15 research outputs found

    Stash in a Flash

    Get PDF
    Encryption is a useful tool to protect data confidentiality. Yet it is still challenging to hide the very presence of encrypted, secret data from a powerful adversary. This paper presents a new technique to hide data in flash by manipulating the voltage level of pseudo-randomlyselected flash cells to encode two bits (rather than one) in the cell. In this model, we have one “public” bit interpreted using an SLC-style encoding, and extract a private bit using an MLC-style encoding. The locations of cells that encode hidden data is based on a secret key known only to the hiding user. Intuitively, this technique requires that the voltage level in a cell encoding data must be (1) not statistically distinguishable from a cell only storing public data, and (2) the user must be able to reliably read the hidden data from this cell. Our key insight is that there is a wide enough variation in the range of voltage levels in a typical flash device to obscure the presence of fine-grained changes to a small fraction of the cells, and that the variation is wide enough to support reliably re-reading hidden data. We demonstrate that our hidden data and underlying voltage manipulations go undetected by support vector machine based supervised learning which performs similarly to a random guess. The error rates of our scheme are low enough that the data is recoverable months after being stored. Compared to prior work, our technique provides 24x and 50x higher encoding and decoding throughput and doubles the capacity, while being 37x more power efficient

    Selected Papers from the First International Symposium on Future ICT (Future-ICT 2019) in Conjunction with 4th International Symposium on Mobile Internet Security (MobiSec 2019)

    Get PDF
    The International Symposium on Future ICT (Future-ICT 2019) in conjunction with the 4th International Symposium on Mobile Internet Security (MobiSec 2019) was held on 17–19 October 2019 in Taichung, Taiwan. The symposium provided academic and industry professionals an opportunity to discuss the latest issues and progress in advancing smart applications based on future ICT and its relative security. The symposium aimed to publish high-quality papers strictly related to the various theories and practical applications concerning advanced smart applications, future ICT, and related communications and networks. It was expected that the symposium and its publications would be a trigger for further related research and technology improvements in this field

    Stash in a Flash

    Get PDF
    Encryption is a useful tool to protect data confidentiality. Yet it is still challenging to hide the very presence of encrypted, secret data from a powerful adversary. This paper presents a new technique to hide data in flash by manipulating the voltage level of pseudo-randomlyselected flash cells to encode two bits (rather than one) in the cell. In this model, we have one “public” bit interpreted using an SLC-style encoding, and extract a private bit using an MLC-style encoding. The locations of cells that encode hidden data is based on a secret key known only to the hiding user. Intuitively, this technique requires that the voltage level in a cell encoding data must be (1) not statistically distinguishable from a cell only storing public data, and (2) the user must be able to reliably read the hidden data from this cell. Our key insight is that there is a wide enough variation in the range of voltage levels in a typical flash device to obscure the presence of fine-grained changes to a small fraction of the cells, and that the variation is wide enough to support reliably re-reading hidden data. We demonstrate that our hidden data and underlying voltage manipulations go undetected by support vector machine based supervised learning which performs similarly to a random guess. The error rates of our scheme are low enough that the data is recoverable months after being stored. Compared to prior work, our technique provides 24x and 50x higher encoding and decoding throughput and doubles the capacity, while being 37x more power efficient

    Exploiting solid state drive parallelism for real-time flash storage

    Full text link
    The increased volume of sensor data generated by emerging applications in areas such as autonomous vehicles requires new technologies for storage and retrieval. NAND flash memory has desirable characteristics for real-time information storage and retrieval, such as non-volatility, shock resistance, low power consumption and fast access time. However, NAND flash memory management suffers high tail latency during storage space reclamation. This is unacceptable in a real-time system, where missed deadlines can have potentially catastrophic consequences. Current methods to ensure timing guarantees in flash storage do not explicitly exploit the internal parallelism in Solid State Drives (SSDs). Modern SSDs are able to support massive amounts of parallelism, as evidenced by the shift from the Advanced Host Controller Interface (AHCI) to the Non-Volatile Memory Host Controller Interface (NVMe), a multi-queue interface. This thesis focuses on providing predictable, low-latency guarantees for read and write requests in NAND flash memory by exploiting the internal parallelism in SSDs. The first part of the thesis presents a partitioned flash design that dynamically assigns each parallel flash unit to perform either reads or writes. To access data from a flash unit that is busy servicing a write request or performing garbage collection, the device rebuilds the data using encoding. Consequently, reads are never blocked by writes or storage space reclamation. In this design, however, low read latency is achieved at the expense of write throughput. The second part of the thesis explores how to predictably improve performance by minimizing the garbage collection cost in flash storage. The root cause of this extra cost is due to the SSD’s inability to accurately determine data lifetime and group together data that expires before space needs to be reclaimed. This is exacerbated by the narrow block I/O interface, which prevents optimizations from either the device or the application above. By sharing application-specific knowledge of data lifetime with the device, the SSD is able to efficiently lay out data such that garbage collection cost is minimized

    Signal Processing for Caching Networks and Non-volatile Memories

    Get PDF
    The recent information explosion has created a pressing need for faster and more reliable data storage and transmission schemes. This thesis focuses on two systems: caching networks and non-volatile storage systems. It proposes network protocols to improve the efficiency of information delivery and signal processing schemes to reduce errors at the physical layer as well. This thesis first investigates caching and delivery strategies for content delivery networks. Caching has been investigated as a useful technique to reduce the network burden by prefetching some contents during oË™-peak hours. Coded caching [1] proposed by Maddah-Ali and Niesen is the foundation of our algorithms and it has been shown to be a useful technique which can reduce peak traffic rates by encoding transmissions so that different users can extract different information from the same packet. Content delivery networks store information distributed across multiple servers, so as to balance the load and avoid unrecoverable losses in case of node or disk failures. On one hand, distributed storage limits the capability of combining content from different servers into a single message, causing performance losses in coded caching schemes. But, on the other hand, the inherent redundancy existing in distributed storage systems can be used to improve the performance of those schemes through parallelism. This thesis proposes a scheme combining distributed storage of the content in multiple servers and an efficient coded caching algorithm for delivery to the users. This scheme is shown to reduce the peak transmission rate below that of state-of-the-art algorithms

    Fault-tolerant satellite computing with modern semiconductors

    Get PDF
    Miniaturized satellites enable a variety space missions which were in the past infeasible, impractical or uneconomical with traditionally-designed heavier spacecraft. Especially CubeSats can be launched and manufactured rapidly at low cost from commercial components, even in academic environments. However, due to their low reliability and brief lifetime, they are usually not considered suitable for life- and safety-critical services, complex multi-phased solar-system-exploration missions, and missions with a longer duration. Commercial electronics are key to satellite miniaturization, but also responsible for their low reliability: Until 2019, there existed no reliable or fault-tolerant computer architectures suitable for very small satellites. To overcome this deficit, a novel on-board-computer architecture is described in this thesis.Robustness is assured without resorting to radiation hardening, but through software measures implemented within a robust-by-design multiprocessor-system-on-chip. This fault-tolerant architecture is component-wise simple and can dynamically adapt to changing performance requirements throughout a mission. It can support graceful aging by exploiting FPGA-reconfiguration and mixed-criticality.  Experimentally, we achieve 1.94W power consumption at 300Mhz with a Xilinx Kintex Ultrascale+ proof-of-concept, which is well within the powerbudget range of current 2U CubeSats. To our knowledge, this is the first COTS-based, reproducible on-board-computer architecture that can offer strong fault coverage even for small CubeSats.European Space AgencyComputer Systems, Imagery and Medi

    Resiliency Mechanisms for In-Memory Column Stores

    Get PDF
    The key objective of database systems is to reliably manage data, while high query throughput and low query latency are core requirements. To date, database research activities mostly concentrated on the second part. However, due to the constant shrinking of transistor feature sizes, integrated circuits become more and more unreliable and transient hardware errors in the form of multi-bit flips become more and more prominent. In a more recent study (2013), in a large high-performance cluster with around 8500 nodes, a failure rate of 40 FIT per DRAM device was measured. For their system, this means that every 10 hours there occurs a single- or multi-bit flip, which is unacceptably high for enterprise and HPC scenarios. Causes can be cosmic rays, heat, or electrical crosstalk, with the latter being exploited actively through the RowHammer attack. It was shown that memory cells are more prone to bit flips than logic gates and several surveys found multi-bit flip events in main memory modules of today's data centers. Due to the shift towards in-memory data management systems, where all business related data and query intermediate results are kept solely in fast main memory, such systems are in great danger to deliver corrupt results to their users. Hardware techniques can not be scaled to compensate the exponentially increasing error rates. In other domains, there is an increasing interest in software-based solutions to this problem, but these proposed methods come along with huge runtime and/or storage overheads. These are unacceptable for in-memory data management systems. In this thesis, we investigate how to integrate bit flip detection mechanisms into in-memory data management systems. To achieve this goal, we first build an understanding of bit flip detection techniques and select two error codes, AN codes and XOR checksums, suitable to the requirements of in-memory data management systems. The most important requirement is effectiveness of the codes to detect bit flips. We meet this goal through AN codes, which exhibit better and adaptable error detection capabilities than those found in today's hardware. The second most important goal is efficiency in terms of coding latency. We meet this by introducing a fundamental performance improvements to AN codes, and by vectorizing both chosen codes' operations. We integrate bit flip detection mechanisms into the lowest storage layer and the query processing layer in such a way that the remaining data management system and the user can stay oblivious of any error detection. This includes both base columns and pointer-heavy index structures such as the ubiquitous B-Tree. Additionally, our approach allows adaptable, on-the-fly bit flip detection during query processing, with only very little impact on query latency. AN coding allows to recode intermediate results with virtually no performance penalty. We support our claims by providing exhaustive runtime and throughput measurements throughout the whole thesis and with an end-to-end evaluation using the Star Schema Benchmark. To the best of our knowledge, we are the first to present such holistic and fast bit flip detection in a large software infrastructure such as in-memory data management systems. Finally, most of the source code fragments used to obtain the results in this thesis are open source and freely available.:1 INTRODUCTION 1.1 Contributions of this Thesis 1.2 Outline 2 PROBLEM DESCRIPTION AND RELATED WORK 2.1 Reliable Data Management on Reliable Hardware 2.2 The Shift Towards Unreliable Hardware 2.3 Hardware-Based Mitigation of Bit Flips 2.4 Data Management System Requirements 2.5 Software-Based Techniques For Handling Bit Flips 2.5.1 Operating System-Level Techniques 2.5.2 Compiler-Level Techniques 2.5.3 Application-Level Techniques 2.6 Summary and Conclusions 3 ANALYSIS OF CODING TECHNIQUES 3.1 Selection of Error Codes 3.1.1 Hamming Coding 3.1.2 XOR Checksums 3.1.3 AN Coding 3.1.4 Summary and Conclusions 3.2 Probabilities of Silent Data Corruption 3.2.1 Probabilities of Hamming Codes 3.2.2 Probabilities of XOR Checksums 3.2.3 Probabilities of AN Codes 3.2.4 Concrete Error Models 3.2.5 Summary and Conclusions 3.3 Throughput Considerations 3.3.1 Test Systems Descriptions 3.3.2 Vectorizing Hamming Coding 3.3.3 Vectorizing XOR Checksums 3.3.4 Vectorizing AN Coding 3.3.5 Summary and Conclusions 3.4 Comparison of Error Codes 3.4.1 Effectiveness 3.4.2 Efficiency 3.4.3 Runtime Adaptability 3.5 Performance Optimizations for AN Coding 3.5.1 The Modular Multiplicative Inverse 3.5.2 Faster Softening 3.5.3 Faster Error Detection 3.5.4 Comparison to Original AN Coding 3.5.5 The Multiplicative Inverse Anomaly 3.6 Summary 4 BIT FLIP DETECTING STORAGE 4.1 Column Store Architecture 4.1.1 Logical Data Types 4.1.2 Storage Model 4.1.3 Data Representation 4.1.4 Data Layout 4.1.5 Tree Index Structures 4.1.6 Summary 4.2 Hardened Data Storage 4.2.1 Hardened Physical Data Types 4.2.2 Hardened Lightweight Compression 4.2.3 Hardened Data Layout 4.2.4 UDI Operations 4.2.5 Summary and Conclusions 4.3 Hardened Tree Index Structures 4.3.1 B-Tree Verification Techniques 4.3.2 Justification For Further Techniques 4.3.3 The Error Detecting B-Tree 4.4 Summary 5 BIT FLIP DETECTING QUERY PROCESSING 5.1 Column Store Query Processing 5.2 Bit Flip Detection Opportunities 5.2.1 Early Onetime Detection 5.2.2 Late Onetime Detection 5.2.3 Continuous Detection 5.2.4 Miscellaneous Processing Aspects 5.2.5 Summary and Conclusions 5.3 Hardened Intermediate Results 5.3.1 Materialization of Hardened Intermediates 5.3.2 Hardened Bitmaps 5.4 Summary 6 END-TO-END EVALUATION 6.1 Prototype Implementation 6.1.1 AHEAD Architecture 6.1.2 Diversity of Physical Operators 6.1.3 One Concrete Operator Realization 6.1.4 Summary and Conclusions 6.2 Performance of Individual Operators 6.2.1 Selection on One Predicate 6.2.2 Selection on Two Predicates 6.2.3 Join Operators 6.2.4 Grouping and Aggregation 6.2.5 Delta Operator 6.2.6 Summary and Conclusions 6.3 Star Schema Benchmark Queries 6.3.1 Query Runtimes 6.3.2 Improvements Through Vectorization 6.3.3 Storage Overhead 6.3.4 Summary and Conclusions 6.4 Error Detecting B-Tree 6.4.1 Single Key Lookup 6.4.2 Key Value-Pair Insertion 6.5 Summary 7 SUMMARY AND CONCLUSIONS 7.1 Future Work A APPENDIX A.1 List of Golden As A.2 More on Hamming Coding A.2.1 Code examples A.2.2 Vectorization BIBLIOGRAPHY LIST OF FIGURES LIST OF TABLES LIST OF LISTINGS LIST OF ACRONYMS LIST OF SYMBOLS LIST OF DEFINITION

    Harnessing Big Data and Machine Learning for Event Detection and Localization

    Get PDF
    Anomalous events are rare and significantly deviate from expected pattern and other data instances, making them hard to predict. Correctly and timely detecting anomalous severe events can help reduce risks and losses. Many anomalous event detection techniques are studied in the literature. Recently, big data and machine learning based techniques have shown a remarkable success in a wide range of fields. It is important to tailor big data and machine learning based techniques for each application; otherwise it may result in expensive computation, slow prediction, false alarms, and improper prediction granularity.First, we aim to address the above challenges by harnessing big data and machine learning techniques for fast and reliable prediction and localization of severe events. Firstly, to improve storage failure prediction, we develop a new lightweight and high performing tensor decomposition-based method, named SEFEE, for storage error forecasting in large-scale enterprise storage systems. SEFEE employs tensor decomposition technique to capture latent spatio-temporal information embedded in storage event logs. By utilizing the latent spatio-temporal information, we can make accurate storage error forecasting without training requirements of typical machine learning techniques. The training-free method allows for live prediction of storage errors and their locations in the storage system based on previous observations that had been used in tensor decomposition pipeline to extract meaningful latent correlations. Moreover, we propose an extension to include severity of the errors as contextual information to improve the accuracy of tensor decomposition which in turn improves the prediction accuracy. We further provide detailed characterization of NetApp dataset to provide additional insight into the dynamics of typical large-scale enterprise storage systems for the community.Next, we focus on another application -- AI-driven Wildfire prediction. Wildfires cause billions of dollars in property damages and loss of lives, with harmful health threats. We aim to correctly detect and localize wildfire events in the early stage and also classify wildfire smoke based on perceived pixel density of camera images. Due to the lack of publicly available dataset for early wildfire smoke detection, we first collect and process images from the AlertWildfire camera network. The images are annotated with bounding boxes and densities for deep learning methods to use. We then adapt a transformer-based end-to-end object detection model for wildfire detection using our dataset. The dataset and detection model together form as a benchmark named the Nevada smoke detection benchmark, or Nemo for short. Nemo is the first open-source benchmark for wildfire smoke detection with the focus of the early incipient stage. We further provide a weakly supervised Nemo version to enable wider support as a benchmark
    corecore