by circular nodes.

Federgruen and Tzur [17] proposed an exact branch-and-bound and a par-
titioning heuristic for the problem. Levi et al. [26] analyze the problem with
a more general cost structure that takes into consideration the total amount
of time the product is stored in both the production site and the client. The
authors give an 1.8-approximation algorithm based on a linear programming
rounding procedure for the problem.

Solyali and Sural [46] compare both theoretically and experimentally MIP
formulations for the problem. They could solve to optimality problems with
up to NC = 150 clients and NT = 30 time periods. An obvious extension for
the problem is the multi-item version, which is considered in Federgruen and
Tzur [17].

In Chapter 4 we will consider the one-warehouse multi-retailer problem.
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Figure 2.8: Example of the one-warehouse multi-retailer problem with two
clients and four periods

2.7.4 The Multi-item Joint-replenishment Problem with
Backlogging and Production/Setup Times

NP = 1
Production setup
Transportation setup
Capacitated vehicles for transportation
Big bucket capacity at the production site
No storage at the production site
Backlogging

In Özdamar and Yazgaç [35], the authors treat a NP-Hard problem based
on a case in which a company produces liquid and power detergents. One
production site supplies multiple (NI) items for multiple (NC) clients which
have deterministic demands (dict ), based on sales forecast from each of them,
to be satisfied. Similar to the Joint-replenishment problem, no inventories are
held in the production site. The items are divided into different groups (G)
such that the items within a group share the same resources in the production
site. The following parameters are part of the problem data:

• production setup times (gi),

• production processing times (oi),

• limited time capacity (LKG
t ) for producing each group of items at the

production site in each period,

• items are transported from the production site to the clients by vehicles
with limited capacity (K).
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The costs are:

• fixed cost per vehicle to be used in the transportation (f1c),

• storage (h1ic) costs,

• backlogging costs (e1ict ) at the clients (backorders costs are higher than
inventory costs).

We define the variables:

• x0it : amount manufactured of product i at the production site in period
t,

• x1ict : amount transported of product i between the production site and
client c in period t,

• yit: is equal to 1 if there is manufacture of product i at the production
site in period t,

• Y c
t : number of vehicles used for transportation between the production

site and client c in period t,

• s1ict : amount of product i stored at client c in the end of period t.

The problem can be formulated as follows:

(JRP −B − ST ) min
∑

c,t f
1cY c

t +
∑

i,c,t(h
1ic
t s1ict + e1ict b1ict ) (2.41)

x0it =
∑

c x
1ic
t ∀ i, t, (2.42)

s1ict−1 + x1ict − bict−1 + bict = dict + s1ict ∀ i, c, t, (2.43)

x0it ≤Myit ∀ i, t, (2.44)
∑

i x
1ic
t ≤ KY c

t ∀c, t, (2.45)
∑

i∈G(o
ix0it + giyit) ≤ LKG

t ∀ G, t, (2.46)

x0 ∈ R
NI×NT
+ , x1, s1, b ∈ R

NI×NC×NT
+ , (2.47)

y ∈ {0, 1}NI×NT , Y ∈ Z
NC×NT
+ . (2.48)

The objective function minimizes the total fixed transportation, storage and
backlogging costs. Constraints (2.42) are the balance constraints at the pro-
duction site. Constraints (2.43) are the balance constraints at the client sites
taking into consideration the backlogging. Constraints (2.44) are setup con-
straints at the production site while constraints (2.45) determine the number
of vehicles to be used for transportation. Constraints (2.46) are resource con-
straints (big bucket) limiting the total amount of time that can be used to
produce each group of items in each time period. Constraints (2.47) and (2.48)
are bound and integrality constraints on the variables. An illustrative example
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of a network representing the problem can be viewed in Figure 2.9. We have
the production site represented by square nodes and the clients by the circular
nodes.

Figure 2.9: Example of the multi-item joint-replenishment problem with back-
logging and production/setup times with two clients and four periods

Özdamar and Yazgaç [35] proposed an hierarchical approach. In their ap-
proach two models are solved, a reduced aggregated and a larger disaggregated.
The aggregated model is solved first and its solution is used as data for the
disaggregated model. The aggregated problem was composed of NI = 2 items,
NC = 5 clients and NT = 6 periods while the disaggregated one had NI = 6
items, NC = 5 clients and NT = 48 periods.

2.8 Multiple Production Site Supply Chain

Problems

In contrast to what happens with single production site problems, multiple
production site supply chain problems have not received great attention in the
literature. In this section we present some of the limited number of problems
studied and highlight the approaches used.

2.8.1 Multi-warehouse Multi-retailer Problem without
Client Storage

Production setup
No transportation setup
No storage at the clients
Joint production (big bucket) capacity at the production site
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In Eksioglu et al. [12], the authors treat a NP-Hard problem in which there
are multiple (NI) items, multiple (NP ) production sites and multiple (NC)
clients with deterministic demand (dict ) over a discrete time horizon of NT
periods. Items share a common production resource with item-specific setup
costs. No storage is allowed at the client areas. The costs are:

• fixed setup costs (f0ip
t ),

• variable production costs (p0ipt ),

• transportation cost is determined only by the variable transportation
costs (p1ipct ),

• there are also storage costs (h0ipt ) at each production site.

We define the variables:

• x0ipt : amount manufactured of product i at production site p in period t.

• x1ipct : amount transported of product i between production site p and
client c in period t.

• yipt : is equal to 1 if there is manufacture of product i at production site
p in period t.

• s0ipt : amount of product i stored at production site p in the end of period
t.

The problem can be formulated as follows:

(MWMR− PC − SC0)

min
∑

i,p,t(f
0ip
t yipt + p0ipt x0ipt + h0ipt s0ipt ) +

∑

i,p,c,t p
1ipc
t x1ipct (2.49)

s0ipt−1 + x0ipt =
∑

c x
1ipc
t + s0ipt ∀ i, p, t, (2.50)

∑

p x
1ipc
t = dict ∀ i, c, t, (2.51)

x0ipt ≤Myipt ∀ i, p, t, (2.52)
∑

i x
0ip
t ≤ LKp

t ∀ p, t, (2.53)

s0, x0 ∈ R
NI×NP×NT
+ , x1 ∈ R

NI×NP×NC×NT
+ , (2.54)

y ∈ {0, 1}NI×NP×NT . (2.55)

The objective function minimizes the total production, storage and transporta-
tion costs. Constraints (2.50) are balance constraints at the production sites.
Constraints (2.51) ensure the amount transported satisfies the demand. Con-
straints (2.52) are setup constraints at the production sites. Constraints (2.53)
are resource constraints (big bucket) for each of the production sites at each
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period. Constraints (2.54) and (2.55) are bound and integrality constraints on
the variables. An illustrative example of a network representing the problem
can be viewed in Figure 2.10. We have the production site represented by
square nodes and the clients by circular nodes.

Figure 2.10: Example of the multi-warehouse multi-retailer problem without
client storage problem with two production sites, two clients and four periods

Eksioglu et al. [13] propose a primal-dual heuristic for the uncapacitated
single-item version of the problem. In Eksioglu et al. [12] an extended formu-
lation and a lagrangean heuristic based on a lagrangean decomposition using
this formulation are proposed. They generated heuristic solutions for instances
with up to NI = 50 items, NP = 15 production sites, NC = 60 clients and
NT = 35 periods.

2.8.2 Multi-plant Lot-sizing Problem with Inter-plant
Transfers

Production setup
No transportation setup
Big bucket capacity at the production sites
Each production site has its own demands

The Multi-plant lot-sizing problem with inter-plant transfers, studied in
Sambasivan [43], is a NP-Hard production/transportation problem with strong
similarities with two-level problems although it is not exactly one of them.
There are multiple (NP ) production sites, each one with deterministic demands
(dipt ) for multiple (NI) items. The costs are:

• fixed setup costs (f0ip
t ),
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• variable production costs (p0ipt ),

• storage costs at the production sites (hipt ),

• transfers between two different production sites p and q can be done with
a variable transportation cost (p1pqt ).

We define the variables:

• x0ipt : amount manufactured of product i at production site p in period t,

• x1ipqt : amount transported of product i from production site p to produc-
tion site q in period t,

• yipt : is equal to 1 if there is manufacture of product i at production site
p in period t,

• sipt : amount of product i stored at production site p in the end of period
t.

The problem can be formulated as follows:

(MPLS)

min
∑

i,p,t(f
0ip
t yipt + p0ipt x0ipt + hipt s

ip
t ) +

∑

i,p,q,t

q 6=p
p1pqt x1ipqt (2.56)

sipt−1 + x0ipt −
∑

q 6=p x
1ipq
t +

∑

q 6=p x
1iqp
t = dipt + sipt ∀i, p, t, (2.57)

xipt ≤Myipt ∀i, p, t, (2.58)
∑

i(o
ip
t x

ip
t + gipt y

ip
t ) ≤ LKp

t ∀p, t, (2.59)

s, x0 ∈ R
NI×NP×NT
+ , x1 ∈ R

NI×NP×NP×NT
+ , (2.60)

y ∈ {0, 1}NI×NP×NT . (2.61)

The objective function minimizes the total production, transportation and stor-
age costs. Constraints (2.57) are balance constraints at each production site
which take into consideration the transportation between different production
sites. Constraints (2.58) are setup constraints for each production site. Con-
straints (2.59) are resource constraints (big bucket) for each production site.
Constraints (2.60) and (2.61) are bound and integrality constraints on the vari-
ables. An illustrative example of a network representing the problem can be
viewed in Figure 2.11.

Sambasivan [43] showed that the uncapacitated version of the problem is
already NP-Hard. They make an assumption that production and inventory
at any production site for any production site satisfy demand for contiguous
periods.

Most of the work on the capacitated version of the problem has been concen-
trated on the development of heuristics. Sambasivan and Schmidt [44] propose
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Figure 2.11: Example of the multi-plant lot-sizing problem with inter-plant
transfers problem with two production sites

a heuristic in which they first solve the uncapacitated problem and then apply
some shift procedures in order to get a feasible solution. Sambasivan and Yahya
[45] develop a lagrangean based heuristic. Nascimento et al. [34] developed a
Greedy randomized adaptive search procedure (GRASP) metaheuristic for the
problem. The authors considered instances with up to NI = 15 items, NP = 4
production sites and NT = 6 periods.

2.8.3 General Problem

Production setup
Transportation setup
Capacitated vehicles for transportation
Big bucket capacity at the production sites
Limited storage at the clients
Core and forecasted demands

Park [36] studies a NP-Hard problem that consists of determining the man-
ufacturing, transportation and storage schedule for the products so as to max-
imize the revenue minus the total cost. Both production and transportation
costs are composed of a fixed cost plus a variable cost that depends on the
amount produced/transported. There are NI items, NP production sites, NC
clients and NT periods. Each client has his/her core demands (dict ) to be sat-
isfied and also his/her forecasted demands (d̄ict ) that do not necessarily have
to be totally satisfied, but there is a penalty in case they are not. Vehicles of
a given capacity transport items between the production sites and the clients.
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There is a resulting variable transportation cost depending on the item and a
fixed cost per vehicle incurred whenever it transports a positive amount of one
or several items. Finally there are variable storage costs at both production
sites and client areas. There is a resource constraint on the total amount pro-
duced at the production sites and also upper bound on stocks at the clients.
The input data is:

• vehicles capacities (K1),

• setup times (oip),

• production times (gip),

• joint production capacities at the production sites (LKp),

• storage capacities at the clients (SKc).

The costs are:

• per unit production costs at the production sites (p0ip),

• per unit transportation costs from the production sites to the clients
(p1ipc),

• fixed setup costs at the production sites (f0ip),

• fixed costs per vehicle to transport items between the production sites
and the clients (f1pc),

• storage costs at the production sites (h0ip),

• storage costs at the clients (h1ic),

• products selling prices (lic),

• costs for not satisfying the forecasted demand (eic).

We define the variables:

• x0ipt : amount manufactured of product i at production site p in period t,

• x1ipct : amount transported of product i between production site p and
client c in period t,

• yipt : is equal to 1 if there is manufacture of product i at production site
p in period t,

• Y pc
t : number of vehicles used for transportation between production site
p and client c in period t,
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• s0ipt : amount of product i stored at production site p in the end of period
t,

• s1ict : amount of product i stored at client c in the end of period t.

The problem can be formulated as follows:

(GENP )

max
∑

i,c,t(l
ics1ict−1 +

∑

p l
icx1ipct − lics1ict )−

(
∑

i,p,t p
0ipx0ipt +

∑

i,p,t f
0ipyipt +

∑

i,p,t h
0ips0ipt +

∑

i,c,t h
1ics1ict +(2.62)

∑

i,c,t e
ic(d̄ict − s1ict−1 −

∑

p x
1ipc
t + s1ict ) +

∑

p,c,t f
1pcY pc

t +
∑

i,p,c,t p
1ipcx1ipct )

s0ipt−1 + x0ipt =
∑

c x
1ipc
t + s0ipt ∀ i, p, t, (2.63)

s1ict−1 +
∑

p x
1ipc
t ≥ dict + s1ict ∀ i, c, t, (2.64)

s1ict−1 +
∑

p x
1ipc
t ≤ d̄ict + s1ict ∀ i, c, t, (2.65)

x0ipt ≤Myipt ∀ i, p, t, (2.66)
∑

i x
1ipc
t ≤ K1Y

pc
t ∀ p, c, t, (2.67)

∑

i(o
ipxipt + gipyipt ) ≤ LKp ∀ p, t, (2.68)
∑

i s
1ic
t ≤ SKc ∀ c, t, (2.69)

s0, x0 ∈ R
NI×NP×NT
+ , s1 ∈ R

NI×NC×NT , x1 ∈ R
NI×NP×NC×NT ,(2.70)

y ∈ {0, 1}NI×NP×NT , Y ∈ Z
NP×NC×NT
+ . (2.71)

The objective function maximizes the revenue minus the costs. Constraints
(2.63) are balance constraints for the production sites. Constraints (2.64) en-
sure all the demands are satisfied while constraints (2.65) guarantee the amount
produced is not larger than the forecasted demand. Constraints (2.66) fix the
set-up variables to 1 in case production occurs at the production sites. Con-
straints (2.67) determine the number of vehicles needed to transport the items
to the clients. Constraints (2.68) are resource constraints (big bucket) for each
production site in each period. Constraints (2.69) limit the total stock at each
of the clients. Constraints (2.70) and (2.71) are bound and integrality con-
straints on the variables. An illustrative example of a network representing the
problem can be viewed in Figure 2.12.

Park [36] elaborates a heuristic solution with a local improvement procedure
in order to generate feasible solutions. Instances with up to NI = 5, NP = 5,
NC = 70 and NT = 10 were considered. His results based on heuristic solu-
tions suggest that an integrated model for this two-level problem significantly
improves on a two stage hierarchical approach.

In Chapter 5 we will consider a problem equivalent to the General problem.
The problems presented are now summarized in Table 2.1. The first column

in the table identifies the problems. The other columns indicate the presence or
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Figure 2.12: Example of the general problem with two production sites and
two clients

not of some characteristics, that appear in this order: multiple items, multiple
production sites, multiple clients, capacitated transportation, storage in the
production sites, storage in the clients, production set-up, transportation set-
up, big bucket capacity and backlogging.

Table 2.1: Overview of the problems from Sections 2.7 and 2.8
Problem MI MP MC Cap. Tr. Stock Pr. Stock Cl. Prod. S-U Tr. S-U Big Buc. Back.
2L-S/LS-U - - - - Yes Yes Yes Yes - -
JRP - - Yes - - Yes Yes Yes - -
OWMR - - Yes - Yes Yes Yes Yes - -
JRP-B-ST Yes - Yes Yes - Yes Yes Yes Yes Yes
MWMR-PC-SC0 Yes Yes Yes - Yes - Yes - Yes -
MPLS Yes Yes - - Yes - - - Yes -
GENP Yes Yes Yes Yes Yes Yes Yes Yes Yes -

2.9 Other Problem Variations

In de Matta and Miller [9] the authors study a problem with two production
sites in which intermediate products are produced in one production site and
shipped to the other in order to produce final products. There are different
product families and two different transportation mode categories are avail-
able. The authors propose a coordinated approach using a MIP formulation
and valid inequalities. They conclude that by using this coordinated approach
one can reduce the costs when comparing to a hierarchical approach. Timpe
and Kallrath [50] consider a multi-production site problem with different sales
points. Different time scales are used for production sites and sales points and
transportation can occur between production sites and sales points or between
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two different sales points. The authors propose a MIP model that can be used
to generate near-optimal solutions. Dhaenens-Flipo and Finke [11] study a
multi-production site in which each production site has multiple production
lines. Production sites are not in the same location of the warehouses and each
product for each client constitutes a distribution point. They use a MIP formu-
lation that allows to solve small real-life industrial problems. Wu and Golbasi
[55] treat a multi-production site problem in which a set of end products, com-
posed by other intermediate products, should be produced over a time horizon.
They propose a lagrangean decomposition scheme for the problem.

Some authors study the integration of production and transportation rout-
ing. In these types of problem one has to worry not only about the man-
ufacturing at the production sites but also with the planning of the routes
performed by the transportation vehicles to send the products to the clients,
see Archetti et al. [2], Bard and Nananukul [5], Chandra [6], Chandra and
Fisher [7], Fumero and Vercellis [20], and Strack and Pochet [48].



Chapter 3
Two-level
production-in-series
lot-sizing

In this chapter we study the uncapacitated two-level production-in-series lot-
sizing problem. The problem is formally introduced in Section 3.1 (see also
Section 2.7.1). In Section 3.2 we propose a new forward dynamic programming
algorithm for the two-level problem whose running time is O(NT 2 logNT ),
which can be reduced to O(NT 2) under certain assumptions on the cost struc-
ture. The corresponding tight extended formulation has O(NT 3) non-negative
variables and O(NT 2) equality constraints and its linear description contains
O(NT 3) non-zero coefficients, all ±1.

In Section 3.3 we treat an extension of the basic problem with sales. We give
an O(NT 4) dynamic programming algorithm and a resulting tight extended
formulation with O(NT 4) variables and O(NT 3) constraints.

In Section 3.4 we give some reformulations for an extension with multiple
items and multiple clients and compare them computationally. Specifically we
compare a reformulation based on the tight extended formulation of Section
3.2, an echelon stock reformulation and a multi-commodity reformulation.

We finish the chapter with some concluding remarks in Section 3.5.

3.1 Problem Definition

We consider the uncapacitated two-level production-in-series lot-sizing problem
(2L-S/LS-U). This can be thought of either as a two-level production problem

33
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in which level zero corresponds to the production of an intermediate product
and level one to the final product, or as a production/transportation problem
in which level zero (l = 0) is at a production site and level one (l = 1) is at a
client site.

With l ∈ {0, 1} and 1 ≤ t ≤ NT , the input data for the problem is:

• dt: the demand (at level one) for each period,

• f l
t : the set-up cost at level l in period t,

• p̃lt: the production cost at level l in period t,

• h̃lt: the stock cost at level l in period t.

We define the variables:

• xlt: amount produced at level l in period t,

• yt: is equal to 1 if production occurs at level 0 in period t and equal to 0
otherwise,

• Yt: is equal to 1 if production occurs at level 1 in period t and equal to
0 otherwise,

• slt: amount stocked at level l in the end of period t.

The resulting formulation is:

(2L− S/LS − U) min

1
∑

l=0

NT
∑

t=1

p̃ltx
l
t +

1
∑

l=0

NT
∑

t=1

h̃lts
l
t +

NT
∑

t=1

f0
t yt +

NT
∑

t=1

f1
t Yt

s0t−1 + x0t = x1t + s0t ∀t, (3.1)

s1t−1 + x1t = dt + s1t ∀t, (3.2)

x0t ≤Myt ∀t, (3.3)

x1t ≤MYt ∀t, (3.4)

x, s ∈ R
2×NT
+ , y, Y ∈ {0, 1}NT . (3.5)

In this formulation, constraints (3.1) are balance constraints at level zero in
which the demand is the amount produced at level one. Constraints (3.2) are
the balance constraints at level one. Constraints (3.3) and (3.4) force the set-up
variables to take value 1 when there is positive production (xlt > 0).

Observation 3.1. Assuming the initial stocks to be zero, we can eliminate the
storage costs in the objective function using s0t =

∑t
k=1(x

0
k − x1k) and s1t =

∑t
k=1 x

1
k − d1t, and we obtain

1
∑

l=0

NT
∑

t=1

(p̃ltx
l
t+ h̃

l
ts

l
t) =

NT
∑

t=1

(p̃0t +

NT
∑

k=t

h̃0k)x
0
t +

NT
∑

t=1

[p̃1t +

NT
∑

k=t

(h̃1k− h̃
0
k)]x

1
t +K, (3.6)
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where K = −
∑NT

t=1 h̃
1
td1t is a constant. This allows us to assume that the

storage costs are equal to zero and to use the equivalent objective function

min

1
∑

l=0

NT
∑

t=1

pltx
l
t +

NT
∑

t=1

f0
t yt +

NT
∑

t=1

f1
t Yt +

1
∑

l=0

NT
∑

t=1

0slt. (3.7)

3.2 Dynamic Programming Recursion and Ex-

tended Formulation

We assume that there are no initial and end stocks and that all the data (d, f ,
p) is nonnegative.

Zangwill [56] studied the multi-level uncapacitated production-in-series lot-
sizing problem, a generalization of the problem studied in this chapter in which
there are L levels. The author characterized extreme feasible solutions.

Proposition 3.1 (Zangwill [56]). For the multi-level uncapacitated production-
in-series lot-sizing problem, there exists an optimal solution with slt−1x

l
t = 0

for all l, t, and if xlt > 0, then xlt = dlab for some t ≤ a ≤ b. For the last level,
l = NT − 1, xlt = dltb, i.e. a = t.

Proposition 3.1 allow us to make the following observation.

Observation 3.2. There exists an optimal solution that if a production batch
dlj is produced at level zero in k (x0k = dlj) the production sub-batches at level
one are a refinement of those at level zero (x1a = dab with l ≤ a ≤ b ≤ j).

This observation is illustrated in Figure 3.1.
Consider the values

• H(u, t): the minimum cost of satisfying demands from u to t at level one,
calculated as

H(u, t) = min
u≤j≤t

{H(u, j − 1) + f1
j + p1jdjt}, (3.8)

with H(u, u− 1) = 0 for every 1 ≤ u ≤ NT . In the solution depicted in
Figure 3.2 we have H(j, t) = H(j, j) + f1

j+1 + p1j+1dj+1,t.

• G(t): the minimum cost of the two-level problem restricted to the periods
1 up to t, calculated as

G(t) = min
1≤j≤t

{G(j − 1) + min
1≤i≤j

(f0
i + p0i djt) +H(j, t)}, (3.9)

with G(0) = 0. In the solution of Figure 3.2, we have G(t) = G(j − 1) +
(f0

i + p0i djt) +H(j, t).
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Figure 3.1: Illustrative example of Observation 3.2 with k = 2, l = 3, a = 4,
b = 5 and j = 6.

Figure 3.2: Example of a solution

Theorem 3.2. There is an O(NT 2 logNT ) algorithm for the uncapacitated
two-level production-in-series lot-sizing problem.

Proof: We show that G(NT ) can be calculated in O(NT 2 logNT ). Starting at
level one, H(u, t), u ≤ t ≤ NT can be calculated by solving an uncapacitated
lot-sizing problem in O(NT logNT ) for a fixed value of u, see Aggarwal and
Park [1], Federgruen and Tzur [15] and Wagelmans et al. [53]. Therefore all
values of H can be obtained in O(NT 2 logNT ).

Next, as observed in Stratila [49], we calculate the values min1≤i≤j(f
0
i +

p0i djt) for all 1 ≤ j ≤ t ≤ NT in O(NT 2). Consider the piecewise linear
concave functions: φj(b) = min1≤i≤j(f

0
i + p0i b) for 1 ≤ j ≤ NT . Each of
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them will be described by a set of at most qj ≤ j triples (αj
k, β

j
k, γ

j
k) where

αj
k are the breakpoints with 0 = αj

1 < αj
2 < · · · < αj

qj , β
j
k are the slopes with

βj
1 > βj

2 > · · · > βj
qj and γjk = φj(αj

k). Now given any b, once one knows

between which breakpoints it lies, φj(b) can be calculated in constant time.
Clearly for j = 1, one just has the triple α1

1 = 0, β1
1 = p01 and γ11 = f0

1 .
Now we indicate how φj+1 can be obtained from φj in O(NT ). Specifically

φj+1(b) = min{φj(b), f0
j+1 + p0j+1b}. Observe that as k is increased from 1 to

qj , φ
j(αj

k) − [f0
j+1 + p0j+1(α

j
k)] changes sign at most twice. When there are

exactly two changes, this leads to two new breakpoints and the removal of the
nonempty set of old breakpoints lying between them as illustrated in Figure
3.3. The situation with less breakpoints is similar, as illustrated in Figures 3.4
and 3.5.

(a) Current function φj (b) Next function φj+1

Figure 3.3: Example with two new breakpoints

(a) Current function φj (b) Next function φj+1

Figure 3.4: Example without new breakpoints

Next all the values of φj(djt) need to be calculated. For fixed j this is

carried out by merging the two increasing sequences {αj
k}

qj
k=1 and {djt}

NT
t=j in

O(NT ). Thus again this step is O(NT 2).
Finally, given the values φj(djt), the calculation of G(t) for all t based on

(3.9) is O(NT 2), and the claim follows. ✷
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(a) Current function φj (b) Next function φj+1

Figure 3.5: Example with one new breakpoint

Example: Consider a case in which our current piecewise concave linear
function φj is formed by the following linear functions: ga(x) = 5 + 1.2x,
gb(x) = 7 + 0.8x and gc(x) = 13 + 0.5x. The new linear function to detemine
φj+1 is gd(x) = f0

j+1 + p0j+1x where f0
j+1 = 4 and p0j+1 = 0.8. The example

is illustrated in Figure 3.6. The demands to be considered are dj+1,j+1 = 9,
dj+1,j+2 = 25 and dj+1,j+3 = 35.
The values corresponding to φj are:

• αj
1 = 0, βj

1 = 1.2, γj1 = 5,

• αj
2 = 5, βj

2 = 0.8, γj2 = 11,

• αj
3 = 20, βj

3 = 0.5, γj3 = 23.

As gd(0) < φj(0), gd(5) < φj(5), gd(20) < φj(20), the new function φj+1 is
then obtained while removing the breakpoints αj

2 and αj
3:

• αj+1
1 = 0, βj+1

1 = 0.8, γj+1
1 = 4,

• αj+1
2 = 30, βj+1

2 = 0.5, γj+1
2 = 28.

To calculate φj+1(dj+1,k) for j + 1 ≤ k ≤ NT , we merge the sequences
d = {9, 25, 35} and αj+1 = {0, 30}. Whenever a demand value dj+1,k lies be-

tween two breakpoints αj+1
a and αj+1

a+1, the value of φj+1(dj+1,k) can be easily
calculated as φj+1(dj+1,k) = γj+1

a + βj+1
a (dj+1,k − αj+1

a ). We start with the

breakpoint αj+1
1 = 0, then we calculate φj+1(dj+1,j+1 = 9) = 4 + 0.8(9− 0) =

11.2 followed by φj+1(dj+1,j+2 = 25) = 4 + 0.8(25 − 0) = 24, then we hit

the breakpoint αj+1
2 = 30 and we finally calculate φj+1(dj+1,j+2 = 35) =

28 + 0.5(35− 30) = 30.5 for the last demand.

Note that when there are Wagner-Whitin (non-speculative) costs at level
one, namely p1t ≥ p1t+1 for all t, H(u, t) can be calculated for all t in O(NT ),
see again Aggarwal and Park [1], Federgruen and Tzur [15] and Wagelmans et
al. [53], so all values of H can be obtained in O(NT 2).
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(a) Current function φj (b) Next function φj+1

Figure 3.6: Numerical example

Corollary 3.3. When p1t − p1t+1 = (p̃1t − p̃1t+1) + (h̃1t − h̃0t ) ≥ 0 for all t, there
is an O(NT 2) algorithm.

Given the dynamic programming recursion (3.9)-(3.8), we can rewrite it as
a linear programming formulation:

(DP )

zDP = maxG(NT )

G(t) ≤ G(j − 1) + f0
u + p0udjt +H(j, t) for 1 ≤ u ≤ j ≤ t ≤ NT, (3.10)

H(u, t) ≤ H(u, j − 1) + f1
j + p1jdjt for 1 ≤ u ≤ j ≤ t ≤ NT, (3.11)

G(t) ∈ R+ for 1 ≤ t ≤ NT, (3.12)

H(u, t) ∈ R+ for 1 ≤ u ≤ t ≤ NT. (3.13)

We now present the dual formulation of DP . In this formulation, we have
variables υujt associated with constraints (3.10) and variables ωkjt associated
with constraints (3.11). The variables can be defined as follows:

• υujt: is equal to one if production takes place at level zero in period u
and the amount produced is djt,

• ωujt: is equal to one if production of djt takes place at level one in period
j using items from a production batch duq at level zero in period k with
[j, t] a subinterval of the interval [u, q] and k ≤ u ≤ j ≤ t ≤ q.

Figure 3.7 gives an example of the interpretation of the variables of an op-

timal solution for a 5-period instance with data: p =

(

3 2 4 3 2
4 5 5 2 1

)

, f =
(

10 15 80 100 100
10 50 60 10 10

)

and d =
(

10 15 20 25 30
)

.
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Figure 3.7: Solution with υ113 = υ245 = 1 and ω113 = ω444 = ω455 = 1

(DDP )

zDDP = min

NT
∑

u=1

NT
∑

j=u

NT
∑

t=j

υujt(f
0
u + p0udjt) +

NT
∑

u=1

NT
∑

j=u

NT
∑

t=j

ωujt(f
1
j + p1jdjt)

NT
∑

u=1

NT
∑

j=u

υuj,NT = 1, (3.14)

t
∑

u=1

t
∑

j=u

υujt −
t+1
∑

u=1

NT
∑

j=t+1

υu,t+1,j = 0 for 1 ≤ t ≤ NT − 1, (3.15)

t
∑

j=u

ωujt −
NT
∑

j=t+1

ωu,t+1,j −
u
∑

j=1

υjut = 0 for 1 ≤ u ≤ t ≤ NT, (3.16)

υujk, ωujk ∈ R+ for 1 ≤ u ≤ j ≤ k ≤ NT, (3.17)

Constraints (3.14)-(3.15) are the “shortest path” constraints for level zero
ensuring that the production batches djt exactly cover the total demand d1,NT .
Constraint (3.14) implies that there is one production batch finishing in period
NT while constraints (3.15) say that if a production interval finishes in period
t, then another one starts in period t + 1. Constraints (3.16) indicate that if
there is a subbatch duk produced at level 1 as part of a batch of dtq at level 0

for some u between t and k (
∑k

u=t ωtuk = 1), then either k = q and duk was the

last subbatch of dtq (
∑t

u=1 υutk = 1), or there is a following subbatch dk+1,u

of dtq (
∑NT

u=k+1 ωt,k+1,u = 1).

Linking the new variables of the formulation DDP to the original (x, y, Y )
variables leads to formulation:
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(DDP ′) zDDP ′ = min

1
∑

l=0

NT
∑

t=1

pltx
l
t +

NT
∑

t=1

f0
t yt +

NT
∑

t=1

f1
t Yt

(3.14)− (3.17)
NT
∑

j=u

NT
∑

t=j

υujt ≤ yu for 1 ≤ u ≤ NT, (3.18)

NT
∑

j=u

NT
∑

t=j

υujtdjt = x0u for 1 ≤ u ≤ NT, (3.19)

j
∑

u=1

NT
∑

t=j

ωujt ≤ Yj for 1 ≤ j ≤ NT, (3.20)

j
∑

u=1

NT
∑

t=j

ωujtdjt = x1j for 1 ≤ j ≤ NT, (3.21)

x ∈ R
2×NT
+ , y, Y ∈ [0, 1]NT . (3.22)

Let Q be the polyhedron described by the constraints (3.14)-(3.22).

Theorem 3.4. The linear program min{px+ f0y + f1Y : (x, y, Y, υ, ω) ∈ Q}
solves the two-level problem.
Projx,y,Y (Q) is the convex hull of the set of points (x, y, Y ) for which there
exists an s with (x, y, Y, s) satisfying (3.1)-(3.5).

3.3 An Algorithm for the Case with Sales

The uncapacitated two-level production-in-series lot-sizing problem with sales
is an extension of the uncapacitated two-level production-in-series lot-sizing
problem. Instead of producing only the demand dt for each period t, an ad-
ditional limited amount vt can be produced in order to get some additional
revenue, where et is the per unit revenue. A standard formulation for the
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problem is as follows.

(2L− S/LS − U − SL)

max

NT
∑

t=1

etvt −
1

∑

l=0

NT
∑

t=1

pltx
l
t −

NT
∑

t=1

f0
t yt −

NT
∑

t=1

f1
t Yt

s0t−1 + x0t = x1t + s0t ∀t, (3.23)

s1t−1 + x1t = vt + dt + s1t ∀t, (3.24)

0 ≤ vt ≤ ut ∀t, (3.25)

x0t ≤Myt ∀t, (3.26)

x1t ≤MYt ∀t, (3.27)

xlt ∈ R
1
+ ∀l, t, (3.28)

y, Y ∈ {0, 1}NT . (3.29)

With the sales extension we have a fixed charge network flow problem of
the form shown in Figure 3.8.

Figure 3.8: Network representation of the two-level lot-sizing with sales problem

The next two observations, namely Observations 3.3 and 3.4, are based on
the acyclic property of the basic variables in a minimum cost network flow
solution.

Observation 3.3. In an extreme optimal solution every sales variable vk as-
sumes one of its bounds, i.e., either vk = 0 or vk = uk.

Proof. Note that all the variables in the network are uncapacitated with ex-
ception of the sales variables, therefore there is a path from the source to node
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(1, k) formed by basic variables whenever dk + vk > 0 for a period k. Assume
by contradiction that we have an extreme optimal solution with 0 < vk < uk
for some k. This implies that the arc corresponding to vk forms a cycle with
the basic variables on the path from the source to node (1, k), see Figure 3.9.
Therefore the solution is not extreme optimal and we have a contradiction.

Figure 3.9: Cycle formed by a vk variable that does not assume one of its
bounds

Observation 3.4. In an extreme optimal solution if production occurs in a
period k, then the amount produced is used to completely satisfy demand and
possible additional sales for an interval of consecutive periods {l, . . . , j} with
l ≥ k.

Proof. This is a direct implication of Observations 3.2 and 3.3.

Let the following values be defined as:

• V (l, a, w): value of the optional revenue for producing the amount uw at
level 0 in period l and at level 1 in period a, calculated as

V (l, a, w) = max{0, (ew − p0l − p1a)uw}. (3.30)

In the solution of Figure 3.10, V (1, 1, 1) and V (u, k, t) take nonzero values.

• B(l, a, b): revenue minus cost from satisfying the demands (plus possible

additional sales) from periods a to b when the quantity
∑b

j=a(dj + vj) is
produced at level 0 in period l and at level 1 in period a, calculated as

B(l, a, b) ≥
b

∑

w=a

V (l, a, w)− (p0l + p1a)dab. (3.31)

In the solution of Figure 3.10, B(1, 1, j − 1), B(u, j, j) and B(u, k, t)
contribute to the revenue minus cost.
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• H(l, j, k): maximum revenue minus cost from satisfying the demands

(plus possible additional sales) from periods j to k when
∑k

w=j(dw + vw)
units are produced at level 0 in period l, calculated as

H(l, j, k) = max
j≤w≤k

{H(l, j, w − 1) +B(l, w, k)− f1
w}, (3.32)

with H(l, j, j − 1) = 0. In the solution depicted in Figure 3.10, we have
H(u, j, t) = H(u, j, j) +B(u, k, t)− f1

k}.

• G(k): optimal revenue for periods 1 to k, calculated as

G(k) = max
1≤l≤j≤k

{G(j − 1) +H(l, j, k)− f0
l }, (3.33)

withG(0) = 0. In the solution of Figure 3.10,G(t) = G(j−1)+H(u, j, t)−
f0
u.

Figure 3.10: Part of a solution to illustrate the values G(k), H(l, j, k), B(l, a, b)
and V (l, a, w).

Proposition 3.5. There is an O(NT 4) algorithm for solving the uncapacitated
two-level lot-sizing with sales problem.

Proof. All the V (l, a, w) values can be calculated in O(NT 3). All the B(l, a, b)
values can be calculated in O(NT 3). The calculation of H(l, j, k) for all l,
j and k can be performed in O(NT 4). The values of G(k) for all k can be
calculated in O(NT 3). Therefore, the overall running time of the algorithm is
O(NT 4).

3.3.1 An Extended Formulation

Using the DP recursion given by (3.33), (3.32), (3.31) and (3.30), we can write
the following DP formulation.
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zDPS = minG(NT )

V (l, a, w) ≥ (ew − p0l − p1a)uw ∀1 ≤ l ≤ a ≤ w ≤ NT, (3.34)

B(l, a, b) ≥
∑b

w=a V (l, a, w)− (p0l + p1a)dab for 1 ≤ l ≤ a ≤ b ≤ NT,(3.35)

H(l, j, k) ≥ H(l, j, w − 1) +B(l, w, k)− f1
w for 1 ≤ l ≤ j ≤ w ≤ k ≤ NT,(3.36)

G(k) ≥ G(j − 1) +H(l, j, k)− f0
l for 1 ≤ l ≤ j ≤ k ≤ NT, (3.37)

V ∈ R
NT 3

+ , B ∈ R
NT 3

, H ∈ R
NT 3

, G ∈ R
NT . (3.38)

We present the dual formulation of DP followed by the interpretation of its
variables. Associate variables α, β, γ and θ respectively to constraints (3.34),
(3.35), (3.36) and (3.37).

zDDPS = max
∑

l,j,k αljk(ek − p0l − p1j)uk −
∑

l,j,k βljk(p
0
l + p1j)djk−

∑

l,j,w,k γl,j,w,kf
1
w −

∑

l,j,k θljkf
0
l

αlaw −
∑NT

j=w βlaj ≤ 0 ∀1 ≤ l ≤ a ≤ w ≤ NT (3.39)

βljk −
∑j

w=l γlwjk = 0 for 1 ≤ l ≤ j ≤ k ≤ NT, (3.40)
∑k

w=j γljwk −
∑NT

w=k+1 γlj,k+1,w − θljk = 0 for 1 ≤ l ≤ j ≤ k ≤ NT,(3.41)
∑k

l=1

∑k
j=l θljk −

∑k+1
l=1

∑NT
j=k+1 θl,k+1,j = 0 for 1 ≤ k ≤ NT, (3.42)

∑NT
l=1

∑NT
j=l θlj,NT = 1, (3.43)

α ∈ R
NT 3

+ , β ∈ R
NT 3

+ , γ ∈ R
NT 4

+ , θ ∈ R
NT 3

+ . (3.44)

We use an abuse of notation and denote ”total demand” of an interval [j, k]

as
∑k

l=j(dl+vl). The variables in the formulation can be interpreted as follows
(and are illustrated in Figure 3.11):

• αlaw: is equal to one (if the variable takes a positive value, then constraint
(3.39) will be tight and therefore this positive value will be 1) if vw = uw
with production in period l at level 0 and in period a at level 1 (associated
with constraints (3.34)),

• βlab: is equal to one if the ”total demand” for the interval [a, b] is produced
in period l at level 0 and in period a at level 1 (associated with constraints
(3.35)),

• γljwk: is equal to one if the ”total demand” for the interval [w, k] is
produced in l at level 0 as part of the ”total demand” of an interval
starting in period j (associated with constraints (3.36)),

• θljk: is equal to one if the ”total demand” of interval [j, k] is produced in
period l at level 0 (associated with constraints (3.37)).
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Figure 3.11: Solution with α111 = α244 = β112 = β233 = β244 = γ1112 =
γ2333 = γ2344 = θ112 = θ234 = 1

Constraints (3.39) link the sales with the production. Constraints (3.40)
state that if a batch [j, k] was produced in period l at level 0 then it is part
of a production batch at level 1 starting no later than period j. Constraints
(3.41) indicate that if there is a subbatch [w, k] produced at level one as part

of a batch [j, q] at level zero for some w between j and k (
∑k

w=j γljwk = 1),
then either k = q and [w, k] was the last subbatch of [j, q] (θljk = 1), or there

is a following subbatch [k+ 1, w] of [j, q] (
∑NT

w=k+1 γl,j,k+1,w = 1). Constraints
(3.42) and (3.43) are shortest path constraints for level zero.

We can link the variables of the formulation DDPS to the original (x, y, Y, v)
variables to get the following formulation:

(DDPS′) max

NT
∑

t=1

etvt −
1

∑

l=0

NT
∑

t=1

pltx
l
t −

NT
∑

t=1

f0
t yt −

NT
∑

t=1

f1
t Yt

(3.39)− (3.44)
NT
∑

j=t

NT
∑

k=j

θtjk ≤ yt for 1 ≤ t ≤ NT, (3.45)

NT
∑

j=t

NT
∑

k=j

βtjkdjk = x0t for 1 ≤ t ≤ NT, (3.46)

k
∑

l=1

k
∑

j=l

NT
∑

w=k

γljkw ≤ Yk for 1 ≤ k ≤ NT, (3.47)

k
∑

j=1

NT
∑

t=k

βjktdkt = x1k for 1 ≤ k ≤ NT, (3.48)

x ∈ R
2×NT
+ , v ∈ R

NT , y, Y ∈ [0, 1]NT . (3.49)



3.4. SOME COMPUTATIONS FOR AN EXTENSION WITH
MULTIPLE ITEMS AND MULTIPLE CLIENTS 47

Let QS be the polyhedron described by the constraints (3.39)-(3.49).

Theorem 3.6. The linear program

max{ev − px− f0y − f1Y : (x, y, Y, v, α, β, γ, θ) ∈ QS}

solves the two-level problem with sales.
Projx,y,Y,v(Q

S) is the convex hull of the set of points (x, y, Y, v) for which there
exists an s with (x, y, Y, v, s) satisfying (3.23)-(3.29).

3.4 Some computations for an extension with
multiple items and multiple clients

In this section we consider a two-level uncapacitated problem without sales
with a single production site, but multiple items and multiple clients. The goal
is to test the ”tight” formulation developed in Section 3.2 with other effective
(close to tight) formulations. Rather than work on the uncapacitated two-
level production-in-series lot-sizing problem (that can be solved by dynamic
programming), we test on an NP-hard problem that will enable us to tackle it
by MIP which has the uncapacitated two-level production-in-series lot-sizing
problem as a subproblem. We assume that vehicles of very large capacity
transport items between the production site and the clients for which there
is a variable transportation cost depending on the item and a fixed cost for
the vehicle (whether it transports a positive amount of one or several items).
The formulation is a straightforward generalization of that for the simple case
analyzed in the previous sections. Now {1, . . . , NI} is the set of items with
index i, c = 0 represents the production site and there is a set {1, . . . , NC} of
client sites.

The variables are:

• x0it : the amount of item i manufactured in the production site in period
t,

• yit: indicates that x
0i
t > 0 so that production takes place at the production

site in period t,

• x1ict : the amount of item i shipped from the production site to the client
area c in period t,

• Y c
t = 1: indicates that

∑

i x
1ic
t > 0 so that transport takes place between

the production site and client c in period t.

A basic MIP formulation is
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min
∑

i,t p
0i
t x

0i
t +

∑

i,t f
0i
t y

i
t +

∑

i,c,t p
1ic
t x1ict +

∑

c,t f
1c
t Y c

t (3.50)

s0it−1 + x0it =
∑NC

c=1 x
1ic
t + s0it for 1 ≤ i ≤ NI, 1 ≤ t ≤ NT, (3.51)

s1ict−1 + x1ict = dict + s1ict for 1 ≤ i ≤ NI, 1 ≤ c ≤ NC, 1 ≤ t ≤ NT,(3.52)

x0it ≤Myit for 1 ≤ i ≤ NI, 1 ≤ t ≤ NT, (3.53)
∑NI

i=1 x
1ic
t ≤MY c

t for 1 ≤ c ≤ NC, 1 ≤ t ≤ NT, (3.54)

s0, x0 ∈ R
NI×NT
+ , s1 ∈ R

NI×NC×NT , x1 ∈ R
NI×NC×NT , (3.55)

y ∈ {0, 1}NI×NT , Y ∈ {0, 1}NC×NT . (3.56)

3.4.1 Extended Formulations

In this section we present the reformulations that are going to be compared
later in the computational results. An extended formulation based on the new
tight formulation for the uncapacitated two-level production-in-series lot-sizing
problem, an echelon stock reformulation and a multi-commodity extended for-
mulation.

3.4.1.1 An Extended Formulation

Based on the extended formulation (3.14)-(3.22), one obtains the following
extended formulation for the multi-item multi-client case.

With fixed values of the 0-1 variables, yit and Y c
t , the problem reduces to

a single source network flow problem for each item, and the structure of the
solution at each client is precisely the same as that for a single client, so that
the variables υicujk, ω

ic
ujk have the same meaning as above with now i denoting

the item and c ∈ {1, . . . , NC} the client.
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(mDDP )

zmDDP = min
∑

i,t

p0it x
0i
t +

∑

i,t

f0i
t y

0i
t +

∑

i,c,t

p1ict x1ict +
∑

c,t

f1c
t Y 1c

t (3.57)

∑NT
k=1

∑NT
j=k υ

ic
kj,NT = 1 ∀ i, c, (3.58)

∑t
k=1

∑t
j=k υ

ic
kjt −

∑t+1
k=1

∑NT
j=t+1 υ

ic
k,t+1,j = 0 ∀i, c, t, (3.59)

∑l
k=t ω

ic
tkl −

∑NT
k=l+1 ω

ic
t,l+1,k −

∑t
k=1 υ

ic
ktl = 0 ∀ i, c, 1 ≤ t ≤ l ≤ NT,(3.60)

∑NT
k=t

∑NT
j=k υ

ic
tkj ≤ yit ∀ i, c, t, (3.61)

∑NC
c=1

∑NT
k=t

∑NT
j=k υ

ic
tkjd

ic
kj = x0it ∀ i, t, (3.62)

∑k
γ=1

∑NT
t=k ω

ic
γkt ≤ Y c

k ∀ i, c, k, (3.63)
∑k

γ=1

∑NT
t=k ω

ic
γktd

ic
kt = x1ick ∀ i, c, k, (3.64)

υicljk, ω
ic
ljk ∈ R+ ∀ i, c, 1 ≤ l ≤ j ≤ k ≤ NT, (3.65)

x0 ∈ R
NI×NT
+ , x1 ∈ R

NC×NT
+ , y ∈ {0, 1}NI×NT , Y ∈ {0, 1}NC×NT .(3.66)

Note however that it is not tight even in the single item case because this
multi-client problem is the one-warehouse multi-retailer problem which is al-
ready NP -hard, see Arkin et al. [3].

3.4.1.2 Echelon stock reformulation

Our echelon stock reformulation is achieved by using reformulation results for
some relaxations of the problem and use them together with the standard
formulation (3.51)-(3.56).

For the simple uncapacitated lot-sizing problem

St−1 +Xt = Dt + St, for 1 ≤ t ≤ NT,

Xt ≤MYt, for 1 ≤ t ≤ NT,

X, S ∈ R
NT , Y ∈ {0, 1}NT ,

the simple (l, S) inequalities, sufficient when the costs are Wagner-Whitin, are
the inequalities

Sk−1 ≥
l

∑

j=k

Dj(1− Yk − . . .− Yj) for 1 ≤ k ≤ l ≤ NT.

We first consider the relaxation obtained by aggregating all the balance
equations. This involves the so-called level zero echelon stock e0it ≡

∑NC
c=1 s

1ic
t +
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s0it consisting of the total stock of item i anywhere in the system.

e0it−1 + x0it =
∑NC

c=1 d
ic
t + e0it for 1 ≤ i ≤ NI, 1 ≤ t ≤ NT,

x0it ≤Myit for 1 ≤ i ≤ NI, 1 ≤ t ≤ NT.

With St = e0it , Xt = x0it , Yt = yit and Dt =
∑NC

c=1 d
ic
t , we derive the simple

(l, S) inequalities for every product i.

Next we relax the set-up constraints for level one giving

s1ict−1 + x1ict = dict + s1ict for 1 ≤ t ≤ NT,

x1ict ≤MY c
t for 1 ≤ t ≤ NT.

We derive the simple (l, S) inequalities using St = s1ict , Xt = x1ict , Yt = Y c
t and

Dt = dict for every product i and client c.

Finally with multiple items, we sum over all the items giving

∑NI
i=1 s

1ic
t−1 +

∑NI
i=1 x

1ic
t =

∑NI
i=1 d

ic
t +

∑NI
i=1 s

1ic
t for 1 ≤ t ≤ NT,

∑NI
i=1 x

1ic
t ≤MY c

t for 1 ≤ t ≤ NT.

and generate simple (l, S) inequalities using St =
∑NI

i=1 s
1ic
t , Xt =

∑NI
i=1 x

1ic
t ,

Yt = Y c
t and Dt =

∑NI
i=1 d

ic
t for every client area c.

3.4.1.3 Multicommodity extended formulation

In the multi-commodity formulation each demand dict for the triple i, c, t is
viewed as a distinct product. Consider the variables

• w0ic
tu : amount produced, at level zero, of product i in period t to satisfy

demand of period u for client c.

• w1ic
tu : amount produced, at level one, of product i in period t to satisfy

demand of period u for client c.

• s0ictu : amount stocked, at level zero, of product i to satisfy demand of
period u for client c at the end of period t.

• s1ictu : amount stocked, at level one, of product i to satisfy demand of
period u for client c at the end of period t.

The multicommodity extended formulation is then given below.
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(MC) zMC = min
∑

i,t p
0i
t x

0i
t +

∑

i,t q
0i
t y

i
t +

∑

i,c,t p
1ic
t x1ict +

∑

c,t f
1c
t Y c

t

s0ict−1,u + w0ic
tu = w1ic

tu + s0ictu for ∀ i, c, 1 ≤ t ≤ u ≤ NT

s1ict−1,u + w1ic
tu = dicu δ

ic
tu + s1ictu for ∀ i, c, 1 ≤ t ≤ u ≤ NT

w0ic
tu ≤ dicu y

i
t for ∀ i, c, 1 ≤ t ≤ u ≤ NT

w1ic
tu ≤ dicu Y

c
t for ∀ i, c, 1 ≤ t ≤ u ≤ NT

w0ic
tu , w

1ic
tu , s

1ic
tu , s

0ic
tu ∈ R

1
+ for ∀ i, c, 1 ≤ t ≤ u ≤ NT

yit ∈ {0, 1} for ∀i, 1 ≤ t ≤ NT

Y c
t ∈ {0, 1} for ∀c, 1 ≤ t ≤ NT

x0it =
∑C

c=1

∑NT
u=t w

0ic
tu for ∀i, 1 ≤ t ≤ NT

x1ict =
∑NT

u=t w
1ic
tu for ∀i, c, 1 ≤ t ≤ NT,

where δictu equals one if t = u and zero otherwise.

3.4.2 Computational results

To briefly test the effectiveness of the formulation (3.57)-(3.66), we have gen-
erated groups of five random instances each with the dimensions described in
Table 3.1. All cost data is time independent and all random data is selected
uniformly within the specified range:
- for groups G1, G2 and G3 of single item instances, h̃0i ∈ [0, 0.2], h̃1ic − h̃0i ∈
[0, 0.25], p̃0i = 0, p̃1ic = 0, f0i ∈ [0, 500], f1c ∈ [0, 40] and dict ∈ [0, 10],
- for groups G4, G5 and G6 with multiple items, h̃0i ∈ [0, 0.2], h̃1ic − h̃0i ∈
[0, 0.05], p̃0i = 0, p̃1ic = 0, f0i ∈ [100, 400], f1c ∈ [20, 50] and dict ∈ [0, 20].
The objective function is considered without the stock variables in the format
of (3.6).

Group Dimensions
G1 NI = 1, NC = 20, NT = 30
G2 NI = 1, NC = 40, NT = 15
G3 NI = 1, NC = 50, NT = 20
G4 NI = 5, NC = 10, NT = 15
G5 NI = 5, NC = 20, NT = 18
G6 NI = 20, NC = 10, NT = 15

Table 3.1: Parameters of the instances

All instances have been run using Xpress-MP version 2.4.1, on a Toshiba
notebook with a 1.66 GHz Intel processor and 1 Gb of RAM memory. Each
instance was run four times with a time limit of 300 seconds:
i) in default mode;
ii) adding (l, S) inequalities based on the echelon stock reformulation;
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iii) using the multicommodity extended formulation;
iv) using the extended formulation (3.57)-(3.66).

Let vLP j denote the value of the linear programming relaxation for
instance j, vXLP j the value after the addition of system cuts, OPT j the
optimal value, BIP j the value of the best solution found and BLBj the

value of the best lower bound. In Table 3.2, LP = 1
5 (
∑5

j=1 100
∑ vLP j

OPT j ) and

XLP = 1
5 (
∑5

j=1 100
vXLP j

OPT j ) are the average percentage of the optimal value
of the linear programming solution before and after the addition of system
cuts, Gap is the average gap on termination for the instances not solved to

optimality given by 100 (BIP j−BLBj)
BIP j , Time and Nodes are respectively the

average time and average number of nodes to prove optimality for the instances
solved within the time limit.

Rows G1-G3 of Table 3.2 summarize the results for the single-item, multi-
client instances. Using the default formulation, Xpress-MP could only solve two
of the 15 instances to optimality. The two instances solved from G2 required
an average time of 110.5 seconds. The echelon stock reformulation consider-
ably improved the lower bounds, allowing one to solve all instances but one.
For the unsolved instance from group G3 the final gap was 0.2%. The lower
bounds given by the multicommodity extended formulation and by the new
extended reformulation were very tight for these instances (vLP j < OPT j for
only one instance)a and all the instances were solved at the top node. Time-
wise the multicommodity extended formulation is clearly faster than the new
reformulation.

Standard Echelon stock MC New
Group LP XLP Gap LP XLP Gap Time Nodes LP Time LP Time
G1 72.4 91.5 10.2 97.6 98.7 – 76.6 374.6 100.0 4.0 100.0 39.2
G2 68.8 96.6 0.6 98.8 99.3 – 9.0 29.4 100.0 0.2 100.0 3.6
G3 69.8 91.7 10.1 98.1 98.9 0.2 59.5 154.5 100.0a 5.6 100.0a 21.2
G4 67.6 83.5 20.6 99.3 99.8 – 41.0 41.8 100.0 2.0 100.0 12.6
G5 71.6 85.6 19.6 99.3 99.6 3.5 – – 100.0 22.0 100.0 128.6

G6 57.7 80.2 22.1 99.4 99.7 3.7 – – 100.0a 75.2 100.0b 247

Table 3.2: Results for instances with one/multiple items and multiple clients

Rows G4-G6 of Table 3.2 summarize the results for the multi-item, multi-
client instances. None of the instances in these groups could be solved to
optimality with the standard formulation. Using the echelon stock reformula-
tion, all the instances of group G4 were solved to optimality but all instances
of groups G5 and G6 were unsolved after 300 seconds. Again the multicom-
modity formulation was very tight ( vLP j < OPT j in only two instances of
group G6)a. All were solved within the time limit. In addition, the instances
in groups G4 and G5 were solved at the top node. The new formulation is also
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tight for these instances, and those from groups G4 and G5 were solved at the
top node within the time limit. However for group G6 the LP relaxation was
not solved within 300 secondsb for 4 of the 5 instances.

The assumption made in the test instances that h̃1ic ≥ h0i is normal in a
two-level production system, but perhaps less so in a production/transportation
setting. Results for a few instances in which this condition did not hold gave
similar results to those shown in Table 3.2.

3.5 Concluding Remarks

We proposed a new dynamic programming algorithm for the uncapacitated
two-level production-in-series lot-sizing problem. The new O(NT 2 logNT ) al-
gorithm improves on the complexity of the best known algorithm in the litera-
ture. As a consequence, we also presented a new compact formulation for the
problem with O(NT 3) variables and O(NT 2) constraints. Under some special
conditions on the cost there is an O(NT 2) algorithm for the problem.

Pǎtraşcu and Stratila [37] presented a new O(NT log logNT ) algorithm for
the uncapacitated lot-sizing problem. Given this result we could reduce the
complexity to solve our recursion to O(NT 2 log logNT ).

We also presented an O(NT 4) dynamic programming algorithm for the
uncapacitated two-level production-in-series lot-sizing problem with sales as
well as a tight extended formulation with O(NT 4) variables and O(NT 3) con-
straints.

In addition we presented some computational results comparing three refor-
mulation approaches. In our results, we observed that even if the new reformu-
lation is theoretically stronger than the multi-commodity reformulation, it was
outperformed in practice when applied to an extension of the uncapacitated
two-level production-in-series lot-sizing problem.

Some of the results of this chapter appeared in [33].
In the next chapter we will be analyzing an NP-Hard extension of the un-

capacitated two-level production-in-series lot-sizing problem in which level one
consists of multiple clients, known as the one-warehouse multi-retailer problem.
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Chapter 4
One-Warehouse
Multi-Retailer Problem

In this chapter we consider the one-warehouse multi-retailer problem (OWMR),
a special case of the multiple production site (or warehouse) problem to be
studied in Chapter 5. We treat the OWMR separately because it has been
treated in some detail in the literature and some reformulations that are not
easily applied to multiple production site problems can be used to tackle it. In
Section 4.1 we describe the problem and present a standard MIP formulation
(see also Section 2.7.3). In Section 4.2 we present some properties of optimal
solutions of the problem. There are different possible approaches to deal with
the OWMR. In Section 4.3 we present three available reformulations for the
problem and give a theoretical comparison of two of them. Using the (l, S)
inequalities available for the uncapacitated two-level production-in-series lot-
sizing problem is a first natural option to tackle the OWMR in a reduced
space of variables. An extension is to consider the dicut collection inequalities
of which the (l, S) inequalities are a very special case that may give much
stronger results. The problem with the dicut collection inequalities, however,
is that there are too many of them. In order to try to characterize which of
these dicut inequalities are needed, we analyze in Section 4.4 the projection
of the multi-commodity formulation in the space of original variables for two
simple cases, namely the joint-replenishment problem and the uncapacitated
two-level production-in-series lot-sizing problem. In Section 4.5 we characterize
explicitly some of the dicut inequalities in the original space of variables of
the uncapacitated two-level production-in-series lot-sizing problem and give a
separation algorithm. In Section 4.6 we perform some limited computational
experiments. First we compare the extended formulations of Section 4.3 and
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later we compare the use of a cutting plane algorithm using the characterized
dicut inequalities with the multi-commodity and echelon stock reformulations.
We make some final remarks in Section 4.7.

4.1 Problem Description and Formulation

There is one production site which replenishes multiple (NC) clients over a
finite time horizon of NT periods. Each client has a time varying deterministic
demand dct for each period t in the time horizon. The amount produced by the
production site and the amount transported from the production site to the
clients are unrestricted. Storage is allowed at the production site and at the
clients. Figure 4.1 shows an example with three clients.

Figure 4.1: Example with one production site and three clients

Consider the variables

• x0t : amount produced at the production site in period t,

• x1ct : amount transported from the production site to client c in period t,

• s0t : amount in stock at the production site at the end of period t,

• s1ct : amount in stock at client c at the end of period t,

• yt: is equal to 1 if production occurs at the production site in period t
and 0 otherwise,

• Y c
t : is equal to 1 if transportation occurs between the production site

and client c in period t and 0 otherwise.
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A standard formulation for the problem, as a two-level problem, is given by

(OWMR)

min
∑

t(h
0
t s

0
t + p0tx

0
t + f0

t yt) +
∑

c,t(h
1c
t s

1c
t + p1ct x

1c
t + f1c

t Y c
t ) (4.1)

s0t−1 + x0t =
∑NC

c=1 x
1c
t + s0t , ∀t, (4.2)

s1ct−1 + x1ct = dct + s1ct , ∀c, t, (4.3)

x0t ≤Myt, ∀t, (4.4)

x1ct ≤MY c
t , ∀c, t, (4.5)

s0, x0 ∈ R
NT
+ , s1, x1 ∈ R

NC×NT
+ , (4.6)

y ∈ {0, 1}NT , Y ∈ {0, 1}NC×NT . (4.7)

4.2 Properties of Optimal Solutions

The one-warehouse multi-retailer problem can be represented as a fixed charge
network flow problem, as illustrated in Figure 4.2. According to the property

Figure 4.2: Network flow representation of the OWMR

of extreme flows in a network, there exists an optimal solution such that:

• if there is a positive entering stock at the production site/client in the
beginning of period t, the flow arriving as production/transportation at
t is equal to zero,

• if there is a positive transportation from the production site to a client c
in period s it is used to satisfy demand from period s to period t, with
s ≤ t.
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4.3 Reformulations

One of the approaches in the literature to tackle the OWMR is the use of ex-
tended formulations. In this section we present reformulations available for the
one-warehouse multi-retailer problem, namely the so-called multi-commodity
formulation having O(NC × NT 2) variables, and the transportation and the
shortest-path reformulations having O(NC×NT 3) variables. After presenting
the formulations we compare theoretically the multi-commodity formulation
with the transportation formulation, which was effective in some computa-
tional results performed in Solyali and Sural [46]. Specifically we show that the
multi-commodity formulation is as strong as the transportation formulation.

4.3.1 Multi-commodity Formulation

In the multi-commodity formulation each demand dct for the pair c, t is viewed
as a distinct product. We consider the variables

• w0c
kt : amount produced in the production site in period k to satisfy de-

mand of client c in period t,

• w1c
kt : amount transported from the production site to client c in period k

to satisfy demand of period t,

• σ0c
kt : amount stocked in the production site at the end of period k to

satisfy demand of client c in period t,

• σ1c
kt : amount stocked in client c at the end of period k to satisfy demand

of period t.

The multi-commodity formulation is as follows.

(OWMR −MC)

σ0c
k−1,t + w0c

kt = w1c
kt + σ0c

kt , ∀c, k, t with k ≤ t, (4.8)

σ1c
k−1,t + w1c

kt = δktd
c
t + (1− δkt)σ

1c
k,t, ∀c, k, t with k ≤ t, (4.9)

w0c
kt ≤ ykd

c
t , ∀c, k, t with k ≤ t, (4.10)

w1c
kt ≤ Y c

k d
c
t , ∀c, k, t with k ≤ t, (4.11)

∑NC
c=1

∑NT
t=k w

0c
kt = x0k, ∀k, (4.12)

∑NT
t=k w

1c
kt = x1ck , ∀c, k, (4.13)

w0, w1 ∈ R
NC×NT×NT
+ , (4.14)

y ∈ {0, 1}NT , Y ∈ {0, 1}NC×NT , (4.15)

where δkt is equal to 1 if k = t and 0 otherwise.
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Constraints (4.8) are the balance constraints for each commodity at the
production site. Constraints (4.9) are the balance constraints for each com-
modity at the clients. Constraints (4.10) and (4.11) set the binary variables to
1 in case production/transportation occurs. Constraints (4.12) and (4.13) link
the multi-commodity variables to the original variables.

4.3.2 Transportation Formulation

Consider the variables

• λcskt is the amount produced in the production site in period s, trans-
ported to client c in period k to satisfy its demand of period t.

Levi et al. [26] formulated the OWMR problem with a transportation for-
mulation as follows.

(OWMR − TR)
∑t

s=1

∑t
k=s λ

c
skt = dct , ∀c, t, (4.16)

∑t
k=s λ

c
skt ≤ ysd

c
t , ∀c, s, t with s ≤ t, (4.17)

∑k
s=1 λ

c
skt ≤ Y c

k d
c
t , ∀c, k, t with k ≤ t, (4.18)

∑NC
c=1

∑NT
k=s

∑NT
t=k λ

c
skt = x0s, ∀s, (4.19)

∑k
s=1

∑NT
t=k λ

c
skt = x1ck , ∀c, k, (4.20)

λ ∈ R
NC×NT×NT×NT
+ , (4.21)

y ∈ {0, 1}NT , Y ∈ {0, 1}NC×NT . (4.22)

Constraints (4.16) ensure each of the demands is satisfied. Constraints
(4.17) and (4.18) set the binary variables to 1 in case production/transportation
occurs. Constraints (4.19) and (4.20) link the transportation variables to the
original variables.

4.3.3 Shortest Path Formulation

The shortest path formulation, used in Solyali and Sural [46], is valid due to the
properties of optimal solutions presented in Section 4.2. Consider the variables

• φcsrt is the fraction of dcrt (≡
∑t

j=r d
c
j) manufactured by the production

site in s and sent to client c in period r to satisfy its demands from period
r to t.



60
CHAPTER 4. ONE-WAREHOUSE MULTI-RETAILER

PROBLEM

The formulation is as follows.

(OWMR− SP )
∑NT

t=1 φ
c
11t = 1, ∀c, (4.23)

∑t−1
r=1

∑t−1
s=r φ

c
rs,t−1 −

∑t
r=1

∑NT
s=t φ

c
rts = 0, ∀c, t ≥ 2, (4.24)

∑t
r=s:dc

rt>0 φ
c
srt ≤ ys, ∀c, s, t with s ≤ t, (4.25)

∑r
s=1:dc

rt>0 φ
c
srt ≤ Y c

r , ∀c, r, t with r ≤ t, (4.26)
∑NC

c=1

∑NT
r=s

∑NT
t=r d

c
rtφ

c
srt = x0s, ∀s, (4.27)

∑r
s=1

∑NT
t=r d

c
rtφ

c
srt = x1cr , ∀c, k, (4.28)

φ ∈ [0, 1]NC×NT×NT×NT , (4.29)

y ∈ {0, 1}NT , Y ∈ {0, 1}NC×NT . (4.30)

Constraints (4.23) and (4.24) are shortest path constraints. Constraints
(4.25) and (4.26) set the binary variables to 1 in case production/transportation
occurs. Constraints (4.27) and (4.28) link the transportation variables to the
original variables.

4.3.4 Comparing the Multi-commodity and the Trans-
portation Formulations

In an attempt to analyze the strength of formulations having different sizes, we
now compare the linear relaxation of the multi-commodity formulation with
that of the transportation formulation. We show that the linear relaxation of
the transportation formulation is an extended formulation for the linear relax-
ation of the multi-commodity formulation and this will result in the corollary
that both formulations have the same linear relaxation bound.

Proposition 4.1. The linear relaxation of OWMR− TR is an extended for-
mulation for the linear relaxation of OWMR−MC.

Proof. Let POWMR−MC and POWMR−TR be respectively the sets of feasible
solutions of the linear relaxations of OWMR −MC and OWMR− TR.

Let (x0, x1, y, Y, w0, w1) ∈ POWMR−MC and (x0, x1, y, Y, w0, w1, λ) ∈
POWMR−TR, where the link between λ and w in OWMR− TR is given by

w0c
st =

t
∑

k=s

λcskt, (4.31)

w1c
kt =

k
∑

s=1

λcskt. (4.32)



4.3. REFORMULATIONS 61

First we want to demonstrate that if the solution (x̂0, x̂1, ŷ, Ŷ , ŵ0, ŵ1, λ̂) ∈
POWMR−TR then (x̂0, x̂1, ŷ, Ŷ , ŵ0, ŵ1) ∈ POWMR−MC . Using (4.31) and
(4.32), nonnegativity of λ imply nonnegativity of w0 and w1 and constraints
(4.10), (4.11), (4.12) and (4.13) follow by substitution. It suffices to show that
constraints (4.8) and (4.9) are satisfied. Note that we can eliminate the stock
variables σ0 and σ1 and rewrite (4.8) and (4.9) respectively as

∑k
j=1 w

0c
jt ≥

∑k
j=1 w

1c
jt , ∀c, k, t with k ≤ t, (4.33)

∑t
k=1 w

1c
kt = dct , ∀c, t. (4.34)

Constraints (4.16) imply

k
∑

s=1

ŵ0c
st =

k
∑

s=1

t
∑

j=s

λ̂csjt ≥
k
∑

m=1

k
∑

l=m

λ̂cmlt =

k
∑

l=1

l
∑

m=1

λ̂cmlt =

k
∑

l=1

ŵ1c
lt , (4.35)

where the inequality holds due to the nonnegativity of the variables, and

t
∑

k=1

ŵ1c
kt =

t
∑

k=1

k
∑

s=1

λ̂cskt =
t

∑

s=1

t
∑

k=s

λ̂cskt = dct . (4.36)

Thus, we have that (4.35) and (4.36) respectively imply (4.33) and (4.34).
We now show that in case (x0, x1, y, Y, w0, w1) ∈ POWMR−MC , there exists

λ such that (x0, x1, y, Y, w0, w1, λ) ∈ POWMR−TR. Observe that for each de-
mand dct , variables w

0c
kt , w

1c
kt , σ

0c
kt and σ

1c
kt related to commodity (c, t) describe a

feasible flow of dct units arriving in node (c, t). Note also that
∑t

k=1 w
1c
kt = dct .

In what follows we restrain our attention to the variables w0, w1, since σ0 and
σ1 can be determined using the values of the former. According to the flow
decomposition theorem (Theorem 2.8) any feasible flow on a network can be
decomposed into paths and cycles. In our specific directed network structure
there are no directed cycles, what implies the feasible flow determined by w0c,
w1c can be decomposed into paths λc, as exemplified in Figure 4.3. Such a
decomposition can be done by using a flow decomposition algorithm in a way
that (4.31) and (4.32) are satisfied. By direct substitution using (4.31) and
(4.32), the constraints (4.17), (4.18), (4.19) and (4.20) are satisfied. It suffices
to show that (4.16) is also satisfied. We have

t
∑

k=1

ŵ1c
kt = dct ,

and by substitution
t

∑

s=1

t
∑

k=s

λ̂cskt =
t

∑

k=1

ŵ1c
kt = dct .
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(a) Flow represented by w0 and w1

(b) Flow decomposed in λ paths

Figure 4.3: Flow decomposition example

Let zLP (OWMR−MC), zLP (OWMR−TR) and zLP (OWMR−SP ) denote respec-
tively the linear relaxation bounds of OWMR − MC, OWMR − TR and
OWMR− SP . Proposition 4.1 implies the following corollary.

Corollary 4.2. zLP (OWMR−MC) = zLP (OWMR−TR).
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This result shows that it is possible to use a formulation that is one order
of magnitude smaller and obtain a linear relaxation bound that is as strong as
that of the larger formulation.

Solyali and Sural [46] showed that zLP (OWMR−TR) ≤ zLP (OWMR−SP ), and
therefore the next result follows immediately.

Corollary 4.3. zLP (OWMR−MC) ≤ zLP (OWMR−SP ).

So even though the multi-commodity gives good bounds, there is still a
formulation with O(NC ×NT 3) variables that is stronger than it.

4.4 The Projection of the Multi-commodity
Formulation

In this section we analyze the projection of the multi-commodity formulation
into the original space for two particular cases of the one-warehouse multi-
retailer problem. We first show that its projection for the joint-replenishment
problem is composed of just simple dicut inequalities and then show that this
property is not true for the uncapacitated two-level production-in-series lot-
sizing problem.

4.4.1 On the Projection of the Multi-commodity Formu-
lation for the Joint-replenishment Problem

We treat here the Joint-replenishment problem which is a special case of the
one-warehouse multi-retailer problem in which storage is not allowed in the
production site (see Section 2.7.2).

We consider the joint-replenishment problem formulated as a single-level
lot-sizing with joint-setup costs.

sct−1 + xct = dct + sct ∀t, (4.37)

xct ≤Myt ∀c, t, (4.38)

xct ≤MY c
t ∀c, t, (4.39)

xct , s
c
t ∈ R

1
+, yt ∈ {0, 1}, Y c

t ∈ {0, 1} ∀c, t. (4.40)

Consider the multi-commodity formulation as a separation problem. We
are given a point (x̄0, x̄1, ȳ, Ȳ ) and we want to determine whether or not it is
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feasible in the linear program:

(JRP −MC) max 0w
∑k

t=1 w
c
tk = dck ∀c, k, (4.41)

wc
tk ≤ dckȳt ∀c, t, k, (4.42)

wc
tk ≤ dckȲ

c
t ∀c, t, k, (4.43)

∑NT
k=t w

c
tk ≤ x̄ct ∀c, t, (4.44)

wc
tk ∈ R

NC×NT×NT
+ . (4.45)

Consider the dual variables ǫ, γ, θ and φ corresponding respectively to
constraints (4.41), (4.42), (4.43) and (4.44). The dual linear program is

min
∑

c,t φ
c
t x̄

c
t +

∑

c,t θ
c
tkd

c
kȲ

c
t +

∑

c,t,k γ
c
tkd

c
kȳt +

∑

c,k ǫ
c
kd

c
k (4.46)

γctk + θctk + φct + ǫck ≥ 0 ∀c, t, k, (4.47)

γ, θ, φ ≥ 0. (4.48)

A solution (x̄0, x̄1, ȳ, Ȳ ) satisfies the constraints of the multi-commodity
formulation if

∑

c,t

φct x̄
c
t +

∑

c,t

θctkd
c
kȲ

c
t +

∑

c,t,k

γctkd
c
kȳt +

∑

c,k

ǫckd
c
k ≥ 0,

for all extreme rays (i.e. solutions to (4.47)-(4.48)).

Observe that the ǫ variables are the only free variables, and we have ǫck ≤ 0
in an extreme ray with negative cost. We can, therefore, make a normalization
by assuming ǫck ≥ −1.

Claim 4.4. The matrix corresponding to constraints (4.47) is TU.

Proof. Denote by A the matrix corresponding to (4.47). Observe that we have
one identity submatrix corresponding to variables γ and another one corre-
sponding to variables θ, such that A = (I, I, B) and B is composed of a trans-
portation matrix for each client c. Take as an example the matrix B with
c = 2 and NT = 3 and consider the columns of B in the following order:
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φ11, φ
1
2, φ

1
3, ǫ

1
1, ǫ

1
2, ǫ

1
3, φ

2
1, φ

2
2, φ

2
3, ǫ

2
1, ǫ

2
2, ǫ

2
3,

B =









































1 1
1 1
1 1
1 1
1 1
1 1

1 1
1 1
1 1
1 1
1 1
1 1









































.

We want to show that the conditions in Observation 2.3 are satisfied by
BT . Condition (a) is satisfied since bij ∈ {0, 1}. In order to satisfy (b), we
build M1 and M2 as follows.
For every line i ∈M related to an ǫ variable, add i to M1.
For every line i ∈M related to an φ variable, add i to M2.
B is totally unimodular since BT is totally unimodular.

Proposition 4.5. proj(x,y,Y )JRP −MC is composed of just simple dicut in-
equalities.

Proof. Claim 4.4 implies that the solution to the following problem is integer.

z′D = min
∑

c,t φ
c
t x̄

c
t +

∑

c,t,k θ
c
tkd

c
kȲ

c
t +

∑

c,t,k γ
c
tkd

c
kȳt +

∑

c,k ǫ
c
kd

c
k (4.49)

γctk + θctk + φct + ǫck ≥ 0 ∀c, t, k (4.50)

γ, θ, φ ≥ 0, (4.51)

−1 ≤ ǫ ≤ 0. (4.52)

The variables can be iterpreted as follows:

• ǫck: is equal to -1 in case there is a k−dicut for period k in the inequality,

• γctk: is equal to 1 if yt is contained in the k−dicut for period k,

• θctk: is equal to 1 if Y c
t is contained in the k−dicut for period k,

• φct : is equal to 1 if xct is contained in at least one k−dicut.
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Constraints (4.50) imply that for each period k for which a dicut is considered
(ǫck = −1), there exists at least one variable for period t ≤ k cutting off the
flow to period k.

Observation 4.1. There exists a most violated inequality in which φct + γctk +
θctk ≤ 1 for every c, t, k.

Proof. We can simply rewrite (4.50) as γctk+θ
c
tk+φ

c
t ≥ −ǫck. The result follows

for the fact that ǫck ∈ {−1, 0} and x̄, ȳ, Ȳ , φ, γ, θ ≥ 0.

4.4.2 On the Projection of the Multi-commodity Formu-
lation for the 2L− S/LS − U

We now show that contrary to what happens with the joint-replenishment
problem, for the 2L − S/LS − U that cannot be reduced to a single level
problem, the projection of the multi-commodity formulation into the space of
the original variables is not composed of just simple dicut inequalities .

Consider again the multi-commodity formulation as a separation problem
for the uncapacitated two-level production-in-series lot-sizing problem. The
point (x̄0, x̄1, ȳ, Ȳ ) is an input and we want to generate one valid inequality
cutting off this point.

(2L− S/LS − U −MCp)

max 0w
∑s

k=1 w
1
kt ≤

∑s
k=1 w

0
kt ∀ 1 ≤ s ≤ t ≤ NT, (4.53)

∑t
k=1 w

1
kt = dt ∀ 1 ≤ t ≤ NT, (4.54)

w0
kt ≤ ȳkdt ∀ 1 ≤ k ≤ t ≤ NT, (4.55)

w1
kt ≤ Ȳkdt ∀ 1 ≤ k ≤ t ≤ NT, (4.56)

∑NT
t=k w

0
kt ≤ x̄0k ∀ 1 ≤ k ≤ NT, (4.57)

∑NT
t=k w

1
kt ≤ x̄1k ∀ 1 ≤ k ≤ NT, (4.58)

w0, w1 ∈ R
NT×NT
+ . (4.59)

Associate dual variables α, ǫ, γ, θ, φ, δ to constraints (4.53), (4.54), (4.55),
(4.56), (4.57) and (4.58), respectively. The dual separation of (OWMR-MCp)
is given by

(D2L− S/LS − U −MCp)

min
∑

t δtx̄
1
t +

∑

t φtx̄
0
t +

∑

k,t θktȳkdt +
∑

k,t γktȲkdt +
∑

t ǫtdt
∑t

s=k αst + ǫt + γkt + δk ≥ 0 ∀ 1 ≤ k ≤ t ≤ NT, (4.60)

−
∑t

s=k αst + θkt + φk ≥ 0 ∀ 1 ≤ k ≤ t ≤ NT, (4.61)

α, γ, θ, φ, δ ≥ 0. (4.62)
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Our next result shows that contrary to what happens with the joint-
replenishment problem, the projection of the multi-commodity into the space
of the original variables is not composed of only simple dicut inequalities for
the uncapacitated two-level production-in-series lot-sizing problem.

Proposition 4.6. projx0,x1,y,Y 2L−S/LS−U −MCp is not composed of just
simple dicut inequalities.

Proof. We show an example where the dual separation problem D2L-S/LS-U-
MCp gives rise to a facet-defining dicut inequality that is not a simple dicut
inequality. Consider the example with demands d = (8, 3, 6, 12).

The standard formulation STD − ex for the example is

x01 ≥ x11, (4.63)

x01 + x02 ≥ x11 + x12, (4.64)

x01 + x02 + x03 ≥ x11 + x12 + x13, (4.65)

x01 + x02 + x03 + x04 = x11 + x12 + x13 + x14, (4.66)

x11 ≥ 8, (4.67)

x11 + x12 ≥ 8 + 3, (4.68)

x11 + x12 + x13 ≥ 8 + 3 + 6, (4.69)

x11 + x12 + x13 + x14 = 8 + 3 + 6 + 12, (4.70)

x0t ≤Myt ∀ t, (4.71)

x1t ≤MYt ∀ t. (4.72)

We now give the dimension of conv(STD − ex). Observe that we have
two equality constraints and d1 > 0 implies y1 = Y1 = 1, therefore we have
dimconv(STD−ex) ≤ 16 − 4 = 12. In the matrix that follows, we give 13
affinely independent points what implies that dimconv(STD−ex) = 12. Each
line represents one point and the columns are organized in the following order
(x01, x

0
2, x

0
3, x

0
4, x

1
1, x

1
2, x

1
3, x

1
4, y1, y2, y3, y4, Y1, Y2, Y3, Y4).

PointsSTD−ex =













































29 0 0 0 29 0 0 0 1 0 0 0 1 0 0 0
29 0 0 0 8 21 0 0 1 0 0 0 1 1 0 0
29 0 0 0 8 3 18 0 1 0 0 0 1 1 1 0
29 0 0 0 8 3 6 12 1 0 0 0 1 1 1 1
8 21 0 0 8 21 0 0 1 1 0 0 1 1 0 0
8 3 18 0 8 3 18 0 1 1 1 0 1 1 1 0
8 3 6 12 8 3 6 12 1 1 1 1 1 1 1 1
29 0 0 0 29 0 0 0 1 1 0 0 1 0 0 0
29 0 0 0 29 0 0 0 1 0 1 0 1 0 0 0
29 0 0 0 29 0 0 0 1 0 0 1 1 0 0 0
29 0 0 0 29 0 0 0 1 0 0 0 1 1 0 0
29 0 0 0 29 0 0 0 1 0 0 0 1 0 1 0
29 0 0 0 29 0 0 0 1 0 0 0 1 0 0 1













































.
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Consider now the inequality

x01 + x02 + 6y3 + x11 + 9Y2 + x13 + x14 ≥ 46, (4.73)

which can be obtained from the following t−dicut collections

• Γ1 = {{x01}, {x
1
1}},

• Γ2 = {{x01, x
0
2}, {x

1
1, Y2}},

• Γ3 = {{x01, x
0
2, y3}, {x

1
1, Y2, x

1
3}},

• Γ4 = {{x01, x
0
2, x

1
3, x

1
4}}.

Observe that (4.73) is a dicut inequality and therefore it is valid. Note that it
is not a simple dicut inequality though. If we take the simple dicut inequalitiy
x01 + x02 +6y3 ≥ 17 which constitutes part of (4.73), we would need x11 +9Y2 +
x13 + x14 ≥ 29 to complete (4.73) what cannot be obtained as a combination
of simple dicut inequalities (we would need at least x11 + 21Y2 + x13 + x14 ≥ 29
which would give the inequality x01 + x02 + 6y3 + x11 + 21Y2 + x13 + x14 ≥ 46).

We now show that (4.73) can be obtained from the projection of the multi-
commodity formulation. We give a feasible solution to D2L-S/LS-U-MCp with
nonzero variables δ1 = 1, δ3 = 1, δ4 = 1, φ1 = 1, φ2 = 1, θ33 = 1, γ22 = 1,
γ23 = 1, ǫ1 = −2, ǫ2 = −2, ǫ3 = −2, ǫ4 = −1, α11 = 1, α22 = 1, α24 = 1,
α33 = 1. All the other variables are zero valued. This solution gives inequality
(4.73).

It can be checked by simple substitution that the solution proposed is fea-
sible in D2L-S/LS-U-MCp.

We show that the dimension of the inequality is dimIN = dimconv(STD−ex)−
1 = 11 by giving 12 linear independent points satisfying (4.73) at equality.
This implies that the inequality is a facet.

AI =









































29 0 0 0 8 21 0 0 1 0 0 0 1 1 0 0
8 21 0 0 8 21 0 0 1 1 0 0 1 1 0 0
8 9 0 12 8 9 0 12 1 1 0 1 1 1 0 1
11 0 18 0 11 0 18 0 1 0 1 0 1 0 1 0
11 0 18 0 11 0 6 12 1 0 1 0 1 0 1 1
11 0 6 12 11 0 6 12 1 0 1 1 1 0 1 1
17 0 0 12 17 0 0 12 1 0 0 1 1 0 0 1
17 0 0 12 8 9 0 12 1 0 0 1 1 1 0 1
29 0 0 0 8 21 0 0 1 0 0 0 1 1 1 0
29 0 0 0 8 21 0 0 1 0 0 0 1 1 0 1
29 0 0 0 8 21 0 0 1 1 0 0 1 1 0 0
29 0 0 0 8 21 0 0 1 0 0 1 1 1 0 0









































.
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Therefore we have a facet-defining dicut inequality that is not simple.

4.5 Valid Inequalities in the Space of the Orig-
inal Variables for the 2L− S/LS − U

In this section we consider the uncapacitated two-level production-in-series lot-
sizing problem and try to analyze valid inequalities in the space of the original
variables. Observe that valid inequalities could be derived directly for the
OWMR, but analyzing the inequalities for the 2L − S/LS − U appears to be
more manageable. Thus we now consider a formulation that is intermediate
between the original formulation and the MC formulation described in Section
4.3.1.

Note that the one-warehouse multi-retailer problem is equivalent to a multi-
item uncapacitated two-level production-in-series lot-sizing problem with joint
setup costs on the upper level. Consider the variables

• x0ct : the amount produced for client c at the production site in period t,
and

• s0ct : the stock for client c at the production site at the end of period t,

this equivalent problem can be formulated as

(OWMR′)

min
∑

c,t(h
0
t s

0c
t + p0tx

0c
t ) +

∑

t f
0
t yt +

∑

c,t(h
1c
t s

1c
t + p1ct x

1c
t + f1c

t Y c
t )(4.74)

s0ct−1 + x0ct = x1ct + s0ct , ∀c, t, (4.75)

s1ct−1 + x1ct = dct + s1ct , ∀c, t, (4.76)

x0ct ≤Myt, ∀c, t, (4.77)

x1ct ≤MY c
t , ∀c, t, (4.78)

s0, s1, x0, x1 ∈ R
NC×NT
+ , (4.79)

y ∈ {0, 1}NT , Y ∈ {0, 1}NC×NT . (4.80)

We can write the feasible region

XOWMR′

=

NC
⋂

c=1

X2L−S/LS−Uc,
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where X2L−S/LS−Uc is the set of feasible solutions of the uncapacitated two-
level production-in-series lot-sizing problem (2L−S/LS−Uc) studied in Chap-
ter 3 and the sets are only linked by variables y.

(2L− S/LS − Uc) s0ct−1 + x0ct = x1ct + s0ct , ∀t, (4.81)

s1ct−1 + x1ct = dct + s1ct , ∀t, (4.82)

x0ct ≤Myt, ∀t, (4.83)

x1ct ≤MY c
t ∀t, (4.84)

s0, s1, x0, x1 ∈ R
NT
+ , (4.85)

y ∈ {0, 1}NT , Y c ∈ {0, 1}NT . (4.86)

Therefore, one approach to try to improve results for the OWMR would
be to work with the formulation OWMR’ and then add valid inequalities for
(2L− S/LS − U) for each client.

4.5.1 The G− (l, S) inequalities

We introduce the G − (l, S) inequalities, that are generalizations of the (l, S)
inequalities for the uncapacitated lot-sizing problem. Consider the indices 1 ≤
j ≤ k ≤ l ≤ NT and the following sets of variables

• ∆ and Π associated to variables at level zero, where ∆ ∪ Π = {1, . . . , k}
with ∆ ∩ Π = ∅,

• ∆ and Π associated to variables at level one where ∆∪Π = {k+1, . . . , l}
with ∆ ∩ Π = ∅,

• Λ and Θ associated to variables at level one, where Λ ∪ Θ = {1, . . . , j}
with Λ ∩Θ = ∅.

Proposition 4.7. The G− (l, S) inequalities

j
∑

t=1
k∈Λ

Ytdtj +

j
∑

t=1
t∈Θ

x1t +

k
∑

t=1
t∈∆

ytdmax(t,j+1),l +

k
∑

t=1
t∈Π

x0t +

l
∑

t=k+1
t∈∆

Ytdtl +

l
∑

t=k+1
t∈Π

x1t ≥ d1l

(4.87)
are valid for (2L− S/LS − U).

Proof. The proof consists in showing that the inequalities are simple dicut
inequalities and are therefore valid. For t ≤ j, get as t−dicuts Γt = {Yb : 1 ≤
b ≤ t, b ∈ Λ} ∪ {x1b : 1 ≤ b ≤ t, b ∈ Θ}.
For t ≥ j + 1, get Γt = {yb : 1 ≤ b ≤ k, b ∈ ∆} ∪ {x0b : 1 ≤ b ≤ k, b ∈ Π} ∪ {Yb :
k + 1 ≤ b ≤ t, b ∈ ∆} ∪ {x1b : k + 1 ≤ b ≤ t, b ∈ Π}. These t−dicuts give the
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simple dicut inequality

j∑

b=1
b∈Θ

x
1
b+

k∑

b=1
b∈Π

x
0
b+

l∑

b=k+1
b∈Π

x
1
b+

j∑

b=1
b∈Λ

j∑

t=b

Ybdt+

k∑

b=1
b∈∆

l∑

t=max(b,j+1)

ybdt+

l∑

b=k+1
b∈∆

l∑

t=b

dtYb ≥

l∑

t=1

dt,

that is what (4.87) implies. Therefore the inequalities can be obtained as
simple dicut inequalities.

Example: The inequality represented in Figure 4.4 can be obtained as follows.
Take Λ = ∅, Θ = {1}, ∆ = {1, 2}, Π = {3}, ∆ = {4} and Π = {5}, and we
have j = 1, k = 3 and l = 5. This gives the inequality

(x11) + (d25y1 + d25y2 + x03) + (d45Y4 + x15) ≥ d15.

Figure 4.4: An example of G− (l, S) inequality with j = 1, k = 3 and l = 5

Proposition 4.8. There exists an O(NT 3) algorithm to separate the G−(l, S)
inequalities.

Proof. Let (x̄0, x̄1, ȳ, Ȳ ) be a solution for which we want to test whether it
violates any G− (l, S) inequality.

The separation problem can be posed as minimizing

min
l∈{1,...,NT},j∈{0,...,l},

k∈{j+1,...,l+1}

[

j
∑

t=1

min(Ȳtdtj , x̄
1
t ) +

k
∑

t=1

min(ȳtdmax(t,j+1),l, x̄
0
t )+

l
∑

t=k+1

min(Ȳtdtl, x̄
1
t )− d1l

]

, (4.88)
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where the first sum is related to the sets Λ and Θ, the second sum to ∆ and Π
and the third sum to ∆ and Π. Observe that a violated inequality is found in
case the above expression is strictly negative. Let

Σ1
j =

j
∑

t=1

min(Ȳtdtj , x̄
1
t )

and

Σ2,3
jl = min

k=j,...,l

[

k
∑

t=1

min(ȳtdmax(t,j),l, x̄
0
t ) +

l
∑

t=k+1

min(Ȳtdtl, x̄
1
t )

]

.

The values Σ1
j are related to the determination of Λ and Θ while the values

Σ2,3
jl to the determination of ∆, Π, ∆ and Π. The parts of the calculations are

illustrated in Figure 4.5.

Figure 4.5: The lined region represents the Σ1
j values and the shadowed region

the Σ23
jl

Using the values just described, we can determine (4.88) as

min
j=0,...,l

(

Σ1
j + Σ2,3

j+1,l

)

. (4.89)

The calculation of (4.89) can be done by simply enumerating the values
involved in its calculation.

Algorithm for G− (l, S) Separation
Step 1: Calculate all Σ1 values.
The next steps are repeated for each period l ∈ {1, . . . , NT }.
Step 2: Calculate the Σ2,3 values.
Step 3: Determine (4.89).
Step 4: Output a most violated inequality determined by Step 3 in case there
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is a violation.

We now analyze the run-time complexity. Step 1 is performed in O(NT 2).
Steps 2-4 are performed inO(NT 2). Therefore the inequalities can be separated
in O(NT 3) for every l ∈ {1, . . . , NT }.

4.6 Some Limited Computational Results

4.6.1 One-warehouse Multi-retailer Problem (OWMR)

In this section we report on some limited computational experiments to ana-
lyze the behavior of the different reformulations presented in Section 4.3. All
experiments were performed on a machine running under Ubuntu 9.10 with a
Intel Xeon 2.93GHz processor, 8 Gb of RAM memory using Xpress-Optimizer
version 21.01.00.

Costs are generated as in Solyali and Sural [46]. Fixed production cost is
generated in the interval q0 ∈ [1500, 4500], fixed transportation cost is gener-
ated in the interval q1c ∈ [5, 100], storage cost at the production site is h0 = 0.5,
storage cost at client c is generated in the interval h1c ∈ [0.5, 1.0]. Production
cost is p0 = 0 and transportation costs are p1c = 0 for every c. Demands are
generated in the interval dct ∈ [5, 100]. With exception of the storage costs
all the parameters are integer valued. The number of clients is generated as
NC ∈ {50, 100, 150, 200}, while the number of periods as NT ∈ {30, 45, 60}.

Some limited results are presented in Table 4.1. The first two columns give
the dimensions of the instances, where the first column gives the number of
clients and the second column the number of time periods. The third column
gives the value of the optimal integer solution for the instance. The other
columns present the results for the different reformulations. For each refor-
mulation we present the linear relaxation, the time and the number of nodes
needed to solve the instances to optimality.

We can see that the approaches provided lower bounds that are close to the
optimal integer value. In general, the multi-commodity formulation performs
better with the exception of some of the smaller instances. All instances could
be solved to optimality when using the multi-commodity reformulation while
none of the bigger instances could be solved to optimality while using the
O(NC ×NT 3) reformulations.

We also generate a second set of instances varying the transportation costs.
The transportation costs can assume values p1c ∈ [1.5, 2.5]. The results are
presented in Table 4.2 whose columns are the same as in the previous table.

We can see that the results are not much different from the results without
transportation costs in Table 4.1. Again the multi-commodity formulation
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Table 4.1: Results using the multi-commodity, transportation and shortest
path reformulations

MC TR SP
NC NT IP lp time nodes lp time nodes lp time nodes
50 30 107835.3 107756.3 10 3 107756.3 17 1 107756.3 8 1

100 30 198656.7 198476.5 44 3 198476.5 38 3 198476.5 50 3
150 30 228847.4 228485.5 67 15 228485.5 71 5 228485.5 108 7
200 30 304979.7 303807.4 85 19 303807.4 97 11 303807.4 108 11
50 45 130767.9 130153.4 25 7 130153.4 52 7 130155.4 106 11

100 45 243744.5 242845.1 86 25 242845.1 105 7 242845.1 – –
150 45 332919.7 332919.7 16 1 332919.7 24 1 332919.7 36 1
200 45 478165.8 476640.8 285 27 476640.8 463 17 – – –
50 60 190846.21 190570.2 63 21 190570.2 – – 190570.6 – –

100 60 388174.9 387797.5 187 5 – – – – – –
150 60 505739.8 504863.7 617 7 – – – – – –
200 60 615703.2 612315.0 1665 313 – – – – – –

Table 4.2: Results using the multi-commodity, transportation and shortest
path reformulations varying transportation costs

MC TR SP
NC NT IP lp time nodes lp time nodes lp time nodes
50 30 251624.1 251561.5 11 3 251561.5 14 1 251561.5 9 1

100 30 473081.8 472407.3 33 11 472407.3 39 11 472407.3 56 9
150 30 691925.2 691925.2 5 1 691925.2 6 1 691925.2 10 1
200 30 895258.7 895258.7 7 1 895258.7 10 1 895258.7 13 1
50 45 420176.0 420061.3 43 9 420061.3 83 5 420176.0 18 1

100 45 696313.9 695530.4 77 23 695530.4 124 11 695530.4 – –
150 45 1106748.6 1105093.2 245 7 1105093.2 – – 1105093.2 – –
200 45 1366608.3 1366608.3 21 1 1366608.3 25 1 – – –
50 60 509558.3 509153.8 58 15 509153.8 158 13 509155.7 443 11

100 60 999048.3 997068.9 152 25 – – – – – –
150 60 1428489.0 1425981.8 480 55 – – – – – –
200 60 1917273.5 1912982.7 611 49 – – – – – –
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performs better in most of the instances and all instances could be solved
to optimality when using it, but the bigger instances could not be solved to
optimality while using the reformulations with O(NC ×NT 3) reformulations.

4.6.2 The Multi-item One-warehouse Multi-retailer
Problem (OWMR-MI)

One natural extension of the one-warehouse multi-retailer problem is the prob-
lem in which multiple (NI) items are considered. The goal of this section is
not to provide extensive computations but mainly to make some limited com-
putational experiments to see how the use of an implementation of the cutting
plane algorithm described in the proof of Proposition 4.8 performs compared
to the multi-commodity formulation and to the results available for an echelon
stock reformulation which will be defined later in this section.

The multi-item model considered here is an extension of OWMR’ described
previous in this section. It considers set-ups that are dependent on the items
produced at the production site.

(OWMR′ −MI)

min
∑

c,t(h
0
t s

0ic
t + p0ict x0ict ) +

∑

t f
0
t y

i
t +

∑

c,t(h
1c
t s

1ic
t + p1ct x

1ic
t + f1c

t Y c
t )

s0ict−1 + x0ict = x1ict + s0ict ∀ i, c, t,

s1ict−1 + x1ict = dict + s1ict ∀ i, c, t,

x0ict ≤Myit ∀ i, c, t,

x1ict ≤MY c
t ∀ i, c, t,

s0, s1, x0, x1 ∈ R
NC×NT
+ ,

y ∈ {0, 1}NI×NT , Y ∈ {0, 1}NC×NT .

The valid inequalities are separated for each item i and client c.

The echelon stock reformulation is obtained by adding the facility loca-
tion reformulation for each of the three uncapacitated lot-sizing sets (that are
obtained as relaxations of OWMR′ −MI) that follow.

For every item i and client c we consider the two lot-sizing sets

(s0ict−1 + s1ict−1) + x0ict = dict + (s0ict + s1ict ) ∀ t,

x0ict ≤Myit ∀ t,

s0ic, s1ic, x0ic ∈ R
NT
+ ,

yi ∈ {0, 1}NT ,
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and

s1ict−1 + x1ict = dict + s1ict ∀ t,

x1ict ≤MY c
t ∀ t,

s1ic, x1ic ∈ R
NT
+ ,

Y c ∈ {0, 1}NT .

For every client c we consider the set

(
∑NI

i=1 s
1ic
t−1) + (

∑NI
i=1 x

1ic
t ) = (

∑NI
i=1 d

ic
t ) + (

∑NI
i=1 s

1ic
t ) ∀ t,

(
∑NI

i=1 x
1ic
t ) ≤MY c

t ∀t,

s1ic, x1ic ∈ R
NI×NT
+ ,

Y c ∈ {0, 1}NT .

We created a set of five instances with NI = 30 items, NC = 40 clients
and NT = 14 periods based on the recent instances for the one-warehouse
multi-retailer problem with a single item as created in Solyali and Sural [46].
The random data generation was described in Section 4.6.1.

The results are summarized in Table 4.3. Columns 1 and 2 show the in-
stance identification followed by its optimal integer solution. Columns 3 and 4
show, for the multi-commodity formulation, the linear relaxation and the time
to solve the instance to optimality. Columns 5 to 8 show respectively the bound
obtained by the solver after adding its automatic cuts to the standard formula-
tion, the bound obtained after adding our cuts, the number of cuts added and
the time to solve the instance to optimality. In Columns 9 and 10 we show, for
the echelon stock reformulation, the linear realaxation bound and the time to
solve the instance to optimality.

Table 4.3: Results for the instances with NI = 30, NC = 40 and NT = 14
MC CP ES

Instance IP LP time XLP XLP+CP #cuts time LP time
a1 866337.5 866337.5 305 252102.8 866337.5 103873 112 866337.5 219
a2 862104.0 862104.0 307 248751.9 862104.0 105289 103 862104.0 224
a3 856562.5 856562.5 312 247091.8 856562.5 104955 106 856562.5 237
a4 806697.0 806697.0 208 224812.4 806697.0 101080 94 806697.0 221
a5 845235.0 845235.0 350 240937.0 845235.0 102737 100 845235.0 213

We can see from the table that differently from what happened with the
single item instances from the previous section, the linear relaxation bound
obtained using the three approaches is surprisingly equal to the optimal integer
value for all instances. This is probably due to the fact that the instance
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generator was set-up to provide solutions that are not too easy for the single
item problem.

The cutting plane approach performed best, followed by the echelon stock
and then the multi-commodity reformulations. We can see that the cutting
plane gives a great contribution to the bound obtained by the solver when
using the standard formulation. Also, although a big number of cuts was
added during the procedure the cutting plane approach finished at least two
times faster than the other approaches for almost all instances, and the number
of cuts added did not change considerably among the different instances.

Similar to Section 4.6.1, we generate an additional set of instances with
the same characteristics of the ones just analyzed with the difference that we
vary the transportation costs in the interval p1c ∈ [1.5, 2.5]. The results are
summarized in Table 4.4 in which the columns are the same as in Table 4.3.

Table 4.4: Results for the instances with NI = 30, NC = 40 and NT = 14
and varying transportation costs

MC CP ES
Instance IP LP time XLP XLP+CP #cuts time LP time
b1 2629069.4 2629069.4 144 2014786.9 2629069.4 111549 109 2629069.4 3224
b2 2564147.5 2564147.5 196 1996884.1 2564147.5 107823 94 2564147.5 1716
b3 2695326.1 2695326.1 319 2062644.3 2695326.1 112106 117 2695326.1 2010
b4 2636644.8 2636644.8 279 2023596.4 2636644.8 112090 111 2636644.8 2983
b5 2587004.6 2587004.6 254 2036343.1 2587004.6 104191 93 2587004.6 1807

As observed for the previous instances, in this set of instances the linear
relaxation bound obtained using the three approaches is also equal to the op-
timal integer value for all instances. Again, the cutting plane approach could
solve considerably faster all the instances but the number of cuts added is still
quite large. In contrast to what happened to the previous instances, we see
that the echelon stock reformulation faced problems to solve these instances
with varying transportation costs where for almost all the instances the time
spent was more than half an hour.

These very limited computational results suggest that the use of cutting
planes in formulations with a reduced number of variables may in some cases
be a viable alternative to the use of larger reformulations.

4.7 Concluding Remarks

In this chapter we studied the one-warehouse multi-retailer problem and also
considered briefly the particular case known as the joint-replenishment prob-
lem.

We compared the multi-commodity formulation with the transportation
formulation showing that the multi-commodity and the transportation formu-
lations have the same linear relaxation bound.
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For the joint-replenishment problem we showed that the projection of the
multi-commodity formulation into the original space of variables is formed by
just simple dicut inequalities. We showed that the same does not follow for
the OWMR, since the projection of the multi-commodity formulation into the
original space of variables has facet-defining inequalities that are not simple
dicut inequalities.

We also analyzed valid inequalities for the two-level lot-sizing problem that
are not simple (l, S) inequalities and that can be used for the one-warehouse
multi-retailer problem. Based on the results we can suggest that in some situ-
ations the use of a cutting plane using valid inequalities for the uncapacitated
two-level production-in-series lot-sizing problem may be used effectively but it
requires further study.

In the next chapter we will consider more general production and trans-
portation problems with more than one production site and other additional
characteristics.



Chapter 5
Two-level
Production-Transportation
Problems

In this chapter we study a two-level production-transportation problem that is
sufficiently general to cover a variety of deterministic demand problems arising
in the literature and in practice.

As example, it covers one-warehouse multi-retailer problems and their gen-
eralizations to treat multiple products and production sites. It also covers
two-level production/transportation supply chain models as the ones discussed
in Chapter 2. This sort of model was also a major topic of the EU financed
LISCOS project [28], but at that time little progress was made in effectively
tackling any but small-sized instances. We also consider a profit-maximizing
model in which sales can lie between predetermined bounds, a type of variant
that has been developed by BASF among others.

The problem treated involves multiple items, multiple production sites and
multiple client areas over a discrete time horizon of NT periods. Some con-
sidered costs are fixed set-up and variable costs per item of production, joint
transportation fixed costs as well as variable per item transportation costs, and
variable storage costs at both the production sites and the client areas. The
objective of the problem is to satisfy the demands of each client for each item in
each period at minimum total cost. Typical additional aspects such as limited
transportation capacities, (big bucket) limits on the total production at each
site, limits on the total storage capacity at each client and potential additional
sales are also considered.

Our goal is to develop formulations and heuristics that allow one to tackle

79
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medium-sized instances using a MIP solver. In particular the heuristics have
the property of providing “realistic” a posteriori performance guarantees within
a reasonable time in contrast to simply primal heuristics that do not give any
information on how good the solutions obtained are.

Specifically we show that uncapacitated instances of the basic problem with
on the order of 5-10 items, 2-5 production sites, 10-40 clients and 12-24 periods
can often be solved to optimality. On the other hand we show that a hybrid
MIP heuristic based on two different MIP formulations permits us to find so-
lutions guaranteed to be within 10% of optimality for instances with limited
transportation capacity and/or with additional sales. For instances with big
bucket production or aggregate storage capacity constraints the gaps can be
larger (up to 40%), but in all cases the heuristic significantly improves on the
direct use of an MIP solver.

The remaining of this chapter is organized as follows. In Section 5.1 we give
a formal description of the problem and formulate it as a mixed integer program.
We also make precise the special cases that will be treated separately, the basic
uncapacitated version in which both production quantities and transportation
are uncapacitated, the basic capacitated version in which the transportation is
capacitated (the vehicles used for transportation between producers and clients
have a fixed size), and the general version in which we allow joint production
and storage capacities as well as additional sales.

In Section 5.2 we present the reformulations that we use in our computa-
tional tests. First we show that two natural relaxations lead to single item lot-
sizing sets for which tight formulations are known. We then present the multi-
commodity reformulation of the uncapacitated two-level single-item problem
with arbitrary values of NP , NC and NT , as well as a facility location refor-
mulation for the variant with sales.

Given that the multi-commodity/facility location formulations for each item
provide good lower bounds, but are too large to be used in branch-and-cut, the
challenge is then how to find good feasible solutions. One option would be to use
the heuristic approach of Eppen and Martin [14]. In this approach they solve
the linear relaxation of the extended formulation, fix the integer variables that
take integer solutions in the linear relaxation and then solve the mixed integer
programming on the remaining variables. Unfortunatelly this approach can still
lead to large constrained problems. Assuming that the heuristic approach of
Eppen and Martin does not work because the restricted extended formulations
are still too large for branch and bound, we modify their approach by fixing the
values of certain variables of a second weaker MIP formulation and thereby we
obtain an MIP of manageable size which then provides the feasible solutions
and upper bounds. The resulting hybrid MIP heuristic combining formulations
is presented in Section 5.3. Computational results for the problem without sales
are presented in Section 5.4. First we show that the uncapacitated problem can
be solved to optimality using the multi-commodity formulation. For the more
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difficult capacitated problem we compare direct use of the MIP solver with
hybrid heuristics that make use of both the multi-commodity and the original
weaker but smaller formulations. Results for the general model with sales are
presented in Section 5.4.5. We end with some conclusions and a discussion of
potential directions for research.

5.1 Two Level Supply Chain: Description and

Formulation

The two-level supply chain problem is the problem of determining the manufac-
turing, transportation and storage schedule for the products so as to minimize
the total cost. NP production sites produce NI different items in order to sat-
isfy the demands ofNC clients in a time horizon ofNT periods. Each client has
his/her time varying demands for each item to be satisfied. Vehicles of a given
capacity transport items between the production sites and the clients such that
different types of items can be transported in the same cargo. Production costs
are composed by a fixed cost whenever production occurs plus variable costs
depending on the amount produced. As transportation costs, each vehicle has
a fixed transportation cost whenever it transports a positive amount of items
plus a variable cost that depends on the amount of items carried in the trans-
portation. There are also variable storage costs at the production sites and at
the client areas.

We will define three different variants of the problem which will be consid-
ered in this chapter, namely the basic uncapacitated version, the basic capaci-
tated version and the general version.

5.1.1 The Basic Version

In the basic version, besides the characteristics presented in the beginning of
this section we have:

• the amount produced per item in each period is unrestricted (uncapaci-
tated production),

• the capacities of the vehicles can be either unrestricted (uncapacitated
transportation) in the basic uncapacitated version or limited in the basic
capacitated version.

Figure 5.1(a) depicts an example with two production sites and three client
areas.
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5.1.2 The General Version

The general version possesses more characteristics of practical problems. In
addition to the characteristics presented in the beginning of this section, in the
general version there are:

• machine capacity (big bucket) constraints: the total production at each
production site in each period is limited,

• stock upper bounds constraints: the total amount of stock held by a client
in each period is limited,

• sales: production can exceed the demand up to a certain limit and the
excess of production can be sold in order to get some extra profit.

The general version of the problem is illustrated in Figure 5.1(b).

(a) Example of the basic problem

(b) Example of the general problem

5.1.3 Formulation

First we introduce the input data for the problem, and then we give a standard
formulation for the general version as a mixed integer program.

The constraint data is as follows:

• dict : demand of item i at client c in period t,

• K1: capacity of each vehicle (unlimited or constant),

• aip: time required to produce an item i at site p,

• bip: setup time required to produce item i at site p,
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• LKp: total time available for production at site p,

• SKc: total amount of storage available at client c,

• U ic
t : maximum additional amount of item i that can be sold to client c

in period t,

• M : very large number.

The cost data is:

• p0ip: per unit cost to produce item i in production site p,

• p1ipc: per unit transportation cost for item i from production site p to
client c,

• q0ip: fixed setup cost of item i in production site p,

• q1pc: fixed cost per vehicle traveling from production site p to client c,

• h0ip: unit storage cost of item i in production site p,

• h1ic: unit storage cost for item i at client c,

• lic: unit sales price for additional units of item i sold to client c.

We define the variables:

• x0ipt : amount of item i produced at production site p in period t,

• x1ipct : amount of item i transported from production site p to client c in
period t,

• s0ipt : amount of item i in stock at production site p at the end of period
t,

• s1ict : amount of item i in stock at client c at the end of period t,

• vict : additional amount of item i sold to client c in period t,

• yipt : production setup variable equal to 1 if production of item i occurs
at production site p in period t and 0 otherwise,

• Y pc
t : number of vehicles used for transportation between production site
p and client c in period t.
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We now give a standard formulation for the general problem 2L− PT :

(STD)

min
∑

i,p,t

(p0ipx0ipt + h0ips0ipt + q0ipyipt ) +
∑

i,c,t

h1ics1ict +

∑

i,p,c,t p
1ipcx1ipct +

∑

p,c,t q
1pcY pc

t −
∑

i,c,t l
icvict

s0ipt−1 + x0ipt =
NC
∑

c=1

x1ipct + s0ipt ∀ i, p, t, (5.1)

s1ict−1 +

NP
∑

p=1

x1ipct = dict + vict + s1ict ∀ i, c, t, (5.2)

x0ipt ≤Myipt ∀ i, p, t, (5.3)
NI
∑

i=1

x1ipct ≤ K1Y
pc
t ∀ p, c, t, (5.4)

NI
∑

i=1

(aipx0ipt + bipyipt ) ≤ LKp ∀ p, t, (5.5)

NI
∑

i=1

s1ict ≤ SKc ∀ c, t, (5.6)

0 ≤ vict ≤ U ic
t ∀ i, c, t, (5.7)

s0, x0 ∈ R
NI×NP×NT
+ , s1 ∈ R

NI×NC×NT , x1 ∈ R
NI×NP×NC×NT ,(5.8)

y ∈ {0, 1}NI×NP×NT , Y ∈ Z
NP×NC×NT . (5.9)

In this formulation, constraints (5.1) are balance constraints at the production
sites in which the demand is the amount transported to the clients. They
imply for each item i and production site p that the amount arriving as stock
from period t− 1 plus the amount produced in period t is equal to the amount
transported to the clients in period t plus the stock that will be available at the
end of period t. Constraints (5.2) are the balance constraints at each client.
They imply for each item i and client c that the amount arriving as stock from
period t− 1 plus the amount arriving from the production sites is equal to the
demand plus the amount to be sold plus the stock that will be available at the
end of period t. Constraints (5.3) force the production set-up variables to take
value one when there is positive production while (5.4) determine the number
of trucks to be used for transportation. Constraints (5.5) limit the production
time available at a production site during period t to LKp. Constraints (5.6)
give an upper limit of SKc to the total stock in client c at period t. Constraints
(5.7) limit the amount of additional sales to U ic

t .

Observation 5.1. The basic problem is the case in which LKp =M for all p
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Figure 5.1: Example of the general problem with two production sites and two
clients

(unrestricted production), SKc =M for all c (unrestricted stocks at the clients)
and U ic

t = 0 for all i, c, t (no sales).

5.2 Relaxations and Reformulations

Deriving reformulations and valid inequalities for problem relaxations has been
shown to be effective for numerous production planning problems. Examples
can be seen in Pochet and Wolsey [40]. We will first review some reformulation
results available for single item lot-sizing problems and then we will show how
these single item problems can be obtained as relaxations of 2L− PT .

The single item lot-sizing set is given by

(LS − C) St−1 +Xt = Dt + St ∀ t, (5.10)

Xt ≤ KtYt ∀ t, (5.11)

X,S ∈ R
NT , Y ∈ {0, 1}NT . (5.12)

Constraints (5.10) are balance constraints. Constraints (5.11) determine the
values of the Y variables. Constraints (5.12) are constraints on the variables.

The uncapacitated lot-sizing (LS − U) is the case where Kt = M for all t.
We now present a reformulation result available for the LS − U . Consider the
variables:

• Wut: amount produced in period u to satisfy demand in period t.
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The facility location formulation QFL−U is described as:
∑t

u=1Wut = Dt ∀t, (5.13)

Wut ≤ DtYu ∀u, t with u ≤ t, (5.14)

Xu =
∑NT

t=uWut ∀u, (5.15)

Y ∈ [0, 1]NT ,Wut ∈ R
1
+, (5.16)

Y ∈ Z
NT . (5.17)

Constraints (5.13) guarantee the demand of each period is satisfied. Con-
straints (5.14) fix the setup variables to 1 in case production occurs. Con-
straints (5.15) link the facility location variables with the original production
variables. Constraints (5.16) and (5.17) are constraints on the variables. De-
note QFL−U = {(X,Y,W ) : (5.13)− (5.16)}.

Theorem 5.1. (Krarup and Bilde [24]) projX,Y Q
FL−U = projX,Y conv(X

LS−U ).

The Wagner-Whitin relaxation of the single item lot-sizing set is given by

(WW − C) Sk−1 +

t
∑

u=k

KuYu ≥ Dkt ∀ k, t, with k ≤ t,

S ∈ R
NT , Y ∈ {0, 1}NT .

Consider the following formulation for the uncapacitated version of the
Wagner-Whitin relaxation:

Sk−1 ≥
∑l

j=kDj(1− Yk − . . .− Yj) ∀ k, l with k ≤ l, (5.18)

S ∈ R
NT+1
+ , Y ∈ [0, 1]NT , (5.19)

where (5.18) are (l, S) inequalities for the Wagner-Whitin relaxation. This
relaxation is also also valid when dealing with integer variables, which means
Y ∈ R

NT
+ would be the relaxation of Y ∈ Z

NT
+ . Define RWW−U = {S, Y :

(5.18)− (5.19)}.

Theorem 5.2. (Pochet and Wolsey [39]) RWW−U = conv(XWW−U )

Consider now the constant capacity Wagner-Whitin problem (WW − CC)
where Kt = CC for all t.

Proposition 5.3. (Pochet and Wolsey [39]) A tight extended formulation for
conv(XWW−CC) is

Sk−1 = C
∑

t∈[k,NT ] ζ
k
t δ

k
t + Cµk ∀k, (5.20)

∑t
u=k Yu ≥

∑

τ∈{0}∪[k,NT ]

⌈

Dkt

C − ζkτ
⌉

δkτ − µk ∀k, t, with k ≤ t, (5.21)
∑

t∈{0}∪[k,NT ] δ
k
t = 1 ∀k, (5.22)

µk ≥ 0, δkt ≥ 0 ∀t ∈ {0} ∪ [k,NT ], ∀k, (5.23)

Y ∈ [0, 1]NT , (5.24)
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where ζk0 = 0, [k,NT ] = {k, . . . , NT } and ζkτ = Dkτ

C −
⌊

Dkτ

C

⌋

. The additional
variables δkt indicate that Sk−1 = Cζkt mod C.

We now show that several relaxations of 2L − PT give rise to such single
item sets.

5.2.1 An Echelon Stock Lot-sizing Relaxation - No Sales

Definition 5.1. The echelon stock of item i in period t is the sum of the stock
of i in every production site and client area in period t.

By summing (5.1) over p,

NP
∑

p=1

s0ipt−1 +
NP
∑

p=1

x0ipt =
NP
∑

p=1

NC
∑

c=1

x1ipct +
NP
∑

p=1

s0ipt ∀ i, t. (5.25)

By summing (5.2) over c,

NC
∑

c=1

s1ict−1 +

NC
∑

c=1

NP
∑

p=1

x1ipct =

NC
∑

c=1

dict +

NC
∑

c=1

s1ict ∀ i, t. (5.26)

We can add (5.25) and (5.26), and together with a relaxation of (5.4) we obtain
the following echelon stock relaxation:

NC
∑

c=1

s1ict−1 +

NP
∑

p=1

s0ipt−1 +

NP
∑

p=1

x0ipt =

NC
∑

c=1

dict +

NP
∑

p=1

s0ipt +

NC
∑

c=1

s1ict ∀ t,

NP
∑

p=1

x0ipt ≤M

NP
∑

p=1

yipt ∀ t.

We can take, for each t = 1, . . . , NT

• St =
∑NC

c=1 s
1ic
t−1 +

∑NP
p=1 s

0i,p
t−1,

• Xt =
∑NP

p=1 x
0ip
t ,

• Yt =
∑NP

p=1 y
ip
t and Dt =

∑NC
c=1 d

ic
t ,

and we obtain a set of the form LS − U . We will later use the reformulation
available for the WW − U relaxation, namely (5.18)-(5.19).
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5.2.2 A Constant Capacity Transportation Relaxation -
No Sales

Here we consider a set formed by using constraints (5.2) and (5.4).
Consider a subset I ⊆ {1, . . . , NI} of the items. Summing (5.2) over i ∈ I,

we get
∑

i∈I

s1ict−1 +
∑

i∈I

NP
∑

p=1

x1ipct =
∑

i∈I

dict +
∑

i∈I

s1ict ∀ c, t. (5.27)

In addition, by summing (5.4) over p,

NP
∑

p=1

NI
∑

i=1

x1ipct ≤
NP
∑

p=1

K1Y
pc
t ∀ c, t. (5.28)

Therefore, by using (5.27) and (5.28) we obtain the relaxation

∑

i∈I

s1ict−1 +
∑

i∈I

NP
∑

p=1

x1ipct =
∑

i∈I

dict +
∑

i∈I

s1ict ∀ c, t,

NP
∑

p=1

∑

i∈I

x1ipct ≤ K1

NP
∑

p=1

Y pc
t ∀ c, t.

Taking for t = 1, . . . , NT

• St =
∑

i∈I s
1ic
t ,

• Xt =
∑

i∈I

∑NP
p=1 x

1ipc
t ,

• Yt =
∑NP

p=1 Y
pc
t and

• Dt =
∑

i∈I d
ic
t ,

we have a set of the form LS − CC.
We will only consider the cases in which we take individual items I = {i}

or all items together I = {1, . . . , NI}. We will use either the reformulation for
theWW −U relaxation, (5.18)-(5.19), or the one for theWW −CC relaxation,
(5.20)-(5.24).

5.2.3 Extended Formulations

Consider the basic uncapacitated problem, i.e. K1 = M . In this case one can
replace the constraints fixing the transportation setup variables (5.4) by the
constraints x1ipct ≤MY pc

t for each i.
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Now we can write the feasible region

X2L−PT =

NI
⋂

i=1

X2L−MP−U
i ,

where X2L−MP−U
i is the set

(2L−MP − Ui) s0ipt−1 + x0ipt =

NC
∑

c=1

x1ipct + s0ipt ∀ p, t, (5.29)

s1ict−1 +

NP
∑

p=1

x1ipct = dict + vict + s1ict ∀ c, t, (5.30)

x0ipt ≤Myipt ∀ p, t, (5.31)

x1ipct ≤MY pc
t ∀ p, c, t, (5.32)

0 ≤ vict ≤ U ic
t ∀ c, t, (5.33)

y ∈ {0, 1}NP×NT , Y ∈ Z
NP×NC×NT
+ . (5.34)

Note that the only variables linking the sets X2L−MP−U
i are the transportation

set-up variables Y .

5.2.3.1 Multi-commodity Formulation for the case without Sales
(U ic

t = 0)

We now present a multi-commodity reformulation for the setX2L−MP−U
i . Each

demand dict for the triple i, c, t is viewed as a distinct product. Thus we intro-
duce the following variables:

• w0ipc
tu : amount produced, at production site p, of product i in period t to

satisfy demand of period u for client c,

• w1ipc
tu : amount transported from production site p of product i in period

t to satisfy demand of period u for client c,

• σ0ipc
tu : amount stocked of product i at production site p at the end of

period t to satisfy demand of period u for client c,

• σ1ic
tu : amount stocked of product i at client c at the end of period t to

satisfy demand of period u.
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The resulting multi-commodity formulation (MCi) is as follows:

(MCi) σ0ipc
t−1,u + w0ipc

tu = w1ipc
tu + σ0ipc

tu ∀ p, c, t, u, with t ≤ u,

σ1ic
t−1,u +

∑

p

w1ipc
tu = dicu δtu + σ1ic

tu ∀ c, t, u, with t ≤ u,

w0ipc
tu ≤ dicu y

ip
t ∀ p, c, t, u, with t ≤ u,

w1ipc
tu ≤ dicu Y

pc
t ∀ p, c, t, u, with t ≤ u,

x0ipt =

NC
∑

c=1

NT
∑

u=t

w0ipc
tu ∀ p, t,

x1ipct =

NT
∑

u=t

w1ipc
tu ∀ p, c, t,

w0ipc
tu , w1ipc

tu , σ1ic
tu , σ

0ipc
tu ∈ R

1
+ ∀ p, c, t, u, with t ≤ u,

y ∈ {0, 1}NP×NT , Y ∈ Z
NP×NC×NT
+ ,

where δtu = 1 if t = u and δtu = 0 otherwise. Here the first two sets of
constraints are flow balance constraints at production sites and client areas, the
next two are the tightened variable upper bound constraints, and the last two
link the original production and transportation variables to the corresponding
multi-commodity variables.

5.2.3.2 Facility Location Formulation for the case with Sales

One can produce a multi-commodity formulation for the case with sales by
doubling the number of variables, but a slightly more compact variant (without
the need of stock variables) can be obtained by generalizing the facility location
reformulation of Krarup and Bilde [24] for LS − U that has been extended to
treat sales in Loparic et al. [29]. Let Dic

t = dict +U ic
t be the maximum amount

of item i that can be delivered to client c in period t.

Define the variables:

• γipctu : fraction of the demand dicu produced at production site p in period
t,

• φipctu : fraction of Dic
u produced at production site p in period t,

• αipc
tu : fraction of dicu transported from producer p to client c in period t,

• βipc
tu : fraction of Dic

u transported from producer p to client c in period t.
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The resulting facility location formulation for item i is:

(FCSi)

NP
∑

p=1

u
∑

t=1

(dicu α
ipc
tu +Dic

u β
ipc
tu ) = dicu + vicu ∀ c, u, (5.35)

NP
∑

p=1

u
∑

t=1

(αipc
tu + βipc

tu ) = 1 ∀ c, u, (5.36)

NP
∑

p=1

u
∑

t=1

(γipctu + φipctu ) = 1 ∀ c, u, (5.37)

t
∑

k=1

αipc
ku ≤

t
∑

k=1

γipcku ∀ p, c, t, u, with t ≤ u, (5.38)

t
∑

k=1

βipc
ku ≤

t
∑

k=1

φipcku ∀ p, c, t, u, with t ≤ u, (5.39)

γipctu + φipctu ≤ yipt ∀ p, c, t, u, with t ≤ u, (5.40)

αipc
tu + βipc

tu ≤ Y pc
t ∀ p, c, t, u, with t ≤ u, (5.41)

NC
∑

c=1

NT
∑

u=t

(dicu γ
ipc
tu +Dic

u φ
ipc
tu ) = x0ipt ∀ p, t, (5.42)

NT
∑

u=t

(dicu α
ipc
tu +Dic

u β
ipc
tu ) = x1ipct ∀ p, c, t, (5.43)

αipc
tu , β

ipc
tu , φ

ipc
tu , γ

ipc
tu ∈ [0, 1] ∀ p, c, t, u, with t ≤ u, (5.44)

y ∈ {0, 1}NP×NT , Y ∈ {0, 1}NP×NC×NT . (5.45)

Constraints (5.35) impose that the demand plus the amount to be sold is trans-
ported to the clients. Constraints (5.36) and (5.37) state that the fractions
of the demand produced and transported sum to 1. Constraints (5.38) and
(5.39) guarantee that the amount produced up to a certain period to satisfy
a demand in that or a later period is at least as large as the amount trans-
ported under the same conditions. Constraints (5.40) and (5.41) ensure that
the setup (fixed cost) variables are activated when production/transportation
occurs. Constraints (5.42) and (5.43) link the facility location variables to the
original production, transportation, sales and stock variables.

5.3 The Hybrid MIP Heuristic

It will be seen below that the application of single item lot-sizing reformulations
to 2L− PT leads to lower bounds that are still weak, so that the Lagrangean



92
CHAPTER 5. TWO-LEVEL

PRODUCTION-TRANSPORTATION PROBLEMS

or MIP-based heuristics often used for different production planning problems
are unlikely to perform well, and even when they can be adapted for 2L−PT ,
they may not be able to find good primal feasible solutions. Using extended
formulations that are not restricted to a single level is more promising as these
provide reasonably strong lower bounds. Here the heuristic of Eppen and Mar-
tin using the MCi extended formulation for each item i is a natural candidate,
but it turns out that even after variable fixing the resulting formulation re-
mains large and it is not possible to find good solutions quickly via branch and
bound. This suggests that one might use a second smaller formulation in order
to obtain primal feasible solutions quickly. Thus the question is now how to
work with two formulations in an effective way.

5.3.1 The Hybrid Heuristic using Two Distinct MIP For-
mulations

The idea behind the heuristic is to use a strong formulation with a large number
of variables and constraints to try to get some information about what would be
a good structure for a solution. Then, to use a weaker formulation with much
less variables and constraints to perform a local search around the structure
provided by the larger formulation in hope to get reasonably good solutions in
a limited amount of time.

We first give some definitions and assumptions, followed by a high-level
description of the heuristic based on two distinct MIP formulations. After
that, we specialize the heuristic to the problem 2L− PT .

5.3.1.1 Definitions and Assumptions

We are given a (mixed) integer problem

z∗ = min{cx : x ∈ X}

with initial formulation

P = {x ∈ R
n : Ax ≥ b}

where X = P ∩ Z
n. We assume for simplicity that all variables are integer.

There is also a second formulation

Q = {(x,w) ∈ R
n × R

p : Cx+Dw ≥ d}

with X =projx(Q) ∩ Z
n and

z∗ = min{cx+ 0w : Cx +Dw ≥ d, x ∈ Z
n, w ∈ R

p}.

We assume two conditions related to the strength of the formulations to be
used:
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Condition 1: zLP (P ) = min{cx : x ∈ P} is a relatively “weak” lower bound
for z∗. The formulation may have been improved by some tightening with cuts,
but the number of variables is “small”.
Condition 2:

conv(X) ⊂ projx(Q) ⊂ P

with projx(Q) a “good” approximation of conv(X) so that

zLP (Q) = min{cx : x ∈ Q}

provides a “strong” lower bound on z∗.

5.3.1.2 The Hybrid Heuristic

We now describe the heuristic in general terms. Let (x̄, w̄) denote the lin-
ear programming solution of LP(Q) and x̂ the linear programming solution of
LP(P). The heuristic can be described by the following three steps:
Step 1: Solve the linear program LP(Q) and possibly also the linear program
LP(P).
Step 2: Use x̄ and possibly x̂ to determine a neighborhood NQ(x̄) of x̄.
Step 3: Run the MIP:

min{cx : x ∈ P ∩NQ(x̄) ∩ Z
n}

for a limited amount of time. The best solution found x̃H (if any) is the
hybrid heuristic solution with value zH = cx̃H guaranteed to be within

100 zH−zLP (Q)
zH % of optimal.

5.3.1.3 Choice of the Neighborhood

One important decision when producing local search heuristics is the choice
of the neighborhoods in which improvements will be tried to be achieved. In
this section we give some examples of neighborhoods that can be used in our
heuristic framework.

There are several different ways in which one might select the neighborhood
NQ(x̄). One obvious way is to fix or restrict the values of certain integer
variables. Let T ⊆ {1, . . . , n} denote a chosen subset of the integer variables,
and S ⊆ Z+ a chosen set of integer values that these integer variables may
take. Following are three examples of neighborhood that can be used in the
presented framework.
i) Fixing: Fix integer variables in T taking integer values in S:

NQ(x̄) = {x ∈ Z
n : xj = x̄j if x̄j ∈ S ⊆ Z+, j ∈ T }.
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ii) RINS: Motivated by Relaxation Induced Neighborhood Search, fix vari-
ables in T if they take the same integer value in both linear programming
solutions:

NQ(x̄) = {x ∈ Z
n : xj = x̄j if x̄j = x̂j , j ∈ T }.

iii) Local Branching: Another possibility is to impose that the integer vari-
ables in T do not differ too much from their values in the linear programming
solution, with k a small positive value:

NQ(x̄) = {x ∈ Z
n :

∑

j∈T

|xj − x̄j | ≤ k}.

5.3.1.4 The Hybrid Heuristic for 2L-PT

We now describe the main variants used in the experiments of this chap-
ter. P corresponds to the original formulation (STD) and Q is the formu-
lation tightened by using the multi-commodity reformulation approach de-
scribed in Section 5.2. We describe three different variants of the heuristic.
Let (w̄0, w̄1, x̄, z̄, ȳ, Ȳ ) be the optimal solution of the linear relaxation of Q and
(x̂, ẑ, ŷ, Ŷ ) be the optimal solution of the linear relaxation of P with addition
of cuts at the top node by the MIP optimizer:
Heuristic 1 (H1): (Fixing-based with T including all the y and Y variables
and S = Z+) We fix every variable that takes an integer value in the linear
relaxation of the multi-commodity formulation. We take

NQ = {y : yipt = ȳipt if ȳipt ∈ Z
1} ∪ {Y : Y pc

t = Ȳ pc
t if Ȳ pc

t ∈ Z
1}.

Heuristic 2 (H2): (RINS-based with S and T as in Heuristic 1) We fix every
variable that takes the same integer value in both the linear relaxations of the
multi-commodity and the standard formulations. We take

NQ = {y : yipt = ȳipt if ȳipt = ŷipt and ȳipt ∈ Z
1}∪

{Y : Y pc
t = Ȳ pc

t if Ȳ pc
t = Ŷ pc

t and Ȳ pc
t ∈ Z

1}.

Heuristic 3 (H3): (Fixing-based with T including all the y and Y variables
and S = {0}) We fix every variable that takes the value 0 in the linear relaxation
of the multi-commodity formulation. We take

NQ = {y : yipt = ȳipt if ȳipt = 0} ∪ {Y : Y pc
t = Ȳ pc

t if Ȳ pc
t = 0}.

The complement of Heuristic 3, namely the fixing of the variables taking non-
zero integer values, is a natural extension but it will not be used based on some
observations in the computational experiments.
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We observe that in more constrained variants (where big bucket constraints
and/or bounds on stock constraints are present), the fixing of both y and Y
variables can occasionally lead to infeasible subproblems. In such cases one
possibility is to limit the candidate set T to the production setup variables y.

5.4 Computational Results

In this section we present results of computational tests using the formulations
of Section 5.2 and the hybrid heuristics of Section 5.3.

Taking a first set of seven instances, in a first moment we test the effec-
tiveness of the multi-commodity reformulation for the uncapacitated problem.
We compare the direct use of the solver over the standard formulation, direct
optimization over the multi-commodity reformulation and optimization over
the standard formulation strengthened with reformulations for the single item
relaxations.

In a second moment we vary the transportation capacities and the ma-
chine/storage capacities. We compare direct optimization over the original
model, direct optimization over the multi-commodity reformulation and three
versions of the hybrid heuristic. From this we select one version of the heuris-
tic that is used in most of the later runs. This version of the heuristic is then
further tested on a second data set consisting of over 400 randomly generated
instances.

We also analyze the general problem with sales. We generate some in-
stances for the problem and we compare direct optimization over the standard
formulation with the use of hybrid heuristics.

All experiments were performed on a machine running under Ubuntu 9.10
with a Intel Xeon 2.93GHz processor, 8 Gb of RAM memory using Xpress-
Optimizer version 21.01.00.

5.4.1 The Test Instances

Our initial test set consists of seven instances whose dimensions are presented
in Table 5.1.

The demands and time independent costs are uniformly distributed in the
specified intervals: dict ∈ [0, 20], h0ip ∈ [0, 0.2], h1ic ∈ [0, 0.05], q0ip ∈ [100, 400],
q1pc ∈ [20, 50], p1ipc = 0 and p0ip = 0. These values were chosen to provide
instances with non-trivial solutions, but no special effort was made to create
hard instances.

5.4.2 The Basic Uncapacitated Problem - No Sales

For the uncapacitated problem, we compare the behavior of an MIP solver on
the initial formulation (STD) as well as using the different formulations shown
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Table 5.1: Sizes of instances
Inst Size

A1 NI = 10, NP = 1, NC = 10, NT = 12
A2 NI = 5, NP = 2, NC = 12, NT = 12
A3 NI = 10, NP = 3, NC = 20, NT = 12
A4 NI = 5, NP = 5, NC = 40, NT = 12
A5 NI = 5, NP = 2, NC = 20, NT = 24
A6 NI = 10, NP = 2, NC = 10, NT = 24
A7 NI = 10, NP = 2, NC = 20, NT = 24

in Section 5.2. Specifically we compare three approaches:

1. Take the original formulation (STD) and run the default version of the
MIP optimizer;

2. Add the multi-commodity reformulation (MCi) from Section 5.2.3.1 for
each item to (STD) and run the MIP optimizer (with system cuts turned
off and the barrier algorithm used to solve the initial linear program). In
the what follows we refer to this as the multi-commodity formulation
MC;

3. Add the single item lot-sizing reformulations (ES) for each item to
(STD), specifically the convex hull of solutions of the echelon stock
formulation WW −U from Section 5.2.1 and the convex hull of solutions
of WW − U for each client individually and also for the aggregation of
all the clients from Section 5.2.2.

In Table 5.2 we see the results obtained for the uncapacitated problem
(K1 =M) with a maximum run time for the branch and bound phase of 3600
seconds. Column 1 indicates the instance, followed by information about the
different approaches. zLP is the value of the linear relaxation, zXLP is the
lower bound after the addition of the solver cuts in the root node, z̄FORM is
the best integer solution found using formulation FORM at the end of the
execution and ΓFORM is the remaining gap at the end of the time limit (3600
seconds) when using formulation FORM . Since all the instances were solved
within the time limit when using (MC) the column time indicates the time in
seconds to solve the instance to optimality.

The results show that the multi-commodity formulation is very effective and
allows us to solve all seven test instances. Typically the linear programming
solution is integer, with the exception of instance A7 for which the branch-and-
bound tree contains just three nodes.
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Table 5.2: Results for the uncapacitated instances
(STD) (MC) (ES)

Inst zLP zXLP z̄STD ΓSTD zLP z̄MC time zLP zXLP z̄ES ΓES

A1 2827.0 3018.9 4237.2 0.0 4237.2 4237.2 2 3836.2 4099.1 4237.2 0.0
A2 15.1 1755.8 2431.0 0.0 2431.0 2431.0 2 1144.7 2312.1 2431.0 0.0
A3 45.2 54.2 5618.2 83.5 5618.2 5618.2 20 2635.4 4594.4 5695.8 15.8
A4 41.0 755.8 5930.0 72.3 5270.0 5270.0 24 3292.0 4410.1 6513.0 31.3
A5 48.3 3209.1 9529.4 64.9 8119.7 8119.7 41 2689.8 5870.0 10365.4 43.3
A6 55.4 2788.0 8439.0 60.7 6918.4 6918.4 34 3678.6 5637.6 8872.8 36.4
A7* 124.2 1823.4 17173.4 86.0 13237.1 13239.9 452 5159.1 8298.3 16869.2 50.8

5.4.3 Capacitated Versions - No Sales

In this section we give some results on the performance test of the three different
variants of the heuristic against the performance of the MIP solver using the two
formulations STD andMC. The time allowed for the heuristics was the time to
solve the linear programming relaxation of the multi-commodity reformulation
(step 1 of the hybrid heuristic) plus 100 seconds to solve the restricted MIP
(step 3 of the hybrid heuristic).

In Table 5.3 we see the results obtained for the basic model with K1 ∈
{50, 100, 200}. The value K1 is the transportation capacity of each vehicle,
zLP (MC) is the value of the linear relaxation of (MC), time is the time in
seconds to solve the LP (MC) plus 100 seconds that was used to run (STD)
with the values fixed, z̄HEUR is the value found by heuristic HEUR, ΓH3 is the
percentage gap between zLP (MC) and z̄

H3, zXLP is the lower bound after the
addition of the solver cuts in the root node, z̄STD is the best solution obtained
by the solver using (STD), ΓSTD is the remaining gap at the end of the time
limit (3600 seconds) when using formulation STD, z̄MC is the best solution
obtained by the solver using the multi-commodity reformulation and ΓMC is
the remaining gap at the end of the time limit (3600 seconds) when using the
multi-commodity reformulation.

The values in bold indicate when the heuristic H3 produced a solution better
than or as good as that arising while using the solver on both MIP formulations
STD andMC. We see that in 13 out of the 21 instances, heuristic H3 did best.
What is more it is almost always best on the larger instances A5-A7. We also
tested the heuristic of Eppen and Martin. Variables are fixed in the extended
formulation Q rather than in the smaller formulation P , so that the MIP in
Step iii) of the heuristic is: min{cx : x ∈ Q ∩ NQx̄ ∩ Z

n}. This worked well
for the smaller instances, but for the larger instances only a small number of
nodes could be enumerated in the limited time available, and hence typically
good primal solutions were not found.

Next we consider instances involving the different joint capacity constraints.
From now on we just compare the heuristic H3 against the two different for-
mulations. In Table 5.4 we summarize the results. The columns represent the
same values as in the previous table with the exception that we have added
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Table 5.3: Results for constant capacity instances
(HEURISTICS) (STD) (MC)

Inst K1 zLP(MC) time z̄H1 z̄H2 z̄H3 ΓH3 zXLP z̄STD ΓSTD z̄MC ΓMC

A1 50 12101.6 102 12309.3 12331.6 12309.1 1.7 10938.0 12313.9 1.6 12309.1 1.6
A1 100 7981.2 102 8164.7 8169.8 8164.7 2.2 6819.0 8179.1 2.1 8164.1 1.8
A1 200 5924.2 102 6106.4 6105.7 6106.4 3.0 4741.3 6126.7 2.8 6105.6 1.8
A2 50 6576.8 104 6908.2 7045.9 6952.2 5.4 5314.3 7002.2 15.8 6889.2 4.1
A2 100 4278.8 103 4579.7 4668.8 4579.7 6.6 3322.4 4702.1 20.8 4632.8 7.0
A2 200 3134.8 103 3621.0 3401.1 3621.0 13.4 2388.0 3518.2 18.5 3405.2 5.6
A3 50 21323.3 138 22550.3 23244.4 22573.8 5.5 14378.6 22625.6 30.2 22729.5 6.0
A3 100 13002.1 134 14198.6 14857.3 14164.7 8.2 7283.8 14422.2 40.0 14391.3 9.5
A3 200 8851.8 138 9725.3 10392.3 9883.9 10.4 3752.6 9891.3 48.4 10331.8 14.1
A4 50 17267.3 156 19221.6 20137.5 19269.5 10.4 11766.9 18996.6 34.6 19501.7 11.3
A4 100 10434.5 157 12068.0 13040.4 12064.4 13.5 6181.0 12530.2 48.6 12523.2 16.5
A4 200 7003.8 150 8016.2 9145.8 8016.2 12.6 3602.3 8695.4 52.9 7842.9 9.9
A5 50 21700.7 163 22173.8 23316.9 22231.1 2.4 16517.6 23137.3 27.7 22158.1 2.1
A5 100 14270.4 169 14841.9 16184.8 14845.7 3.9 9522.2 15646.5 38.9 15014.1 4.9
A5 200 10630.5 172 11187.7 12464.3 11140.2 4.6 6065.4 12278.0 50.4 11390.7 6.6
A6 50 19625.5 173 20870.5 21611.0 20864.0 5.9 14883.0 21666.2 29.9 21106.2 7.0
A6 100 12540.8 148 13114.9 15193.9 13106.4 4.3 8332.5 14806.9 42.4 13356.5 6.0
A6 200 9002.3 152 9545.1 11523.7 9545.1 5.7 5373.5 11149.1 50.0 9813.3 8.2
A7 50 39600.2 241 40993.5 43406.8 40974.0 3.4 29213.9 41688.5 27.1 41794.8 5.2
A7 100 24492.8 276 26172.7 27991.2 26114.4 6.2 15938.9 26232.7 36.0 26108.4 6.1
A7 200 17064.8 254 18798.1 22186.0 18646.9 8.5 9246.5 20579.9 52.5 19204.9 11.1

two columns giving the joint capacities LK and SK.

Table 5.4: Results with joint production/storage constraints
(HEURISTIC) (STD) MC

Inst K1 LK SK zLP(MC) time z̄H3 ΓH3 zXLP z̄STD ΓSTD z̄MC ΓMC

A1 M 3000 M 6170.5 103 6774.9 8.9 3628.4 6968.7 34.0 6738.7 3.5
A1 M M 300 6008.1 103 6927.0 13.3 3095.4 7155.9 42.5 6869.1 10.5
A1 200 3000 300 7921.0 104 8496.3 6.8 5366.9 8607.4 28.5 8371.4 3.9
A2 M 3000 M 2731.3 104 3127.4 12.7 2115.8 3287.9 29.2 3099.5 0.0
A2 M M 300 2875.6 104 3032.5 5.2 2189.2 3545.6 24.7 3032.5 0.0
A2 200 3000 300 3255.8 107 3718.5 12.4 2718.3 4094.7 28.9 3646.5 7.3
A3 M 3000 M 6884.5 210 11372.7 39.5 1315.9 12889.5 76.3 10484.6 34.3
A3 M M 300 6962.7 146 9290.0 25.1 309.9 13655.4 86.0 9150.1 23.9
A3 200 3000 300 9327.6 166 13623.5 31.5 5312.8 15602.1 58.8 37161.0 74.9
A4 M 3000 M 5965.6 225 10187.9 41.4 3411.5 10836.7 64.0 10460.6 43.0
A4 M M 300 5804.9 196 6079.0 4.5 3104.4 13274.4 75.8 6322.6 7.9
A4 200 3000 300 7191.1 229 11339.6 36.6 5491.9 11998.0 54.0 26965.7 73.3
A5 M 3000 M 8988.4 230 10466.6 14.1 4490.6 14522.9 68.4 10277.6 12.4
A5 M M 300 10333.8 209 14836.7 30.3 3244.9 16180.5 77.1 45632.9 77.4
A5 200 3000 300 11455.6 225 15367.2 25.5 7316.3 15889.6 53.8 39170.3 70.8
A6 M 3000 M 7577.6 209 10685.1 29.1 4208.9 12548.8 64.9 11314.2 33.0
A6 M M 300 7518.7 190 10554.3 28.8 3720.4 14171.9 69.9 11113.7 32.3
A6 200 3000 300 9242.4 191 12288.8 24.8 6817.0 14882.1 53.9 27358.0 66.2
A7 M 3000 M 15211.8 611 23610.5 35.6 5247.8 25665.6 74.7 59605.8 74.5
A7 M M 300 14532.1 448 20670.2 29.7 3044.8 26605.5 84.7 50832.8 71.4
A7 200 3000 300 18702.8 509 27449.1 31.9 12714.3 27757.6 52.0 65603.2 71.5

Here the heuristic takes between 200 and 700 seconds (because of the vari-
able time to solve the linear program over Q), while the optimizer is run on
each instance for one hour. The table shows that in 13 out of the 21 instances,
heuristic H3 generated better solutions than those generated by the MIP solver
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using both formulations. We see that as the size of instances increased (A4 and
bigger) the effectiveness of the heuristic is more evident as in only one instance
was the result worse than those found by the solver. It is well known and this is
confirmed in the Table that duality gaps can be very large as soon as there are
big bucket or joint storage capacity constraints. Unfortunately, even though
the heuristic outperforms the MIP optimizer for most of the instances, the gaps
are still very large for certain of the instances.

5.4.4 A Second Test Set

We generated a different set of instances in order to further investigate the
quality of the solutions produced by the hybrid heuristic H3. Here after solving
the linear program over Q and fixing variables, one runs branch-and-cut on the
weaker formulation for 100 seconds.

We consider the following parameter sizes NI = {5, 10}, NP = {2, 4},
NC = {15, 30} and NT = {12, 24}. All the random data is uniformly dis-
tributed. Integer valued demands are generated every 3 periods, namely if t
mod 3 = 0, then dict ∈ [0, 50]. There is one random value associated to each
item ψi ∈ [0.1, 1.0] and one associated with each production site ξp ∈ [0.9, 1.1].
Storage costs depend only on the item and are determined as h0ip = 0.2ψi and
h1ic = 0.25ψi. Production costs are p0ip = 0.09ψiξp. Production sites and
clients are uniformly distributed in a 1.0 × 1.0 box and we denote dist(p, c)
the euclidean distance between production site p and client c. Transporta-
tion costs are p1ipc = 0.03 × dist(p, c). Fixed costs are q0ip ∈ [200, 800],
q1pc ∈ [30, 60]. Capacities on the vehicles can assume the values Ka

1 = 100 and
Kb

1 = 200, while joint production capacities at the production sites can take

the values LKa =
⌊

∑

i,c,t d
ic
t /NT

⌋

, LKb =
⌊

0.7×
∑

i,c,t d
ic
t /NT

⌋

, LKc =
⌊

1.3×
∑

i,c,t d
ic
t /(NT ×NP )

⌋

.

For each possible combination of sizes, we generate 5 instances with each
of the capacity values, giving a total of 400 instances created.

Tables 5.5 and 5.6 sumarize the results for the instances with 5 and 10
items respectively. The columns show in order the size of the instance, the
capacity constraint, the geometric mean time used for the five instances and
the geometric mean duality gap for the five instances.

The results show that for this second set of instances the heuristic gives
solutions whose quality guarantees are on average a little lower than those of
the first test set. As before the gaps for the instances with transportation
capacity constraints are considerably lower than those with budget capacities.
For the instances with 10 items tightening budget constraints typically leads
to larger duality gaps as one might expect, though this does not seem to hold
for the instances with 5 items. The results on some of the largest instances
appear to be affected by the 100 second time limit. Thus in all the instances
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Table 5.5: Results of additional in-
stances with 5 items

Size (NI,NP,NC,NT) cap time ΓH3

5,2,15,12 Ka
1 65.4 3.8

Kb
1 1.9 2.0

LKa 67.5 11.6

LKb 91.4 10.7
LKc 91.1 10.3

5,2,15,24 Ka
1 110.7 1.7

Kb
1 36.9 1.4

LKa 112.7 10.1

LKb 112.9 6.8
LKc 112.1 6.6

5,2,30,12 Ka
1 104.7 3.5

Kb
1 4.9 3.2

LKa 106.1 11.1

LKb 106.4 12.4
LKc 106.7 13.5

5,2,30,24 Ka
1 123.6 2.9

Kb
1 97.4 2.3

LKa 131.3 12.2

LKb 129.9 9.3
LKc 128.3 9.5

5,4,15,12 Ka
1 35.1 4.2

Kb
1 6.2 1.3

LKa 105.4 12.1

LKb 105.5 11.2
LKc 105.4 8.2

5,4,15,24 Ka
1 154.2 2.8

Kb
1 76.6 1.6

LKa 153.8 10.6

LKb 151.2 9.8
LKc 151.2 6.2

5,4,30,12 Ka
1 75.2 4.6

Kb
1 19.9 3.1

LKa 117.9 16.8

LKb 117.9 17.2
LKc 116.9 11.4

5,4,30,24 Ka
1 188.4 10.5

Kb
1 169.4 2.6

LKa 209.1 14.6

LKb 201.0 25.6
LKc 191.1 22.2

Table 5.6: Results of additional in-
stances with 10 items

Size (NI,NP,NC,NT) cap time ΓH3

10,2,15,12 Ka
1 105.9 2.6

Kb
1 31.2 2.1

LKa 37.7 7.0

LKb 106.6 9.1
LKc 107.6 9.2

10,2,15,24 Ka
1 146.3 1.3

Kb
1 140.8 1.8

LKa 151.9 7.1

LKb 150.8 8.0
LKc 151.6 8.9

10,2,30,12 Ka
1 111.8 2.8

Kb
1 114.3 2.6

LKa 115.4 9.1

LKb 115.2 11.0
LKc 116.3 11.4

10,2,30,24 Ka
1 187.7 1.9

Kb
1 197.2 2.5

LKa 206.1 7.4

LKb 211.2 10.1
LKc 206.7 10.1

10,4,15,12 Ka
1 123.8 3.6

Kb
1 59.3 2.2

LKa 128.5 12.7

LKb 129.2 11.1
LKc 127.3 18.6

10,4,15,24 Ka
1 342.5 3.4

Kb
1 317.0 3.5

LKa 352.7 11.5

LKb 421.5 15.3
LKc 367.1 25.6

10,4,30,12 Ka
1 144.7 3.9

Kb
1 151.2 4.8

LKa 161.3 14.4

LKb 162.4 17.8
LKc 156.9 31.8

10,4,30,24 Ka
1 461.1 17.7

Kb
1 508.7 8.6

LKa 574.0 13.6

LKb 576.0 16.6
LKc 509.5 22.4

5, 4, 30, 24 with LKb and LKc and 10, 4, 30, 24 with Ka
1 , the top node heuristic

solution found by Xpress was not improved on in the branch-and-cut phase,
which may explain the relatively high gaps.

In Tables 5.7 and 5.8, we summarize the results for a new set of instances
with 5 and 10 items respectively created to see what happens when we take
the same instance and vary the capacities. Instead of creating one instance for
each size and capacity, 5 instances are created for each size and the capacity is
determined as for the previous test.

As in Tables 5.5 and 5.6, the columns in Tables 5.7 and 5.8 show in this
order the size of the instances, the capacity constraint, the geometric mean time
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used for the five instances and the geometric mean gap for the five instances.

Table 5.7: Results of additional in-
stances with 5 items (similar)

Size (NI,NP,NC,NT) cap time ΓH3

5,2,15,12 Ka
1 27.9 2.4

Kb
1 1.7 2.0

LKa 61.7 13.5

LKb 102.0 12.6
LKc 101.9 12.4

5,2,15,24 Ka
1 110.4 2.0

Kb
1 34.5 1.5

LKa 112.7 9.9

LKb 111.9 7.6
LKc 111.9 8.1

5,2,30,12 Ka
1 95.5 3.7

Kb
1 5.2 2.7

LKa 106.6 14.0

LKb 105.8 12.8
LKc 106.0 12.8

5,2,30,24 Ka
1 125.0 2.4

Kb
1 91.8 2.4

LKa 130.2 11.5

LKb 130.3 9.8
LKc 132.1 9.4

5,4,15,12 Ka
1 30.5 4.0

Kb
1 7.8 2.1

LKa 105.3 14.3

LKb 105.2 12.8
LKc 104.8 8.4

5,4,15,24 Ka
1 145.6 3.0

Kb
1 144.2 3.3

LKa 148.3 10.2

LKb 148.3 7.2
LKc 149.1 6.8

5,4,30,12 Ka
1 115.3 5.2

Kb
1 15.7 3.2

LKa 117.8 17.8

LKb 118.1 17.7
LKc 116.9 10.6

5,4,30,24 Ka
1 207.1 5.8

Kb
1 178.1 2.6

LKa 200.3 14.8

LKb 200.0 18.2
LKc 196.5 23.9

Table 5.8: Results of additional in-
stances with 10 items (similar)

Size (NI,NP,NC,NT) cap time ΓH3

10,2,15,12 Ka
1 105.5 2.7

Kb
1 61.4 2.2

LKa 83.9 7.9

LKb 102.9 8.9
LKc 94.3 9.7

10,2,15,24 Ka
1 145.0 1.2

Kb
1 141.3 1.7

LKa 151.6 7.5

LKb 152.0 8.7
LKc 150.4 9.5

10,2,30,12 Ka
1 112.5 2.6

Kb
1 111.8 2.7

LKa 115.8 8.6

LKb 115.2 10.8
LKc 115.7 10.8

10,2,30,24 Ka
1 176.5 1.8

Kb
1 181.5 2.5

LKa 210.4 6.9

LKb 198.2 7.9
LKc 205.3 8.4

10,4,15,12 Ka
1 122.9 3.7

Kb
1 47.9 2.3

LKa 126.4 11.6

LKb 127.2 11.9
LKc 125.4 16.6

10,4,15,24 Ka
1 369.8 2.8

Kb
1 360.9 4.2

LKa 407.1 11.3

LKb 379.6 14.0
LKc 383.7 20.6

10,4,30,12 Ka
1 156.8 4.2

Kb
1 148.8 3.1

LKa 162.4 16.5

LKb 161.8 18.5
LKc 158.7 32.9

10,4,30,24 Ka
1 548.7 12.1

Kb
1 594.0 3.6

LKa 573.7 10.7

LKb 594.9 14.7
LKc 502.2 18.6

The results in Tables 5.7 and 5.8 are similar to those in Tables 5.5 and
5.6 with lower gaps for the instances with transportation capacity constraints
when compared to the instances with budget capacities.

5.4.5 The General Two-Level Problem with Sales

We generated a new set of instances for the general two-level problem in an
attempt to reproduce the instances in Park [36]. (This was apparently not
fully successful as the joint stock constraints turned out to be inactive in the
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instances generated). However the data below is generated as described in
his paper. Demands are randomly generated in the interval dict ∈ [50, 70] and
upper bounds on sales are given by U ic

t = 0.5dict . Vehicles capacity K1 is equal
to 100. Unit processing time is aip ∈ [5, 10] while setup time is calculated as
bip = 100aip. The joint production capacity (bucket constraint) is set to

LKp = max
t∈{1,...,NT}

(

NI
∑

i=1

((

NC
∑

c=1

dict /NP )a
ip + bip))/0.8.

Storage capacity for the retailers is set to SKc = maxt∈{1,...,NT}(
∑NI

i=1 d
ic
t )/1.0.

Unit processing costs are randomly generated p0ip ∈ [15, 20] and the unit selling

prices are calculated as lic = [2.5, 3.5]×
∑P

p=1 p
0ip/NP . The production setup

costs are set to q0ip = 300p0ip, the producer holding costs are h0ip = 0.2p0ip

and the client holding costs are h1ic = 0.1lic. There is also a stockout cost of
eic = 0.15lic per unit for the difference between the maximum possible amount
dict + U ic

t deliverable to client c and the amount actually delivered dict + vict .
Fixed transportation cost is q1pc = 500. The production sites and client areas
are generated randomly in a 100 × 100 square, and the transportation costs
are in the interval [1, 3] where the smallest distance is normalized to 1 and the
biggest is normalized to 3.

For two specifications of the dimensions (corresponding to two of the largest
instances in [36]) NI = 5, NP = 5, NC = 40, NT = 12, denoted Park A, and
NI = 5, NP = 5, NC = 70, NT = 10, denoted Park B, we have randomly
generated five instances each.

The objective function used by Park after translation to our variables is:

max
∑

i,c,t

lic(vict +dict )−(
∑

i,p,t

p0ipx0ipt +
∑

i,p,t

q0ipyipt +
∑

i,p,t

h0ips0ipt +
∑

i,c,t

h1icσic
t +

∑

p,c,t

q1pcY pc
t +

∑

i,p,c,t

p1ipcx1i,p,ct )−
∑

i,c,t

eic(U i,c
t − vi,ct ).

In Tables 5.9 and 5.10 we show results for versions of our two groups of
instances with different capacity constraints. The first column gives the in-
stance name, columns 2-6 give the results of the hybrid heuristics H2 and H3
running for 300 seconds in the branch-and-bound phase with zLP (FL) giving
the facility location lower bound obtained using the barrier algorithm, time
denotes the time in seconds to solve LP (FL) plus 300 seconds to run (STD)
with the variables fixed, z̄H2 and z̄H3 giving heuristics H2 and H3 solution val-
ues respectively and ΓH3 the corresponding duality gap of heuristic H3. Again
H3 was chosen for comparison since it performed better in most of the cases.

Columns 7-9 give the results of the MIP solver using the standard formu-
lation with zXLP giving the bound obtained by the linear relaxation followed
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by the solver automatic cutting plane at the root node, z̄STD the best solution
found and ΓSTD the duality gap at the end of the time limit (3600 seconds). In
Column 10, imptime gives the time it took the solver to find a solution better
than that found by heuristic H3. We omit in the table the results using the
facility location reformulation, since they were worse than those of both the
heuristic and the standard formulation for all the instances.

Table 5.9: Park instances (original capacities)
(HEURISTICS) (STD)

Inst zLP(FL) time z̄H2 z̄H3 ΓH3 zXLP z̄STD ΓSTD imptime
ParkA1 7737929 564 7558187 7563241 2.3 7761714 7562682 2.5 –
ParkA2 7084497 601 6866757 6878938 3.0 7105135 6874702 3.2 –
ParkA3 7098082 624 6864604 6899819 2.9 7105675 6855298 3.5 –
ParkA4 7301276 569 7010793 7048995 3.6 7322657 7039042 3.8 –
ParkA5 7537357 582 7277784 7281459 3.5 7561075 7295911 3.5 1138
ParkB1 10919963 668 10481200 10604564 3.0 10965434 10582904 3.5 –
ParkB2 11064751 673 10729783 10667690 3.7 11066235 10713097 3.1 1412
ParkB3 11274852 980 10859276 10901026 3.4 11253485 10890575 3.2 –
ParkB4 10489566 643 9956718 10081939 4.0 10542077 10100285 4.3 2280
ParkB5 11474370 655 11137665 11169294 2.7 11455687 11149934 2.7 –

In Table 5.10 we take the same ten instances, but tighten the capacity
constraints by reducing K1 by 50% and LKp by 30%. Since heuristic H3
performed better than H2 in this group of instances as well, we only show the
results for H3.

Table 5.10: Park instances (reduced capacities)
(HEURISTIC) (STD)

Inst zLP(FL) time z̄H3 ΓH3 zXLP z̄STD ΓSTD imptime
ParkA1B 5050866 555 4731978 6.7 5044377 4800571 4.8 612
ParkA2B 4593853 524 4296798 6.9 4527774 4332555 4.3 2426
ParkA3B 4773648 571 4500360 6.1 4715142 4489886 4.8 –
ParkA4B 4325888 552 3899064 10.9 4305012 3943899 8.9 1310
ParkA5B 4668550 508 4352007 7.3 4642254 4393352 5.2 1127
ParkB1B 6210881 630 5685256 9.2 6208153 5776103 7.1 943
ParkB2B 6366365 575 5823602 9.3 6303221 5866998 7.1 3016
ParkB3B 6344660 583 5879237 7.9 6326506 5896389 6.9 2429
ParkB4B 6664446 592 6260035 6.5 6612825 6230450 5.9 –
ParkB5B 6501884 544 5959616 9.1 6390830 6035755 5.8 3229

Here we observe that in contrast to the results for the first data set, the
bound obtained at the top node zXLP is often as good as the bound obtained
using the extended formulation zLP (FL). However it appears from some initial
testing that the solution of the extended formulation is a better candidate for
use in the fixing heuristic than the top node solution after cuts. This is probably
because there are many less variables taking value zero after addition of the
cuts. Here the heuristic solution does not systematically dominate the solution
found by the MIP solver. However the column imptime indicates that on the
whole the heuristic is faster, and on this set of instances gives solutions with a
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duality gap of maximum 11% in approximately ten minutes.

5.5 Concluding Remarks

In this chapter, we studied a general production and transportation problem
with multiple production sites and multiple clients. We identified some re-
laxations of the problem for which ”strong” reformulations could be obtained.
We showed that some medium size uncapacitated instances of a basic prob-
lem can often be solved to optimality by a commercial solver when using the
multi-commodity reformulation. In addition, we proposed a hybrid heuristic
approach that combines different formulations. The approach adopted leads
to a simple class of heuristics that give solutions with an a posteriori qual-
ity guarantee. This hybrid heuristic appears to be applicable to several other
problems in which one or more extended formulations are available. One such
problem is the parallel machine lot-sizing problem with start-ups, see Gicquel
et al. [22].



Chapter 6
Production and
Transportation in a
Commit-to-delivery
Business Mode

In this chapter we consider a very special type of production and transportation
optimization problem. There are different orders, each of them composed of a
certain quantity of a single type of product, that have to be delivered by their
due dates. The transportation to the clients is made by a third company. The
goal is to determine an optimal production policy optimizing the total shipping
cost.

Stecke and Zhao [47] have considered this problem. In their case they de-
fined it as a problem of optimizing production and transportation integration
in a make-to-order manufacturing company with a commit-to-delivery business
mode in which the transportation is performed by a third-part logistics com-
pany. This type of problem appears in the context of companies such as Dell
working in a make-to-order environment, that commit-to-ship or commit-to-
deliver by a certain date when an order is placed. They consider two cases, one
in which parts of an order can be shipped separately (divisible problem) and
one in which an order cannot be divided in different shippings (indivisible prob-
lem). They derived integer programming formulations for both cases. When
all orders are divisible, the linear programming relaxation of their formulation
solves the problem. When all orders are indivisible, their formulation is capable
of solving very small instances, and therefore they developed a simple heuristic

105
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that gives good solutions for the instances tested.

We develop an integer programming formulation for the indivisible problem
with the property that its linear programming relaxation is at least as strong
as that provided by the value of the divisible problem. We show that these
formulations allow one to solve large instances, including instances of the type
tackled by Stecke and Zhao, to optimality within a few seconds.

The remainder of this chapter is organized as follows. In Section 6.1 we
formally define the problem. In Section 6.2, we derive formulations for the
divisible order (DO) and indivisible order (IO) problems. After considering
first the simple DO problem, we present an initial mixed integer programming
formulation of IO and then derive valid inequalities and a relaxation that solves
problem IO. In addition we analyze the strength of its linear programming
relaxation, and suggest some modeling refinements. In Section 6.3 we present
some computational results. Based on the results observed, we also propose a
simple algorithm with a local search procedure. In Section 6.4 we end up with
some final considerations .

6.1 Problem Definition

A company produces goods following a make-to-order policy, which means they
manufacture products only when they are demanded by specific customers. The
company operates in a commit-to-delivery business mode, i.e., it delivers orders
to customers on or before committed delivery dates. There is a capacity on the
total daily production. Different customers may place orders of varying sizes.
There is a unit shipping cost which dependends on the time distance to the
delivery date. The delivery of the orders to the clients is made by a third-part
logistics company which has different shipping modes. The transportation cost
increases the closer one is to the due date since a faster service has to be used.

The problem can be formally described as follows. There are NO orders
such that each order i is composed of Qi units all of which must be produced
by the due date di. Total production is limited to a capacity of Kt units in
period t. There is a unit shipping cost f i

t which is a nondecreasing function
of t. The objective is to produce all the orders while satisfying the production
capacity constraints so as to minimize the total shipping costs. Summarizing,
the parameters of the problem are

• NO: number of orders,

• NT : number of periods,

• Qi: size of order i,

• Kt: production capacity in period t and
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• f i
t : unit shipping cost for order i in period t.

Orders can be of two types: divisible and indivisible. Divisible orders
occur when partial delivery is allowed which means that orders can be delivered
in different shipments, so that part of the order can be shipped as soon as it
is available. Indivisible orders occur when partial delivery is not allowed,
implying that orders can be delivered only when the order is complete.

(a) Orders (b) Periods ca-
pacities

(c) Divisible or-
ders optimal so-
lution

(d) Indivisible
orders optimal
solution

Figure 6.1: Example of divisible and indivisible orders

In Figure 6.1 we illustrate a two-period problem with two orders, order 1
with size Q1 = 10 and due date d1 = 2 and order 2 with size Q2 = 20 and
due date d2 = 2. There is a constant capacity Kt = 25 units per period. The
unit shipping costs are f1

1 = f2
1 = 1, f1

2 = 3 and f2
2 = 4. For the divisible

orders problem it is optimal to produce orders 1 and 2 in this order. Then the
totality of order 1 and 15 units of order 2 can be shipped in period 1 and the
remaining 5 units of order 2 can only be shipped in period 2, giving a total cost
of 40 (if the order were the opposite the cost would be 45). For the indivisible
orders problem, it is not possible to ship both orders at the same time period.
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The optimal solution is then to produce orders 2 and 1 in this order. Order 2
can be shipped in period 1 but order 1 can only be finished in period 2 and
therefore can only be shipped in that period, giving a total cost of 60 (in the
opposite order we would have a cost of 70).

6.2 Mixed Integer Programming Formulations

Here we present and discuss mixed integer programming formulations for the
divisible order and the indivisible order problems, and then establish a result
on the linear programming relaxations of the proposed MIP formulations for
the indivisible order problem.

6.2.1 The Divisible Order Problem

We first present the basic linear programming formulation for the divisible
order programming, given by Stecke and Zhao [47], and then we indicate some
of its special features.

We define the variables that will be used for both the divisible order (DO)
problem:

• xit: amount of order i produced in period t, defined for i = 1, . . . , NO
and t = 1, . . . , di.

For simplicity of notation we assume that xit exist with x
i
t = 0 whenever dit <

t ≤ NT .

Stecke and Zhao’s basic formulation for the DO problem is the transporta-
tion problem:

(D) zD = min
∑NO

i=1

∑di

t=1 f
i
tx

i
t

∑di

t=1 x
i
t = Qi ∀ i, (6.1)

∑NO
i=1 x

i
t ≤ Kt ∀ t, (6.2)

xit ∈ R
1
+ ∀i, t,

where the constraints (6.1) determine the size of each order and constraints
(6.2) model the production capacity constraint.

Stecke and Zhao rightly made the following observation.

Observation 6.1. Because the shipping costs f i
t are non-decreasing in t, one

produces as early as possible.

They also stated the following observation which is easy to see.
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Proposition 6.1. (Stecke and Zhao) When the transportation costs are in-
dependent of i, a production schedule in which orders are sorted according to
earlier due date first and processed non-preemptively and continuously without
idle time is optimal for DO.

We now make some basic observations. Our first observation is related to
the feasibility of D. It states that the total cumulative production until a certain
period t must be enough to produce all the orders with due date no later than t
and that the cumulative capacity until t is enough to produce all these orders.

Observation 6.2. (i) If x is feasible in D, then

∑

i:di≤t

Qi ≤
NO
∑

i=1

t
∑

u=1

xiu ≤
t

∑

u=1

Ku ∀ t.

(ii) Problem D is feasible if and only if

∑

i:di≤t

Qi ≤
t

∑

u=1

Ku ∀ t.

We now give a relaxation that solves problem D. This result will be used
later when solving the problem with indivisible orders.

Proposition 6.2. The relaxation of problem D:

(RD) min
∑NO

i=1

∑di

t=1 f
i
tx

i
t

∑di

t=1 x
i
t = Qi ∀ i, (6.3)

∑NO
i=1

∑t
u=1 x

i
u ≤

∑t
u=1Ku ∀ t, (6.4)

xit ∈ R
1
+ ∀ i, t,

solves D provided f i
t ≤ f i

t+1 for all i, t.

Proof. We have to show that constraints (6.2) are satisfied. Consider problem
D and let u be the first period in which the total capacity exceeds the size of the
orders, i.e.,

∑u
k=1Kk >

∑

iQ
i. We show that

∑NO
i=1

∑j
k=1 x

i
k =

∑j
k=1Kk for

every j ≤ u and that
∑NO

i=1

∑u
k=1 x

i
k <

∑u
k=1Kk. According to Observation

6.1, production occurs at full capacity for every period j ≤ u − 1, implying
∑NO

i=1

∑j
k=1 x

i
k =

∑j
k=1Kk and consequently

∑NO
i=1 x

i
j = Kj. The remaining

∑

iQ
i −

∑u−1
k=1 Kk is produced at period u implying

∑NO
i=1 x

i
u < Ku. Observe

that
∑NO

i=1

∑NT
k=u+1 x

i
k = 0.

Proposition 6.3. (RD) gives an integer solution whenever Q and K are in-
teger vectors.
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Proof. We show that the solution is integer by showing that the matrix
formed by the constraints of RD is totally unimodular. This is done by
showing that the conditions in Observation 2.3 are satisfied. The columns
are arranged in increasing fashion based on order indices and periods, as
(x11, x

1
2, . . . , x

1
d1 , . . . , xNI

1 , . . . , xNI
dNI ). The following matrix is an example with

NI = 3 and NT = 3 in which di = 3 for every order i.

A =

















1 1 1
1 1 1

1 1 1
1 1 1
1 1 1 1 1 1
1 1 1 1 1 1 1 1 1

















.

Let Ma be the lines corresponding to constraints (6.3) belonging to M and Mb

be the lines corresponding to constraints (6.4) belonging to M . For every line
i ∈Ma, add i to M1. This implies 0 ≤ |

∑

i∈M1
i∈Ma

aij −
∑

i∈M2
i∈Ma

aij | ≤ 1. For the

lines i ∈ Mb, starting from the latest (largest t) to the earliest (lowest t), add
alternating between M2 and M1, starting with M2 then M1 and continue with
this sequence. This implies that −1 ≤ |

∑

i∈M1
i∈Mb

aij −
∑

i∈M2
i∈Mb

aij | ≤ 0. We have

0 ≤ |
∑

i∈M1
aij −

∑

i∈M2
aij | ≤ 1 and therefore A is totally unimodular.

Our next observation is based on the fact that in problem D
∑NO

i=1 x
i
t ≤ Kt,

what implies
∑NO

i=1

∑t
k=1 x

i
k ≤

∑t
k=1Kk.

Observation 6.3. Let x̄ be a feasible solution of RD. Then there exists a
feasible solution x̃ of D such that

(i)
∑t

u=1 x̃
i
u ≥

∑t
u=1 x̄

i
u ∀i, t = 1, . . . , di.

(ii)
∑NO

i=1

∑di

t=1 f
i
t x̃

i
t ≤

∑NO
i=1

∑di

t=1 f
i
t x̄

i
t when f

i
t ≤ f i

t+1 ∀ i, t.

6.2.2 The Indivisible Order Problem

We give two MIP formulations for the indivisible order (IO) problem.

Theorem 6.4. (Stecke and Zhao) The indivisible problem is strongly NP-hard.

Theorem 6.4 was proved by a reduction from the 3-Partition problem.

We can use the variables xit as defined for the DO problem. In addition, we
define the new variables

• Y i
t : is equal to 1 if order i is completed and shipped in period t, defined

for i = 1, . . . , NO and t = 1, . . . , di.
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As for the xit variables, we assume that Y i
t exist with Y i

t = 0 whenever dit <
t ≤ NT for simplicity of notation.

(I) zI = min
∑NO

i=1

∑di

t=1 f
i
tQ

iY i
t

∑di

t=1 x
i
t = Qi ∀ i, (6.5)

∑NO
i=1 x

i
t ≤ K ∀ t,

∑di

t=1 Y
i
t = 1 ∀ i, (6.6)

∑di

t=u x
i
t ≤ Qi

∑di

t=u Y
i
t ∀ i, u = 1, . . . , di, (6.7)

xit ∈ R
1
+, Y

i
t ∈ {0, 1} ∀ i, t,

where the additional equations (6.6) ensure that each order is shipped on or
before its due date, and inequality (6.7) states that if the total amount of order
i produced in the interval [u, di] is positive, then necessarily this amount is
bounded by Qi and the order must be completed during the interval [u, di] –

in other words xit > 0 implies
∑di

u=t Y
i
u = 1, so one cannot ship an order until

its production is completed.
Now we propose a valid inequality for the problem and develop a relaxation

of problem I using this valid inequality.

Proposition 6.5. The inequality

NO
∑

i=1

t
∑

u=1

QiY i
u ≤

t
∑

u=1

Ku ∀ t

is valid for I.

Proof:

NO
∑

i=1

Qi
t

∑

u=1

Y i
u =

NO
∑

i=1

Qi(1 −
di

∑

u=t+1

Y i
u)

= (
NO
∑

i=1

Qi −
NO
∑

i=1

Qi
di

∑

u=t+1

Y i
u)

≤
NO
∑

i=1

(Qi −
di

∑

u=t+1

xiu)

=

NO
∑

i=1

t
∑

u=1

xiu

≤
t

∑

u=1

Ku.
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where the first inequality uses (6.7) and the second follows from Observation
6.2. ✷

Proposition 6.6. The relaxation

(RI) zRI = min
∑NO

i=1

∑di

t=1 ftQ
iY i

t (6.8)
∑di

t=1 Y
i
t = 1 ∀ i, (6.9)

∑NO
i=1

∑t
u=1Q

iY i
u ≤

∑t
u=1Ku ∀ t, (6.10)

Y i
t ∈ {0, 1} ∀ i, t = 1, . . . , di (6.11)

solves the problem I.

Proof: Suppose that Ȳ is feasible in RI. We have
∑di

t=1 Y
i
t = 1, so Ȳ satisfies

constraints (6.6). Define x̄ by setting x̄it = QiȲ i
t for all i, t.

First we show that the solution (x̄) is feasible in RD. Constraints (6.9) imply
∑di

t=1 x̄
i
t =

∑di

t=1Q
iȲ i

t = Qi, therefore x̄ satisfies (6.3). Constraints (6.10)

imply that
∑NO

i=1

∑t
u=1 x̄

i
u =

∑NO
i=1

∑t
u=1Q

iȲ i
u ≤

∑t
u=1Ku, so x̄ satisfies (6.4).

Thus (x̄) is feasible in RD.

We now want to show that there exists x̃ such that the solution (x̃, Ȳ ) is
feasible in I. From Observation 6.3, there exists a vector x̃ that is feasible in D

with
∑t

u=1 x̃
i
u ≥

∑t
u=1 x̄

i
u. Thus x̃ satisfies (6.1), i.e.

∑di

t=1 x̃
i
t = Qi, and (6.2),

i.e.
∑NO

i=1 x̃
i
t ≤ Kt. As

∑di

u=t x̃
i
u ≤

∑di

u=t x̄
i
u = Qi

∑di

u=t Ȳ
i
u, (x̃, Ȳ ) satisfies

(6.7). So (x̃, Ȳ ) is feasible in I. As the objective functions have the same
value, the claim follows. ✷

6.2.3 Tightness of the Bounds

Our initial motivation was to derive a MIP formulation for the IO problem
giving bounds as strong as those provided by the DO problem. Here we show
that the optimal value zD of the transportation problem D and the values zLP

I

and zLP
RI of the linear programming relaxations of I and RI, respectively, are

exactly the same.

Proposition 6.7. zD = zLP
I = zLP

RI .

Proof: We show first that zD ≤ zLP
I . Let (x, Y ) be optimal in LP (I). Clearly

x is feasible in D. We show that for each order i,
∑di

t=1 f
i
tx

i
t ≤

∑di

t=1Q
iftY

i
t .
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Specifically

di

∑

t=1

f i
tx

i
t =

di

∑

t=1

(f i
t − f i

t−1)

di

∑

u=t

xiu

≤ Qi
di

∑

t=1

(f i
t − f i

t−1)

di

∑

u=t

Y i
u

=

di

∑

t=1

Qif i
tY

i
t

where the inequality follows using (6.7) and the fact that f i
t − f i

t−1 ≥ 0 for

all t as f i
t is nondecreasing in t. It follows that zD ≤

∑NO
i=1

∑di

t=1 ftx
i
t ≤

∑NO
i=1

∑di

t=1Q
iftY

i
t = zLP

RI .

Next we show that zLP
I ≤ zLP

RI . Let Ȳ be an optimal solution of LP (RI).

Set x̄it = QiȲ i
t for all i, t. From (6.9), we have that

∑di

t=1 x̄
i
t/Q

i = 1 and thus

(6.1) is satisfied. From (6.10), we have that
∑NO

i=1

∑t
u=1 x̄

i
u ≤

∑t
u=1Ku. Again

by Observation 6.3, this implies the existence of x̃ such that (x̃, Ȳ ) is feasible
in LP (I), and the claim follows.

Finally we show that zD ≥ zLP
RI . Let x̄ be an optimal solution of D. Set

Ȳ i
t = x̄it/Q

i for all i, t. From (6.1), we have that
∑di

t=1 x̄
i
t =

∑di

t=1Q
iȲ i

t = Qi

and thus dividing by Qi, (6.9) holds for Ȳ . Also from (6.2),
∑NO

i=1

∑t
u=1Q

iȲ i
u ≤

∑t
u=1Ku. Thus Ȳ is feasible in LP (RI) with value zD, and so the optimal

value zLP
RI ≤ zD. ✷

6.2.4 Change of Variable

Mixed integer programming solvers include their own cutting plane routines.
Some of these routines depend on recognizing certain structures, such as knap-
sack constraints. Because of this, it is possible that, even though two formu-
lations of an MIP have linear programming relaxations taking the same value,
an MIP solver performs better on one formulation than on the other. Here
we make a change of variable with the idea that certain simple knapsack con-
straints may be more evident to the solver in the new formulation. We define
the variables

• Zi
t : equal to 1 if order i is shipped within the interval [1, t].
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Observe that Zi
t =

∑t
u=1 Y

i
u. The formulation RI now becomes

(RI ′) zI = min
∑NO

i=1

∑di

t=1Q
i(f i

t − f i
t−1)(1 − Zi

t−1)
∑NO

i=1 Q
iZi

t ≤
∑t

u=1Ku ∀ t, (6.12)

Zi
t ≤ Zi

t+1 ∀ i, t = 1, . . . , di − 1 (6.13)

Zi
1 ≥ 0, Zi

di = 1 ∀ i, (6.14)

Zi
t ∈ {0, 1} ∀ i, t = 1, . . . , di, (6.15)

because
∑di

t=1 f
i
tY

i
t =

∑di

t=1(f
i
t − f i

t−1)
∑di

u=t Y
i
u =

∑di

t=1(f
i
t − f i

t−1)(1−Zi
t−1).

As indicated above, a potential advantage of this formulation is that the
constraints (6.12) are simple 0-1 knapsack constraints, and the automatic cut
generation algorithms embedded in the MIP solvers are more likely to generate
cuts off such constraints than off the constraints (6.10).

6.2.5 An Extension with Production and Storage Costs

Here we consider one possible extension to the indivisible order problem. We
assume that there are unit production costs pit and unit storage costs hit. Letting
sit denote the stock of order i at the end of period t for 1 ≤ t ≤ di − 1, the new
objective function becomes

min

NO
∑

i=1

[

di

∑

t=1

pitx
i
t +

di−1
∑

t=1

hits
i
t +

di

∑

t=1

f i
tQ

iY i
t ].

Observing that sit =
∑t

u=1 x
i
u −QiZi

t is nothing but the slack variable in (6.7),
we can eliminate sit by substitution, and the resulting MIP in the x, Z variables
is

(RIPS)

min

NO
∑

i=1

[

di

∑

t=1

(pit +

di−1
∑

u=t

hiu)x
i
t +

di

∑

t=1

Qi(f i
t − f i

t−1)(1 − Zi
t−1) + piQi] (6.16)

∑di

t=1 x
i
t = Qi ∀ i, (6.17)

∑NO
i=1 x

i
t ≤ Kt ∀ t, (6.18)

∑NO
i=1 Q

iZi
t ≤

∑t
u=1Ku ∀ t, (6.19)

∑t
u=1 x

i
u ≥ QiZi

t ∀ i, t = 1, . . . , di − 1, (6.20)

Zi
t ≤ Zi

t+1 ∀ i, t = 1, . . . , di − 1, (6.21)

Zi
di = 1 ∀ i, (6.22)

Zi
t ∈ {0, 1} ∀ i, t = 1, . . . , di. (6.23)

(6.24)
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The objective function minimizes the total cost. Constraints (6.17) guarantee
the orders are totally produced. Constraints (6.18) ensure the capacities are
satisfied. Constraints (6.19) state that all the orders shipped until period t
do not exceed the total capacity until period t. Constraints (6.20) guarantee
that an order is only shipped once it is complete. Constraints (6.21) set the
Zi
t+1 variables to 1 in case shipping of order i occurred before period t + 1.

Constraints (6.22) state that the orders are shipped at most at their due dates.
Constraints (6.23) are bounds on the shipping variables.

In practice production and storage costs are typically constant over time in
which case the objective function simplifies to

min

NO
∑

i=1

[

di

∑

t=1

(di − t+ 1)hixit +

di

∑

t=1

Qi(f i
t − f i

t−1)(1− Zi
t−1)]. (6.25)

Now clearly there is a conflict between the normalized production costs that
are decreasing with time and the shipping costs that are increasing. Therefore
it is no longer possible to argue that one will produce as early as possible.

6.3 Computational Results

Having shown that our MIP formulations of the IO problem provide lower
bounds of the quality desired a priori, we now test whether they are effective
in generating provably optimal solutions in a reasonable amount of time.

6.3.1 The Indivisible Order Problem

To test our formulations for problem IO, we have generated four sets of in-
stances as described in the next paragraphs. The first set is composed of 100
instances while the other three sets have ten instances each.

• Class 1 instances were created with {100, 200, . . . , 1000} orders, five time
periods, 70% of the orders with size equal to one, 25% of the orders with
size two and the remaining 5% with the size randomly generated in the
interval [3, 10]. For each of the different numbers of orders, ten instances
were created.

• Class 2 instances have 500 orders, eight time periods and the size of each
order is randomly generated in the interval [1, 60].

• Class 3 is composed of instances with 500 orders, eight time periods and
order sizes randomly generated in the interval [21, 60].

• Class 4 instances were specified with 250 orders, 15 time periods and,
similar to Class 3 instances, the size of each order was randomly generated
in the interval [21, 60].
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For all the instances, the constant capacity K is a value randomly se-
lected in the range [Kmin, ⌈1.02×Kmin⌉ − 1], where the value Kmin =

argmaxt∈1..NT

⌈

(
∑

i:d(i)≤tQ
i)/t

⌉

.

Class 1 is designed to replicate the classes of instances with small orders
tested by Stecke and Zhao - as the capacities are not described in their work,
they are generated to be random and relatively tight. Class 2 is designed to
generate a class with larger orders. Classes 3 and 4 are an attempt to create
more difficult instances having no very small orders. They way the instances
are generated is summarized in Table 6.1.

Table 6.1: Characteristics of the instances
Type NO NT Qi

Class 1 100..1000 5 1 (70%), 2 (25%), [3, 10] (5%)
Class 2 500 8 [1, 60]
Class 3 500 8 [21, 60]
Class 4 250 15 [21, 60]

The instances have been solved using the mixed integer programming solver
Xpress-MP v2.2.0 on a computer with a 3.20GHz Intel Xeon processor and 4
Gb of RAM memory. A time limit of 300 seconds was imposed on the solver
to find the optimal solution for each of the instances.

In Table 6.2 we present the results for the four classes using the Y -
formulation RI and the Z-formulation RI ′ running Xpress-MP in default
mode. For each we give the average time in seconds and the average number
of nodes in the tree for the solved instances, as well as the number of instances
unsolved within the time limit. For the first class we only present the results
for NO = 1000 as results for the smaller instances are similar.

Table 6.2: Results using XPress-MP in default mode
RI RI ′

Type Avg. time(s) Avg. nodes not solved Avg. time(s) Avg. nodes not solved

Class 1 0.2 1.0 0 0.1 1.0 0
Class 2 8.6 11002.6 0 0.2 38.8 0
Class 3∗ 14.9 12106.8 2 0.6 538.3 2
Class 4∗ 14.4 19463.0 8 0.3 33.0 6

Examination of Table 6.2 and the more detailed results led us to the fol-
lowing observations:

(i) Instances of classes 1 and 2 are easily solved in less than 1 second and
typically without enumeration.
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(ii) For classes 3 and 4 on rare occasions the values obtained at the top node
after addition of cuts differ slightly between the Y and Z formulations.
In all the cases in which there is a difference, the Z gives a better bound.

(iii) For all the solved instances of classes 3 and 4 the value obtained at the
top node after addition of cuts using the Z formulation is the optimal
value of the IO instance.

(iv) For the unsolved instances, the duality gap is tiny, never more that 0.1%
after 52 seconds and never more than 0.05% at the end of the time limit.

Point (iii) along with the significant number of nodes required for certain in-
stances indicates that the face of optimal solutions is apparently very large. To
try to reduce the number of nodes, we decided to increase the number of rounds
of Gomory mixed integer cuts added. Point (iv) indicates that one quickly has
a very good solution, and suggests its use as the starting point of a local search
heuristic to find the optimal integer solution.

We propose a to use a simple heuristic, which is a variant of the relaxation
induced neighborhood search heuristic (RINS) [8]. Essentially whereas RINS
optimizes over the variables that take different values in the linear program-
ming solution Z̄ and the best feasible solution Ẑ, we increase the interval of
optimization by one period in both directions.

Algorithm with Local Search
Step 1: Solve the linear program at the top node with 40 rounds of Gomory
cuts to obtain the solution Z̄.
Step 2: Run branch-and-cut to obtain a best feasible solution Ẑ obtained
after K1 seconds.
Step 3: For each order i for which Z̄i 6= Ẑi, let σi = min{t : Z̄i

t 6= Ẑi
t}

and ρi = max{t : Z̄i
t 6= Ẑi

t}. Then allow Zi
t ∈ {0, 1} for t in the interval

[σi − 1, ρi + 1] and fix Zi
t = 0 for t < σ − 1 and Zi

t = 1 for t > ρ+ 1.
For each order i for which Z̄i = Ẑi, let τ i = min{t : Z̄i

t = 1}. Then allow
Zi
t ∈ {0, 1} for t in the interval [τ i − 1, τ i + 1] and fix Zi

t = 0 for t < τ − 1 and
Zi
t = 1 for t > τ + 1.

Run the optimizer on this modified problem. If a feasible solution is found
with the same value as that of the LP solution Z̄, it is optimal. Otherwise
stop after K2 = 300−K1 seconds with the best feasible solution found.
Step 4: Return to steps 1 and 2 and solve the original complete formulation
to optimality using the best incumbent value as a cutoff and with the limit of
K1 seconds removed.

In Table 6.3 we only consider the instances of classes 3 and 4 and use the
more effective Z-variable formulation RI ′. In columns 2-4 we present results
with the Xpress-MP default except that there 40 rounds of Gomory cuts are
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added and the optimizer’s heuristic is set to be more active than in default
mode. We see that the cut strategy is effective. Six instances of Class 3
are solved in less than one second and one instance remain unsolved after 300
seconds. Five of the Class 4 instances are solved within less than 10 seconds, but
three instances remain unsolved after 300 seconds. In columns 5-7 we present
results using the complete algorithm described above with both Gomory cuts
and the primal heuristic, and settings K1 = 10 and K2 = 290. Now all the
instances are solved to optimality well within the time limit.

Table 6.3: Results with (i) Gomory cuts, (ii) the complete algorithm
RI ′ (i) RI ′ (ii)

Type Avg. time(s) Avg. nodes not solved Avg. time(s) Avg. nodes not solved

Class 3 11.9 14663.9 1 6.4 8230.9 0
Class 4 45.5 65500.4 3 10.6 15483.5 0

6.3.2 Extension with Production and Storage Costs

To analyze the extension of the problem with production and storage costs and
to test the formulation RIPS, four new sets of instances were created with
the specifications in Table 6.1 and with constant production and unit storage
costs. We use the RIPS formulation with the simplified objective function
(6.25). We run the optimizer for 300 seconds using the Xpress-MP defaults
except that again up to 40 rounds of Gomory cuts are allowed. The results are
summarized in Table 6.4.

In columns 2-5 we have the average time, the average number of nodes,
the number of unsolved instances and the average duality gap for the unsolved
instances when using only RIPS.

Classes 1 and 2 are still relatively easy, but now the Classes 3 and 4 instances
are considerably more difficult to solve to optimality. However after just 10
seconds the duality gaps are very small.

Table 6.4: Results for RIPS
Type Avg. time(s) Avg. nodes not solved Gap Gap10s

Class 1 0.6 1.0 0 0.000 0.000
Class 2 14.1 3452.4 0 0.000 0.001
Class 3∗ 49.9 11698.7 3 0.004 0.025
Class 4∗ 163.4 21799.0 9 0.049 0.488
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6.4 Concluding Remarks

In this chapter we have studied a production and transportation integration
problem with a commit-to-delivery business mode in which the transportation
is performed by a third-part logistics company.

We have shown that there is a mixed integer programming formulation
for the indivisible order problem that appears to be effective on the instances
studied by Stecke and Zhao [47] and also on certain apparently more difficult
instances. As shipping of complete orders is a natural requirement in cer-
tain models, this formulation will hopefully also be useful in such models. A
first such model is the problem RIPS including not just production capacity
constraints but also production and/or storage costs that we have examined
briefly.

The algorithm with a local search procedure was effective to solve instances
that could not be solved by using the formulations within the time limit. One
could try to develop a different local search procedure. Some preliminary re-
sults show that the results can be improved in some instances when different
neighborhoods are used in the variation of RINS used. Some variations of Local
branching [18] could also be used.

A version of this chapter appeared in Melo and Wolsey [32].
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Chapter 7
Conclusions

Throughout this thesis we have studied certain joint production and trans-
portation problems. Here we will highlight the contributions of this thesis and
discuss possible extensions for future research.

In Chapter 3 we studied the uncapacitated two-level production-in-series
lot-sizing problem (2L-S/LS-U). We provided a new dynamic programming
algorithm with a worst case running time of O(NT 2 logNT ) (which runs in
O(NT 2) under some assumptions on the cost) which is lower than that of the
best known O(NT 3) algorithm in the literature and presented a new compact
extended formulation with O(NT 3) variables and O(NT 2) constraints. We also
presented a O(NT 4) dynamic programming algorithm and a compact extended
formulation with O(NT 4) variables and O(NT 3) constraints for a generaliza-
tion in which a limited amount can be produced for each period in addition
to the demand in order to obtain some extra revenue. It would be interesting
to know whether one can find a compact formulation with less than O(NT 3)
variables. Another question is to find out whether one can obtain extended
formulations of reasonable size solving two-level problems involving constant
capacities.

In Chapter 4 we analyzed the one-warehouse multi-retailer problem
(OWMR). During the last years a considerable amount of effort has been
put in obtaining approximation algorithms for the OWMR but recently some
authors compared different formulations for the problem. The work in this
chapter was in the direction of studying mixed integer programming approaches
for tackling the problem. We compared the strength of the multi-commodity
formulation with the so-called transportation formulation which was used in
the comparisons in the literature. We also analyzed the projection of the
multi-commodity formulation for the joint-replenishment problem (JRP) and
for the 2L-S/LS-U, showing that it is composed of only simple dicut inequal-
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ities for the JRP which is not the case for the 2L-S/LS-U. In addition, we
presented some valid inequalities for the 2L-S/LS-U that are not just simple
(l, S) inequalities and used them to tackle the OWMR computationally in a
space of variables intermediate between the original and the multi-commodity
spaces.

As far as we know, there is no combinatorial algorithm known to separate
the simple dicut inequalities. Therefore it would be interesting trying to develop
an efficient algorithm to separate the simple dicut inequalities for the joint-
replenishment problem. By observing the computational experiments, we can
see that a more efficient separation algorithm could be achieved specially given
the large number of inequalities that was generated using our cutting plane.
One can see that the G − (l, S) inequalities, which are a special case of the
simple dicut inequalities, can still be generalized. It would be interesting if
one could find a generalization of the G − (l, S) inequalities that is as strong
as the simple dicut inequalities for the OWMR problem and can be ”easily”
separated.

In Chapter 5 we considered a general two-level production-transportation
problem with multiple production sites. We used reformulations for relax-
ations of the problem in order to get better bounds. Our computational exper-
iments showed that medium size instances could be solved to optimality with
a standard solver by using these reformulations. We provided a MIP heuris-
tic framework combining different formulations that provides an a posteriori
performance guarantee. In our experiments, solutions within 10% of optimal-
ity for were achieved for instances with limited transportation capacity and/or
with additional sales but the gaps became larger (up to 40%) with big bucket
production or aggregate storage capacity constraints. One comment about the
computational results concerns how the solvers behave when using different
instance generators and the difficulty of the test instances. Is the fact that
the duality gaps provided by the heuristic are larger for the simpler instances
without sales than for those with sales is due to the greater flexibility provided
by sales? Some initial tests have shown that decreasing the selling price in
the instances with sales leads to larger gaps, so this question among others is
still open. From our results it seems that medium size uncapacitated instances
can be solved to optimality by using a multi-commodity reformulation. For
instances with vehicle capacities it seems possible to achieve reasonably good
bounds by using our heuristic framework. For the harder general instances,
more studies should be done in order to try to reduce the duality gaps ob-
tained.

What can we do when faced with even larger instances so that the ex-
tended formulations available, e.g. the multi-commodity formulation, become
too large? In certain cases, one possible way to apply this approach could
be to find and make efficient use of approximate extended formulations, such
as in Van Vyve and Wolsey [52]. Using Benders’ algorithm, for instance, one
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can solve linear programs over the extended formulations to generate cutting
planes in the original space of variables. However, at least for the general two-
level problem, it appears that an enormous number of cutting planes is needed
just to get back close to the multi-commodity LP bound. It would also be
interesting to study special purpose heuristics that can provide primal feasible
solutions of the same quality, or better, even without quality guarantees. An-
other possibility is to study other ways to use an MIP solver more effectively
by analyzing more carefully the characteristics of the reformulations and trying
to identify which algorithms would be more likely to perform better in different
situations.

In Chapter 6 we investigated a production and transportation problem in
a commit-to-delivery business mode. We developed MIP formulations that
perform well in practice and a local search procedure that helped the solver to
tackle some more challenging instances. Our approach could solve to optimality
instances similar to the those that were treated heuristically in the paper in
which the problem was introduced.

Some extensions to the problem could be tackled with our approach. The
case in which shipping costs depend on customer locations can be treated di-
rectly by the proposed formulation, and the case involving a mixture of divisible
and indivisible orders can easily be treated by combining the formulations for
divisible and indivisible orders. Another variant with quantity discounts lead-
ing to shipping costs that are not nondecreasing is a more challenging problem,
and requires further study.

Finally it remains the challenge of treating problems with three or more
levels. As far as we know, there is no compact extended formulation of rea-
sonable size for the uncapacitated production-in-series lot-sizing with a general
number of levels. It would also be interesting to study effective computational
methods for extensions of the general production-transportation problem with
more than two levels.
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