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Abstract 

Ionosphere is the partly ionised layer of Earth's atmosphere caused by solar radiation and particle precipitation. The 
ionisation can start from 60 km and extend up to 1000 km altitude. Often the interest in ionosphere is in the quantity 
and distribution of the free electrons. The electron density is related to the ionospheric refractive index and thus 
sufficiently high densities affect the electromagnetic waves propagating in the ionised medium. This is the reason 
for HF radio signals being able to reflect from the ionosphere allowing broadcast over the horizon, but also an error 
source in satellite positioning systems. 

The ionospheric electron density can be studied e.g. with specific radars and satellite in situ measurements. These 
instruments can provide very precise observations, however, typically only in the vicinity of the instrument. To make 
observations in regional and global scales, due to the volume of the domain and price of the aforementioned in-
struments, indirect satellite measurements and imaging methods are required. 

Mathematically ionospheric imaging suffers from two main complications. First, due to very sparse and limited 
measurement geometry between satellites and receivers, it is an ill-posed inverse problem. The  measurements do 
not have enough information to reconstruct the electron density and thus additional information is required in some 
form. Second, to obtain sufficient resolution, the resulting numerical model can become computationally infeasible. 

In this thesis, the Bayesian statistical background for the ionospheric imaging is presented. The Bayesian approach 
provides a natural way to account for different sources of information with corresponding uncertainties and to up-
date the estimated ionospheric state as new information becomes available. Most importantly, the Gaussian Markov 
Random Field (GMRF) priors are introduced for the application of ionospheric imaging. The GMRF approach makes 
the Bayesian approach computationally feasible by sparse prior precision matrices. 

The Bayesian method is indeed practicable and many of the widely used methods in ionospheric imaging revert 
back to the Bayesian approach. Unfortunately, the approach cannot escape the inherent lack of information 
provided by the measurement set-up, and similarly to other approaches, it is highly dependent on the additional 
subjective information required to solve the problem. It is here shown that the use of GMRF provides a genuine im-
provement for the task as this subjective information can be understood and described probabilistically in a mean-
ingful and physically interpretative way while keeping the computational costs low. 
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Tiivistelmä 

Ionosfääri on noin 60–1000 kilometrin korkeudella sijaitseva ilmakehän kerros, jossa kaasuatomien ja -molekyy-
lien elektroneja on päässyt irtoamaan auringon säteilyn ja auringosta peräisin olevien nopeiden hiukkasten vaiku-
tuksesta. Näin syntyneillä ioneilla ja vapailla elektroneilla on sähkö- ja magneettikenttien kanssa vuorovaikuttava 
sähkövaraus. Ionosfäärillä on siksi merkittävä rooli radioliikenteessä. Se voi mahdollistaa horisontin yli tapahtuvat 
pitkät radiolähetykset heijastamalla lähetetyn sähkömagneettisen signaalin takaisin maata kohti. Toisaalta ionos-
fääri vaikuttaa myös sen läpäiseviin korkeampitaajuuksisiin signaaleihin. Esimerkiksi satelliittipaikannuksessa 
ionosfäärin vaikutus on parhaassakin tapauksessa otettava huomioon, mutta huonoimmassa se voi estää pai-
kannuksen täysin. Näkyvin ja tunnetuin ionosfääriin liittyvä ilmiö lienee revontulet.  

Yksi keskeisistä suureista ionosfäärin tutkimuksessa on vapaiden elektronien määrä kuutiometrin tilavuudessa. 
Käytännössä elektronitiheyden mittaaminen on mahdollista mm. tutkilla, kuten Norjan, Suomen ja Ruotsin alueilla 
sijaitsevalla EISCAT-tutkajärjestelmällä, sekä raketti- tai satelliittimittauksilla. Mittaukset voivat olla hyvinkin tark-
koja, mutta tietoa saadaan ainoastaan tutkakeilan suunnassa tai mittalaitteen läheisyydestä. Näillä menetelmillä 
ionosfäärin tutkiminen laajemmalla alueella on siten vaikeaa ja kallista. 

Olemassa olevat paikannussatelliitit ja vastaanotinverkot mahdollistavat ionosfäärin elektronitiheyden mittaami-
sen alueellisessa, ja jopa globaalissa mittakaavassa, ensisijaisen käyttötarkoituksensa sivutuotteena. Satelliitti-
mittausten ajallinen ja paikallinen kattavuus on hyvä, ja kaiken aikaa kasvava, mutta esimerkiksi tarkkoihin tutka-
mittauksiin verrattuna yksittäisten mittausten tuottama informaatio on huomattavasti vähäisempää. 

Tässä väitöstyössä kehitettiin tietokoneohjelmisto ionosfäärin elektronitiheyden kolmiulotteiseen kuvantamiseen. 
Menetelmä perustuu matemaattisten käänteisongelmien teoriaan ja muistuttaa lääketieteessä käytettyjä viipale-
kuvausmenetelmiä. Satelliittimittausten puutteellisesta informaatiosta johtuen työssä on keskitytty etenkin siihen, 
miten ratkaisun löytymistä voidaan auttaa tilastollisesti esitetyllä fysikaalisella ennakkotiedolla.  

Erityisesti työssä sovellettiin gaussisiin Markovin satunnaiskenttiin perustuvaa uutta korrelaatiopriori-menetelmää. 
Menetelmä vähentää merkittävästi tietokonelaskennassa käytettävän muistin tarvetta, mikä lyhentää laskenta-
aikaa ja mahdollistaa korkeamman kuvantamisresoluution. 
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Chapter 1

Introduction

The ionosphere is a shell of ionisation surrounding the Earth. The ionisation is controlled
by solar radiation, particle precipitation, and interactions with the electrically neutral
atmosphere. For ionospheric imaging the key plasma parameter is the electron density
i.e. the number of free electrons divided by unit volume, often given in scaled units of
10

11

m3 . The atmospheric electron density is typically horizontally stratified and depends
on factors including latitude, season, local time and solar activity. Figure 1.1 presents
four vertical incoherent scatter radar measurement profiles of typical daytime ionospheric
electron density over Tromsø, Norway. Generally, the electron density maximum takes
place around an altitude of 300 km at the so-called F region. Below, around an altitude of
100 km is the E region. In local daytime the E region can be seen as a small enhancement
of electron density below the much higher density in the F region. However, at high
latitudes during auroral particle precipitation events, especially the E region can have
very rapid changes with peak electron densities exceeding that of the F region. The D
region takes place at altitudes between 60 and 90 km. The conditions in the D region are
strongly coupled with neutral atmospheric processes and the region often has relatively
small electron density. The ionosphere extends to around an altitude of 1000 km where it
transforms into a plasmasphere with substantially lower electron content. The ionospheric
electron density is also often described as total electron content (TEC) i.e. the integrated
electron density between two locations. Vertical TEC (VTEC) is the TEC integrated along

a vertical column. TEC and VTEC are usually given in TEC units
⇣
1 TECU = 10

16

m2

⌘
.

Ionospheric electron density can be observed e.g. with incoherent scatter radars, ionoson-
des, satellite in situ measurements and remote measurements of the global navigation
satellite system (GNSS) and low Earth orbit (LEO) satellite beacons. A two-dimensional
simplification of di↵erent ionospheric electron density measurements is given in Figure 1.2.

In ionospheric imaging the aim is to reconstruct the two- or three-dimensional electron
density from available measurements. The ground-based measurements of GNSS satellite
beacon signals is typically the most important data component. The use of the terms

17



imaging, tomography and data assimilation is somewhat mixed in the ionospheric literature.
The term imaging is usually used as a general term to cover the di↵erent reconstruction
methods. In an optimal case of tomography, the unknown would be reconstructed mostly
from the available measurements. When operating regionally, especially in two-dimensional
cases, the situation in ionospheric imaging is similar to conventional tomographic problems
such as medical X-ray tomography, and thus many of the same techniques have been used.
On the other hand, in Global three- and four-dimensional situations, the measurements can
be extremely sparse and even relatively large areas can be left without any measurements.
In these situations some strict background models are required and combined optimally
with the available observations. A more illustrative and the most commonly used term in
this case is data assimilation. Data assimilation and its nomenclature originates mostly
from the field of numerical weather prediction.

Even in the best situation, due to limitations in the measurement geometry, the iono-
spheric imaging problem can be considered a limited angle tomography problem with sparse
measurements. This rules out the the generally widely used tomographic algorithms that
are based on backprojection. Mathematically the tomographic imaging of ionosphere is
an ill-posed inverse problem. In practice this means that the measurements do not con-
tain enough information of the unknown electron densities to give a unique and realistic
solution.

Most of the early approaches to ionospheric imaging were based on iterative reconstruc-
tion techniques that were developed independently within the fields of image processing
and linear algebra. The starting point is an initial guess about the unknown, which is
then modified iteratively to correspond with the measurements. The downside is that with
incomplete data the result is very dependent on the initial value.

Another approach is provided by so-called classical regularisation methods. With clas-
sical regularisation the original problem is modified to as a similar well-posed problem as
possible. The problem here is that the interpretation of classical regularisation methods
is mostly mathematical: the reason for numerical instability is examined and adjusted. In
severely ill-posed problems, as in ionospheric imaging, it can be di�cult to interpret the
regularisation physically. On the other hand, there can be a lot of physical information
available that is di�cult to represent accurately with these methods.

In the division used here, the last family of ionospheric imaging methods is provided by
the Bayesian approach. In the Bayesian approach, a prior distribution is used to control
the set of possible solutions. The prior distribution can often be understood as a prob-
abilistic description of the uncertainty related to the physical quantity of interest. Even
though the information in prior distribution and hence the whole approach can be consid-
ered subjective, there often exists indisputable physical information that can be used in
the construction of the prior. Also, as in ill-posed problems some additional information
is required in any case, it is beneficial to know how the information limits the possible so-
lutions. Most of the data assimilation methods used in ionospheric imaging are Bayesian,
where physical background models are used in the determination of the prior distribution.
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The problems with the Bayesian approach are mostly computational. The numerical
computations with proper probability distributions require operations with covariance ma-
trices. Especially in the three-dimensional case the covariance matrices can become exces-
sively large for computation. Hence, one way of seeing the di↵erences within the Bayesian
approaches is how the formation and computation of covariance matrices is handled.

In this work Gaussian Markov random field (GMRF) priors are introduced for Bayesian
ionospheric imaging. GMRF is a Gaussian random field, but instead of mean and covari-
ance, it is more conveniently defined with its mean and inverse covariance i.e the precision
matrix. Following Roininen et al. (2011, 2013), with a suitable parametrisation, the pre-
cision matrix of a GMRF can give close approximations for known covariance functions
and due to Markov property, the precision matrices are sparse matrices. This reduces the
computational costs significantly, making the direct inversion possible for relatively large
three-dimensional cases. The use of GMRF then allows the usage of proper prior distribu-
tions with physical interpretation, while keeping the computational burden similar to the
classical regularisation methods.

The structure of this dissertation summary is the following. Chapter 2 introduces the
mathematical background of tomography and the commonly used backprojection methods.
In Chapter 3, the measurement model, the resulting linear inverse problem, the classical
regularisation method solutions and the iterative solution techniques are presented. The
Bayesian approach, and most importantly, the GMRF priors are introduced in Chapter
4. In the original publications, the modelling of the temporal dynamics is discussed only
shortly in Publication IV. The generalisation of the method for the spatiotemporal sit-
uation is somewhat straightforward, but in a broader context so central that the most
used recursive filtering algorithms are presented in Chapter 5. The di↵erent ionospheric
measurements are then exhibited in Chapter 6. In Chapter 7, a review on the usage and
development of the aforementioned imaging methods within the ionospheric research, as
well as a description of the numerical method developed within this work is given. Finally,
discussion and conclusions are provided in Chapter 8.
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Figure 1.1: Four measurement profiles from European incoherent scatter scientific associa-
tion’s very-high frequency incoherent scatter radar in Tromsø, Norway. The profiles depict
the typical vertical structure of daytime ionosphere, with the F-region maximum just below
300 km and the local E-region maximum around 100 km. Local time (UTC + 1 h).
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Figure 1.2: Two-dimensional simplification of measurements used in ionospheric imaging.
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Chapter 2

Tomography

Tomography refers to cross-sectional imaging of an object from measurements provided by
some penetrating waves. Tomographic methods are used in various fields from medicine
to geophysics. Good overviews on tomography are provided by Kak and Slaney (1988);
Natterer and Wübbeling (2001); Hsieh (2009).

Arguably the simplest and most common type of tomographic set-up is the parallel
beam tomography. As the name suggests, several beams are transmitted in parallel on a
two-dimensional plane. The beams propagate through the domain and are measured on
the opposite side on a plane receiver. In X-ray tomography the measurement would be the
attenuation of an X-ray signal during its pass. The set-up of transmitter and receiver planes
is then circled around the object, to provide measurements from all directions. Besides the
parallel beam tomography, there are various di↵erent scanning geometries, the fan beam
and cone beam scans being probably the best known alternatives of regular scans.

2.1 Radon transform

Mathematically the situation in parallel beam tomography can be written by describing
an unknown image as a function f :  ! R on a physical domain  2 R2. A measurement
along a signal path of an angle perpendicular to ✓ and distance s from the origin can then
be written generally as a Radon transform

Rf(✓, s) =

Z

L(✓,s)

f(z)dz =

Z 1

�1

Z 1

�1
f(z1, z2)�(z1 cos ✓ + z2 sin ✓ � s)dz1dz2, (2.1)

where z = (z1, z2) 2  and � is a delta function defining the signal path L(✓, s) as a line
in the image domain. With a fixed ✓

P✓(s) := Rf(✓, s), (2.2)

where P✓(s) is the projection corresponding to parallel beam measurements made in a
direction perpendicular to ✓.
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2.2 Filtered backprojection algorithm (FBP)

The main task in tomography is to reconstruct the unknown image f(z1, z2) from the mea-
sured projections P✓. The most straightforward approach is to backproject each measure-
ment over the image domain along the corresponding signal path. When all backprojections
are summed, the internal structures will accumulate in the reconstruction. However, the
simple backprojection typically produces blurred results. Intuitively the blurring e↵ect can
be understood if one assumes a local minimum point with a value of zero. If the Radon
transform is non-zero for any of the intersecting lines, in practice the reconstructed value
of that point will always be greater than zero.

The blurring can be avoided with the filtered backprojection (FBP) algorithm. The
FBP is based on the Fourier slice theorem, which states that when a two-dimensional
image is projected to a plane with an angle ✓, the one-dimensional Fourier transform of
that projection corresponds to a radial slice of the two-dimensional Fourier transform of
the same angle ✓. Hence, the two-dimensional frequency domain of the unknown image
can be built slice by slice with the Fourier transformed tomographic projections.

The use of inverse Fourier transform requires an interpolation to a rectangular grid in
the frequency domain, or preferably, a change of variables between polar and rectangular
coordinates. The change of variables introduces a Jacobian that can be interpreted as
a high-pass filter. This is the filter part of FBP and in the frequency domain it is a
multiplication operation. The filtering highlights edges and reduces the blurring in the
final image.

Especially in most medical applications, where the conditions are well controlled and
extensive measurements can be performed, the FBP is the first choice algorithm for its ac-
curacy and relative ease of implementation (Kak and Slaney, 1988). However, the problems
with FBP arise especially in the situations where the information provided by the mea-
surements is limited and the Radon transform (2.1) is known only partially with respect to
parameter ✓ or s or both. Including regularising additional information is di�cult, hence
the approach is severely a↵ected by the incompleteness of data. It is also assumed in FPB
that the measurements are precise and thus the measurement errors cannot be modelled
explicitly.

2.3 Incomplete data

A common type of incompleteness in tomographic data is referred to as a limited angle
tomography. As the name suggests, in limited angle tomography the ✓ angles are available
only from a subset of the optimal sphere/half sphere. Examples of such cases are e.g.
dental imaging (Hyvönen et al., 2010) and most geophysical tomographic problems such
as borehole tomography (Justice et al., 1989).

Another type of incompleteness is the sparseness of the data. Sparse tomography can
sometimes refer to sparseness of available measurement angles and hence overlap with the
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definition of limited angle tomography above. However, it can also express the availability
of di↵erent possible s and hence the resolution of each projection. The source points s of
measurement paths can also be limited in range. With q 2 R+ as a limiting constant, the
situation |s| > q is called an exterior problem and |s| < q an interior problem (Natterer
and Wübbeling, 2001).

The aforementioned limitations can be caused e.g. by inherent physical obstructions
and inconveniences or medical or economical incentives. As a typical example, in medical
tomography the patients exposition to harmful X-rays needs to be kept down, hence the
radiation dose is reduced by using sparser angular resolution for measurement directions.

Another limiting factor can be the dynamics of the system. Even if the scanning geom-
etry could provide su�cient accuracy with respect to measurement angles and amount and
distribution of measurement paths, the unknown object can experience temporal changes
in a shorter time scale than it takes to perform all the measurements (Hahn, 2015).

In satellite tomography, the angles in satellite-to-ground measurements are naturally
limited (Figure 1.2). Additionally, for instance Brekke (1997) reports multifold change in
electron density within 20 s, whereas GNSS data is typically integrated at least for some
minutes for su�cient spatial coverage. Hence, ionospheric tomography can be considered
a sparse limited angle tomography problem with relatively high temporal dynamics.

2.4 Discrete model

In practice the measurements (2.1) are made from a finite number of points and angles.
Here R projections are assumed from a half sphere as

✓ =
⇣
0,
⇡

R
, 2
⇡

R
, . . . , (R� 1)

⇡

R

⌘T
= (✓1, . . . , ✓R)

T
2 RR.

For each angle ✓, the P✓(s) in Equation (2.2) is projected on S points

s =

✓✓
1�

S + 1

2

◆
�s, . . . ,

✓
S �

S � 1

2

◆
�s

◆T

= (s1, . . . , sS) 2 RS ,

where �s is the lateral o↵set between two adjacent projection points.
Altogether, this discretisation will provide measurements

m = (P✓1(s1), . . . , P✓1(sS), . . . , P✓R
(sS))

T = (m1, . . . ,mj , . . . ,mM )T 2 RM ,

where M = RS. Similarly, the corresponding lines L are denoted as

L = (L(✓1, s1), . . . , L(✓1, sS), . . . , L(✓R, sS))
T = (L1, . . . , Lj , . . . , LM )T ⇢ RM ,

For notational clarity, the one-index representation of the right-hand side will be used for
all above measurement variables in the sequel.

24



For numerical modelling, also the unknown function needs to be discretised and under-
stood as an array of unknown values. Typically the function is evaluated on a cartesian
grid on the domain  . As the unknown function is typically an image, it is easier to un-
derstand and visualise as a matrix, but for the algebraic and notational convenience it is
collapsed to a vector and reindexed to one-index represenation

f := f(z) = (f(z1,1), . . . , f(zn,1), . . . , f(zn,n))
T
2 RN ,

where an n⇥n = N discretisation is made at points z = (z1,1, . . . , zn,1, . . . , zn,n)T 2 RN⇥2.
Each measurement mj can then be modelled as an integral in Equation (2.1) and

approximated as a Riemann sum

mj =

Z

Lj

f(z)dz ⇡

NX

i=1

ajifi, (2.3)

where aji 2 R gives the intersection length between the path Lj and pixel i. In matrix
form the measurements can then be written as

m ⇡ Af , (2.4)

where A 2 RM⇥N is a theory matrix, where row j is a vector aj = (aj1, . . . , aji, . . . ajN ) 2
RN .

Generally, the extension to three-dimensional tomography is often carried out by re-
ducing the problem to several two-dimensional problems and reconstructed layer by layer.
An alternative approach is to move the two-dimensional scan along the axis of symme-
try during the scan. This will result in a three-dimensional helical scan. In cone beam
tomography the setup is similar to fan beam, but whereas the fan beam is considered two-
dimensional and the corresponding measurement one-dimensional, here the transmitted
signal is a three-dimensional cone, received on a plane as a two-dimensional measurement.
The Radon transform (2.1) and its inverse apply directly to parallel beam geometry, but
alternative formulations for di↵erent scans are available and provided e.g. by Natterer and
Wübbeling (2001). In ionospheric tomography, in a case where one satellite overflight
is measured over a chain of receivers, the problem can be modelled as two-dimensional
tomography. As the satellites have di↵erent orbits, in a general case where all possible
measurements from several satellites are utilised, the measurements take place irregularly
in a volume and the problem needs to be modelled in three dimensions.

Three-dimensional discrete model

In a three-dimensional case where the tomographic analysis is carried out directly in  2

R3, the dimension of the unknown increases to

f := f(z) = (f(z1,1,1), . . . , f(zn,1,1), . . . , f(zn,n,1), . . . , f(zn,n,n))
T
2 RN ,
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where now
z = (z1,1,1, . . . , zn,1,1, . . . , zn,n,1, . . . , zn,n,n)

T
2 RN⇥3 (2.5)

and n⇥n⇥n = N . The Equations (2.3) and (2.4) remain the same with the corresponding
change in dimensions.

As each measurement is here assumed an integral over a line, one measurement inter-
sects only with a small portion of voxels. It is then notable that as the index i in the
discrete models run through all unknown voxels, most of the intersection lengths ai are
typically zero and thus the matrix A is a so-called sparse matrix (see Section 4.3).
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Chapter 3

Inverse problem

This section presents the general measurement model used in ionospheric imaging. As will
be shown later in Chapter 6, most of the measurements used in the ionosphere imaging are
fairly straightforward to linearise. Hence, here the focus is on the linear case. Particular
attention is paid to the mathematical interpretation of issues caused by incomplete data
and the means to overcome them. The main references for this chapter are Kaipio and
Somersalo (2005), Calvetti and Somersalo (2007), Mueller and Siltanen (2012).

3.1 General model

A general forward model with measurement error is here given as

m = A(f, "), (3.1)

where f : Rd
! R, A is a possibly nonlinear observation operator applied to function f

and m 2 RM the corresponding measurement vector. All physical measurements su↵er
from some degree of measurement errors. The error can be related to instrumentation,
measurement conditions, or natural variability in the measured phenomena etc. Here a
general measurement error " is included in the model.

3.2 Linear model

If the observation operator is linear and the measurement error additive, the model can be
written as

m = Af + ", (3.2)

where f : Rd
! R, A is a linear observation operator applied to function f and the measure-

ment error vector " 2 RM is now additive. Here a zero-mean Gaussian measurement error
" ⇠ N (0,⌃") is assumed. The measurement error and the function f are also assumed
statistically independent "?f .
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3.2.1 Discretisation

For numerical computations, a discrete model is required. Here a model

m = Af + ", (3.3)

is assumed, where similarly to Equation (2.4), the vector f 2 RN is a discrete approxi-
mation of f on lattice z 2 RN⇥d and A 2 RM⇥N a linear transformation matrix that is a
discrete approximation of A.

The discrete numerical model is always inaccurate compared to real-world measure-
ments and can induce errors. For discussion on modelling errors see Kaipio and Somersalo
(2007).

3.3 Ill-posed problem

Modelling of physical phenomena often results in mathematical problems where the un-
known quantities of interest are measured indirectly. The actual measured property is not
the primary interest, but physically and mathematically related to it. In the model equa-
tions of the previous section, the interest is not in the measurement m, but in the unknown
f . The task is, given the measurements and the measurement model, solve the unknown
f , or, in presence of a noise model, estimate f . The task is generally known as an inverse
problem. To understand the origins of the di�culties and inaccuracies that arise with the
inverse problems, the concept of a well-posed problem is first recalled.

Following Hadamard, a well-posed problem satisfies the following properties:

1. The solution exists.

2. The solution is unique.

3. The solution changes continuously with respect to the data.

If one or several of these properties is violated, the problem is referred to as ill-posed.
In the linear situation given in Equation (3.3), the first condition is fulfilled if and only if
m 2 Range(A). It can be violated by the approximative nature of matrix A and the noise
model. The second condition is fulfilled if and only if Ker(A) = {0}, which depends on the
geometry of the measurements. To see how and when the third condition is violated the
singular value decomposition (SVD) becomes an essential tool.

SVD of matrix A can be written as

A = UDVT, (3.4)

where U 2 RM⇥M and V 2 RN⇥N are orthogonal matrices and

D 2 RM⇥N = diag(d1, . . . , dmin(M,N)) (3.5)
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is a non-negative diagonal matrix, where d1 � d2 � · · · � dmin(M,N) are singular values.
Generally D is not a square matrix and even if N = M it can be singular or near singular.
This can be concluded from the condition number

Cond(A) =
d1

dmin(M,N)

. (3.6)

For the third condition of Hadamard, it is required that the condition number of A is not
excessively large (Kaipio and Somersalo, 2005). A matrix with a large condition number
is called ill-conditioned.

In exact equations of linear algebra one would be concerned with only the first and
the second of Hadamard’s conditions. The concept of ill-conditioning rises with real world
measurements or computational approaches that are contaminated with errors. An ill-
conditioned problem is sensitive to errors as even small measurements errors can get am-
plified to have unrealistically large e↵ects on the numerical solution.

To obtain a unique and stable solution for an inverse problem, some manouvres are
required to overcome the ill-posedness. In the following sections, first the classical direct
regularisation methods are presented, then the most commonly used iterative reconstruc-
tion techniques are described, before going to the Bayesian approach for inverse problems.

3.4 Classical regularisation methods

Approaches to solving the ill-posed problem are often referred to as regularisation methods,
stabilisation or prior information. Usually, the procedure can be seen as not solving the
original ill-posed problem, but a very similar one that is well-posed.

In the following, the most commonly used regularisation approaches are presented.
SVD (3.4) is used here to display the ill-conditioning e↵ect, as well as to demonstrate how
the di↵erences between the methods can be reduced to selection of a suitable diagonal
matrix to replace the nonexistent inverse of the singular value matrix D (3.5).

3.4.1 Least squares solution (LS)

For an overdetermined linear inverse problem of the form given in Equation (3.3), often
the first attempt to obtain a solution is made with the least squares (LS) method

fLS = arg min
f2RN

km�Afk2 = A†m (3.7)

where
A† =

�
ATA

��1
AT = VD†UT (3.8)

and
D† =

�
DTD

��1
DT = diag(1/d1, . . . , 1/dN ) 2 RN⇥M . (3.9)
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In many occasions, in linear inverse problems, the matrix A can have so strong linear
dependencies that, despite M > N , the problem is e↵ectively underdetermined and ill-
conditioned. Often this can be observed from rapidly decreasing singular values. The
least squares method is unable to provide a reasonable solution for severely ill-conditioned
problems.

3.4.2 Minimum norm solution (MN)

For an underdetermined system the least squares method fails as it cannot select a unique
value satisfying the minimisation criteria of Equation (3.7). As the name suggest, the
solution with minimum norm (MN) is selected from the subspace of all existing least
squares solutions as

fMN = arg min
f2fLS

kfk = A+m (3.10)

where A+ = VD+UT and

D+ = diag(1/d1, . . . , 1/dp, 0, . . . , 0) 2 RN⇥M (3.11)

and p = max{i | 1  i  M,di > 0}. However, di↵erences of magnitude between the
non-zero singular values can also make the MN solutions numerically unstable.

3.4.3 Truncated singular value decomposition (TSVD)

The truncated singular value decomposition (TSVD) solution can be obtained as a MN
solution for a system where all the singular values of A that are less than a selected
threshold ↵ are set to zero.

fTSVD = arg minkfk
f2f

LS+↵

= A+

↵m (3.12)

where
f
LS

+
↵
= arg min

f2RN

km�A+

↵fk
2, A+

↵ = VD+

↵U
T (3.13)

and

D+

↵ = diag(1/d1, . . . , 1/dp↵ , 0, . . . , 0) 2 RN⇥M (3.14)

with p↵ = max{i | 1  i  min(N,M), di > ↵}.
With LS and MN methods a unique solution can be found, but the solutions can

remain ill-conditioned. TSVD stabilises the problem by replacing the (min(N,M) � p↵)
smallest singular values with zeros. Consequently the method ignores the corresponding
singular vectors and typically simplifies the structure of the solution. However, there is no
unambiguous criterion for selecting an optimal ↵.
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3.4.4 Tikhonov regularisation

Tikhonov regularisation is also known as Phillips or Tikhonov-Phillips regularisation and
Ridge regression (Tikhonov and Arsenin, 1977; Phillips, 1962; Hoerl and Kennard, 1970).
The method concerns both the residuals and the L2 norm of the solution. The Tikhonov
regularised solution is the minimiser

fT = arg min
f2RN

{km�Afk2 + ↵kfk2} = A†
↵m, (3.15)

where
A†

↵ =
�
ATA+ ↵I

��1
AT = VD†

↵U
T, (3.16)

D†
↵ = diag

 
d1

d2
1
+ ↵

, . . . ,
dmin(M,N)

d2
min(M,N)

+ ↵

!
2 RN⇥M . (3.17)

Here ↵ is a regularisation parameter that controls the balance between the residuals and
the norm of the solution.

From the diagonal matrix D†
↵ it is somewhat intuitive to see how Tikhonov regularisa-

tion reverts to situations of LS and MN and how ↵ controls the ill-conditioning. Similarly
to TSVD, Tikhonov regularisation can provide solutions to ill-conditioned situations where
LS and MN methods fail.

The optimal selection of regularisation parameter ↵ is again an ambiguous task, how-
ever, di↵erent selection criteria are available such as Morozov’s discrepancy principle and
the L-curve method (Kaipio and Somersalo, 2005; Mueller and Siltanen, 2012).

3.4.5 Generalised Tikhonov regularisation

The Tikhonov regularised solution can be generalised to situation where additional con-
straints are set for the solution

fT = arg min
f2RN

{kAf �mk
2 + ↵kL(f � f̄)k2}

=
�
ATA+ ↵LTL

��1 �
ATm+ ↵LTLf̄

� (3.18)

In Equation (3.18) the norm at the right-hand side restricts the solution close to vector
f̄ 2 RN . Often a di↵erence matrix is selected as L 2 RNL⇥N to require smoothness for the
solution.

The generalised Tikhonov regularisation can also be seen as a solution for a system
where the following linear constraints are added to the original equation (3.3). The so-
called stacked form is given as


m

p
↵LTf̄

�
=


A

p
↵L

�
fT. (3.19)
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3.5 Iterative solutions for linear system

The most widely used iterative algorithms in tomograpy are the algebraic reconstruction
technique and the EM algorithm. In ionospheric imaging the algebraic reconstruction tech-
nique and its derivatives have been used much more frequently and are therefore presented
in this chapter. For the EM algorithm see e.g. Natterer and Wübbeling (2001).

Despite the fact that in the field of image reconstruction and tomography, the fol-
lowing iterative techniques have been developed specifically to handle incomplete error
contaminated data, they still are general solvers for exact linear systems. Hence, given the
error-contaminated measurements m and the matrix A in Equation (3.3), these methods
actually solve a system

m = Af". (3.20)

However, to simplify the notations, the subindex " has been omitted in the remainder of
this chapter.

As will be stated in the sections below, the iterative techniques also provide some
regularisation for the problem. In practise, the measurements predicted with iterative so-
lutions will never equal the actual measurements with errors, and thus a stopping criterion
is needed for the iteration. With incomplete data the methods are then referred to as
truncated iterative methods (Kaipio and Somersalo, 2005), as the selection of the stopping
criterion can be seen as a part of the regularisation scheme.

In the following, the notion of iteration refers to the update of f (k) to obtain a new
improved approfimation f (k+1). One iteration can consists of other repetitive operations.
All approaches require an initial starting value for the unknown, f (0). With incomplete
data the solution can be highly dependent on the initial value.

3.5.1 Kaczmarz method

The Kaczmarz method (Kaczmarz, 1937) is a general method for iterative approximative
solutions for a system of linear equations, such as Equation 3.20. Besides the original
article, an intuitive illustrated description of the method is provided in Kak and Slaney
(1988). Another mathematically rigorous treatment is provided by Kaipio and Somersalo
(2005).

The intuition of the convergence in the approach is that each measurement i.e. single
rows

mj = aTj f , 1  j  M

define a hyperplane of dimension RN�1. The algorithm starts with an initial guess f (0).
The next iteration f (k+1) is obtained by projecting the current solution f (k) on the corre-
sponding hyperplane. The projection for the (k + 1)th iteration can be written as

f (k+1) = f (k) + aj(a
T

j aj)
�1(aTj f

(k)
�mj). (3.21)
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Often a relaxation parameter 0 < � < 2 is included to control the size of the correction
performed at each iteration

f (k+1) = f (k) + �aj(a
T

j aj)
�1(aTj f

(k)
�mj). (3.22)

For the first M iterations j = k, but often more iterations are required for convergence and
the procedure is looped over all measurement equations several times, hence 1  k  M ,
where  2 N and j = k(mod M) + 1.

Another way to understand this algorithm is to see it as similar to backprojection.
In Equations (3.21) and (3.22) the di↵erence between the actual measurement mj and
the simulation of the same measurement from the current iteration aT

j
f (k) is taken. A

backprojection of the di↵erence is then added to corresponding pixels along the ray path.
If a unique solution exists for the linear system, the iterative solution of the Kaczmarz

method will converge to it (Tanabe, 1971). In an overdetermined situation M > N ,
if measurement noise is present, the linear system does not have a unique solution as
the hyperplanes will not have a unique intersection and the solution will not converge
to one point, but will drift between the intersections (Kak and Slaney, 1988). In an
underdetermined system N > M , where there is again no unique solution available, the
algorithm will endogenously provide regularisation as it will converge to the point f̂ of
possible solutions that minimises kf̂ � f (0)

k i.e. the distance between that point and the
given initial value (Tanabe, 1971; Kak and Slaney, 1988).

The Kaczmarz method is primarily an algorithm for solving a linear system, however it
is straightforward to include some regularising prior information in it. As said above, the
initial value for the unknown already provides one regularisation scheme. In many appli-
cations the unknown cannot physically have negative values, if the projection nevertheless
produces negative values, the values can be detected and set to zero within the algorithm.

3.5.2 Algebraic reconstruction technique (ART)

The algebraic reconstruction technique (ART) was presented in the field of image recon-
struction (Gordon et al., 1970). The method is the Kaczmarz method, however some
specific features are sometimes included in it.

In the original article Gordon et al. (1970), as well as Kak and Slaney (1988), the
weights aij are not intersection lengths, but they are simply given a value 1 or 0 depending
on whether the pixel center is within the signal path with width �s or not. This has been
done to ease the computation as the in/out decision is faster than computing the precise
intersection lengths. However, this shortcut is known to often give rise to so-called salt
and pepper noise (Kak and Slaney, 1988). Another feature often included in ART is the
non-negativity constraint.
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3.5.3 Multiplicative algebraic reconstruction technique (MART)

Whereas ART converges to the least squares solution of the linear system, the multiplicative
algebraic reconstruction technique (MART) (Gordon et al., 1970) is a modification of ART
that converges to the maximum entropy solution (Censor, 1983; Raymund et al., 1990).
As the name suggests, instead of additional corrections, the unknowns along each raypath
are scaled by multiplying as

f (k+1)

i
=

 
mj

aT
j
f (k)

!
�kaji

f (k)

i
, i = 1, . . . , N (3.23)

The update formula is written for a single unknown element as the exponent includes the
intersection length between the jth raypath and that specific ith unknown element. The
relaxation parameter fulfills 0  �k  1 and the initial value for the unknown is given as
f (0) = e�11 (Censor, 1983).

3.5.4 Simultaneous iterative reconstruction tecnique (SIRT)

The update caused by single measurement j in Equation (3.21) can be written as a correc-
tion required for the unknown

�f (k+1),j = f (k+1)
� f (k) = aj(a

T

j aj)
�1(aTj f

(k)
�mj), 1  j  M. (3.24)

The simultaneous iterative reconstruction technique (SIRT) is a modification of ART where
the correction (3.24) is computed from each measurement without updating f in between.
Only after the corrections are computed for every measurement j = 1, . . . ,M , the new
iteration is obtained as

f (k+1)

i
= f (k)

i
+

1

Mi

MiX

j

�f (k+1),j

i
, i = 1, . . . , N,

where Mi is the number of measurements intersecting the corresponding unknown. The
above formula is written for a single unknown element as the number Mi varies for di↵erent
i. The convergence of SIRT is slower than in ART, but the quality of the reconstructed
image can often be better (Kak and Slaney, 1988).

3.5.5 Simultaneous algebraic reconstruction tecnique (SART)

The simultaneous algebraic reconstruction technique (SART) (Andersen and Kak, 1984)
combines some features of ART and SIRT methods. An important idea in SART is that
the reconstruction can be improved with a more accurate modelling of the projections
in the forward model. Hence, instead of the pixel approximation, the representation of
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the unknown is generalised to a finite set of weighted base functions. In SART specif-
ically bilinear elements are utilised as base functions. The iteration is then carried out
non-sequentially with resemblance to SIRT, but in steps of individual projections. In one
iteration, the corrections obtained from all measurements in one view angle are combined
and used simultaneously in the update. Finally, when the corrections are applied to un-
known elements along the ray paths in the projection, a Hamming window function is used
to emphasise the corrections made at the middle of the ray and to damp the beginning and
the end of the ray.
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Chapter 4

Bayesian statistical approach

4.1 Introduction to Bayesian inference

In Bayesian statistical inference, all the variables and parameters are modelled as random
variables. The randomness describes the lack of information concerning the realisations
of the variables. The conclusions are based on probabilistic statements that are compiled
with Bayes’ formula

p(f |m) =
p(m|f)p(f)

p(m)
, (4.1)

where p(f |m) is the posterior probability distribution and p(f) the prior probability dis-
tribution of f , and p(m|f) is the sampling distribution of m, but can also be seen as the
likelihood function of f given m. For a fixed m, the marginal distribution p(m) is a con-
stant and independent of f , however, it can be di�cult to derive from a complicated joint
distribution, hence the following unnormalised posterior distribution is often considered
instead

p(f |m) / p(m|f)p(f). (4.2)

The prior distribution indicates the most likely state and the related uncertainty of
the unknown parameter f before the observations m are made. The posterior probability
distribution is obtained by updating the prior distribution with the likelihood function
that connects unknown parameters with the information provided by the observations.
The posterior distribution is the solution that combines all the available information on f .

As high-dimensional posterior distributions can be di�cult to visualise, the distribution
is usually characterised with some point and spread estimates. One of the mostly used point
estimates is the maximum a posteriori (MAP) estimate

fMAP = arg max
f2RN

p(f |m). (4.3)
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If the maximiser for the estimator (4.3) exists, it is possible that it is not unique. Another
point estimate is the conditional mean (CM), which is defined as

fCM = E{f |m} =

Z

RN

f p(f |m)df . (4.4)

Conditional covariance is an estimator for the spread of the posterior distribution. It
is defined as

cov(f |m) =

Z

RN

(f � fCM)(f � fCM)Tp(f |m)df 2 RN⇥N , (4.5)

provided that the integral converges. The spread of the posterior distribution describes
the remaining uncertainty of the unknown parameter. A typical illustration for the spread
is to calculate probability intervals from the posterior covariance estimator.

If the true state of the unknown parameter f is given a non-zero prior probability,
as the sample size increases, the posterior distribution is asymptotically independent of
the prior distribution and the maximum a posteriori estimate converges to the well-known
maximum likelihood estimate

fML = arg max
f2RN

p(m|f). (4.6)

Then again, if the measurements provide only little information on the parameter of inter-
est, the posterior is dominated by the prior.

A connection to ill-posed inverse problems can be seen in situations where the maximum
likelihood estimate is not identifiable, but when a prior distribution is included, a proper
posterior distribution can be obtained. Especially in highly ill-posed problems, the selection
of the prior can then be the most critical phase in the inference and should be done based on
expert knowledge on the studied quantity. One of the advantages of the Bayesian approach
for inverse problems is that the required stabilisation can be given in a very interpretative
manner in terms of physical quantities and related uncertainties.

Before considering the specific linear forward model presented in Section 3.2 the Gaus-
sian model is considered for the general variables f and m. By assuming that f and m
have a joint multivariate Gaussian distribution


f
m

�
⇠ N

✓
f̄
m̄

�
,


⌃f ⌃fm

⌃mf ⌃m

�◆
, (4.7)

with Gaussian identities the conditional distribution for f given m can be written as

p(f |m) / exp

✓
�
1

2
(f � f̄ (1))

⇣
⌃(1)

f

⌘�1

(f � f̄ (1))T
◆
. (4.8)
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In the Gaussian system the CM and MAP estimators are the same. With Gaussian iden-
tities the MAP and posterior covariance estimators can be written as

f̄ (1) = fMAP = fCM = f̄ +⌃fm⌃�1

m (m� m̄) (4.9)

and
⌃(1)

f = cov(f |m) = ⌃f �⌃fm⌃�1

m ⌃mf . (4.10)

4.2 Gaussian priors for linear inverse problems

For the likelihood function, the nature of measurements and central limit theorem often
justifies the use of Gaussian normal distribution. Then again, the assumption of Gaussian
prior distribution is not always the most realistic choice. A downside is that the distribution
cannot be easily truncated to consist only of non-negative values. The benefit of the
Gaussian prior is that it is a conjugate prior for the Gaussian likelihood, resulting in a
Gaussian posterior distribution with the closed form estimators (4.9); (4.10). Hence often,
as is the case here, a Gaussian prior distribution is assumed.

The discretisation of the linear forward model (3.2) was briefly discussed in Section
3.2.1. However, the discretisation can be performed at di↵erent phases of the solution.
Following Tarantola (1987), when modelling an inverse problem, one should first consider
whether it is easier to imagine the forward problem acting on a sequence of parameters or
on a field. In many geophysical applications, such as ionospheric imaging, it is indeed a
natural way to conceptualise the unknown and the prior distribution as a continuous field.
In this section Gaussian random fields (Tarantola, 1987; Christakos, 2005; Rasmussen and
Williams, 2006) will be utilised.

Definition 4.1. Given a probability space (⌦,F , P ), a real-valued d-dimensional spa-
tial random field (RF) f(z) := f(z,!), z 2 Rd,! 2 ⌦ is a family of random variables
{f(z1), f(z2), . . . } at points z1, z2, . . . , where each random variable is real valued and de-
fined on (⌦,F , P ).

A spatial RF is a generalisation of a stochastic process. Where a stochastic process is
often seen as indexed by points in time, a spatial RF is indexed by d-dimensional Euclidean
space, where d is typically two or three.

Definition 4.2. A multivariate Gaussian random field (GRF) is a spatial random field
where any finite number of random variables have a joint Gaussian distribution.

GRF is then completely specified by its mean and covariance functions and denoted
here as

f(z) ⇠ GRF(f̄(z),K(z, z0)), (4.11)
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where

f̄(z) =E[f(z)]
K(z, z0) =E

⇥
(f(z)� f̄(z))(f(z0)� f̄(z0))T

⇤
.

(4.12)

The GRF (4.11) is used here as the prior for obtaining all of the following posterior esti-
mators in this chapter. For a finite set of points z 2 RN⇥d, as denoted in Equation (2.5),
a GRF is simply a multivariate Gaussian normal distribution

f ⇠ N (f̄ ,⌃f ), (4.13)

where f̄ 2 RN and ⌃f = K(z, z) 2 RN⇥N .

4.2.1 Continuous Gaussian random field prior

GRFs are closed under linear operations. Hence, when considering a linear problem (3.2)
with GRF prior (4.11), the covariance and cross-covariances can be written as

E
⇥
(m� m̄)(m� m̄)T

⇤
=E

⇥
((Azf(z) + "�Az f̄(z))(Az0f(z

0) + "�Az0 f̄(z
0))T

⇤

=E
⇥
(Az(f(z)� f̄(z))(Az0(f(z

0)� f̄(z0)))T
⇤
+ E

⇥
""T

⇤

=AzK(z, z0)AT

z0 +⌃" = KAfAf +⌃",

(4.14)

E
⇥
(m� m̄)(f(z0)� f̄(z0))T

⇤
= E

⇥
(Azf(z)�Az f̄(z))(f(z

0)� f̄(z0))T
⇤
= AzK(z, z0)

E
⇥
(f(z)� f̄(z))(m� m̄)T

⇤
= E

⇥
(f(z)� f̄(z))(Az0f(z

0)�Az0 f̄(z
0))T

⇤
= K(z, z0)AT

z0 ,

(4.15)

where m̄ = Az f̄(z), f?" and the subscript i in operator Ai indicates the parameter in
the covariance function that it acts upon. The transpose is defined as (AzK(z, z0))T =
K(z, z0)AT

z0 .
The interest can now be in arbitrary locations z 2 RN

⇤⇥d, which does not need to be
the full lattice and thus N⇤

 N . Then, given the measurements m and a GRF prior
(4.11) with mean and covariance as above (4.12), the covariance is a matrix

K(z, z) = Kff 2 RN
⇤⇥N

⇤

and the covariance matrices between the measurements and the unknowns

AzK(z, z) =KAff = (KfAf )
T = (K(z, z)AT

z )
T
2 RM⇥N

⇤
.

The posterior distribution for the unknown field at locations z is then given with Equation
(4.8), where

f̄ (1) = f̄(z) +KfAf (KAfAf +⌃")
�1 (m� m̄) 2 RN

⇤
(4.16)
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⌃(1)

f = Kff �KfAf (KAfAf +⌃")
�1KAff 2 RN

⇤⇥N
⇤
. (4.17)

If the linear transformations with Az in Equations (4.14) and (4.15) can be solved
analytically without discretising f , the discretisation of the covariance kernel leading to
a covariance matrix for the complete discretised domain can be avoided in the MAP es-
timator. In literature this approach is often referred to as Kriging or Gaussian process
(Rasmussen and Williams, 2006). Especially in these approaches a parameterised covari-
ance kernel is chosen and the parameters are estimated from the data. Gaussian processes
with linear operations are discussed by Särkkä (2011) and Minkwitz et al. (2015).

4.2.2 Discrete multivariate Gaussian prior

Here the Bayesian approach is applied to a discretised linear system of Equation (3.3)
on a lattice z 2 RN⇥d, such as given in Equation (2.5). Hence, the multivariate normal
distribution prior given in Equation (4.13) is used. The covariances and cross-covariances
between the variables are then

E
⇥
(m� m̄)(m� m̄)T

⇤
=E

⇥
(Af + "�Af̄)(Af + "�Af̄)T

⇤

=E
⇥
(Af �Af̄)(Af �Af̄)T

⇤
+ E

⇥
""T

⇤

=A⌃fA
T +⌃" 2 RM⇥M

(4.18)

and

E
⇥
(m� m̄)(f � f̄)T

⇤
= E

⇥
(Af �Af̄)(f � f̄)T

⇤
=A⌃f 2 RM⇥N

E
⇥
(f � f̄)(m� m̄)T

⇤
= E

⇥
(f � f̄)(Af �Af̄)T

⇤
=⌃fA

T
2 RN⇥M ,

(4.19)

where m̄ = Af̄ . The posterior distribution is then again of the form given in Equation
(4.8), with

f̄ (1) = f̄ +⌃fA
T
�
A⌃fA

T +⌃"
��1

(m� m̄) 2 RN (4.20)

⌃(1)

f = ⌃f �⌃fA
T
�
A⌃fA

T +⌃"
��1

A⌃f 2 RN⇥N . (4.21)

Although it is now necessary to form the N ⇥ N prior covariance matrix, the matrix
inversions in estimators (4.20) and (4.21) take place in the M ⇥ M measurement space.
Hence, if M  N , the numerical computation is generally easier than in the following
model space solution. However, with large N , the prior covariance matrix can become
excessively large even for numerical storage.
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4.2.3 Model space solution

For the Gaussian linear case, the MAP estimator (4.9) and posterior covariance (4.10)
can be derived with well-known Gaussian identities from their joint distribution (4.7). By
deriving the posterior distribution directly from the Bayes’ formula (4.2) for the linear
model (3.3), the quadratic form can also be arranged to provide the following equivalent
forms for the estimators

f̄ (1) = ⌃(1)

f

⇣
AT⌃�1

" m+⌃�1

f f̄
⌘

2 RN (4.22)

⌃(1)

f =
⇣
AT⌃�1

" A+⌃�1

f

⌘�1

2 RN⇥N . (4.23)

The above estimators can also be derived from Equations (4.20) and (4.21) with the
matrix inversion lemma also known as Woodbury matrix identity or Sherman-Morrison-
Woodbury formula (Golub and Van Loan, 2013). Since it is now necessary to invert two
N ⇥N matrices, this would generally be the preferred approach only in situations where
N ⌧ M . However, if the prior information can be given directly as inverse covariance the
situation can change, as it is demonstrated in the following section.

4.3 Gaussian Markov random field (GMRF) priors

The sparsity of a matrix signifies the large proportion of strict zeros in matrix elements.
Sparse linear system then refers to a linear system that is so large and sparse that it is
beneficial to rethink the standard factorising methods of two-dimensional arrays (Golub
and Van Loan, 2013). For a sparse matrix it requires significantly less memory to index
the non-zero matrix elements as vectors and to use operations designed for such systems.

When solving the posterior estimates given in previous sections, the measurement error
covariance ⌃" is typically assumed as a diagonal matrix. If the theory matrix A is sparse,
as is the case here (2.4), the main concern is the prior covariance matrix ⌃f . A proper prior
distribution with a non-diagonal covariance structure results in a dense N ⇥N covariance
matrix.

A Gaussian Markov random field (GMRF) is a multivariate Gaussian distribution Sat-
isfying the Markov property. In GMRF, the Markov property indicates that an element
conditioned with its neigbouring elements is independent of the rest of the elements in
the field. The independence between elements is equivalent to the precision between the
elements being zero. Typically GMRFs are used in a situations where the neighbourhood
does not include the complete field, hence the precision matrix is characteristically a sparse
matrix. A comprehensive introduction to GMRF is provided by Rue and Held (2005).

Definition 4.3. Neighbourhood Ni to fi is the set {fj , j 2 Ni | kzi � zjk  r, j 6= i},
where radius r > 0.
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Definition 4.4. A random vector f 2 RN is called GMRF with respect to neighbourhood
Ni with mean f̄ and precision matrix Qf > 0 if and only if its density has the form

f ⇠ (2⇡)�n/2
|Qf |

1/2 exp

✓
�
1

2
(f � f̄)TQf (f � f̄)

◆

and
[Qf ]i,j 6= 0 () j 2 Ni 8 i 6= j.

With GMRF prior, the model space estimators in Equations (4.22) and (4.23) can then
be written by replacing Qf = ⌃�1

f 2 RN⇥N , resulting in

f̄ (1) = ⌃(1)

f

�
AT⌃�1

" m+Qf f̄
�

2 RN (4.24)

⌃(1)

f =
�
AT⌃�1

" A+Qf

��1
2 RN⇥N . (4.25)

It is not required that the precision matrix Qf is invertible. A GMRF with a symmetric
positive semidefinite precision matrix is called intrinsic GMRF, which results in improper
prior density for f . A useful intrinsic GMRF, and an improper prior distribution, can
be constructed by selecting Qf = �LTL, where L is a di↵erence matrix and � a weight
parameter. Such a di↵erence prior promotes smoothness, but is invariant to an addition of
a constant. If no boundary conditions are added, Ker(L) 6= {0}. Then again, if Ker(A) \
Ker(L) = {0}, the resulting Gaussian posterior distribution defines a proper probability
density, with mean and covariance given in Equations (4.24) and (4.25) above. Further,
by assuming ⌃" = �2I and denoting ↵ := �2�, the resulting MAP estimator (4.24) is the
generalised Tikhonov regularised solution given in Equation (3.18).

4.3.1 Correlation priors

The strength of a proper Gaussian prior is in the covariance where the provided information
is easily interpretable in a probabilistic and physical sense. The downside is that it results
in a full covariance matrix, making the storage and computation problematic when the
number of unknowns is large.

GMRF priors are convenient when the ill-posed problem can be stabilised with mod-
erate smoothing. In these cases the use of an intrinsic GMRF is straightforward, the
interpretation in a mechanical sense is clear and the sparsity of a di↵erence matrix L al-
lows computations for much higher dimensional problems than working with a full prior
covariance matrix ⌃f . Even so, if the problem is severely ill-conditioned and requires
stronger stabilisation, the implementation of more strict constraints and boundary condi-
tions in the precision matrix can get complicated, the e↵ect of the possibly overlapping
constraints unpredictable, and the physical interpretation di�cult.
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If su�cient boundary conditions are included into a di↵erence matrix L, the precision
LTL = Qf becomes invertible and (LTL)�1 = Q�1

f = ⌃f . However, for e�cient computa-
tion it would be profitable to work with the sparse L matrix while knowing the covariance
structure in ⌃f without solving it.

So-called correlation priors were introduced in Roininen et al. (2011, 2013). Similarly
to the GRF case, the starting point for building a correlation prior is the selection of a
continuous prior covariance function

K(z, z0) = Cov(z, z0,↵, `, c), (4.26)

where the covariance function between points z and z0 is parametrised with variance scaling
parameter ↵, correlation length parameters ` and shape parameters c. In the aforemen-
tioned articles it is shown that certain classes of covariance functions can be represented
as solutions for systems of stochastic partial di↵erential equations and that these systems
can be approximated discretely with combinations of di↵erence matrices. The matrices are
formed with di↵erences weighted with ↵, ` and c parameters inherited from the original
covariance function, and with a discretisation length parameter h. The solution for the
discrete system is a multivariate normal distribution with covariance matrix (LT

C
LC)�1,

where LC contains the required weighted di↵erence matrices in a stacked form. The re-
sulting covariance is discretisation independent, which means that the obtained discrete
covariance converges to continuous covariance at the discretisation limit. The approach
then provides a scheme to write the posterior estimators (4.24) and (4.25) for a known
prior covariance function (4.26) with a precision matrix Qf = LT

C
LC.
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Chapter 5

Spatiotemporal evolution

The solutions for the linear inverse problem presented in Chapters 3 and 4 have considered
individual snapshots, where the unknown is assumed to be static in time and the measure-
ments observed all at once. In this chapter, the state of the system is solved for sequential
time steps. The first intuition would be to use any of the presented methods sequentially
for di↵erent states. Another approach would be to solve the problem for one state and
then use the obtained solution, depending on the method, as an initial guess or a prior
for the next. Hence, the Bayesian approach provides a very natural way for dealing with
temporally dynamic systems. For a more comprehensive treatment of Bayesian filtering
and smoothing see e.g. Särkkä (2013).

5.1 Recursive linear estimation

The measurement model in Equation (3.3) is written for the time step l as

m(l) = A(l)f + "(l), (5.1)

where "(l) ⇠ N (0,⌃(l)

" ) and l = 0, 1, 2, . . . It is assumed that the posterior estimates f̄ (l�1)

and⌃(l�1)

f for time l�1 are available. The posterior distribution can then be used as a prior
for the estimates of the following state l, and the discrete measurement space estimators
(4.20) and (4.21) are

f̄ (l) = f̄ (l�1) +⌃(l�1)

f (A(l))T
⇣
A(l)⌃(l�1)

f (A(l))T +⌃(l)

"

⌘�1 ⇣
m(l)

�A(l)f̄ (l�1)

⌘
(5.2)

⌃(l)

f = ⌃(l�1)

f �⌃(l�1)

f (A(l))T
⇣
A(l)⌃(l�1)

f (A(l))T +⌃(l)

"

⌘�1

A(l)⌃(l�1)

f . (5.3)
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Often temporary variables, innovation S and Kalman gain G, are used to write the above
in the following steps

S(l) =A(l)⌃(l�1)

f (A(l))T +⌃(l)

"

G(l) =⌃(l�1)

f (A(l))T(S(l))�1

f̄ (l) =f̄ (l�1) +G(l)

⇣
m(l)

�A(l)f̄ (l�1)

⌘

⌃(l)

f =⌃(l�1)

f �G(l)S(l)(G(l))T.

(5.4)

The recursive algorithm allows online updating when new information becomes available.
However, the algorithm is based on an assumption that the unknown f is constant and
each update is accumulating information from the same state. Hence, the lth solution could
be obtained also by using all measurements at once.

5.2 Kalman filtering

The more general Bayesian filtering is restricted here to a linear Gaussian case, when the
algorithm is known more famously as Kalman filter (Kalman, 1960). Here the unknown
f (l) is assumed to evolve in time with states l = 1, 2, . . . and that its dynamics can be
modelled with a probabilistic state space model. In practise, in comparison with recursive
linear filtering above, this means mainly the addition of linear dynamic model

f (l) = H(l�1)f (l�1) + e(l�1), (5.5)

where the stochastic dynamics are modelled with a transition matrix H(l�1) acting on the

previous state of the system and with process noise e(l�1)
⇠ N (0,⌃(l�1)

e ). The measure-
ment model of Equation (5.1) is then written for each state as

m(l) = A(l)f (l) + "(l). (5.6)

Hence, intuitively in Bayesian inference for a dynamical system, the best guess for the
present state is not given by the previous posterior distribution, but by their mappings
with the transition matrix, resulting in the predictive distribution

f (l)
|m(1:l�1)

⇠ N (f̂ (l), ⌃̂(l)

f ), (5.7)

where the mean and covariance are defined below in Equation (5.8).
Now the solution for state l is the posterior distribution where the predictive distribution

is used as the prior and the likelihood constructed from the current measurement model
and measurements. Traditionally, the estimators are again separated in steps with the new
variables:
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Prediction step

f̂ (l) =H(l�1)f̄ (l�1)

⌃̂(l)

f =H(l�1)⌃(l�1)

f (H(l�1))T +⌃(l�1)

e

(5.8)

Update step

v(l) =m(l)
�A(l)f̂ (l)

S(l) =A(l)⌃̂(l)

f (A(l))T +⌃(l)

"

G(l) =⌃̂(l)

f (A(l))T(S(l))�1

f̄ (l) =f̂ (l) +G(l)v(l)

⌃(l)

f =⌃̂(l)

f �G(l)S(l)(G(l))T.

(5.9)

5.3 Kalman smoothing

In Kalman filtering the earlier and current measurements are used to compute the best
possible estimate for the current state of the system. However, when applications are not
run online, a complete data set m(l) for each l = 1, . . . , T might be available. If the interest
is not in the last state, but in the whole process, with Bayesian smoothing it is possible to
take into account also the future states of the system, while evaluating state l.

The Gaussian linear version of the Bayesian smoother is known also as Rauch-Tung-
Striebel smoother and Kalman smoother. In its standard form the smoother algorithm is
divided in forward and backward passes. In forward pass, the data is filtered with steps
(5.8) and (5.9) and the results are saved. The filtering results are then used in the backward
pass with steps

C(l) =⌃(l)

f (H(l))T(⌃̂(l+1)

f )�1

f̃ (l) =f̄ (l) +C(l)(f̃ (l+1)
� f̂ (l+1))

⌃̃(l)

f =⌃(l)

f +C(l)(⌃̃(l+1)

f � ⌃̂l+1

f )(C(l))T,

(5.10)

where f̂ (l+1), ⌃̂(l+1)

f , f̄ (l) and ⌃(l)

f are the predicted and filtered solutions from the forward

pass. The backward pass is started from the state T , with f̃ (T ) = f̄ (T ) and ⌃̃(T )

f = ⌃(T )

f .

5.4 Ensemble Kalman filter (EnKF)

When increasing the spatial resolution in a three-dimensional model the number of un-
known variablesN increases rapidly and theN⇥N dimensional covariance matrices become
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infeasible to handle in the above filtering and smoothing algorithms. In ensemble Kalman
filter (EnKF) (Evensen, 1994, 2003, 2009) the maintenance of large covariance matrices is
eased by not solving the updated posterior covariance in Equation (5.9) directly. Instead,
samples from each posterior distribution are simulated and the covariance information is
carried within the sample. The EnKF belongs to a wider category of particle filters and it
was developed mainly for nonlinear problems. Here the main idea is presented in a linear
setting.

First an initial prior ensemble

F(0) = [f (0)

1
, . . .f (0)

Nens
] 2 RN⇥Nens (5.11)

is generated, where the number of ensemble members Nens ⌧ N .
At step l an ensemble of observations

M(l) = [m(l)

1
, . . .m(l)

Nens
] 2 RM⇥Nens , (5.12)

is simulated as m(l)

i
= m(l) + "i, where "i ⇠ N (0,⌃"). The predicted ensemble is then

obtained as

EnKF prediction step

F̂(l) =H(l�1)F(l�1)
2 RN⇥Nens . (5.13)

The predicted ensemble mean is then

f̂ (l)

ens =
1

Nens

F̂(l)1Nens⇥1 2 RN (5.14)

and the corresponding sample covariance

⌃̂(l)

fens
=

1

Nens � 1

⇣
F̂(l)

� f̂ (l)

ens11⇥Nens

⌘⇣
F̂(l)

� f̂ (l)

ens11⇥Nens

⌘T

=�(l)

fens
(�(l)

fens
)T,

(5.15)

where �(l)

fens
2 RN⇥Nens . The posterior ensemble matrix F(l) is then obtained with EnKF

update step.

EnKF update step

V(l) =M(l)
�A(l)F̂(l)

S(l) =
⇣
A(l)�(l)

fens

⌘⇣
(�(l)

fens
)T(A(l))T

⌘
+⌃(l)

"

G(l) =�(l)

fens

⇣
(�(l)

fens
)T(A(l))T

⌘
(S(l))�1

F(l) =F̂(l) +G(l)V(l),

(5.16)
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wherein the order of operations can be selected such that no N ⇥N matrices are formed at
any stage. The ensemble carries correct error statistics for deriving the ensemble mean and
covariance, as with increasing ensemble size, the linear EnKF solution converges exactly
to the Kalman filter solution (Evensen, 2009).
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Chapter 6

Ionospheric measurements

In this chapter the physical background of the mostly used measurements in ionospheric
imaging are presented. The chapter begins with an introduction to general electromag-
netic wave propagation as it provides the basis for the modelling of radio measurements of
satellite-transmitted signals and ionosonde measurements. As the ground-based measure-
ments of very-high frequency (VHF, 30–300 MHz) and ultra-high frequency (UHF, 300–3000
MHz) satellite signals are the most important data component and the understanding of the
related measurement errors and biases is essential, the background of these measurements
will be examined in more detail. Ionosonde, incoherent scatter radar and satellite in situ
measurements provide precise information on ionospheric electron density; however, as the
spatial coverage of these measurements is local-scale, they can be used only as additional
or validation data and are reviewed here more briefly.

6.1 Electromagnetic wave propagation

An electromagnetic wave propagating along axis z 2 R+ in temporally and spatially ho-
mogeneous medium can be represented as

 (t, z) = E0 cos(!t� kz) = E0 cos
⇣
!t�

!

c
nz
⌘
, (6.1)

where E0 is the peak amplitude, t is the time, ! is the angular frequency, k = !/v is the
wavenumber and c and v are the velocities of an electromagnetic wave in vacuum and in
the medium correspondingly. Finally the refractive index n describes the velocity of the
electromagnetic wave in thee medium. It is defined as

n =
c

v
. (6.2)
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6.1.1 Ionospheric refractive index

The complex refractive index of magnetised plasma containing free electrons is given by
the Appleton-Lassen or the Appleton-Hartree formula (Budden, 1961)

n2 = 1�
X

1� iZ +
1
2Y

2 sin2 ✓

(1�X�iZ)
±

r
1
4Y

4 sin4 ✓

(1�X�iZ)2
� Y 2 cos2 ✓

, (6.3)

where i =
p
�1 is the imaginary number, X =

!
2
p

!2 , Y = !H

!
, Z = ⌫

!
, !p is the angular

plasma frequency, ⌫ is the electron collision frequency, ✓ is the angle between wave normal
and inclination of magnetic field and !H is the electron gyrofrequency.

Plasma frequency

The angular plasma frequency can be written as

!p =

s
Nee2

✏0m
, (6.4)

where Ne is the electron density, e is the electron charge, m is the electron mass and ✏0 is
the permittivity of free space. Useful conversions between electron density and (temporal)
plasma frequency fp = !p

2⇡
can then be obtained by inserting the natural constants to

Equation (6.4) and solving

fp ⇡ 8.98⇥
p
Ne (Hz) and

Ne ⇡ 0.012⇥ f2p (1/m3).
(6.5)

Collision frequency

The complex part in the Appleton-Lassen formula (6.3) is related to absorption. The
absorption results when charged particles that oscillate along with the electromagnetic wave
collide with other, mainly neutral particles. The collisions then decrease the energy of the
radiation. At mid latitudes, the e↵ective collision frequency is less than 104 Hz (Fehmers,
1996). The maximum collision frequency measured in an example case in Tromsø 1991 is
around 106 Hz at an altitude of 100 km, from where it decreases rapidly as the altitude
increases (Brekke, 1997). As can be seen in the Appleton-Lassen formula (6.3), part Z
containing collisions decreases with increasing signal frequency. When the frequency of the
propagating electromagnetic wave is greater than about 1 MHz the electron collisions can
be neglected and Z can be approximated with zero (Budden, 1961; Davies, 1965).
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Gyrofrequency and magnetic field

Gyrofrequency can be written as

!H =
B0|e|

m
, (6.6)

where B0 is the magnetic field strength. It is the angular frequency of a charged particle,
here electron, circling around a uniform magnetic field in a direction perpendicular to the
field. In a case of magnetised plasma, the plusminus sign in Appleton-Lassen formula (6.3)
indicates how the propagating wave is split in two modes. The mode with the “+” sign is
called ordinary and the mode with the “�” sign extraordinary component.

A general typical value for gyrofrequency is around 1 MHz (Budden, 1961) and 1.5
MHz (Parkinson et al., 1996). Also Y in Appleton-Lassen formula (6.3), that contains the
gyrofrequency, decreases with increasing signal frequency.

6.1.2 Group refractive index

As can be seen in Appleton-Lassen formula (6.3), the ionospheric refraction depends on
the frequency of the propagating signal, i.e. the ionosphere is a dispersive medium. When
considering a modulated signal the velocities of the signal carrier phase and modulation
envelope will di↵er due to the dispersion. Following Davies (1965, 1990), to demonstrate
this e↵ect, two electromagnetic waves propagating along one-dimensional axis z 2 R+ are
considered

 1(t, z) =E0 cos (!t� kz)

 2(t, z) =E0 cos ((! +�!)t� (k +�k)z) ,
(6.7)

where �! and �k are the small di↵erences in angular frequency and wavenumber between
signals  1 and  2. An amplitude-modulated signal can be created by summation and then
writing with trigonometric identities as

 1(t, z) +  2(t, z) =2E0 cos

✓
�!

2
t�

�k

2
z

◆
cos

✓
! +

�!

2

◆
t�

✓
k +

�k

2

◆
z

�

⇡2E0 cos

✓
�!

2
t�

�k

2
z

◆
cos (!t� kz) ,

(6.8)

where the first cosine term represents the modulation envelope and the second the carrier
phase. The modulation envelope then propagates with group velocity

vg = lim
�k!0

�!

�k
=

d!

dk
. (6.9)

The group refractive index can then be given with the definition in Equation (6.2) as

ng =
c

vg
= c

dk

d!
=

d

d!
(ck) =

d

d!

⇣
c
!

v

⌘
=

d

d!

⇣ c
v
!
⌘
=

d

d!
(n(!)!) = n(!) + !

dn(!)

d!
.

(6.10)
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6.1.3 Tropospheric refractive index

While the electromagnetic wave approaches Earth’s surface, in neutral atmosphere, below
the ionosphere, the number of free electrons decreases to zero and the ionospheric refractive
index approaches one. However, due to dry gases and water vapour, the refractive index in
the troposphere di↵ers from the free space. The accumulated phase di↵erence caused by the
tropospheric refraction can be significant, but typically less than that of the ionosphere.
The changes in the total contribution of the troposphere are also within ±10% even in
longer time periods, whereas the ionosphere can have large rapid changes (Klobuchar,
1996). More detailed studies on tropospheric parameters are provided by Bernhardt et al.
(2000); Rüeger (2002). According to Wells et al. (1986) the troposphere is nondispersive
for frequencies below 30 GHz. Kaplan and Hegarty (2006) state that the limit is 15 GHz.
Below these limits, the tropospheric refractive index is then independent of the frequency,
and the group and phase velocities are equal. Hence, it is enough to denote the tropospheric
refractive index here as

ntr = 1 +�ntr, (6.11)

that is the refractive index of vacuum perturbed with the tropspheric contribution �ntr.

6.2 Radio measurements of satellite transmissions

As of today, there exist several global navigation satellite systems (GNSS), such as GPS,
GLONASS, GALILEO and BEIDOU that can be used for ionospheric observations. The
di↵erent GNSSs operate in UHF frequencies ranging from GALILEO’s lowest frequency of
1176.45 MHz to the highest GLONASS frequency of 1605.375 MHz. In ionospheric studies
the most used satellite system has been GPS with the main frequencies of 1575.42 (L1) and
1227.60 MHz (L2). The satellite orbit altitudes used by di↵erent GNSS are for GLONASS
19,100 km, for GPS 20,180 km, for BeiDou 21,528 km and for GALILEO 23,222 km (Kaplan
and Hegarty, 2006). Besides GNSS systems, low Earth orbit (LEO) beacon satellites have
also been used frequently in atmospheric studies. LEO satellite beacons operate typically
with dual or tri-band VHF and UHF frequencies of 150, 400 and 1067 MHz. LEO refers
to orbital altitudes less than 1,500 km (Bernhardt et al., 2000; Yamamoto, 2008; Vierinen
et al., 2014).

6.2.1 Refractive indices for VHF and UHF signals

The principle of ionospheric observations with radio measurements of satellite beacon sig-
nals is based on the connection between the frequency-dependent refractive index and
electron density, given with the Appleton-Lassen formula (6.3). However, in its original
form given above, the connection is nonlinear and complex. For an e�cient measurement
model a linear equation without imaginary part is sought for.
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As the UHF and VHF frequencies are much greater than 1 MHz, the electron collisions
can be neglected and Z can be approximated with zero (Budden, 1961; Davies, 1965). This
removes the imaginary part from the Appleton-Lassen formula (6.3). A gyrofrequency of
1.5 MHz results in Y = 0.01 at 150 MHz and decreasing with increasing signal frequency.
Hence, Y in the Equation (6.3) can also be approximated with zero.

When electron collisions and gyrofrequencies are both omitted, the Appleton-Lassen
formula (6.3) simplifies to

n2 = 1�X = 1�
!2
p

!2
. (6.12)

The relation is indeed more simple, however, still nonlinear. Therefore, as ! � !p, the
refractive index can be approximated with first order Taylor polynomial at !p

!
= 0 with

n ⇡ 1�
1

2

⇣!p

!

⌘2
. (6.13)

Inserting !p =
q

Nee
2

✏0me
(rad/s) then results in

n ⇡ 1�
Nee2

2✏0me!2
. (6.14)

The simplifying and linearising assumptions in Approximation (6.14) give rise to an error
less than 1% with 150 MHz frequency, decreasing with higher frequency (Fehmers, 1996).

With Equation (6.10), the group refractive index for VHF and UHF signals can then
be derived as

ng = n(!) + !
dn(!)

d!
⇡1�

Nee2

2✏0me!2
+ 2

Nee2

2✏0me!2
= 1 +

Nee2

2✏0me!2
. (6.15)

6.2.2 Wave propagation of VHF and UHF signals

Spatially inhomogeneous medium wave propagation in Equation (6.1) can be written as

 (t, L) = E0 cos

✓
!t�

!

c

Z
L

0

n(z)dz

◆
, (6.16)

where, for the sake of convention, the integral is defined from receiver at z = 0 to satellite
at distance z = L.

It is here enough to concentrate on the integral part inside the cosine function (6.16)
that is the e↵ect of the medium for the propagating signal. For the carrier phase it is
typically given in radians

�(L) =
!

c

Z
L

0

n(z)dz (6.17)
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and for the modulation envelope in metres

⇢(L) =

Z
L

0

ng(z)dz. (6.18)

When taking into account the nondispersive tropospheric contribution (6.11), the phase
(6.17) can be written for the di↵erent intervals as

�(L) =
!

c

✓Z
L0

0

ntr(z)dz +

Z
L

L0

n(z)dz

◆
, (6.19)

where the first integral is defined along the signal path from ground receiver to distance
L0 where the ionospheric refraction becomes significant, and the second integral from this
altitude to the upper boundary of the ionosphere L. Inserting the refractive index (6.14)
results in radians as

�(L) =
!

c

Z
L0

0

(1 +�ntr)dz +

Z
L

L0

✓
1�

Ne(z)e2

2✏0me!2

◆
dz

�

=
!

c


L+

Z
L0

0

�ntrdz �

Z
L

L0

Ne(z)e2

2✏0me!2
dz

�

=
!

c
L+

!

c
T (L)�

↵

c!
TEC(L).

(6.20)

Similarly for the group delay, combining Equations (6.18), (6.11) and (6.15) results in
metres as

⇢(L) = L+ T (L) +
↵

!2
TEC(L). (6.21)

In both Equations (6.20) and (6.21), L is the range between the transmitter and receiver,

T (L) =
R
L0

0
�ntrdz is the tropospheric contribution, ↵ = e

2

2✏0me
a combination of constants

and

TEC(L) =

Z
L

L0

Ne(z)dz (6.22)

is the slant total electron content (TEC). The last term, which includes TEC, is posi-
tive when considering phase velocity and negative when group velocity is considered. In
GNSS literature temporal frequency is often used instead of angular. The coe�cient in the
ionospheric part is then ↵

!
= ↵

4⇡2f2
⇡

40.3

f2
.

6.2.3 Observables

The two main measurement types, made from satellite beacon signals are the pseudorange
observable based on the group delay given in Equation (6.21) and the carrier phase ob-
servable based on the phase advancement given in Equation (6.20). For other ionospheric

54



e↵ects on satellite signals, such as Doppler shift and Faraday rotation and their use as
measurements see e.g. Klobuchar (1985, 1996).

In traditional use of satellite positioning, the main interest in an individual measure-
ment is in the range between a user with an unknown position and a satellite with a known
position. In such range measurement the ionosphere is a source of error. In ionospheric
measurements the location of the receiver and hence the range to the satellite is known
and the primary interest is in the unknown TEC.

The satellite orbital altitudes used by di↵erent GNSSs are around 20,000 km. In Equa-
tion (6.21), the contribution of a relatively high TEC of 100 TECU in pseudorange extends
from 15 m at 1605.375 MHz to 1,800 m at 150 MHz. The total contribution of troposphere
to pseudorange in satellite beacon frequencies is approximately between 2.4–25 m (Kaplan
and Hegarty, 2006). Hence, for the navigation, with the aid of atmospheric models the
range estimation can be carried out with su�cient accuracy even from a single measure-
ment. However, when the interest is in the ionosphere, it is evident from the numbers
above that the situation is much worse.

Equations (6.20) and (6.21) describe an ideal measurement taking into account only
the physical composition of the atmosphere. Unfortunately, in real life, the measurements
also su↵er from several other nuisances. Below, the most significant errors and biases
for the TEC measurements are included in the models of both observables. The error
sources omitted here include antenna-phase center variations, earth tides, ocean loading,
and for phase measurement, the phase windup e↵ect (H̊akansson et al., 2017). Taking
the additional errors and biases into account consolidates the intuition why individual
measurements as such are useless for most of the applications considering TEC.

To overcome this problem, at least partially, measurements with two di↵erent fre-
quencies !1 and !2 are used. As part of the errors and biases are dispersive and part
nondispersive, i.e. coherent, the coherent errors can then be canceled by combining the
measurements, leaving only the frequency-dependent part.

Pseudorange observable

The transmitted GNSS satellite signals are modulated with di↵erent pseudorandom noise
codes depending on the satellite system and the frequency at issue. When received, the
signal is aligned with a reference signal and the modulated signals are compared. Due
to the pseudorandomness the maximum correlation between the received and the replica
code is achieved only when the signals are aligned perfectly. The amount the replica
code needs to be shifted for maximising the correlation provides the travelling time of the
signal. When multiplied with velocity c, the range between the receiver and the satellites is
obtained (Wells et al., 1986; Kaplan and Hegarty, 2006). In GNSS positioning terminology
the measurement of group delay is known as pseudorange, as it includes several biases.
By including the most significant bias terms in Equation (6.21), the pseudorange can be
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written as

⇢!(L, t) =c (⌧rec + ⌧sat + b⇢,rec,!,code + b⇢,sat,!,code) +M⇢,sat,rec,!,code(t)

+ L+ T (L) +
↵

!2
TEC(L) + "⇢,sat,rec,!,code(t),

(6.23)

where the new parameters ⌧ are the receiver and satellite clock errors, parameters b are
the receiver and satellite hardware biases, M is the multipath error and " is the measure-
ment error due to thermal noise etc. The dependencies of di↵erent parameters to specific
observations are given with subindex variables !, ⇢, rec, sat, code referring in corresponding
order to frequency, observable type, receiver and satellite names and the measured code.
For example, b⇢,PRN02,L1,C/A is the satellite bias for pseudorange measurements that uses
GPS satellite PRN02 and L1 frequency with coarse/acquisition code modulation.

A rule of thumb for the measurement precision is 1% of the period between two code
epochs (Wells et al., 1986). For GPS codes, this results in a precision of 1 ns for the P-code
and 10 ns for the C/A-code. Converted to TEC measurements the P-code precisions are
then 1.9 TECU for L1 and 1.1 TECU for L2. For C/A-code the precision in L1 is 19
TECU.

Di↵erential group delay

When pseudorange measurements with two di↵erent angular frequencies !1 and !2 are
available, the coherent part consisting of the range (with possible errors), clock errors and
tropospheric error is canceled out in subtraction, resulting in

�⇢(L, t) =⇢!2(L, t)� ⇢!1(L, t)

=↵

✓
1

!2
2

�
1

!2
1

◆
TEC(L)

+ cb⇢,rec,!2, � cb⇢,rec,!1, + cb⇢,sat,!2 � cb⇢,sat,!1

+M!2,⇢,2(t)�M!1,⇢,1(t) + "!2,⇢(t)� "!1,⇢(t).

(6.24)
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The TEC can be then solved as
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+M⇢,!1,!2(t) + "⇢,!1,!2(t),

(6.25)

where the scaling of the di↵erential error and bias terms converts them into TEC units.
As it is convenient to use TEC units from here on, the terms are renamed on the last
line. Variable DCB stands for di↵erential code bias (DCB) and it is unknown. For the
more precise P-code di↵erential group measurement a 2 ns precision results in a 5.7 TECU
precision. The possible multipath errors in the observations are in the scale of 10 m (Wells
et al., 1986) resulting in almost 100 in TECU. Hence, in practice, the di↵erential group
delay TEC can be considered as an absolute measurement up to DCB, but contaminated
with relatively large measurement noise.

Carrier phase observable

The Carrier phase, also known as carrier beat phase, phase di↵erence and phase advance-
ment measurement or observable, is used similarly for LEO beacon and GNSS di↵erential
carrier phase measurements. In the carrier phase measurement the di↵erence is taken
between the incoming signal phase and a constant reference frequency generated in the
receiver. The measurement is the phase di↵erence. When measuring the phase, the initial
number of full phase di↵erence cycles cannot be detected. Hence, a new bias term, phase
ambiguity �, needs to be included in the model. If the signal is lost during the measurement
a new phase ambiguity bias term needs to be added into the model (Wells et al., 1986;
Vierinen et al., 2014).

By including the phase ambiguity, with other additional bias and error parameters, in
Equation (6.20), the carrier phase observable can be written as

�(t) =! (⌧rec + ⌧sat + b�,rec,! + b�,sat,!) +
!

c
(L+ T (L))

�
↵

c!
TEC(L) +M�,sat,rec,!(t) + �sat,rec,! + "�,sat,rec,!(t),

(6.26)

where similarly to pseudorange measurements the clock and hardware bias terms ⌧ and b
are converted from seconds and range and tropospheric bias from metres to radians.

57



For a di↵erential carrier phase measurement in GPS L1 frequency the precision rule
of 1% from the wavelength results in a range precision of 2 mm (Wells et al., 1986).
The corresponding TEC measurement precision is approximately 0.02 TECU. The TEC
measurement precision improves with lower frequencies.

Di↵erential carrier phase measurement

As the carrier phase observable is measured in radians, measurements in two frequencies
need to be scaled to same frequency before the subtraction.

�� =�!2 �
!2

!1

�!1
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↵
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(6.27)

Converting the measured di↵erence to TEC units results in
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(6.28)
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where the scaled di↵erential bias terms are in TEC units and renamed at the last line as
interfrequency bias (IFB) denoted here with variable IFB, and the naming for the rest of
the parameters is self-explanatory.

The phase ambiguity �⇤ is an unknown constant for a continuous measurement between
a satellite-receiver pair. The IFBs can be assumed constant for each individual receiver
and satellite when using the same frequency pairs. Hence, the IFBs can be included in the
phase ambiguity parameter as

��,sat,rec,!1,!2 := IFB�,rec,!1,!2 + IFB�,sat,!1,!2 + �⇤
�,sat,rec,!1,!2

.

The multipath error is on a centimeter scale (Wells et al., 1986) and can be included in
the measurement error term

"�,sat,rec,!1,!2(t) := M�,sat,rec,!1,!2(t) + "⇤
�,sat,rec,!1,!2

(t).

The di↵erential carrier phase TEC measurement can then be written as

c

↵

✓
!2
1
!2

!2
2
� !2

1

◆
�� =TEC(L) + ��,sat,rec,!1,!2 + "�,sat,rec,!1,!2(t). (6.29)

The precision of di↵erential phase measurement at GPS frequencies is approximately 0.03
TECU and di↵erential phase measurements with much lower LEO beacon frequencies are
even more precise. However, as ��,sat,rec,!1,!2 is not known, the measurement remains
relative.

6.2.4 Carrier phase leveling

The di↵erential code measurement is absolute up to DCB, but has a low precision. The
phase di↵erential measurement is relative due to the unknown phase ambiguity; however
the measurement precision is high.

To achieve the absolute scale for the more accurate carrier phase measurement, the
di↵erential carrier phase is fitted to the di↵erential group delay measurement. The fitting is
done by calculating the o↵set �o↵set between the two measurements using the high-elevation
parts as the low-elevation measurements are more prone to multipath errors (Klobuchar,
1996; Horvath and Crozier, 2007). The curve fitting results in real TEC measurement,
which is absolute with respect to phase ambiguity and has the accuracy of the phase
measurements, but still contains hardware biases. The final measurement can be written
as

c

↵

✓
!2
1
!2

!2
2
� !2

1

◆
��+ �o↵set = TEC(L) +DCB⇢,rec,!1,!2 +DCB⇢,sat,!1,!2 + "�,sat,rec,!1,!2(t).

(6.30)

59



Di↵erential code bias (DCB)

The reason why di↵erential phase measurements with DCB, instead of phase ambiguity, are
preferred is that the phase ambiguity remains the same only for each individual satellite-
receiver lock. The DCBs are also unknown, however, it can often be assumed that each
individual signal transmitted from a GNSS satellite has a DCB that is independent of
the receiver. Correspondingly, it can be assumed that each receiver has a DCB for each
di↵erent signal, independent of the transmitting satellite. In comparison to TEC, it can
be assumed that the changes in DCBs are slow. However, the receiver DCB depend on
e.g. temperature (Coster et al., 2013) and daily variations of over 8 TECU are reported
(Dyrud et al., 2008). In the GLONASS system, each satellite transmits slightly di↵erent
frequencies and thus each satellite-receiver combination has its unique DCBs for di↵erent
signals between the pair. Detailed reviews about GNSS biases are provided by Dyrud et al.
(2008); H̊akansson et al. (2017). For bias calibration see e.g. Dyrud et al. (2008); Vierinen
et al. (2016).

6.2.5 LEO beacon satellite measurement model

The ground-based measurement of LEO dual-frequency beacon signals is a di↵erential
carrier phase measurement as given in Section 6.2.3. The TEC measurements can then be
written as a linear model given in Equation (3.3)

mLEO ⇡ALEOf +B�� + "LEO, (6.31)

where the vector mLEO consists of individual relative slant TEC measurements given in
(6.29) and correspondingly "LEO the measurement errors "�,sat,rec,!1,!2 . Similarly to Equa-
tion (2.3), the rows of matrix ALEO are discrete approximations for the integral operators
of slant TEC (6.22) for all the measured signal paths operating on the unknown electron
density values f 2 RN in the discretised three-dimensional domain. The vector � consists
of unknown phase ambiguity constants ��,sat,rec,!1,!2 and it needs to be taken into account
as an additional unknown. As the phase ambiguity remains the same during each con-
tinuous observation, several individual measurements in the above model share a common
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��,sat,rec,!1,!2 parameter.

B� =
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(6.32)

is a design matrix of zeros and ones, which picks the correct ambiguity parameter for each
measurement.

6.2.6 GNSS satellite measurement model

TEC measurements of GNSS satellite signals are based on the levelled carrier phase mea-
surement given in Equation (6.30). In the form of Equation (3.3), a vector of GNSS
measurements can then be modelled as

mGNSS ⇡AGNSSf +Brecbrec +BGNSSbGNSS + "GNSS, (6.33)

where again the vector mGNSS consists of individual GNSS TEC measurements (6.30).
The measurement error vector "GNSS consists of error terms "�,sat,rec,!1,!2 . Similarly to
LEO measurements, the matrix AGNSS is the discretisation of the integrals in slant TEC
(6.22) acting on the discretised electron density values f , as shown in Equation (2.3)
for the two-dimensional measurements. The vectors brec and bsat consists of DCBs of the
measurements. Brec and Bsat are design matrices, similar to B� in Equation (6.32), picking
the correct DCB for each measurement.

The altitudes of GNSS satellites are around 20,000 km, thus besides the ionosphere,
most of the signal propagation takes place in the plasmasphere above. The electron density
in plasmasphere is generally much lower than in the ionosphere; however, due to the long
ray paths, the resulting contribution to electron content can be significant. In Lunt et al.
(1999) it is reported that during solar minimum the plasmaspheric contribution over Europe
is typically a few TEC units. At night, especially in winter it can constitute 50% or even
more in GNSS measurements. The contribution decreases at higher latitudes and the
proportional contribution decreases towards solar maximum.

If the whole domain spanned by the receivers and satellites should be modelled similarly,
the resulting grid size can become unnecessarily high-dimensional. One technique to reduce
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dimensions is by using an irregular grid, where voxel sizes increase towards the boundaries,
particularly at high altitudes. Another scheme is to extend the grid only over the ionosphere
and use plasmaspheric models (see e.g. Jakowski and Hoque (2018) and references therein)
for the exceeding parts of the measurements. The plasmaspheric model can be introduced
into the measurement model in (6.22), as

TEC(L) =

Z
Liono

L0

Ne(z)dz+

Z
L

Liono

Ne(z)dz ⇡

Z
Liono

L0

Ne(z)dz+

Z
L

Liono

Ne,pmodel(z), (6.34)

where Liono is the upper boundary altitude of the reconstruction grid and Ne,pmodel a
plasmaspheric model. A straightforward approach is to assume a uniform but unknown
plasmaspheric electron density, resulting in

TEC(L) ⇡

Z
Liono

L0

Ne(z)dz + (L� Liono)Ne,punif , (6.35)

where Ne,punif the uniform plasmaspheric electron density constant. The TEC in (6.34) or
(6.35) is then plugged into equation (6.30). The selection of (6.35) introduces an additional
unknown in the final measurement model (6.33).

In ionospheric studies, the majority of GNSS TEC measurements are typically made
with ground-based receivers, with fixed and known locations. However, in satellite radio
occultation (RO) the GNSS measurement is carried out with a LEO satellite onboard
receiver (Hajj et al., 1994). The main di↵erence between the two is thus that in RO also
the receiver is in motion. The equations above can be used for modelling both ground-based
and RO measurements.

6.3 Ionosonde measurements

In 1924 Breit and Tuve (1926) proved the existence of an ionised layer in Earth’s atmosphere
by receiving ionospheric echoes from a transmitted high-frequency (HF, 3–30 MHz) signal.
The seminal study laid the foundation for ionospheric soundings and ionosondes.

An ionosonde is practically a radar transmitting HF pulses and measuring the time it
takes for a pulse to travel back and forth to the reflection altitude in the ionosphere. The
reflection occurs when the refractive index reaches zero. For the ordinary mode that is the
altitude where the plasma frequency matches the frequency of the propagating wave, while
a signal with a higher frequency than the current maximum plasma frequency will penetrate
trough the ionosphere. Hence, the range of the transmitted frequencies should cover the
current plasma frequency. Usual ionospheric peak electron densities range from 1010 to
1012 1

m3 (Klobuchar, 1985), with conversions given in Equation (6.5) the corresponding
plasma frequency range from 0.9 to 9 MHz. A typical ionosonde covers the frequencies
from 0.5 to 20 MHz.
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When the signal frequency in use is close to the plasma frequency the earlier assump-
tions regarding collision and gyro frequencies are not valid. After the lowest frequencies,
when the signal frequency is higher than 2 MHz (Klobuchar, 1985), the collisions can again
be neglected, however, even at the highest frequencies used in ionosondes, the presence of
the magnetic field and hence gyrofrequency needs to be taken into account in the refractive
index given with Appleton-Lassen formula (6.3).

The pulses transmitted from an ionosonde travel at group velocity (6.9). Before the
reflection occurs, the propagating wave is slowed down by the ionisation below the reflection
altitude. Hence, deriving the altitude from the signal travel time assuming that the pulses
propagate with the speed of light will result in so-called virtual height

h0 =
c

2
�t. (6.36)

The modelling for the roundtrip time can be carried out more accurately by taking the
group index into account as

�t =
2

c

Z
h

0

ng(z)dz, (6.37)

where the integral is defined along a line from ionosonde location at z = 0 to z = h, where
h is the real height i.e. the actual reflection height. When the pulse frequency and plasma
frequency up to current altitude are included, the virtual height can be written as

h0(!) =

Z
h(!)

0

ng(!p(z),!)dz. (6.38)

The solution for h(!) in Equation (6.38) is a nonlinear problem and cannot be solved within
the linear framework provided in Chapter 4. In ionospheric imaging, usually real height pro-
files pre-analysed with some specific scaling algorithm, such as NhPC (Huang and Reinisch,
1996) within Automatic Real Time Ionogram Scaler with True Height (ARTIST) (Reinisch
and Huang, 1983), POLynomial ANalysis (POLAN) (Titheridge, 1985), Autoscala (Pez-
zopane and Scotto, 2004) and NeXtYZ (Zabotin et al., 2006) are used.

An analysed real height profile is a vector of reflection altitudes for corresponding pulse
frequencies. Typically it is assumed that the reflections take place directly above the
instrument location. This results in a measurement model

hionos(!) = h(!) + "ionos(!), (6.39)

where "ionos are errors in altitude that are dependent on each other within each anal-
ysed profile. When converting the plasma frequencies and measurement errors to electron
density and approximating them in model grid points, ionosonde measurements can be
modelled in the form of Equation (3.3) as

mionos ⇡Aionosf + "ionos, (6.40)
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where Aionos is a simple design matrix picking the column of f closest to the instrument
location up to the highest reflection altitude.

6.4 Incoherent scatter radar measurements

The principle of a basic radar is to transmit pulsed or continuous electromagnetic waves
and to receive the signal reflected from a hard target, such as an aeroplane, a ship or a
speeding car. Based on the travel time and the doppler shift of the signal the measurement
typically gives the distance to the target as well as the speed in the radial direction from
the radar.

The incoherent scatter radar (ISR) theory was first proposed by Gordon (1958) to in-
vestigate Earth’s ionosphere. Intuitively the incoherent scatter can be understood as a
number of small scatterers distributed randomly in a volume. However, instead of an ac-
tual reflection, the free electrons in the ionosphere will accelerate when illuminated with
the incident electric field of the radar signal. As a result, the electrons start to re-radiate
as Hertzian dipoles in the corresponding frequency. The physical phenomenon is called
Thomson scattering. The movement of the electrons in ionospheric plasma is not com-
pletely free, but it is dominated by the significantly more massive positive ions. Thus, even
though the incoherent backscatter is from the electrons, the measurement will include a
Doppler e↵ect originating from the ion velocities.

In contrast to a single hard target, the ionosphere is a continuous medium and the
scattering will take place at several altitudes. If a plain continuous sine wave signal is
transmitted, it is impossible to say from which distance the received signal is scattering.
To overcome this so-called range ambiguity, some transmission modulation is required in
the transmitted signal.

Due to spatial and temporal fluctuations in plasma, the measured backscattered field
can be considered as a Gaussian random variable with zero mean. Hence, it is more
informative to estimate the covariance of the measurements. The estimated autocovariance
function can be represented also with its Fourier transform pair i.e. power spectral density.
Based on the power spectral density, plasma parameters such as electron density, ion and
electron temperature, ion mass ratio and ion velocity can be obtained.

For ionospheric imaging, the most important plasma parameter is the electron density.
An individual electron density measurement can be modelled as

mIS = Ne(z) + "IS, (6.41)

where z 2 R3 is the measurement location along the radar beam and "IS the corresponding
measurement error. Similarly to ionosonde measurements, the incoherent scatter radar
measurements can be interpolated to model grid points and modelled as direct measure-
ments of unknown electron densities in the form of Equation (3.3) as

mIS ⇡AISf + "IS, (6.42)
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where the design matrix AIS selects values of f related to corresponding measurements.

6.5 Langmuir probe in situ measurements

Langmuir probe is named after Irving Langmuir, who pioneered the method at General
Electric in the 1920s. It is one of the most straightforward ways of measuring plasma
(Klobuchar, 1985). However, it is an in situ measurement performed inside the medium,
hence, ionospheric plasma measurements require a vehicle with an access to the ionosphere,
such as a satellite or a rocket.

Langmuir probe measurements are based on detection of electric current between two
conducting surfaces interacting with the medium. Typically the current is measured be-
tween a plane, a cylindrical, or a spherical shaped electrode and the satellite surface. The
measurements are carried out by changing the probe potential in small steps. The sweep
over a range of realistic potentials produces a voltage-current curve. Plasma parameters,
such as electron density, electric potential of plasma and electron temperature, can then
be determined from the curve (Klobuchar, 1985; Hargreaves, 1992; Chen, 2003).

Similarly to ionosonde and incoherent scatter radar measurements, an individual elec-
tron density measurement provided my Langmuir probe is modelled here as

mLP = Ne(z) + "LP, (6.43)

where z 2 R3 is the location of the probe. For a discretised system (3.3), a vector of
measurements is modelled again as

mLP ⇡ALPf + "LP, (6.44)

where the design matrix ALP selects values of f related to the probe location at the time
of the measurement.
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Chapter 7

Development of methodology in
ionospheric imaging

The use of tomographic methods for ionospheric imaging was first suggested by Austen et al.
(1986) and later published in Austen et al. (1988). The article presented a two-dimensional
simulation study assuming LEO satellite measurements from a chain of receiver stations.
Iterative ART and SIRT algorithms were used with a Chapman profile (Chapman, 1931)
as an initial guess.

The first electron density reconstructions with real observations from LEO satellite
transmissions were presented by Andreeva (1990). The relative nature of phase measure-
ments was taken into account by solving the phase ambiguity within the inversion that was
carried out with ART. Pryse and Kersley (1992) used independent EISCAT incoherent
scatter radar data to validate reconstruction results obtained with a setup of two receivers
and the SIRT algorithm.

Another early simulation study was carried out with MART by Raymund et al. (1990).
In the aforementioned study the limitations of ionospheric measurements and necessity of
prior information was acknowledged. The limitations of the satellite measurement geome-
try and the resulting ill-posedness were studied more explicitly later by Yeh and Raymund
(1991) and Raymund et al. (1994b). Studies on resolution limits due to geometric limita-
tions and e↵ects on station spacing were later carried out by Na et al. (1995) and Sutton
and Na (1995). Saksman et al. (1997) showed that due to restricted measurement geom-
etry an infinite amount of ionospheric electron density functions can be defined that are
invisible to such a set-up.

Work presented in Fremouw et al. (1992) had several major contributions for the field.
It discussed the use of stochastic inversion presented in Tarantola and Valette (1982), used
earlier mostly in geophysics. However, the inversion was carried out with weighted damped
least squares (Menke, 1989), which is analogous to generalised Tikhonov regularisation.
The approach also utilised basis functions, namely Fourier basis functions in the horizontal
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direction and empirical orthogonal functions (EOF) in the vertical. The EOFs were based
on model ionospheres.

The use of ionosonde measurements in ionospheric imaging was speculated on in Kersley
et al. (1993). Raymund et al. (1994a) used scaled ionograms in a simulation study. Later
Heaton et al. (1995) used ionosonde as prior information.

The inclusion of GNSS measurements to ionospheric imaging was already suggested by
Yunck et al. (1988). The far-sighted speculations also acknowledged the lack of vertical
information provided by ground-based satellite measurements and considered possibilities
of satellite radio occultation (RO) measurements. A two-dimensional simulation study
with GPS-to-LEO RO measurements was carried out by Hajj et al. (1994), where the
TSVD approach was used to regularise the inversion. Singular values were also used to
study the e↵ect of improved measurement geometry. The first experimental results with
GPS measurements were carried out by Rius et al. (1997). The approach used a three-
dimensional spatial domain with four vertical layers and Kalman filter for the temporal
dimension.

The use of basis functions in three dimensions was presented by Howe et al. (1998). The
functions were constructed by combining spherical harmonics in the horizontal and EOF
in the vertical direction. The simulation study considered GPS and LEO measurements
and solved the GPS DCB within the procedure. The use of EOFs for three-dimensional
tomography was continued later with Multi-Instrument Data Analysis System (MIDAS)
by Mitchell and Spencer (2003); Bust et al. (2007); Chartier et al. (2012); Bruno et al.
(2019).

In global-scale four-dimensional ionospheric imaging the amount and quality of mea-
surements vary spatially, and in voxel-based approaches, the role of realistic physical prior
information becomes even more pivotal. Due to the significant role of the prior distribution,
these approaches are often referred to as data assimilation methods, and the prior distribu-
tion is then more commonly known as background model. The data assimilation methods
and nomenclature originate from meteorology, oceanography and geophysics (Tarantola,
1987; Menke, 1989; Daley, 1991; Daley and Barker, 2000). In ionospheric imaging, most of
the applied methods are variations of Kalman filter and can use any measurements that can
be modelled as linearised functions of electron density. However, the large number of un-
known parameters give rise to computational issues with the Kalman filter approach. The
size of the covariance matrices in model space is N ⇥N and computational complexity for
school-book matrix multiplication and inversion grows as O(N3). Hence, in the following
methods there are practically two main di↵erences: First, the selected background iono-
spheric model that can be anything from a simple climatology to complicated parametrised
physical models. Second, how the algorithm handles the covariance matrices that are too
large to fit in the computer memory.

Bust et al. (2004, 2007) derived the Ionospheric Data Assimilation Three-Dimensional
(IDA3D) algorithm from Three-Dimensional Variational Data Assimilation (3DVAR) (Da-
ley, 1991). The 3DVAR is a general approach allowing a nonlinear forward model, however,
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when assuming a linear forward model and Gaussian measurement error and background
distributions, the approach reverts to the Kalman filter. IDA3D uses ground-based GPS
and LEO satellite, satellite RO, satellite in situ and ionosonde measurements. Several iono-
spheric models have been used as a backgound model, including International Reference
Ionosphere (IRI) (Bilitza et al., 1993; Bilitza, 2001) and Parameterized Ionosphere Model
(PIM) (Daniell et al., 1995). The background information is fed into the Kalman filter in
the prediction step that is a mixture of earlier time step and the background model (Bust
and Mitchell, 2008). According to Bust et al. (2004), IDA3D does not solve the posterior
covariance, but only its diagonal i.e. the posterior variance.

Angling and Cannon (2004) presented an approach very similar to IDA3D, later entitled
Electron Density Assimilative Model (EDAM) (Angling and Khattatov, 2006; Angling,
2008). EDAM uses PIM or IRI model as the prior mean and updates it with satellite RO
and ground-based satellite measurements. EDAM is also a version of a Kalman filter, where
a persistence model with exponential delay is used as a dynamic model. Only the diagonal
of the posterior covariance matrix is solved and parametric correlations are given for non-
diagonal entries for the following time step. Prior covariance matrix elements with the
distance exceeding a predefined value are discarded resulting in a sparser covariance matrix.
The method is also capable of solving DCBs within the tomographic analysis (Angling,
2008). Angling and Jackson-Booth (2011) added virtual height ionosonde measurements
to EDAM in a nonlinear setting.

A method called GPS Ionospheric Inversion (GPSII) was presented by Fridman et al.
(2006, 2009). It uses GPS and LEO satellite, GPS-LEO satellite RO, radio altimeter
VTEC, LEO in situ, and ionosonde measurements. It uses a nonlinear model to obtain
nonnegative solutions and the actual solution is obtained with the Newton-Kontorovich
method. Within iterations, the GPSII uses a combination of generalized Tikhonov regu-
larisation and Bayesian approach with a discrete multivariate Gaussian prior: The method
uses a prior covariance matrix but it is also a weighted with a regularisation parameter.
The Kalman filter-type error covariance matrix propagation is not used. Both IRI 2000
and PIM have been used as a background model. It is stated that a factorised (separable)
representation of the covariance matrix has a substantial positive e↵ect on the memory
requirements and computation speed. GPSII solves DCB within the inversion.

A method utilising the Gaussian random field prior/Kriging/Gaussian process was in-
troduced by Minkwitz et al. (2015). In this approach the covariance is given as a three-
dimensional function that can be integrated according to measurement geometry to obtain
the covariance for the TEC measurements. The covariance function parameters are then
estimated from the measurement data. For the actual inversion, the covariance needs to
be evaluated then only between the reconstructed locations and the TEC measurements.
Hence, the reconstruction could be carried out e.g. for an individual two-dimensional plane
inside the actual three-dimensional domain. In Minkwitz et al. (2016) the approach was
extended to a four-dimensional case by adding the temporal dimension to the covariance
function.
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An approach called the Global Assimilation of Ionospheric Measurements (GAIM)
model (Schunk et al., 2004; Scherliess et al., 2004; Gardner et al., 2014; Scherliess et al.,
2017) has been developed by Utah State University. There exist di↵erent versions of the
approach that use a reduced-state Kalman filter and ensemble Kalman filter. Di↵erent
background models have been used from more simple ionospheric models (Schunk et al.,
2004) to a physical Ionosphere-Plasmasphere Model that utilises ionospheric drivers such
as neutral densities and winds, magnetospheric and equatorial electric fields, and auroral
precipitation (Scherliess et al., 2004).

The similarly named Global Assimilative Ionospheric Model (GAIM) has been devel-
oped by the University of Southern California and the Jet Propulsion Laboratory (USC/JPL)
(Rosen et al., 2001; Hajj et al., 2004; Wang et al., 2004). GAIM USC/JPL, again, has a
simpler version utilising a Kalman filter, where covariance matrix elements corresponding
to distances over a preset value are discarded. A more complicated version uses the 4DVAR
approach. 4DVAR (Courtier et al., 1994) is a general variational approach for data assim-
ilation, which, in a case of linear measurement and dynamical models, reverts to Kalman
smoother (Carrassi et al., 2018). The 4DVAR version of GAIM USC/JPL incorporates
several ionospheric drivers that are estimated along the electron density within a range of
time.

More recently, Elvidge and Angling (2019) presented a method called advanced en-
semble electron density assimilation system (AENeAS). Similarly to di↵erent GAIM mod-
els, AENeAS is a physics-based data assimilation model and it seeks to predict the iono-
spheric state. AENeAS uses Thermosphere Ionosphere Electrodynamics General Circula-
tion Model (TIE-GCM) (Qian et al., 2014) and NeQuick (Nava et al., 2008) as background
models and local ensemble transform Kalman filter (LETKF) (Hunt et al., 2007). LETKF
is a version of EnKF where the assimilation is performed only for local regions, which
further reduces the state space of the model.

An early review on ionospheric imaging methods is provided by Raymund (1994) and a
comparison of methods by Raymund (1995). Another introduction to ionospheric imaging
and its early methods is given by Fehmers (1996). A book on ionospheric imaging with
focus on iterative methods is provided by Kunitsyn et al. (2003). Bust and Mitchell (2008)
provide a comprehensive review article where most of the present methods are already
discussed.

7.1 TomoScand

TomoScand is a system for ionospheric imaging generated during the 2010s in the Finnish
meteorological institute and Sodankylä geophysical observatory, University of Oulu. At
this point it has been used mostly regionally over Northern Europe. It utilises measure-
ments of GPS, GLONASS, GALILEO and LEO satellite signals, incoherent scatter radars,
ionosondes, satellite in situ probings and GNSS-to-LEO RO. The GNSS DCBs can be
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estimated within the system.
Similarly to methods such as IDA3D, EDAM etc. presented above, the TomoScand

algorithm uses a simplified Kalman filter without solving the posterior covariance, or solving
only its diagonal. Currently the dynamical model (5.8) in use is a persistence model with
transition H(l�1) = �I and attenuation 0  �  1. Alternatively, some ionospheric model
can be used in the prediction step or directly as a prior mean.

The essential di↵erence to aforementioned similar techniques is in the construction
of the prior covariance. In paticular, TomoScand uses GMRF correlation priors, pre-
sented in Section 4.3, for representing the prior distribution. TomoScand then relies heav-
ily on sparse matrix implementations. Currently MUltifrontal Massively Parallel sparse
direct Solver (MUMPS) (Amestoy et al., 2001, 2019) with an R interface RMUMPS
(https://github.com/morispaa/rmumps) is used for solving the high-dimensional linear
problem in parallel. The main steps of TomoScand are given in Algorithm 1. An ex-
ample visualisation of TomoScand reconstruction from GNSS measurements is given in
Figure 7.1.
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Algorithm 1 TomoScand analysis

1. Set the spatial and temporal domain.

• Grid (lat, long, alt) (geographic coordinates, possibly irregular).

• Start and end time (UTC).

2. Read data

• Read measurements (GNSS, LEO, ionosonde, in situ, occultation,...).

• Read GNSS satellite DCBs (Section 6.2.4).

• Data quality control and filtering.

3. Form measurement models

• Formation of matrices AGNSS,ALEO, . . . corresponding with the measurements
in use (Chapter 6).

• Measurement error estimation, if not provided with data.

4. Form prior distribution (i.e. background model) (Chapter 4).

• Set prior mean for the unknown electron density (i.e. background mean).

– Prediction step (5.8)

• Set prior covariance (i.e. background error covariance).

– Set standard deviation/variance mask for the unknown electron density.
Previous posterior variance can be used (see Step 6 below).

– Set correlation lengths (in all 3 coordinate directions).

– Form matrix LC (Section 4.3.1).

• Set prior distributions for:

– GNSS DCBs

– LEO phase ambiguity

– Uniform plasmaspheric contribution

5. Solve MAP estimate (4.24) for the sparse linear system (RMUMPS).

6. Optionally solve the posterior covariance, its diagonal, or parts of it (RMUMPS).

7. Save and plot results.

8. Set start and end time for the next step and start again from item 2 above.
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Figure 7.1: Example output from TomoScand analysis. Top: Tomographic domain, with
irregular reconstruction grid and locations of the GPS and GLONASS satellite pierce points
at an altitude of 350 km within a 2-min interval. Bottom: Three-dimensional reconstruction
of ionospheric electron density.



Chapter 8

Discussion and conclusions

In this thesis an algorithm for four-dimensional multi-instrument ionospheric electron den-
sity imaging is developed. The algorithm uses a Bayesian approach for obtaining the most
probable state of the ionospheric electron density, by updating the prior distribution i.e.
the existing information of the ionospheric state with a set of new measurements. When
used sequentially, the method is generally known as Kalman filter. In contrast to other
Bayesian approaches used for ionospheric imaging, the prior distribution is essentially given
as a Gaussian Markov Random Field correlation prior. The approach allows determining
the prior covariance in an intuitive manner with a parametric function. However, for the
numerical computations the covariance information is represented with a sparse precision
matrix. Thus, instead of forming the N ⇥ N covariance matrix, approximately the same
information is given with a precision matrix where the number of non-zero elements grows
only as O(N). The precision matrix is also quick to construct and can easily be modified
for di↵erent covariance structures. E↵ectively the same information can also be given for
di↵erent discretisations of the domain as well as for irregular grids, as long as the discreti-
sation lengths remain substantially shorter than the corresponding correlation lengths.

Unfortunately the sparsity cannot contribute to further steps when using full Kalman
filter. Despite the initial sparsity, the resulting posterior covariance would again be a full
and dense matrix that cannot be solved for high-dimensional problems. A solution for the
diagonal of the posterior covariance i.e. posterior variance is possible. In this respect the
approach is on par with the earlier methods.

To take into account the covariance from one time step to another, methods such as
ensemble Kalman filter should be considered. However, on a regional scale, the dynami-
cal transitions in ionospheric electron density can be substantial even in short timescales.
Hence, even if the previous posterior covariance was solved, the role of the poorly known
process noise covariance at the prediction step can be significant. Especially, when consid-
ering ionospheric imaging in an operational manner, how much can be achieved by putting
much e↵ort into advancing the covariance temporally is a relevant question. On the other
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hand, for understanding the uncertainty related to any ionospheric electron density recon-
structions, the examination of posterior covariances is essential.

For numerical computations, an R (R Core Team, 2017) implementation of the algo-
rithm, called TomoScand, was written. Similarly to other imaging methods it can use any
ionospheric electron density model as its background. However, on a regional scale the
ionospheric electron density models can sometimes be severely flawed. Even in a case with
dense receiver networks, the data assimilation can struggle if the background information is
critically misleading. Hence, recently only a persistence model with attenuation coe�cient
has been used. Instead, emphasis is placed on the modelling of the prior/background error
covariance that controls the uncertainty associated with the unknown electron density dis-
tribution. The approach improves the performance in regional imaging of the high-latitude
ionospheric dynamics, providing an extension for the local measurements such as ISR and
ionosonde measurements.
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