1,039 research outputs found

    Space-time Characteristics and Experimental Analysis of Broadening First-order Sea Clutter in HF Hybrid Sky-surface Wave Radar

    Get PDF
    In high frequency (HF) hybrid sky-surface wave radar, the first-order sea clutter broadening is very complex and serious under the influence of ionosphere and bistatic angle, which affects the detection of ship target. This paper analyzes the space-time characteristics based on the HF sky-surface wave experimental system. We first introduce the basic structure, working principle and position principle based on our experimental system. Also analyzed is the influence of ionosphere and bistatic angle on the space-time coupling characteristics of broadening first-order sea clutter and the performance of space-time adaptive processing (STAP). Finally, the results of theoretic analysis are examined with the experimental data. Simulation results show that the results of experiment consist with that of theoretic analysis

    THE HIGH FREQUENCY SURFACE WAVE RADAR SOLUTION FOR VESSEL TRACKING BEYOND THE HORIZON

    Get PDF
    With maximum range of about 200 nautical miles (approx. 370 km) High Frequency Surface Wave Radars (HFSWR) provide unique capability for vessel detection far beyond the horizon without utilization of any moving platforms. Such uniqueness requires design principles unlike those usually used in microwave radar. In this paper the key concepts of HFSWR based on Frequency Modulated Continuous (FMCW) principles are presented. The paper further describes operating principles with focus on signal processing techniques used to extract desired data. The signal processing describes range and Doppler processing but focus is given to the Digital Beamforming (DBF) and Constant False Alarm Rate (CFAR) models. In order to better present the design process, data obtained from the HFSWR sites operating in the Gulf of Guinea are used.  

    Alfvén waves underlying ionospheric destabilization: ground-based observations

    Get PDF
    During geomagnetic storms, terawatts of power in the million mile-per-hour solar wind pierce the Earth’s magnetosphere. Geomagnetic storms and substorms create transverse magnetic waves known as Alfvén waves. In the auroral acceleration region, Alfvén waves accelerate electrons up to one-tenth the speed of light via wave-particle interactions. These inertial Alfvén wave (IAW) accelerated electrons are imbued with sub-100 meter structure perpendicular to geomagnetic field B. The IAW electric field parallel to B accelerates electrons up to about 10 keV along B. The IAW dispersion relation quantifies the precipitating electron striation observed with high-speed cameras as spatiotemporally dynamic fine structured aurora. A network of tightly synchronized tomographic auroral observatories using model based iterative reconstruction (MBIR) techniques were developed in this dissertation. The TRANSCAR electron penetration model creates a basis set of monoenergetic electron beam eigenprofiles of auroral volume emission rate for the given location and ionospheric conditions. Each eigenprofile consists of nearly 200 broadband line spectra modulated by atmospheric attenuation, bandstop filter and imager quantum efficiency. The L-BFGS-B minimization routine combined with sub-pixel registered electron multiplying CCD video stream at order 10 ms cadence yields estimates of electron differential number flux at the top of the ionosphere. Our automatic data curation algorithm reduces one terabyte/camera/day into accurate MBIR-processed estimates of IAW-driven electron precipitation microstructure. This computer vision structured auroral discrimination algorithm was developed using a multiscale dual-camera system observing a 175 km and 14 km swath of sky simultaneously. This collective behavior algorithm exploits the “swarm” behavior of aurora, detectable even as video SNR approaches zero. A modified version of the algorithm is applied to topside ionospheric radar at Mars and broadcast FM passive radar. The fusion of data from coherent radar backscatter and optical data at order 10 ms cadence confirms and further quantifies the relation of strong Langmuir turbulence and streaming plasma upflows in the ionosphere with the finest spatiotemporal auroral dynamics associated with IAW acceleration. The software programs developed in this dissertation solve the century-old problem of automatically discriminating finely structured aurora from other forms and pushes the observational wave-particle science frontiers forward

    Spatial statistics and analysis of earth's ionosphere

    Full text link
    Thesis (Ph.D.)--Boston UniversityThe ionosphere, a layer of Earths upper atmosphere characterized by energetic charged particles, serves as a natural plasma laboratory and supplies proxy diagnostics of space weather drivers in the magnetosphere and the solar wind. The ionosphere is a highly dynamic medium, and the spatial structure of observed features (such as auroral light emissions, charge density, temperature, etc.) is rich with information when analyzed in the context of fluid, electromagnetic, and chemical models. Obtaining measurements with higher spatial and temporal resolution is clearly advantageous. For instance, measurements obtained with a new electronically-steerable incoherent scatter radar (ISR) present a unique space-time perspective compared to those of a dish-based ISR. However, there are unique ambiguities for this modality which must be carefully considered. The ISR target is stochastic, and the fidelity of fitted parameters (ionospheric densities and temperatures) requires integrated sampling, creating a tradeoff between measurement uncertainty and spatio-temporal resolution. Spatial statistics formalizes the relationship between spatially dispersed observations and the underlying process(es) they represent. A spatial process is regarded as a random field with its distribution structured (e.g., through a correlation function) such that data, sampled over a spatial domain, support inference or prediction of the process. Quantification of uncertainty, an important component of scientific data analysis, is a core value of spatial statistics. This research applies the formalism of spatial statistics to the analysis of Earth's ionosphere using remote sensing diagnostics. In the first part, we consider the problem of volumetric imaging using phased-array ISR based on optimal spatial prediction ("kriging"). In the second part, we develop a technique for reconstructing two-dimensional ion flow fields from line-of-sight projections using Tikhonov regularization. In the third part, we adapt our spatial statistical approach to global ionospheric imaging using total electron content (TEC) measurements derived from navigation satellite signals

    Advanced engineering - Tracking and navigational accuracy analysis

    Get PDF
    Deep Space Network tracking and navigational accuracy analyses, lunar gravimetry, terrestrial gravitational constant, and orbit calculations for planetary orbite

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion

    High-latitude over-the-horizon radar applications

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2020Over-the-horizon radar (OTHR) systems that operate at high-latitudes often must contend with multipath and pronounced diffusive scattering effects produced by the anisotropic, birefringent, and heterogeneous nature of the ionosphere. In this thesis, radar performance at high-latitudes is quantified and several applications for either mitigating the deleterious effects of multipath and diffusive scattering or deriving information about the state of the ionosphere are proposed. The first application is inspired by adaptive optics techniques in other fields and involves the coherent summation of the received plane wave spectrum in order to improve angular resolution and array gain. The second application involves deriving ionospheric E x B drift from applying spatial correlation analysis to ground clutter echoes. The third application is the development of a new spatial adaptive processing technique designed specifically to preserve the Doppler spectrum of angle-Doppler coupled clutter like that observed at high-latitudes.1. Introduction -- 2. Scintillation correction in phased array high-frequency radar -- 3. Ground clutter spatial correlation analysis: transverse ionospheric drift velocity -- 4. MV-SAP: Preserving angle-doppler coupled clutter -- 5. Conclusions & future work -- Appendix: Alternative derivation of ground clutter MC

    Bayesian approach to ionospheric imaging with Gaussian Markov random field priors

    Get PDF
    Ionosphere is the partly ionised layer of Earth's atmosphere caused by solar radiation and particle precipitation. The ionisation can start from 60 km and extend up to 1000 km altitude. Often the interest in ionosphere is in the quantity and distribution of the free electrons. The electron density is related to the ionospheric refractive index and thus sufficiently high densities affect the electromagnetic waves propagating in the ionised medium. This is the reason for HF radio signals being able to reflect from the ionosphere allowing broadcast over the horizon, but also an error source in satellite positioning systems. The ionospheric electron density can be studied e.g. with specific radars and satellite in situ measurements. These instruments can provide very precise observations, however, typically only in the vicinity of the instrument. To make observations in regional and global scales, due to the volume of the domain and price of the aforementioned instruments, indirect satellite measurements and imaging methods are required. Mathematically ionospheric imaging suffers from two main complications. First, due to very sparse and limited measurement geometry between satellites and receivers, it is an ill-posed inverse problem. The measurements do not have enough information to reconstruct the electron density and thus additional information is required in some form. Second, to obtain sufficient resolution, the resulting numerical model can become computationally infeasible. In this thesis, the Bayesian statistical background for the ionospheric imaging is presented. The Bayesian approach provides a natural way to account for different sources of information with corresponding uncertainties and to update the estimated ionospheric state as new information becomes available. Most importantly, the Gaussian Markov Random Field (GMRF) priors are introduced for the application of ionospheric imaging. The GMRF approach makes the Bayesian approach computationally feasible by sparse prior precision matrices. The Bayesian method is indeed practicable and many of the widely used methods in ionospheric imaging revert back to the Bayesian approach. Unfortunately, the approach cannot escape the inherent lack of information provided by the measurement set-up, and similarly to other approaches, it is highly dependent on the additional subjective information required to solve the problem. It is here shown that the use of GMRF provides a genuine improvement for the task as this subjective information can be understood and described probabilistically in a meaningful and physically interpretative way while keeping the computational costs low.Ionosfääri on noin 60–1000 kilometrin korkeudella sijaitseva ilmakehän kerros, jossa kaasuatomien ja -molekyylien elektroneja on päässyt irtoamaan auringon säteilyn ja auringosta peräisin olevien nopeiden hiukkasten vaikutuksesta. Näin syntyneillä ioneilla ja vapailla elektroneilla on sähkö- ja magneettikenttien kanssa vuorovaikuttava sähkövaraus. Ionosfäärillä on siksi merkittävä rooli radioliikenteessä. Se voi mahdollistaa horisontin yli tapahtuvat pitkät radiolähetykset heijastamalla lähetetyn sähkömagneettisen signaalin takaisin maata kohti. Toisaalta ionosfääri vaikuttaa myös sen läpäiseviin korkeampitaajuuksisiin signaaleihin. Esimerkiksi satelliittipaikannuksessa ionosfäärin vaikutus on parhaassakin tapauksessa otettava huomioon, mutta huonoimmassa se voi estää paikannuksen täysin. Näkyvin ja tunnetuin ionosfääriin liittyvä ilmiö lienee revontulet. Yksi keskeisistä suureista ionosfäärin tutkimuksessa on vapaiden elektronien määrä kuutiometrin tilavuudessa. Käytännössä elektronitiheyden mittaaminen on mahdollista mm. tutkilla, kuten Norjan, Suomen ja Ruotsin alueilla sijaitsevalla EISCAT-tutkajärjestelmällä, sekä raketti- tai satelliittimittauksilla. Mittaukset voivat olla hyvinkin tarkkoja, mutta tietoa saadaan ainoastaan tutkakeilan suunnassa tai mittalaitteen läheisyydestä. Näillä menetelmillä ionosfäärin tutkiminen laajemmalla alueella on siten vaikeaa ja kallista. Olemassa olevat paikannussatelliitit ja vastaanotinverkot mahdollistavat ionosfäärin elektronitiheyden mittaamisen alueellisessa, ja jopa globaalissa mittakaavassa, ensisijaisen käyttötarkoituksensa sivutuotteena. Satelliittimittausten ajallinen ja paikallinen kattavuus on hyvä, ja kaiken aikaa kasvava, mutta esimerkiksi tarkkoihin tutkamittauksiin verrattuna yksittäisten mittausten tuottama informaatio on huomattavasti vähäisempää. Tässä väitöstyössä kehitettiin tietokoneohjelmisto ionosfäärin elektronitiheyden kolmiulotteiseen kuvantamiseen. Menetelmä perustuu matemaattisten käänteisongelmien teoriaan ja muistuttaa lääketieteessä käytettyjä viipalekuvausmenetelmiä. Satelliittimittausten puutteellisesta informaatiosta johtuen työssä on keskitytty etenkin siihen, miten ratkaisun löytymistä voidaan auttaa tilastollisesti esitetyllä fysikaalisella ennakkotiedolla. Erityisesti työssä sovellettiin gaussisiin Markovin satunnaiskenttiin perustuvaa uutta korrelaatiopriori-menetelmää. Menetelmä vähentää merkittävästi tietokonelaskennassa käytettävän muistin tarvetta, mikä lyhentää laskenta-aikaa ja mahdollistaa korkeamman kuvantamisresoluution
    corecore