
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

5-2018

Signal Processing for Caching Networks and Non-volatile Signal Processing for Caching Networks and Non-volatile

Memories Memories

Tianqiong Luo
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

Recommended Citation Recommended Citation
Luo, Tianqiong, "Signal Processing for Caching Networks and Non-volatile Memories" (2018). Open
Access Dissertations. 1765.
https://docs.lib.purdue.edu/open_access_dissertations/1765

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/open_access_dissertations
https://docs.lib.purdue.edu/etd
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1765&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/1765?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1765&utm_medium=PDF&utm_campaign=PDFCoverPages

SIGNAL PROCESSING FOR CACHING NETWORKS AND NON-VOLATILE

MEMORIES

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Tianqiong Luo

In Partial Ful˝llment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2018

Purdue University

West Lafayette,Indiana

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMMITTEE APPROVAL

Dr. Borja M. Peleato-Inarrea, Chair

Department of Electrical and Computer Engineering

Dr. Chih-Chun Wang

Department of Electrical and Computer Engineering

Dr. David J. Love

Department of Electrical and Computer Engineering

Dr. Vijay Raghunathan

Department of Electrical and Computer Engineering

Approved by:

Dr. Venkataramanan Balakrishnan

Head of the Graduate Program

iii

ACKNOWLEDGMENTS

I would like to ˝rst thank my advisor, Professor Borja Peleato, for his support and

guidance during my Ph.D. studies. I will never forget the encouragement and help

from him, especially every time he patiently gave me advices on how to continue my

research work, improve my writing skills and proceed with my future career. These

suggestions are really helpful and bene˝cial to my future work.

I had two wonderful internships in 2017, one with Google and one with Facebook.

I determined my mind to continue my future career as a software engineer after these

two internships. I want to extend my deep gratitude to my supervisors, Kai Shen

and Xiao Jing. They have provided me with guidance on how to do system research

work in industry.

I want to thank my parents who have always encouraged me in my Ph.D. studies.

Finally, I want to thank my boyfriend Yimajian Yan, who supported me when I went

through hard times.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

ABSTRACT . x

1 INTRODUCTION . 1

1.1 Challenges of Caching Networks . 2

1.1.1 Coded Caching with Distributed Storage 2

1.1.2 Tra°c Load-I/O Trade-o˙ for Coded Caching 3

1.2 Challenges of Modern Non-volatile Memory Technologies 4

1.2.1 Challenges of NAND Flash . 4

1.2.2 Challenges of Resistive RAM 5

2 CODED CACHING AND DISTRIBUTED STORAGE 7

2.1 Introduction . 7

2.2 Background . 9

2.2.1 System Model . 9

2.2.2 Maddah-Ali and Niesen's scheme 11

2.2.3 Interference Elimination . 12

2.2.4 Extension to multiple servers 13

2.3 File striping . 14

2.4 Scheme 1: Large cache . 16

2.4.1 No parity servers . 18

2.4.2 One parity and two data servers 18

2.4.3 One parity and L data servers 24

2.4.4 Two parity and L data servers 28

2.5 Scheme 2: Small cache . 31

v

Page

2.6 Simulations . 34

2.7 Summary . 36

3 TRAFFIC LOAD-I/O TRADE-OFF FOR CACHING 39

3.1 Introduction . 39

3.2 Background . 41

3.2.1 System Model . 41

3.2.2 Uncoded scheme . 41

3.2.3 Coded scheme . 43

3.3 General Algorithms . 44

3.3.1 Adaptive delivery . 44

3.3.2 Partial Caching . 46

3.4 Simulations . 47

3.5 Summary . 48

4 SIGNAL PROCESSING FOR NAND FLASH MEMORIES 51

4.1 Introduction . 51

4.2 Background . 53

4.3 Multi-page Read for NAND Flash . 55

4.3.1 Multi-page Read Method . 55

4.3.2 Applications for Multi-page Read 58

4.4 Spreading Modulation for NAND Flash Memories 65

4.4.1 System Model . 66

4.4.2 The Spreading Approach . 68

4.4.3 Choice of Spreading Parameter 76

4.4.4 Obtaining Soft Input . 78

4.4.5 Security . 81

4.4.6 Simulation Results . 84

4.5 Summary . 89

5 SIGNAL PROCESSING FOR CROSSPOINT RESISTIVE MEMORIES . . 91

vi

Page

5.1 Introduction . 91

5.2 System Model . 94

5.2.1 Sneak Currents . 95

5.2.2 Voltage Drop . 97

5.3 Compensation for Sneak Currents . 98

5.3.1 Spreading Modulation . 99

5.3.2 Distribution Shaping . 101

5.4 Simulations . 102

5.5 Summary . 103

6 SUMMARY AND FUTURE WORK . 106

6.1 Caching Networks . 106

6.2 Non-volatile Memories . 108

A PROOF FOR LEMMA 2.4.3 . 110

VITA . 113

REFERENCES . 114

vii

LIST OF TABLES

Table Page

2.1 Files stored in each server (no parity) . 16

2.2 Files stored in each server (3 servers) . 19

2.3 Mapping of ˝le segments to user caches (K = 6, N = 8, M = 4) 21

2.4 Segments received by each users in each transmission 26

2.5 Files stored in parity servers . 28

2.6 Segments users get in each transmission 30

2.7 Normalized peak rate of Scheme 1 . 34

2.8 Normalized (M,R) pair of Scheme 2 . 34

3.1 Mapping of ˝le segments to user caches (K = 4, N = 4, M = 2) 45

4.1 Bitline illustration & Multi-page reads for MLC ICI equalization. 60

4.2 Transition probabilities and LLR values 81

viii

LIST OF FIGURES

Figure Page

2.1 Pairing for 4 data servers and 1 parity server system 26

2.2 Comparison of systems with and without parity servers 33

2.3 Comparison of Scheme 1 and Scheme 2 (N ≥ K, RAID-4) 35

2.4 Comparison of Scheme 1 and Scheme 2 (N ≥ K, RAID-6) 36

2.5 Comparison of Scheme 1 and Scheme 2 (N ≤ K, RAID-4) 37

2.6 Comparison of Scheme 1 and Scheme 2 (N ≤ K, RAID-6) 38

3.1 Caching system . 40

3.2 Comparison of adaptive and coded schemes for varying α 46

3.3 Comparison of partial caching, coded and uncoded schemes for varying α . 48

3.4 Comparison of adaptive and coded schemes for varying M and K 49

3.5 Comparison of partial caching, coded and uncoded schemes for varying K . 49

4.1 Floating gate transistor structure . 53

4.2 Bitline-Wordline structure of NAND ˛ash memory 54

4.3 ABL read operation timing diagram . 56

4.4 ABL sense circuits for NAND ˛ash memory 57

4.5 Illustration of multi-page read method for MLC ICI equalization 60

4.6 Bitline illustration & Multi-page reads . 60

4.7 Channel capacity for an MLC cell after multi-page reads 62

4.8 The WOM code on the cube . 65

4.9 Multi-page read to decode WOM code . 65

4.10 Illustration of the spreading approach . 70

4.11 Distribution of cell voltages for regular and spreading schemes 71

4.12 Quantization noise power as a function of k 78

4.13 PAM channel equivalent to SLC ˛ash read channel in spreading 80

ix

Figure Page

4.14 Comparison of the channel capacity of spreading and regular schemes . . . 81

4.15 Voltage distribution for a SLC cell after spreading 84

4.16 Comparison of di˙erent hidden information sequences 85

4.17 Evolution of the probability of error for an MLC memory 86

4.18 Evolution of the probability of error for an TLC memory 87

4.19 Evolution of BER as cell broken rate increases 88

4.20 Coe°cients modeling the damage . 89

5.1 Illustration of sneak currents . 93

5.2 Circuit model for sneak currents . 96

5.3 Circuit model for voltage drop . 97

5.4 Distribution of sneak currents . 100

5.5 Noise shift and variance for SLC ReRAM 101

5.6 Relative error between the simulated estimates and analytic model . . . 103

5.7 Evolution of the BER as the array size grows 104

5.8 Capacity-maximizing distribution of resistance levels per bitline 104

A.1 Pairing illustration . 112

x

ABSTRACT

Luo, Tianqiong Ph.D., Purdue University, May 2018. Signal Processing for Caching
Networks and Non-volatile Memories. Major Professor: Borja Peleato.

The recent information explosion has created a pressing need for faster and more

reliable data storage and transmission schemes. This thesis focuses on two systems:

caching networks and non-volatile storage systems. It proposes network protocols to

improve the e°ciency of information delivery and signal processing schemes to reduce

errors at the physical layer as well.

This thesis ˝rst investigates caching and delivery strategies for content delivery

networks. Caching has been investigated as a useful technique to reduce the net-

work burden by prefetching some contents during o˙-peak hours. Coded caching [1]

proposed by Maddah-Ali and Niesen is the foundation of our algorithms and it has

been shown to be a useful technique which can reduce peak tra°c rates by encod-

ing transmissions so that di˙erent users can extract di˙erent information from the

same packet. Content delivery networks store information distributed across multiple

servers, so as to balance the load and avoid unrecoverable losses in case of node or

disk failures. On one hand, distributed storage limits the capability of combining

content from di˙erent servers into a single message, causing performance losses in

coded caching schemes. But, on the other hand, the inherent redundancy existing in

distributed storage systems can be used to improve the performance of those schemes

through parallelism. This thesis proposes a scheme combining distributed storage of

the content in multiple servers and an e°cient coded caching algorithm for delivery

to the users. This scheme is shown to reduce the peak transmission rate below that

of state-of-the-art algorithms.

xi

Then we study the trade-o˙ between the network tra°c load and disk I/O for

caching networks. Coded caching can reduce tra°c load by broadcasting coded mes-

sages that can bene˝t multiple users but, in the case with redundant requests, it

requires reading some data segments multiple times to compose di˙erent coded mes-

sages. Hence, coded caching requires more disk I/Os than uncoded transmission.

This thesis proposes caching and delivery algorithms which combine coded and un-

coded transmission to strike a trade-o˙ between tra°c load and disk I/Os. Our

algorithms can improve both the average and worst case performance in terms of the

user requests.

Finally, we broaden our perspective to look at the storage hardware. Two methods

are proposed which are suitable for NAND ˛ash technology: multi-page read and

spreading modulation. The ˝rst one reads multiple wordlines simultaneously and

returns a combination of their stored information. This multi-page read method is

shown to be useful for equalizing the inter-cell interference, reduce the damage caused

by erase operations, and speed up the decoding of some codes, such as WOM codes [2].

Then a new data representation scheme is proposed which increases endurance and

signi˝cantly reduces the probability of error caused by inter-cell-interference. This

data representation scheme is based on using an orthogonal code to spread each bit

across multiple cells, resulting in lower variance for the voltages being programmed.

We also study an up-and-coming memory technology, ReRAM, with a di˙erent set

of challenges. Speci˝cally, we build a simple analytic model for the voltage drop

and sneak currents in MLC-ReRAM arrays as a form of inter-cell-interference and

proposes two techniques to minimize the resulting BER: distribution shaping and

spreading modulation, which is extended from that of NAND ˛ash.

1

1. INTRODUCTION

For several decades, CPUs have doubled their speed every two years in what is com-

monly known as Moore's law, but the storage technology has not been able to keep

up with this trend: magnetic hard drives have steadily increased their capacity, but

not their speed. Current computers and communication networks are not limited by

the speed at which information can be processed, but rather by the speed at which

it can be read, moved, and written. Furthermore, the recent information explosion is

driving an exponential increase in the demand for data, which is not expected to slow

down any time soon. Users and applications require storing large amounts of data

and transmitting data at higher speeds, straining the devices and networks to their

maximum capabilities. This thesis focuses on two modern storage systems: caching

networks and non-volatile memories, as explained below.

The ˝rst part of the thesis focuses on caching networks. In the context of net-

working, popular content can be pre-cached in multiple nodes to balance the load

and alleviate the stress of the network during peak times. So the cache problem

focuses on what data to store and how to deliver it so that the system e°ciency

is improved. Besides the heavy network transfer load, large number of disk I/Os is

another performance bottleneck for storage systems, putting a burden on the system

resources.

The second part of the thesis focuses on storage hardware, speci˝cally non-volatile

memories. Non-volatile memories store data using persistent physical properties,

which do not change even if the power is turned o˙. Speci˝cally, Flash memories use

the voltage threshold of ˛oating gate transistors and ReRAM memories use mem-

ristors (a contraction of "memory resistor"). Unfortunately, these parameters are

subject to noise during reads and writes, making it a signal processing challenge to

store data reliably.

2

Section 1.1 and Section 1.2 will introduce the challenges that caching networks

and non-volatile memory technologies are facing and describe the contributions of

this thesis.

1.1 Challenges of Caching Networks

Caching has been investigated as a useful technique to reduce the network burden

by prefetching some contents during o˙-peak hours. A caching scheme has two phases:

placement and delivery. In the placement phase, the users have access to all ˝les to

˝ll their caches. In the delivery phase, every user requests one ˝le and only the server

has database access. The server delivers messages to the users to ful˝ll their requests.

Coded caching has recently become quite popular among the coding community,

starting with the work by Maddah-Ali and Niesen in [1]. It has been shown that

coded caching can reduce peak tra°c rates by encoding transmissions so that di˙erent

users can extract di˙erent information from the same packet. Our study is based on

Maddah-Ali and Niesen's work in [1] and we extend their work to solve two interesting

problems: extending coded caching to distributed storage system (as explained in

Subsection 1.1.1) AND achieving the tra°c load-I/O trade-o˙ for coded caching (as

explained in Subsection 1.1.2).

1.1.1 Coded Caching with Distributed Storage

Maddah-Ali and Niesen's work [1] focuses on a system with multiple users con-

necting to a single server through a shared broadcast link. However, with the higher

demand of data, networks usually distribute popular ˝les across multiple indepen-

dent servers. This thesis proposes and analyzes multiple caching mechanisms for

multi-server systems with di˙erent system parameters.

Distributed storage deals with how the information is stored at the servers. Disk

failures are very common in large storage systems, so they need to have some amount

of redundancy. Erasure codes have recently sparked a renewed interest from the

3

research community for this task. Files are encoded and distributed among a set of

nodes (disks, servers, etc.) in such a way that the system can recover from the failure

of a certain number of nodes [3]. Most large scale systems use some form of erasure

codes (such as RAID [4]) with striping across multiple storage drives, but some others

store or replicate whole ˝les as a single unit in the network nodes (e.g. data centers).

This increases the peak rate, but it also simpli˝es book-keeping and deduplication,

improves security, and makes the network more ˛exible.

In this thesis, we aim to design a joint storage and transmission protocol for the

multi-server multi-user system. We combine distributed storage with coded caching

utilizing parallelism and redundancy to reduce the peak tra°c rate. The main con-

tributions are: (1) a ˛exible model for multi-server systems where each ˝le can be

divided among multiple servers or kept as a single block in one server; (2) an exten-

sion of the coded caching algorithms in [1] and [5] to striping multi-server systems;

(3) new caching and delivery schemes with signi˝cantly lower peak rates for the case

when ˝les are stored as a single unit in a data server. The detailed algorithms are

elaborated in Chapter 2 and the related publication is [6].

1.1.2 Tra°c Load-I/O Trade-o˙ for Coded Caching

Although the tra°c load is the dominant factor in slow or congested networks,

disk I/Os are also valuable and can become the bottleneck in some systems, such as

Haystack [7] and Colossus [8]. A signi˝cant amount of research has gone into coding

techniques to minimize disk I/Os in storage systems [9, 10].

Maddah-Ali and Nisen's coded caching scheme in [1] has the lowest peak tra°c

load in the literature and its extension by Yu et. al. [11] is proved to achieve the

best average tra°c load with uncoded prefetching. However, their I/O performance

is suboptimal when there are redundant user demands. The same segment could be

read multiple times if it is used to construct di˙erent messages, which dramatically

increases I/O reads. On the contrast, if all messages are transmitted uncoded, each

4

data segment requested is read once and broadcast to all users. Inspired by this fact,

we study the trade-o˙ between tra°c load and I/O by designing algorithms which

combine coded and uncoded transmission. The algorithms are shown to improve both

the average and worst case performance in terms of the user requests as elaborated

in Chapter 3 and the related publication is [12].

1.2 Challenges of Modern Non-volatile Memory Technologies

Recently, some new non-volatile memory technologies have emerged as a faster

and more e°cient alternative to hard drives. We will investigate two promising

non-volatile memory technologies in this thesis: NAND ˛ash memories and Resis-

tive RAM. These two new non-volatile memory technologies o˙er signi˝cantly higher

speeds and power e°ciency than hard drives, but their higher cost is still an obsta-

cle for its widespread use. The cost is dominated by the area of silicon that they

require per Gigabyte of stored information. Manufacturers have tried to increase the

capacity of the memories by shrinking the cells and storing more bits in each of them

but this has introduced some problems, mainly related to reliability and endurance.

The challenges for NAND ˛ash and ReRAM are explained in Subsection 1.2.1 and

Subsection 1.2.2 respectively.

1.2.1 Challenges of NAND Flash

A NAND ˛ash memory is fundamentally an array of ˛oating gate transistors,

known as ˛ash cells, whose threshold voltages can be programmed to represent di˙er-

ent information symbols. Single-Level Cell (SLC) memories can only store one bit in

each cell, but most commercial products now use Multi-Level Cell (MLC) memories

that can store two bits in each cell by taking 4 possible voltages. In order to reduce

the cost, manufacturers have aggressively scaled the technology to pack more cells in

the same silicon real estate, while they also increased the number of bits stored in

each cell.

5

As the cells shrink, the noise observed in the programmed voltages increases,

specially the inter-cell interference (ICI). ICI is a phenomenon by which programming

a cell increases the voltage of its neighbors. It has been shown that the ICI noise

created by a cell is proportional to the voltage to which it is programmed [13]. Another

challenge that the ˛ash memory industry is facing is the limited lifetime of ˛ash cells.

Basic operations like programming and erasing1 the cells require tunneling charges

through a dielectric barrier. This results in stresses that degrade the properties of the

barrier making the cells less e°cient in the retention of data, more vulnerable to noise,

and consequently more prone to errors. Once again, the degradation is proportional

to the voltage variations [14].

In this thesis, two signal processing approaches are proposed for NAND ˛ash to

improve the reliability and endurance: (1) We propose a new method which reads

multiple wordlines simultaneously and returns a combination of their stored informa-

tion. This multi-page read method is shown to be useful for equalizing the ICI, reduce

the damage caused by erase operations, and speed up the decoding of certain WOM

codes [2]. (2) A spreading modulation is proposed. It is a new data representation

scheme which reduces ICI and extends the lifetime of the memory by reducing the

frequency with which the largest voltage levels are programmed. The proposed modu-

lation is based on using an orthogonal code to spread each information symbol across

multiple cells, similar to how DS-CDMA is used in wireless communications [15, 16].

The detailed algorithms are elaborated in Chapter 4 and the related publications

are [17�19].

1.2.2 Challenges of Resistive RAM

Besides NAND ˛ash memory technology which is already in commercial use, some

other promising non-volatile memory technologies are also under research. Resistive

RAM (ReRAM) is rising as a promising non-volatile alternative because of its high

1 Flash cells need to be erased before they can be overwritten.

6

density, fast access time and low power consumption. ReRAM uses memristors (a

contraction of "memory resistor") to store information. A memristor is a nonlinear

resistor whose value can be adjusted by pushing current across its terminals.

To increase the density of the memristor array, crosspoint architectures are used,

which shows excellent scalability but su˙ers from other problems, mainly related to

sneak currents ˛owing through supposedly deactivated cells. Typically, writes and

reads are done by fully biasing a selected wordline and bitline (row and column,

respectively) while others are only partially biased or not at all. This creates a large

voltage drop across the cell at the intersection, a smaller one across other cells in the

same wordline or bitline (half-selected cells), and a negligible one across the rest of

the cells. Ideally, all the current would be ˛owing through the selected cell, but in

practice there are some additional currents ˛owing through the other half-selected

cells. These are called sneak currents [20]. The magnitude of the sneak currents

increases dramatically with the size of the memristor array, to the point that they

have become the limiting factor in the scalability of ReRAM memories. This e˙ect is

even more severe in MLC memories.

In this thesis, we propose signal processing approaches to compensate for sneak

currents in MLC ReRAM. Our contributions include: (1) we build a simple analytic

model for the voltage drop and sneak currents in MLC-ReRAM arrays as a form of ICI.

(2) we propose two techniques to minimize the resulting BER: spreading modulation

and distribution shaping. The detailed algorithms are shown in Chapter 5 and the

related publication is [21].

7

2. CODED CACHING AND DISTRIBUTED STORAGE

2.1 Introduction

The recent information explosion has created a pressing need for faster and more

reliable data transmission and recovery schemes. The IT industry has addressed this

challenge through parallelism and caching: instead of using a single high capacity

storage drive to serve all the requests, networks usually distribute popular ˝les across

multiple independent servers that can operate in parallel and cache part of the infor-

mation at intermediate or ˝nal nodes. This chapter proposes multiple caching mech-

anisms for multi-server systems with di˙erent system parameters. Previous literature

has addressed coded caching for single server systems and distributed storage with-

out caching but, to the extent of our knowledge, this is the ˝rst work that considers

both coded caching at the users and distributed storage at the servers. Furthermore,

it provides solutions for systems with and without ˝le striping (i.e. with ˝les split

among multiple servers and with whole ˝les stored in each server).

Erasure codes are adopted to solve the disk failures in distributed storage system.

Files are encoded and distributed among servers in such a way that the system can

recover from the failure of a certain number of servers [3]. One widely used distributed

storage technique based on erasure codes is RAID (redundant array of independent

disks). It combines multiple storage nodes (disks, servers, etc.) into a single logi-

cal unit with data redundancy. Two of the most common are RAID-4 and RAID-6,

consisting of block-level striping with one and two dedicated parity nodes, respec-

tively [4, 22]. Most large scale systems use some form of RAID with striping across

multiple storage drives, but some others store or replicate whole ˝les as a single unit

in the network nodes (e.g. data centers). This increases the peak rate, but it also

8

simpli˝es book-keeping and deduplication, improves security, and makes the network

more ˛exible.

Coded caching deals with the high temporal variability of network tra°c: the peak

tra°c in the network is reduced by pre-fetching popular content in each receiver's

local cache memory during o˙-peak hours, when resources are abundant. Coded

caching has also recently become a research hit, starting with the work by Maddah-

Ali and Niesen in [1], which focused on how a set of users with local memories can

e°ciently receive data from a single server through a common link. Their seminal

paper proposed a caching and delivery scheme o˙ering a worst case performance

within a constant factor of the information-theoretic optimum, as well as upper and

lower bounds on that optimum. The lower bounds were later re˝ned in [23] and

new schemes were designed to consider non-uniform ˝le sizes and popularity [24,25];

multiple requests per user [26,27]; variable number of users [28]; and multiple servers

with access to the whole library of ˝les [29].

Maddah-Ali and Niesen's work in [1] caches the information uncoded and encodes

the transmitted packets. This scheme performs well when the cache size is relatively

large, but a close inspection shows that there are other cases in which its performance

is far from optimal. Tian and Chen's recent work in [5] designs a new algorithm which

encodes both the cached and transmitted segments to achieve a better performance

than [1] when the cache size is small or the number of users is greater than the number

of ˝les. However, this scheme also focuses on a single server system. In this chapter,

we aim to design a joint storage and transmission protocol for the multi-server multi-

user system.

Summarizing, prior work on distributed storage has studied how a single user can

e°ciently recover data distributed across a set of nodes and prior work on coded

caching has studied how a set of users with local memories can e°ciently receive data

from a single node. However, to the extent of our knowledge, it has not been studied

how the cache placement and content delivery should be performed when multiple

nodes send data to multiple users through independent channels. We combine dis-

9

tributed storage with coded caching utilizing parallelism and redundancy to reduce

the peak tra°c rate in this thesis.

The rest of the chapter is structured as follows: Section 2.2 introduces the system

model and two existing coded caching algorithms for single server systems, namely

the one proposed by Maddah-Ali and Niesen in [1] and the interference elimination

scheme in [5]. Section 2.3 extends both algorithms to a multi-server system with

˝le striping, while Sections 2.4 and 2.5 consider the case where servers store whole

˝les. Speci˝cally, Section 2.4 extends Maddah-Ali and Niesen's scheme, suitable for

systems with large cache capacity, and Section 2.5 extends the interference elimination

scheme, which provides better performance when the cache size is small. Finally,

Section 2.6 provides simulations to support and illustrate our algorithms and Section

2.7 concludes the chapter.

2.2 Background

This section describes the multi-node multi-server model in 2.2.1 and then reviews

two existing coded caching schemes that constitute the basis for our algorithms. Sub-

section 2.2.2 summarizes Maddah-Ali and Niesen's coded caching scheme from [1]

and subsection 2.2.3 summarizes Tian and Chen's interference elimination scheme

from [5].

2.2.1 System Model

We consider a network with K users1 and N ˝les stored in L data servers. Some

parts of the chapter will also include additional parity servers, denoted parity server

P when storing the bitwise XOR of the information in the data servers (RAID-4) and

parity server Q when storing a di˙erent linear combination of the data (RAID-6).

The network is assumed to be ˛exible, in the sense that there is a path from every

1 Servers and users can be anything from a single disk to a computer cluster, depending on the
application.

10

server to every user [29]. Each server stores the same number of ˝les with the same

size and each user has a cache with capacity for M ˝les. For the sake of simplicity,

this chapter assumes that all ˝les have identical length and popularity.

The servers are assumed to operate on independent error-free channels, so that

two or more servers can transmit messages simultaneously and without interference to

the same or di˙erent users. A server can broadcast the same message to multiple users

without additional cost in terms of bandwidth, but users cannot share the content

of their caches with each other. This assumption makes sense in a practical setting

since peer-to-peer content sharing is generally illegal. Also, users typically have an

asymmetric channel, with large download capacity but limited upload speed.

Similarly, each server can only access the ˝les that it is storing, not those stored

on other servers. A server can read multiple segments from its own ˝les and com-

bine them into a single message, but two ˝les stored on di˙erent servers cannot be

combined into a single message. However, it will be assumed that servers are aware

of the content cached by each user and of the content stored in other servers, so that

they can coordinate their messages. This can be achieved by exchanging segment IDs

through a separate low-capacity control channel or by maintaining a centralized log.

The problem consists of two phases: placement and delivery. During the placement

phase, the content is stored in the user's caches. The decisions on where to locate

each ˝le, how to compute the parity, and what data to store in each cache are made

based on the statistics for each ˝le's popularity, without knowledge of the actual

user requests. In our chapter, we assume all the ˝les have the same popularity. The

delivery phase starts with each user requesting one of the ˝les. All servers are made

aware of these requests and proceed to send the necessary messages.

Throughout the chapter, we use subindices to represent ˝le indices and su-

jperindices to represent segment indices, so Fi will represent the j-th segment from

˝le Fi. Some parts of the chapter will also use di˙erent letters to represent ˝les from

di˙erent servers. For example, Ai to represent the i-th ˝le from server A and A
j
i

to represent the j-th segment from ˝le Ai. The chapter focuses on minimizing the

11

peak rate (or delay), implicitly assuming that di˙erent users request di˙erent ˝les.

Therefore, we will indistinctly refer to users or their requests.

2.2.2 Maddah-Ali and Niesen's scheme

The coded caching scheme proposed by Maddah-Ali and Niesen in [1] has a single

server storing all the ˝les {F1, F2 . . . , FN }, and users are connected to this server

through a shared broadcast link. Their goal is to design caching and delivery schemes

so as to minimize the peak load on the link, i.e. the total amount of information � �
transferred from the server to the users. This scheme splits each ˝le Fi into

K � � t

K KM nonoverlapping segments Fi
j of equal size, j = 1, . . .

t , with t =
N , and caches

each segment in a distinct group of t users. In other words, each subset of t users is

assigned one segment from each ˝le for all the users to cache2 . In the delivery phase� �
the server sends one message to each subset of t+1 users, for a total of K messages.

t+1

This caching scheme ensures that, regardless of which ˝les have been requested, each

user in a given subset of t + 1 nodes is missing a segment that all the others have in

their cache. The message sent to that subset of nodes consists of the bitwise XOR of

all t + 1 missing segments: a set of users S requesting ˝les Fi1 , Fi2 , . . . , Fit+1 would

receive the message

S = F j1 ⊕ F j2 jt+1 m i2
⊕ · · · ⊕ F , (2.1)i1 it+1

where jk is the index for the segment cached by all the users in the set except the one

requesting Fik . Each user can then cancel out the segments that it already has in its

cache to recover the desired segment. In the worst case, i.e. when all users request

di˙erent ˝les, this scheme yields a (normalized by ˝le size) peak rate of � � � �
K K

RC (K, t) = /
t + 1 t

1
= K(1 − M/N) . (2.2)

1 + KM/N

2 Parameter t is assumed to be an integer for the sake of symmetry. Otherwise some segments
would be cached more often than others, requiring special treatment during the delivery phase and
complicating the analysis unnecessarily.

12

Under some parameter combinations, broadcasting all the missing segments uncoded

could require lower rate than RC (K, t), so the generalized peak rate is

min {RC (K, t), N − M}

but this chapter will ignore those pathological cases, assuming that N , M , and K are

such that RC (K, t) ≤ N − M . It has been shown that this peak rate is the minimum

achievable for some parameter combinations and falls within a constant factor of the

information-theoretic optimum for all others [1, 23].

This scheme, henceforth refered to as �Maddah's scheme" will be the basis for

multiple others throughout the chapter. It is therefore recommended that the reader

has a clear understanding of Maddah's scheme before proceeding.

2.2.3 Interference Elimination

A close examination of Maddah's algorithm reveals that it has poor performance

when the cache is small and N ≤ K. Thus, a new coded caching scheme based on

interference elimination was proposed by Tian and Chen in [5] for the case where the

number of users is greater than the number of ˝les. Instead of caching ˝le segments

in plain form, they propose that the users cache linear combinations of multiple seg-

ments. After formulating the requests, undesired terms are treated as interference that

needs to be eliminated to recover the requested segment. The transmitted messages

are designed to achieve this using maximum distance separable (MDS) codes [30,31]. � �
In the placement phase, this scheme also splits each ˝le into K

t non-overlapping

segments of equal size and each segment is cached by t users, albeit combined with

other segments. Let Fi
S , where S ⊆ {1, 2, . . . , K} and |S| = t, denote the ˝le segment

from ˝le Fi chosen to be cached by the users in S. In the placement phase user k

collects the ˝le segments

{F S|i ∈ {1, 2, . . . , N}, k ∈ S}, (2.3)i

13

� �
(P = K−1 N in total), encodes them with a MDS code C(P0, P) of length P0 = � � t−1 � �

K−1 K−22 N − (N − 1), and stores the P0 − P parity symbols in its cache.
t−1 t−1

The delivery phase proceeds as if all the ˝les are requested. When only some

˝les are requested, the scheme replaces some users' requests to the �unrequested� �
˝les" and proceeds as if all ˝les were requested. A total of K−

t
1 messages are

transmitted (either uncoded or coded) for each ˝le Fi, regardless of the requests.

Uncoded messages provide the segments that were not cached by the users requesting

Fi, while coded messages combining multiple segments from Fi are used to eliminate � �
the interference in their cached segments. Each user gathers K

t−
−
1
2 (N − 1) useful

messages which, together with the P − P0 components stored in its cache, are enough

to recover all P components in the C(P0, P) MDS code. A more detailed description

of the messages can be found in [5]. �
K−1� Therefore, the total number of messages transmitted from the server is N
t .

In this interference elimination scheme, the following normalized (M, R) pairs are

achievable: � �
t [(N − 1)t + K − N] N(K − t)

, , t = 0, 1, . . . , K. (2.4)
K(K − 1) K

This scheme is shown to improve the inner bound given in [1] for the case N ≤ K

and has a better performance than the algorithm in subsection 2.2.2 when the cache

capacity is small.

2.2.4 Extension to multiple servers

Both of the previous schemes assume that a single server stores all the ˝les and

can combine any two segments into a message. Then, they design a list of messages

to be broadcast by the server, based on the users' requests. In practice, however, it

is often the case that content delivery networks have multiple servers and throughput

is limited by the highest load on any one server rather than by the total tra°c in the

link between servers and users. Shariatpanahi et al. addressed this case in [29], but

still assumed that all servers had access to all the ˝les and could therefore compose

14

any message. They proposed a load balancing scheme distributing the same list of

messages among all the servers, scaling the peak rate by the number of servers.

If each server only has access to some of the ˝les, the problem is signi˝cantly more

complicated. The general case, where each segment can be stored by multiple servers

and users, is known as the index coding problem. This is one of the core problems

of network information theory but it remains open despite signi˝cant e˙orts from

the research community [32�34]. Instead of addressing the index coding problem in

its general form, we focus on the case where each data segment is stored in a single

server, all caches have the same capacity, and users request a single ˝le.

A simple way to generalize the previous schemes to our scenario is to follow the

same list of messages, combining transmissions from multiple servers to compose

each of them. Instead of receiving a single message with all the segments as shown

in Eq. (2.1), each node would receive multiple messages from di˙erent servers. The

peak rate for any one server would then be the same as in a single server system.

With parity servers storing linear combinations of the data, the peak rate can be

reduced. In general, distributed storage systems use MDS codes for the parity3 , so

any subset of L servers can be used to generate any message. Therefore, a simple

balancing of the load by rotating among all subsets of L servers would scale the peak

rate by
L+
L
L0
, where L0 is the number of parity servers. However, we intend to design

caching and delivery algorithms capable of further reducing the peak rate of any one

server.

2.3 File striping

The simplest way to extend single-server coded caching algorithms to a multi-

server system is to spread each ˝le across all servers. That way, each user will request

an equal amount of information from each server, balancing the load. This is called

data striping [38] and it is common practice in data centers and solid state drives

3 Some systems use repetition or pyramid codes [35�37] to reduce the recovery bandwidth, but this
chapter will focus on MDS codes.

15

(SSD), where multiple drives or memory blocks can be written or read in parallel.

The users then allocate an equal portion of their cache to each server and the delivery

is structured as L independent single-server demands. We now proceed to give a

detailed description of how striping can reduce the peak rate of Maddah's scheme,

but the same idea can be applied to any other scheme.

Each of the N ˝les {F1, F2 . . . , FN } is split into L blocks to be stored in di˙erent �
K
�

servers and each block is divided into
t segments. These segments are denoted by � �(j,m)

Fi , where i = 1, 2, . . . , N represents the ˝le number; j = 1, 2, . . . , K
t the segment

number; and m = 1, 2, . . . , L the block number. The m-th server is designed to store

(j,m)
the m-th segment of each ˝le, that is Fi for every i and j.

The placement is the same as in Maddah's scheme. Each segment is cached by

(j,1) (j,2) (j,L)
t users, with {Fi , F , . . . , Fi } being cached by the same user. We noticei

that each message transmitted by Maddah's scheme in Eq. (2.1) can be split into L

components

(j1,m) (j2,m) (jt+1,m)
F ⊕ F ⊕ · · · ⊕ F , (2.5)i1 i2 it+1

m = 1, 2, . . . , L to be sent by di˙erent servers. Then the problem can be decomposed

into L independent single-server subproblems with reduced ˝le sizes of F
L bits. The

subproblems have the same number of users, ˝les, and cache capacity (relative to the

˝le size) as the global problem. Since all servers can transmit simultaneously, the

peak load is reduced to
L
1 of that in Eq. (2.2) (Maddah's single server scheme).

If one additional parity server P is available (RAID-4), it will store the bitwise
(j,1) (j,2) (j,L)

XOR of the blocks for each ˝le, i.e. F ⊕ F ⊕ · · · ⊕ F for all i and j. Then,i i i

1 server P can take over some of the transmissions, reducing the peak load to
L+1 of

that with Maddah's scheme4 . Speci˝cally, instead of having all data servers transmit

their corresponding component in Eq. (2.5), server P can transmit the XOR of all

the components, relieving one data server from transmitting. The users can combine

the rest of the components with this XOR to obtain the missing one. Similarly, if two

4 The number of segments must be a multiple of L to achieve this reduction, but it is always possible
to divide each segment into multiple chunks to ful˝l this condition.

16

additional parity servers P and Q are available (RAID-6), it is possible to choose any

L out of the L + 2 servers to take care of each set of messages in Eq. (2.5), thereby

1reducing the peak rate to of that with Maddah's scheme.
L+2

A similar process with identical ˝le splitting can be followed for the interference

1cancelling scheme, achieving the same scaling of the peak rate: when there is no
L

parity, 1 with a single parity server, and 1 with two parity servers.
L+1 L+2

In practice, however, it is often preferred to avoid striping and store whole ˝les as

a single unit in each server to simplify the book-keeping, ensure security, and make

the network more ˛exible. The rest of the chapter will focus on the case where nodes

store entire ˝les, and each user requests a ˝le stored in a speci˝c node.

2.4 Scheme 1: Large cache

In this section, we extend Maddah-Ali and Niesen's scheme to the multiple server

system. Instead of spreading each ˝le across multiple servers as in Section 2.3, each

˝le is stored as a single unit in a data server, as shown in Table 2.1.

Table 2.1.: Files stored in each server in distributed storage system.

Server A Server B · · · Server L

A1

A2

. . .

Ar

B1

B2

. . .

Br

· · ·

· · ·

· · ·

L1

L2

. . .

Lr

The performance of Maddah's scheme in Eq. (2.2) is highly dependent on the

cache capacity M . Compared with the interference elimination in section 2.2.3, the

advantage of Maddah's scheme lies in that ˝le segments are stored in plain form

instead of encoded as linear combinations. This saves some segments from being

transmitted in the delivery phase, but it requires larger cache capacities to obtain

αα

γγ αα

αα

γγ
αα

γγ
αα

γγ
αα

γγ
αα

γγγγ
αααα

17

coded caching gains. Hence, Maddah's scheme is appropriate when the cache capacity

is large.

The placement phase of our algorithm is identical to that in the traditional scheme.

For example, in a system with K = 6 users with cache capacity M = 4 and N = 8

˝les, each ˝le is divided into 20 segments and each segment is stored by t = 3 users.

Table 2.3 indicates the indices of the 10 segments that each user stores, assumed to

be the same for all ˝les without loss of generality.

In order to simplify later derivations, the notation is clari˝ed here. Since the peak

rate for the storage system is considered, we assume that all users request di˙erent

˝les, hence each user can be represented by the ˝le that it has requested. Denote

S to be the user set and mA
S to represent the message sent from server A to all the

users in S. Furthermore, if α = {α1, α2, . . . , αi} represents a vector of ˝le indices and

γ = {γ1, γ2, . . . , γi} represents a vector of segment indices, then Aα represents the set

of requests (or users)

Aα = {Aα1 , Aα2 , . . . , Aαi }

and Aγ
α represents the message

Aγ = Aγ1 ⊕ Aγ2 ⊕ . . . ⊕ Aγi ,α α1 α2 αi

where Aj
i represents the j-th segment from the i-th ˝le in server A. Similarly, A

γ
α ⊕Bα

γ

represents the the message:

Aγ ⊕ Bγ = (Aγ1 ⊕ Bγ1) ⊕ . . . ⊕ (Aγi ⊕ Bγi).α α α1 α1 αi αi

We ˝rst explore the multi-server system without parity servers in subsection 2.4.1.

Then we study a simple system with two data and one parity server in subsection 2.4.2.

Finally, we study the cases with one and two parity servers in subsections 2.4.3 and

2.4.4, respectively.

18

2.4.1 No parity servers

In a system without redundancy, such as the one shown in Table 2.1, the servers

cannot collaborate with each other. During the delivery phase, each user is assigned

to the server storing the ˝le that it requested, and then each data server transmits

enough messages to ful˝l its requests. Speci˝cally, following Maddah's scheme, a � � � �
K K−m server receiving m requests would need to transmit − messages, i.e. one
t+1 t+1

for each group of t users containing at least one of its requesters. The normalized

peak rate for that server would therefore be �� � � ���� �
K K − m K −

t + 1 t + 1 t

The worst case occurs when all users request ˝les from the same server, i.e. m = K.

Then the peak transmission rate is the same as in the single server system.

2.4.2 One parity and two data servers

This section focuses on a very simple storage system with two data servers and

a third server storing their bitwise XOR, as shown in Table 2.2. Despite each server

can only access its own ˝les, the con˝guration in Table 2.2 allows composing any

message by combining messages from any two servers. Intuitively, if server A (or B)

˝nish its transmission task before the other one, it can work with the parity server to

help server B (or A). This collaborative scheme allows serving two requests for ˝les

stored in the same server in parallel, balancing the load and reducing the worst case

peak rate below that achieved without the parity server (see Section 2.4.1).

However, there is a better transmission scheme where messages from all three

servers are combined to get more information across to the users. The basic idea is

to include some unrequested segments, as well as the requested ones, in each message

from a data server. If the additional segments are well chosen, they can be combined

with messages from the parity server to obtain desired ˝le segments. The algorithm

developed in this section is based on this idea.

αα ββ αα ββ

γγ ηη
αα ββββαα

ββ αα
γγ
ββ

ηη
αα

γγηη
αα

γγηη
ββββαα

19

Table 2.2.: Files stored in each server in a system with two data and one parity

server.

Server A Server B Server P

A1

A2

. . .

Ar

B1

B2

. . .

Br

A1 ⊕ B1

A2 ⊕ B2

. . .

Ar ⊕ Br

Just like in Maddah's scheme, data servers will send each message to a set of

t + 1 users and the message will contain the XOR of t + 1 segments (one for each

user). These segments are chosen so that all users except the intended receiver can

cancel them out. If the user had requested a ˝le stored by the sender, the message will

contain the corresponding segment; otherwise the message will include its complement

in terms of the parity in server P , i.e. Aj
i instead of Bi

j and vice versa. Therefore, the

contents of each message from server A or B are uniquely determined by the sender

and the set of receivers, denoted by S1 or S2 respectively. In the example shown in

Table 2.3, the message from server A to S1 = {A1, A2, A3, B4}, corresponding to users
S1 = A111 through 4, will be m ⊕ A5 ⊕ A2 ⊕ A4

1 .A 1 2 3

Lemma 2.4.1 Let the receivers for servers A and B be

S1 = {Aα, Bβ , A∗} S2 = {Aα, Bβ , B∗},

respectively, where α and β denote (possibly empty) sets of indices, the ∗ denote

arbitrary sets, and S1 6= S2. The corresponding messages are

S1 ⊕ Aγ S2m = A ∗ ⊕ A ∗ m = Bη ⊕ B ∗ ⊕ B ∗∗,A α β ∗ B α β

with segment indices chosen so that each user can cancel all but one of the compo-

nents. This provides users Bβ and Aα with some unrequested segments A
γ
β and Bα

η ,

respectively. Then server P can send the message

S1∩S2m = (Aη ⊕ Bα
η) ⊕ (Aγ ⊕ Bγ),P α β β

■

ββ

γγββ γγ
ββββββ

20

to S1 ∩ S2, so that each user in S1 and S2 obtains a missing segment and those in

the intersection obtain two. These three transmissions are equivalent to messages mS1

and mS2 as de˝ned in Eq. (2.1) for Maddah's single server scheme. They both provide

the same requested segments to their destinations.

Proof All the users in S1 and S2 get at least one desired segment, from the server

storing their requested ˝le. Those in S1 ∩S2 also receive an unrequested segment from

server A or B. It only remains to prove that users in S1 ∩ S2 can use this unrequested

S1∩S2segment to obtain its complement from mP .

Without loss of generality, consider user Bβi ∈ S1 ∩ S2. The set of segment indices

γ in mA
S1 were chosen so that user Bβi is caching all the segments except the γi-th.

Similarly, the set of indices η in m S
B
2 was chosen so that Bβi is caching all of them

(for all ˝les). Therefore, Bβi can obtain Aβ
γi
i
from mA

S1 and should be able to cancel

S1∩S2 ⊕ Bγiall terms from m except Aγi . Combining both of these yields the desiredP βi βi

segment Bβ
γ
i

i . As long as S1 =6 S2, this segment will be di˙erent from the one that Bβi

obtains from mB
S2 because there is a one-to-one relationship between segment indices

and user subsets.

Take the case in Table 2.3 as an example. Lemma. 2.4.1 states that if S1 =
S1 S2 S1∩S2{A1, A2, A3, B4} and S2 = {A1, A2, B1, B4}, we construct mA , mB , m as:P

S1 = A11 m ⊕ A5 ⊕ A2 ⊕ A1
4,A 1 2 3

S2 = B14 ⊕ B2 m ⊕ B8 ⊕ B3
B 1 2 1 4 ,

S1∩S2 = (A14 ⊕ B14 m) ⊕ (A8 ⊕ B8) ⊕ (A1 ⊕ B1).P 1 1 2 2 4 4

It is easy to verify that these messages are equivalent to two transmissions in Maddah's

scheme, speci˝cally those intended for users {A1, A2, A3, B4} and {A1, A2, B1, B4}.

Corollary 2.4.1.1 Assume S1 = {A∗, Bβ } and S2 = {B∗}, i.e. it only contains
Bβ γ γ requests for server B. Then server P sends m = A ⊕ B to all the users in Bβ inP β β

Lemma 2.4.1, so that all the users in S1 and S2 get the same segments as in Maddah's

scheme. The same holds switching the roles of A and B.

21

Table 2.3.: Mapping of ˝le segments to user caches. Each cache stores the same 10

segments for every ˝le, marked with X (K = 6, M = 4, N = 8).

Segment\ User 1 2 3 4 5 6

1 X X X

2 X X X

3 X X X

4 X X X

5 X X X

6 X X X

7 X X X

8 X X X

9 X X X

10 X X X

11 X X X

12 X X X

13 X X X

14 X X X

15 X X X

16 X X X

17 X X X

18 X X X

19 X X X

20 X X X

Request A1 A2 A3 B4 B1 B2

■

■

αα ββ

⎪⎪
⎪⎪

22

Proof This is a particular case of Lemma 2.4.1 when α is empty (β can be empty

or non-empty).

De˝nition 2.4.1 If user subsets S1 and S2 ful˝ll the conditions in Lemma 2.4.1, we

call (S1, S2) an e˙ective pair.

Our goal is to design a scheme equivalent to Maddah's scheme while minimizing

the maximum number of messages sent by any server. If two user subsets form an

e˙ective pair, the corresponding messages in Maddah's scheme (see Eq. (2.1)) can be

replaced by a single transmission from each server. Hence, we wish to make as many

e˙ective pairs as possible. � �
Lemma 2.4.2 The peak rate is

2
1 +

6
1 Δ RC (K, t) for the server system in Table 2.2,

where Δ represents the ratio of unpaired messages and t = KM .
N

Proof For each e˙ective pair, we can use a single transmission from each server to

deliver the same information as two transmissions in Maddah's single server scheme.

This contributes 1
2 (1 − Δ)RC (K, t) to the total rate. Unpaired messages are trans-

mitted as described in section 2.2.4, that is combining messages from any two out of

the three servers. Assuming that this load is balanced among all three servers, the

contribution to the total rate is 2
3 ΔRC (K, t). Adding both contributions yields the

rate above.

The following lemma characterizes the ratio of unpaired user subsets Δ in the case

with symmetric requests (both servers receive the same number of requests).

Lemma 2.4.3 If the requests are symmetric, then Δ = 0 when t is even and Δ ≤ 1
3

when t is odd. That is, the following peak rate is achievable in the case with symmetric

requests: ⎧
RC (K, t) if t is even⎪ 21 ⎨

RT (K, t) = (2.6) ⎪ � �⎩ 1 1
2 +

6 Δ RC (K, t) if t is odd,

where RC (K, t) is de˝ned in Eq. (2.2).

■

■

αα

αα

αα

23

Proof A pairing algorithm with these characteristics is presented in the Appendix.

Although Δ can reach 1
3 , in most cases the pairing algorithm in the Appendix per-

forms much better. As an example, Table 2.3 has each segment cached by t = KM = 3
N

users and the normalized peak rate with the pairing algorithm is 2
5 , signi˝cantly lower

than the 3
4 with Maddah's single server scheme.

Finally, we are ready to derive an achievable peak rate for a general set of requests,

based on the following lemma.

Lemma 2.4.4 If (S1, S2) form an e˙ective pair, then S 0 1 = {S1, Aα} and S 0 2 =

{S2, Aα} also form an e˙ective pair of a larger dimension. The same holds when

an all-B ˝le set is appended instead of the all-A ˝le set Aα.

Proof The proof is straightforward by observing that (S 00
1, S2) still ful˝lls the con-

ditions in Lemma 2.4.1.

The extension to the asymmetric case is as follows. Let KA and KB respectively

denote the number of requests for servers A and B, and assume KA > KB without

loss of generality. Divide the K = KA + KB requests (or users) into two groups: the

˝rst with KB requests for each server (symmetric demands) and the second with the

remaining KA − KB requests for server A. We construct e˙ective pairs of length t +1

by appending requests from the second group to e˙ective pairs from the ˝rst.

Theorem 2.4.5 If the requests are asymmetric, the ratio of unpaired messages is

also bounded by Δ ≤ 1
3 . Speci˝cally, if KA and KB respectively denote the number

of requests for servers A and B, assuming KA > KB without loss of generality, the

following normalized peak rate is achievable:

t+1 �
KA − KB

�X
R(KA, KB , t) = RT (2KB , t − l), (2.7)

l
l=0

where RT is de˝ned in Eq. (2.6) and K = KA + KB.

■

αα ββ αα ββ

24

Proof From Lemma 2.4.3, RT (2KB, t − l) represents the peak rate after pairing all

subsets of t +1 − l requests from the symmetric group. For each l = 0, 1, . . . , t +1, we

multiply RT (2KB , t − l) by the number of possible completions with l requests from

the second group, to obtain the peak rate corresponding to subsets with t + 1 − l

requests from the ˝rst group and l from the second. Adding them for all l gives

Eq. (2.7). � �
1 1 1Since RT (i, j) ≤ + Δ RC (i, j) with Δ ≤ by Lemma 2.4.3, and
2 6 3P � � t+1 KA−KB RC (2KB, t − l) = RC (K, t) by combinatorial equations, Eq. (2.7) im-l=0 l � �

plies that R(KA, KB, t) ≤ 1 + 1 Δ RC (K, t) with Δ ≤ 1 as de˝ned in Lemma 2.4.2.
2 6 3

Corollary 2.4.5.1 A peak rate of 5
9 RC (K, t) is achievable for a system with two data

servers and a parity server.

2.4.3 One parity and L data servers

The previous subsection has discussed the case with two data servers and one

parity server, but the same algorithm can be extended to systems with more than

two data servers. Intuitively, if there are L data servers and one parity server, any

message can be built by combining messages from any L servers. A ˝rst approach �
K � could be distributing the
t+1 messages in Maddah's scheme across the L+1 possible

groups of L servers, as proposed in subsection 2.2.4. Each server would then need to � �
send a maximum of K · L messages. However, there is a more e°cient way of

t+1 L+1

ful˝lling the requests based on the algorithms in subsections 2.2.4, 2.4.1 and 2.4.2.

Lemma 2.4.6 Let S1 = {Aα, Bβ , A∗, Y} and S2 = {Aα, Bβ, B∗, Y0} be two user

subsets, where Y and Y0 are arbitrary lists of requests for servers C through L and the

∗ represent arbitrary (possibly empty) index sets. Then, S1 and S2 can be paired so that

servers A, B and P require a single transmission to provide the same information as

S1 S2messages m and m in Maddah's single server scheme. The other data servers, C

■

αα

ββ

ββ

αα

αα ββ
αα ββ

αα ββ

αα ββ

25

through L, require a maximum of two transmissions, as shown in paired transmissions

in Fig. 2.1.

Proof The transmissions would proceed as follows:

1. Servers C through L each send two messages, to S1 and S2. For example, server

S1 S2C would send mC and mC , providing a desired segment to users requesting

˝les from C and the corresponding C-segments to those requesting other ˝les.

2. Server A sends5 mA
S1 , providing a desired segment to users requesting {A∗, Aα}

and the corresponding undesired A-segments to those requesting Bβ .

3. Server B sends mB
S2 , providing a desired segment to users requesting {Bβ, B∗}

and the corresponding undesired B-segments to those requesting Aα.

{Aα,Bβ }4. Server P sends m to users requesting {Aα, Bβ}. Using the undesiredP

segments previously received, the users in {Aα, Bβ } can solve for the desired A

and B segments.

A simple comparison of the requested and received segments shows that these trans-

S1 S2missions deliver the same information as messages m and m in Maddah's single

server scheme.

As an example, Table 2.4 shows the segments that each user gets in transmissions

(1)-(4) when S1 = {A1, A2, B1, C1} and S2 = {A1, B1, B2, C2}, respectively corre-

sponding to segments {A1, A2, B3, C4} and {A5, B6, B7, C8}.1 2 1 1 1 1 2 2

Theorem 2.4.7 The following normalized peak rate is achievable for a system with

L ≥ 3 data servers and one parity server:

L − 1
RP (K, t) = RC (K, t), (2.8)

L

where RC is de˝ned in Eq. (2.2).

{A∗,Aα,Bβ } S15 It would be enough for A to send m instead of mA , but we use the latter for the sakeA
of simplicity. The same applies to the message from server B.

□□□□□
<
<

26

Table 2.4.: Segments received by each users in transmissions (1)-(4) from

Lemma 2.4.6, where P j
i = Aj

i ⊕ Bj
i ⊕ Cj

i .

Trans.\Req. A1 A2 B1 B2 C1 C2

(1) C5
1 C3

1
4
1C

8
2C

(2) A1
1 A2

2
3
1A

(3) B5
1

6
1B 7

2B

(4) P 5
1

3
1P

in total 5
1A , A1

1
2
2A 6

1
3
1B , B 7

2B 4
1C

8
2C

P

X

A B C D

X X X

XX X
paired transmissions:

unpaired transmissions:

X

X X

X

X

X

X

X

Figure 2.1.: Pairing for 4 data servers and 1 parity server system. A, B, C, D

are data servers and P represents the parity server. X means there is a message

transmitted from the corresponding server.

■

27

�
K � Proof First we show that we can deliver 2 of the messages in Maddah's scheme

L t+1� � � �
1 K 2 Kusing at most transmissions from servers A, B and P ; and at most
L t+1 L t+1

transmissions from each of the other servers. This can be done by pairing the messages

as shown in Lemma 2.4.6, if they include requests for A or B, and by using the scheme

in subsection 2.4.1, if they do not. � �
Selecting these 2 K messages can be done as follows: group messages by the

L t+1

number of segments that they have from servers A or B. Within each group, we pair

the messages as shown in Lemma 2.4.6. This is equivalent to pairing the A and B

requests into e˙ective pairs according to Theorem 2.4.5 and considering all possible

completions for each pair using requests for other servers. Theorem 2.4.5 showed that

at least 2
3 ≥

L
2 of the messages in each group can be paired. Messages which have no

A or B segments can be transmitted as described in section 2.4.1, without requiring

any transmissions from servers A, B or P . � �
L−2 KThe remaining messages can be transmitted as described in subsec-
L t+1

tion 2.2.4, distributing the savings evenly among servers C through L. This requires� � � �
L−2 K Ktransmissions from servers A, B and P ; and L−3 from each of the rest.
L t+1 L t+1�

K � Each server then transmits a total of L−1 , hence the peak rate in Eq. (2.8).
L t+1

Theorem 2.4.7 provides a very loose bound for the peak rate in a system with one

parity and L data servers. In practice, there often exist alternative delivery schemes

with signi˝cantly lower rates. For example, if all the users request ˝les from the

same server, that server should send half of the messages while all the other servers

collaborate to deliver the other half. The rate would then be reduced to half of that

in Maddah's scheme. Similarly, if L > t+1 and all the servers receive similar numbers

of requests, the scheme in subsection 2.4.1 can provide signi˝cantly lower rates than

Eq. (2.8).

28

Table 2.5.: Files stored in parity servers in RAID-6.

Server P Server Q

A1 + B1 + . . . + L1

A2 + B2 + . . . + L2

. . .

Ar + Br + . . . + Lr

A1 + κB B1 + . . . + κLL1

A2 + κB B2 + . . . + κLL2

. . .

Ar + κB Br + . . . + κLLr

2.4.4 Two parity and L data servers

In this section, we will extend our algorithm to a system with L data and two

linear parity servers operating in a higher order ˝eld instead of GF(2). The parity

server P stores the horizontal sum of all the ˝les while the parity server Q stores a

di˙erent linear combination of the ˝les BY ROW, as shown in Table 2.5. It will be

assumed that the servers form an MDS code. We will show that with a careful design

of the delivery strategy, the peak rate can be reduced to almost half of that with

Maddah's single server scheme.

Lemma 2.4.8 Let S1 = {A∗, Y} and S2 = {B∗, Y}, where Y represents a com-

mon set of requests from any server. Then S1 and S2 can be paired so that a single

S1 S2transmission from each server ˝lls the same requests as messages m and m in

Eq. (2.1).

Proof The transmission scheme shares the same pairing idea as the algorithm in

subsection 2.4.2. The transmissions are as follows:

1. Server A sends mA
S1 , providing a desired segment to users requesting its ˝les

and the corresponding undesired A-segments to others.

2. Server B sends mB
S2 , providing a desired segment to users requesting its ˝les

and the corresponding undesired B-segments to others.

■

29

T
3. Servers C, D, . . . , L each send a single message to S1 S2 = {Y} with the

following content for each user:

• Users requesting ˝les from server B received some undesired segments from

server A. Servers C, D, . . . , L send them the matching ones so that the

desired segments can be decoded using the parity in server P later.

• The remaining users in Y will get the desired segment corresponding to S1

when possible, otherwise they will get the undesired segment corresponding

to S2.

In other words, each server C, . . . , L will send segments corresponding to S1 to

users requesting its ˝les or those from server B, and segments corresponding to

S2 to the rest. At this point, all the users have satis˝ed their requests related

to S1, except those requesting ˝les from server B, who satis˝ed their requests

related to S2 instead. Each user has also received L − 2 undesired �matched"

segments6 , corresponding to S1 for those requesting ˝les from server B and

corresponding to S2 for the rest. T
4. Finally, parity servers P and Q each transmit a message to S1 S2 = {Y} with

a combination of segments for each user (see Table 2.5). Those requesting ˝les

from server B will get two combinations of the segments corresponding to S1,

while the rest will get two combinations of the segments corresponding to S2.

Since each user now has L − 2 individual segments and two independent linear

combinations of all L segments, it can isolate the requested segment (as well all

the �matching" segments in other servers).

A simple comparison of the requested and received segments shows that these trans-

S1 S2missions deliver the same information as messages m and m in Maddah's single

server scheme.

6 Users in Y requesting ˝les from servers A or B received L − 1 �matched" segments instead of L − 2,
but we can ignore the extra one.

30

Table 2.6.: Segments users get in (1)-(4) transmissions (In order to simplify notation,

denote P j
i = Aj

i + Bj
i + Cj

i and Qj
i = Aj

i + κBB
j
i + κC C

j
i).

Trans.\Req. A1 A2 B1 B2 C1 C2

(1) A1
1 A2

2 A3
1 A4

1 A5
2

(2) B6
1 B7

1 B8
2

(3) C6
1 C3

1 C9
1 2C

10

(4) P 6
1 P 3

1
4
1P , Q4

1
5
2

5
2P , Q

in total A , A6
1

1
1 A2

2 B , B7
1

3
1 B8

2
9
1

4
1C , C 2

5
2C , C10

2

As an example, Table 2.6 shows the delivered segments in transmissions (1)-(4) if

, C10S1 1
1

2
2

3
1

4
1

5
2

S2 6
1

7
1

8
2

9
1 = {A } and m = {A }., A , B , C , C , B , B , C m

Theorem 2.4.9 For the L data server and two parity server system, the following

normalized peak rate is achievable: � �
1 L − 2

RQ(K, t) = + Δ RC (K, t), (2.9)
2 2L + 4

where Δ ≤ 1
3
is the pairing loss and RC is the rate of the single server Maddah's

scheme in Eq. (2.2).

Proof Group messages by the number of segments that they have from servers A

or B. Within each group, we pair the messages as shown in Lemma 2.4.8. If the

number of requests from A or B is not zero, this is equivalent to pairing the A and B

requests into e˙ective pairs according to Theorem 2.4.5 and considering all possible

completions for each pair using requests for other servers. Theorem 2.4.5 showed that

at most 1
3
of the messages in each group remains unpaired. For the messages which

do not contain segments from A or B we repeat the same process with two other

servers, with identical results: at most 1
3
of them remain unpaired.

Each pair of messages can be delivered using a single transmission from each

(1 − Δ)RC (K, t)1shown in Lemma 2.4.8, hence paired messages contribute server, as
2

to the total rate, where Δ denotes the ratio of unpaired messages. Unpaired messages

■

31

are transmitted as described in section 2.2.4, that is using L out of the L +2 servers.

Balancing this load among all the servers, they contribute
L+2
L ΔRC (K, t) to the total

rate. Adding both contributions yields the rate above.

2.5 Scheme 2: Small cache

This section extends the interference elimination scheme in section 2.2.3 to a

multi-server system. The interference elimination scheme is specially designed to

reduce the peak rate when the cache size is small [5]. Unlike Maddah's scheme, which

caches plain segments, the interference elimination scheme proposes caching linear

combinations of them. That way each segment can be cached by more users, albeit

with interference. This section will start with the system without parity in Table 2.1,

showing that the transmission rate decreases as 1
L
with the number of servers. Then it

performs a similar analysis for the case with parity servers, which can be interpreted

as an extension of the user's caches.

Theorem 2.5.1 In a system with L data servers and parallel channels, the peak rate

of the interference cancelling scheme can be reduced to 1
L
of that in a single server

system, i.e. the following (M, R) pair is achievable: � �
t [(N − 1)t + K − N]

,
K(K − 1)

N(K − t)
LK

, t = 0, 1, . . . , K. (2.10)

This holds regardless of whether each ˝le is spread across servers (striping) or stored

as a single block in one server.

Proof Section 2.3 showed that striping the ˝les across L servers reduces the peak

rate of the interference cancelling scheme by 1
L
compared with a single server system.

In contrast to Maddah's scheme, the interference cancelling scheme sends the same

number of segments from each ˝le, regardless of the users' requests. Moreover, each

message consists of a combination of segments from a single ˝le [5]. Therefore, the

same messages can be transmitted even if di˙erent ˝les are stored in di˙erent servers.

Each server will need to transmit a fraction 1
L
of the messages, since it will be storing

■

■

32

that same fraction of the ˝les. The peak load can then be reduced to
L
1 of that in

Eq. (2.4).

If there are parity servers, we can further reduce the transmission rate by regard-

ing them as an extension of the users' cache. Section 2.2.3 explained that in the

interference elimination algorithm [5], each user caches the parity symbols resulting

from encoding a set of segments with a systematic MDS code C(P0, P). It is possible

to pick the code in such a way that some of these parity symbols can be found as

combinations of the information stored in servers P and Q. Then, instead of storing

them in the user's cache, they are discarded. Those that are needed in the delivery

phase will be transmitted by the parity servers.

For example, parity server P stores the horizonal sum of the ˝les, so it can transmit

messages of the form:

(K−1
N/L t−1X)X � � sj sj sjλij A + B . . . + L ,i i i
i=1 j=1

with arbitrary coe°cients λij for any user set sj . This corresponds to a linear combi-

nation of all the segments in Eq. (2.3). Similarly, parity server Q can transmit some

other linear combinations of the segments which can also work as components of an

MDS code. This e˙ectively increases the size of the cache memories by M 0 ˝le units,

corresponding to the amount of information that the parity servers can a˙ord to send

each user during the delivery phase.

Theorem 2.5.2 If there are η parity servers and K ≥ N , the following (M, R) pairs

are achievable for t = 0, 1, . . . , K � �
t [(N − 1)t + K − N] N(K − t) N(K − t)− η , .

K(K − 1) LK2 LK

Proof The information sent by the parity server is bounded by the peak rate of the

N (K−t)data servers, i.e.
LK according to Eq. (2.10). Assuming a worst case scenario,

each transmission from a parity server will bene˝t a single user. Therefore, each

N(K−t)parity server can e˙ectively increase the cache of each user by M 0 =
LK2 .

33

This memory sharing strategy provides signi˝cant improvement when the cache

capacity is small. Fig. 2.2 shows the performance for K = 15 users and N = 12

˝les stored in L = 4 data servers. When the cache size is small, the peak rate of the

system with two parity servers is much lower than that without parity servers. As

the cache grows the advantage of the system with parity servers becomes less clear.

0 0.2 0.4 0.6 0.8 1
2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

M

R

no parity servers
2 parity servers

Figure 2.2.: Comparison of the performance between multi-server system without

parity servers and the system with two parity servers.

The interference elimination scheme is specially designed for the case with less

˝les than users (N ≤ K) in the single server system. However, since the peak load is

reduced by
L
1 in a multi-server system, the interference elimination scheme might also

have good performance when N > K if L is large. In order to apply the algorithm,

we can just add N − K dummy users with arbitrary requests. Then, we have the

following corollary from Theorem 2.5.2:

34

Table 2.7.: Normalized peak rate of Scheme 1.

server system Normalized peak rate

single server
� � � �

K KRC (K, t) = /
t+1 t

L data 1 parity L−1 RC (K, t)
L

L data 2 parity L−2(1 + Δ)RC (K, t) (Δ ≤ 1)
2 2L+4 3

Table 2.8.: Normalized (M,R) pair of Scheme 2. (η is the number of parity servers.)

server system Normalized (M,R) � �
single server t[(N −1)t+K−N] N(K−t) ,

K(K−1) K� �
L data η parity (K ≥ N) t[(N −1)t+K−N] N(K−t) N(K−t)− η ,

K(K−1) LK2 LK� �
L data η parity (K ≤ N) t2 − η (N−t) (N−t) ,

N LN L

Corollary 2.5.2.1 If there are η parity servers and K ≤ N , the following (M, R)

pairs are achievable: �
t2 (N − t)

�
(N − t)− η , , t = 0, 1, . . . , N.

N LN L

2.6 Simulations

This section compares all the schemes studied in this chapter, for a system with

N = 20 ˝les stored in L = 4 data servers with 5 ˝les each. We show that striping has

better performance than the schemes in sections 2.4 and 2.5 (Scheme 1 and Scheme 2,

respectively) at the cost of network ˛exibility. If each ˝le is stored as a single block

in one server, Scheme 2 has better performance when the cache capacity is small

while Scheme 1 is more suitable for the case where the cache capacity is large. The

performances of Scheme 1 and Scheme 2 are summarized in Table 2.7 and Table 2.8,

respectively.

Fig. 2.3 and Fig. 2.4 focus on the case with one and two parity servers, respec-

tively. We assume that there are K = 15 users, thus there are more ˝les than users,

35

with varying cache capacity. We observe that striping provides lower peak rates than

storing whole ˝les, as expected. Additionally, since N > K, the interference elimina-

tion scheme always has worse performance than Maddah's scheme when striping is

used. Without striping, Scheme 2 provides lower peak rate than Scheme 1 when the

cache capacity is small, and it is the other way around when the capacity is large.

0 5 10 15 20
0

2

4

6

8

10

12

14

M

R

striping Maddah’s scheme
striping interference elimination
scheme1
scheme 2

Figure 2.3.: Comparison between the performance between Scheme 1 and Scheme

2 in one parity server system when N = 20 and K = 15.

Then Fig. 2.5 and Fig. 2.6 compare the performance between Scheme 1 and

Scheme 2 when there are more users (K = 60) than ˝les for the one or two par-

ity case, respectively. As shown in Fig. 2.5 and Fig. 2.6, the striping has lower rate

than storing whole ˝les and when the cache capacity is very small, the striping in-

terference elimination has better performance than striping Maddah's scheme. For

Scheme 1 and Scheme 2, when the cache capacity is small, Scheme 2 provides lower

peak rate, while when the cache capacity increases, Scheme 1 has better performance.

36

0 5 10 15 20
0

1

2

3

4

5

6

7

8

M

R

striping Maddah’s scheme
striping interference elimination
scheme 1
scheme 2

Figure 2.4.: Comparison between the performance between Scheme 1 and Scheme

2 in two parity server system when N = 20 and K = 15.

Moreover, we notice that the curves intersect at a point with larger M than they did

in Fig. 2.3 and Fig. 2.4, which means that we are more prone to utilize Scheme 2

when there are more users than ˝les.

2.7 Summary

This chapter proposes coded caching algorithms for reducing the peak data rate

in multi-server systems with distributed storage and di˙erent levels of redundancy. It

shows that, by striping each ˝le across multiple servers, the peak rate can be reduced

proportionally to the number of servers. Then it addresses the case where each ˝le

is stored as a single block in one server and proposes di˙erent caching and delivery

schemes depending on the size of the cache memories.

37

0 5 10 15 20
0

2

4

6

8

10

12

14

16

M

R

striping Maddah’s scheme
striping interference elimination
scheme 1
scheme 2

Figure 2.5.: Comparison between the performance between scheme 1 and scheme 2

in one parity server system when N = 20 and K = 60.

Distributed storage systems generally use MDS codes across the servers to protect

the information against node failures. The coded caching schemes proposed in this

chapter are able to leverage that redundancy in creative ways to reduce the achievable

tra°c peak rate. The results for Scheme 1 and Scheme 2 are shown in Table 2.7 and

Table 2.8 respectively.

This chapter proposed methods to reduce the load on the links between servers

and users, which is the most common bottleneck for system performance. However,

there are cases in which the server I/Os, not the overall tra°c on the links, are the

limiting parameter. The next chapter will study the trade-o˙ between network tra°c

load and disk I/Os.

38

0 5 10 15 20
0

1

2

3

4

5

6

7

8

9

10

M

R

striping Maddah’s scheme
striping interference elimination
scheme 1
scheme 2

Figure 2.6.: Comparison between the performance between scheme 1 and scheme 2

in two parity server system when N = 20 and K = 60.

39

3. TRAFFIC LOAD-I/O TRADE-OFF FOR CACHING

3.1 Introduction

Users and applications demand accessing data at a higher speed and lower la-

tency nowadays, which poses challenges to both networks and devices. This chapter

addresses two performance bottlenecks of storage systems: the number of read and

write operations (disk I/Os) and the amount of data transferred (transfer load).

Disk I/Os are a valuable resource. Many applications are I/O bounded and serve

a huge number of user requests and perform intensive computations. A signi˝cant

amount of research has gone into coding techniques to minimize disk I/Os in storage

systems [9, 10].

Transfer load (or tra°c) is another dominant factor in slow or congested networks.

Caching has been investigated as a useful technique to relieve peak tra°c by prefetch-

ing contents during o˙-peak hours. A caching scheme has two phases: placement and

delivery. In the placement phase, the users have access to all ˝les to ˝ll their caches.

In the delivery phase, only the server has database access and it delivers messages to

the users to ful˝ll their requests. In [1], Maddah-Ali and Niesen proposed a caching

and delivery scheme o˙ering a worst case performance within a constant factor of

the information-theoretic optimum, for a system with a single server broadcasting to

multiple users and uniform ˝le popularity. Inspired by their work, [40,41] studied its

average performance and the case with random demands. Further works improved

the delivery scheme by exploiting commonality among users' demands [6, 11, 42] and

introduced a decentralized version [43].

This chapter focuses on the same system, illustrated in Fig. 3.1. Maddah-Ali

and Nisen's coded caching scheme in [1] (henceforth denoted �M-N scheme") has

the lowest peak tra°c load in the literature and its extension by Yu et. al. [11]

□ □ □
c____________,I I I ~I~

40

(henceforth denoted �Yu's scheme") is proved to achieve the best average tra°c load

with uncoded prefetching. However, their I/O performance is suboptimal when there

are redundant user demands. The same segment could be read multiple times if

it is used to construct di˙erent messages, which dramatically increases I/O reads.

In contrast, if all messages are transmitted uncoded, each data segment requested

is read once and broadcast to all users. Inspired by this fact, we study the trade-

o˙ between tra°c load and I/O by designing algorithms which combine coded and

uncoded transmission. To the extent of our knowledge, this is the ˝rst work which

studies the I/O performance for coded caching.

The rest of this chapter is organized as follows. Section 3.2 introduces the sys-

tem model, the traditional uncoded and coded caching schemes. Section 3.3 proposes

two algorithms which study the trade-o˙ between tra°c load and I/O access. Sec-

tion 3.4 provides simulations to support and illustrate our algorithms and Section 3.5

concludes the chapter.

N files

K users

caches
(size M)

server

shared link

Figure 3.1.: Caching system considered in this chapter.

41

3.2 Background

3.2.1 System Model

Our system model is identical to the one in [1], shown in Fig. 3.1: a single server

is connected to K users through a shared broadcast link, and N ˝les of size F bits

with uniform popularity. Each user has a cache of size MF bits.

Users ˝ll their caches during the placement phase and then independently request

a ˝le in the delivery phase. We denote these requests by d = {d1, . . . , dk}, where

dk is the index of the ˝le requested by user k. d is uniformly distributed over D =

{1, . . . , N}K and the number of distinct ˝les requested is denoted by Ne(d).

The server must then ful˝l those requests. We wish to study the trade-o˙ between

the resulting load on the shared link and the disk I/O. Disks are read one page at a

time, all of the same size [44]. Therefore, the disk I/O is approximately proportional

to the total data read. Moreover, if the same ˝le segment is used to construct k

messages, we assume that it needs to be read k times. Denoting the load on the

shared link by Rt and the total data read by RIO (both normalized by the ˝le size),

the objective is to design an algorithm to minimize the cost

Rcost(α, d) = αRt(α, d) + (1 − α)RIO(α, d), (3.1)

where α ∈ [0, 1] is the trade-o˙ coe°cient. Although this chapter will focus on

Rcost(α, d), the proposed algorithms could be easily applied to other cost functions.

Also, we denote the expected cost over all users' requests as

Rcost(α) = αEd[Rt(α, d)] + (1 − α)Ed[RIO(α, d)]. (3.2)

3.2.2 Uncoded scheme

In the uncoded scheme, every user caches the same M/N fraction of each of the N

˝les. In the delivery phase, the server sends plain missing segments to all users. Since

■

42

each data segment is read once and all of those segments need to be transmitted, the

normalized I/O Ru is identical to the normalized tra°c load of the shared link Ru:IO t

Ru (d) = Ru(d) = Ne(d)g, (3.3)IO t

where g = 1 − M
N is the local caching gain. Each ˝le is requested with probability

1)Kpr = 1 − (1 −
N , so

Ru = Ru = Ru = Nprg. (3.4)cost t IO

Lemma 3.2.1 The uncoded scheme is optimal in terms of expected data read among

all schemes with uncoded pre-fetching, i.e. , for any other scheme with uncoded

prefetching RIO will be greater than that in Eq. (3.4).

Proof Denote mij the fraction of ˝le j being cached by user i, for j = 1, . . . , N and

i = 1, . . . , K. Given a list of demands d, let U = {u1, . . . , uNe(d)} be an arbitrary

subset of users requesting distinct ˝les {f1, . . . , fNe(d)}. Then

NXe(d)
RIO(d) ≥ (1 − muifi), (3.5)

i=1

since the total data read cannot be lower than that delivered.

Each user ui ∈ U has probability 1 of requesting ˝le j, so the average I/O for

1 PN

N PN user ui is at least (1 − muij). Since muij = M , the average I/O for ui isN j=1 j=1

at least
N
1 (N − M) = g. Combined with Eq. (3.5), RIO is bounded by:

RIO ≥ Ed[Ne(d)g] = Nprg. (3.6)

According to Lemma 3.2.1, the uncoded scheme achieves the best average I/O perfor-

mance with uncoded prefetching! However, the I/O could be even lower with coded

prefetching [45]. For example, consider a system with 2 ˝les (A, B), 2 users, and cache

size M = 1 . The uncoded scheme yields Ru = 1.125, but dividing each ˝le into 2
2 IO

segments of the same size (A1, A2, B1, B2) and caching Ai ⊕ Bi at user i (i = 1, 2)

43

would only require RIO = 1, regardless of the requests (e.g. , if user 1 requests A and

user 2 requests B, then the server only needs to transmit A2, B1). However, the I/O

for coded prefetching is a complex problem beyond the scope of this thesis. Instead,

we focus our discussion on uncoded prefetching.

3.2.3 Coded scheme

The centralized coded caching scheme proposed by Maddah-Ali and Niesen [1]� �
K KM splits each ˝le into
t nonoverlapping segments of equal size, with t =

N , and

caches each segment in a distinct group of t users. In the delivery phase, the server � �
sends one message to each subset of t + 1 users, for a total of K messages. Each

t+1

message is composed as the XOR of the t + 1 segments requested by one user and

cached by the others. Each user can then cancel out the segments that it already has

in its cache to recover the desired segment. This algorithm has the best normalized

tra°c load in the worst case, i.e. when all users request distinct ˝les. When N ≥ K,

the normalized rate Rt
m is � � � �

K K
Rm = / = Kg/(1 + KM/N), (3.7)t t + 1 t

where g = 1 − M
N . Each message is the XOR of t + 1 segments, thus the normalized

I/O is Rm = Kg.IO

Yu's scheme and our own research [6, 11] extended this work to the case with

redundant requests and more general values of N and K. It uses the same placement

as [1]. As for the delivery, the server picks Ne(d) �leader" users requesting distinct

˝les and only sends messages to subsets of t + 1 users containing at least 1 leader.

The corresponding rate Rc
t is: � � � �

K K−Ne(d)−
t+1 t+1Rt

c(d, t) = �
K
� . (3.8)

t

This extension is shown to achieve the best average tra°c load with uncoded prefetch-

ing. Since each message is the XOR of t + 1 segments, the average cost Rc is:cost

Rc (α, t) = Ed[αR
c(d, t) + (1 − α)(1 + t)Rc (3.9)IO(d, t)].cost t

44

Further extensions proposed a decentralized version of the algorithm [11,40] with-

out coordination in the content placement: users randomly cache a subset of MF bits
N

from every ˝le. The delivery phase takes a K-step greedy approach: for bits which

are stored in exactly i users (i = 0, . . . , K − 1), it constructs messages by XORing

i + 1 segments, similarly to the centralized scheme.

Both M-N and Yu's schemes have optimal I/O in the worst case (i.e. , no repeated

requests), given by Lemma 3.2.1 (Ne(d) = K in Eq.(3.6)). Moreover, both schemes

have the best peak tra°c load (hence the best worst case Rcost(α)) in the literature.

They are the basis for the algorithms proposed in this chapter. It is therefore rec-

ommended that readers have a clear understanding of both M-N and Yu's schemes

before proceeding.

3.3 General Algorithms

In this section, we propose algorithms aiming at minimizing the cost functions

in Eq.(3.1) and Eq.(3.2). Subsection 3.3.1 introduces an algorithm with the same

placement as M-N and Yu's scheme, to maintain optimal performance in the worst

case, and an adaptive delivery algorithm to further reduce Rcost(d) in the case with

redundant requests. Subsection 3.3.2 sacri˝ces worst case performance to improve

it in the average case. It introduces a new placement algorithm that yields a lower

average Rcost than both the coded and uncoded schemes.

3.3.1 Adaptive delivery

As mentioned in section 3.2.3, the coded caching scheme has the best Rcost in the

worst case. However, it could be further reduced when some requests are redundant

by sending some segments uncoded. Take the following case as an example.

Example 3.3.1 Consider a server with 4 ˝les (denoted A, B, C and D), 4 users with

a normalized cache size M = 2, and a trade-o˙ parameter α = 0.2. In the placement

phase, ˝le A is split into 6 segments (denoted A1, A2, . . . , A6) and each segment is

■

45

Table 3.1.: Mapping of ˝le segments to user caches. Each cache stores the same

three segments for every ˝le, marked with X (K = 4, N = 4, M = 2).

user\ segment 1 2 3 4 5 6 request

1 X X X C

2 X X X B

3 X X X A

4 X X X A

cached by 2 users. The same goes for ˝les B, C, D. Table 3.1 indicates the indices of

the 3 segments that each user stores, assumed to be the same for all ˝les without loss

of generality. Let the requests be C, B, A, A.

In the delivery phase, we can easily derive that Rc = 1.73 according to Eq.(3.9).cost

In this example, we notice that A1 is needed by users 3 and 4. The messages containing

A1 are A1 ⊕ B2 ⊕ C4 and A1 ⊕ B3 ⊕ C5. If we transmit A1 uncoded along with B2 ⊕ C4

and B3 ⊕ C5 instead, the users are still able to recover the requested ˝les. The tra°c

load is higher but the I/O is reduced. The resulting Rcost = 1.63 is better than both

M-N and Yu's schemes.

The general algorithm is shown in the following lemma.

Lemma 3.3.1 If a segment is requested by more than
1−
1
α users, then Rcost(α, d) can

be reduced by transmitting it uncoded.

Proof If a segment is requested by j users (j = 1, . . . , K), transmitting it uncoded � � � �
increases Rt to R

0 = Rt + 1/ K and decreases RIO to R
0 = RIO − (j − 1)/ K .t t IO t

Therefore, R0 = αR0 + (1 − α)R0 as de˝ned in Eq.(3.1) is lower than Rcost whencost t IO

1j > .
1−α

In the worst case, each segment is requested by only one user. Our adaptive

delivery scheme is then identical to M-N and Yu's scheme, ensuring an optimal Rcost

in the worst case. This adaptive delivery algorithm can also be easily extended to

.. ~t,·'
4 ~·· ,._,,

LJ
◄' _, ,*

;cf ~·
A' ,. ,. ·*

till' ,,:'

.. ~ ... u·+· ,. • ◄
•* I I ,., .. . ,

,<I ,.
·* ,,

46

th
e d

ecen
tralized

 sch
em

e in
 [11,43], follow

in
g th

e sam
e p

rin
cip

le: th
e b

its w
h
ich

 are

req
u
ested

 b
y
 m

ore th
an

1− 1 α

 u
sers are sen

t u
n
co
d
ed
 an

d
 all th

e oth
ers co

d
ed
. F

ig. 3.2

com
p
ares th

e average R
co

st for M
-N
 sch

em
e, Y

u
's sch

em
e an

d
 th

e ad
ap
tive algorith

m

p
rop

osed
 in

 th
is ch

ap
ter b

oth
 for th

e cen
tralized

 an
d
 d
ecen

tralized
 settin

gs. It sh
ow

s

th
at, w

h
en
 α

 is sm
all, th

e ad
ap
tive algorith

m
 h
as a m

u
ch
 b
etter p

erform
an
ce th

an

M
-N
 sch

em
e an

d
 Y
u
's sch

em
e b

oth
 in

 th
e cen

tralized
 an

d
 d
ecen

tralized
 cases.

α

0
0.5

1

Rcost(α)2 3 4 5 6 7 8
C

en
tralizedY

u
A

d
ap

tive
M

-N

α

0
0.5

1
2 3 4 5 6 7 8

D
ecen

tralized

Y
u

A
d

ap
tive

M
-N

F
ig
u
re
 3
.2
.:

C
om

p
arison

 of ad
ap
tive an

d
 co

d
ed
 sch

em
es for vary

in
g trad

e-o˙
 co

ef-

˝
cien

t α
 (K

 =
 10,N

 =
 10,M

 =
2).

3
.3
.2

P
a
rtia

l C
a
ch
in
g

T
h
e ad

ap
tive d

elivery
 sch

em
e u

sed
 th

e sam
e p

lacem
en
t as [1] to en

su
re op

tim
al

R
co

st in
 th

e w
orst case. T

h
is su

b
section

 p
rop

oses an
 algorith

m
 seek

in
g a low

er average

R
co

st (α
) as d

e˝
n
ed
 in

 E
q
.(3.2), at th

e cost of su
b
op
tim

al w
orst case p

erform
an
ce.

In
tu
itively,

w
h
en
 α

 is very
 sm

all,
R

co
st (α

) m
ain

ly
 d
ep
en
d
s on

 I/O
, so w

e sh
ou
ld

tran
sm

it all th
e req

u
ested

 segm
en
ts u

n
co
d
ed
; v

ice versa, w
h
en
 α

 is close to 1, w
e

sh
ou
ld
 tran

sm
it all th

e req
u
ested

 segm
en
ts co

d
ed
.
In
sp
ired

 b
y
 th

is fact, if on
ly
 a

47

portion p ∈ [0, 1] of every ˝le is cached at the users and transmitted coded, while

the rest is always transmitted uncoded, we expect a better average performance for

intermediate values of α.

The general algorithm is as follows. In the placement phase, we choose a fraction

KM p of each ˝le to be cached at the users' end. This portion is divided into t0 =
Np

segments and the rest (of size (1 − p)F) is not cached. In the delivery phase, the

cached part is transmitted coded using Yu's scheme and the uncached portion is

transmitted uncoded. The fraction p is optimized to minimize Rcost:

p = arg min ((1 − p)Ru (α) + pRc (α, t0)) ,cost cost
p

KM , Ruwhere t0 =
Np is de˝ned in Eq.(3.4) and Rc is de˝ned in Eq.(3.9). Thiscost cost

algorithm can be easily extended to the decentralized case by caching a random

portion p of each ˝le at each user, employing the decentralized transmission strategy

mentioned in section 3.2.3 for these portions, and transmitting the uncached portions

uncoded.

The coded, uncoded and partial caching schemes are compared in Fig. 3.3 for both

the centralized and decentralized cases. When α is small, the partial caching scheme

takes p = 0 and transmits all the segments uncoded; vice versa, when α is close to 1,

the algorithm takes p = 1 and it is equivalent to Yu's scheme. For intermediate values

of α, partial caching o˙ers lower Rcost than both the coded and uncoded schemes.

3.4 Simulations

This section compares the proposed algorithms with traditional schemes through

simulations. It ˝xes the number of ˝les as N = 8 and studies the trade-o˙ between

tra°c load and I/O by varying the cache size M and the number of users K.

Fig. 3.4 compares the performance of the adaptive scheme and Yu's scheme with

trade-o˙ parameter α = 0.3 when the cache size M changes. It shows that the

adaptive scheme has an advantage over Yu's scheme in terms of Rcost when M is

small, but the gap closes as M increases. Moreover, the ˝gure presents results for

48

α

0.3 0.4 0.5 0.6 0.7

R
c
o
s
t
(α

)

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5
Centralized

M-N
Yu
Uncoded
Partial

α

0.3 0.4 0.5 0.6 0.7
3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5
Decentralized

M-N
Yu
Uncoded
Partial

Figure 3.3.: Comparison of partial caching, coded and uncoded schemes for varying

α (K = 8, N = 8,M = 2).

4 and 8 users, showing that the gains are more prominent as the number of users

increases. This is because both small cache size and more users increase the chance

that a segment is requested by multiple users.

Fig. 3.5 compares the performance of the coded, uncoded and partial caching

schemes for di˙erent number of users. As mentioned in section 3.3.2, when the trade-

o˙ parameter α is small, we prefer to use the uncoded scheme to minimize I/O. As

α increases, the portion p of each ˝le that is transmitted coded also increases. The

threshold α for which p is no longer 0 is bigger for the system with 8 users than for the

system with 4 users. This is because when there are more users, the probability that

some users request the same ˝le increases, which bene˝ts the uncoded transmission.

3.5 Summary

This chapter proposes algorithms to study the trade-o˙ between tra°c load and

I/O for coded caching in both the centralized and decentralized settings. Reading a

EJ --

- ,,,_ __ .__,
--+-- ►-
-·+--·
--I- ..

EJ --

- .,._
...........
--+-
-•--·•-·
---t-.. ,,. ,,. ..

--·-·•·-·-·

49

M
2 4 6 8

R
c
o
s
t
(0
.
3
)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Centralized

Yu (K=8)
Adaptive (K=8)
Yu (K=4)
Adaptive (K=4)

M
2 4 6 8

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Decentralized

Yu (K=8)
Adaptive (K=8)
Yu (K=4)
Adaptive (K=4)

Figure 3.4.: Comparison of adaptive and coded schemes for varying cache capacity

and users (N = 8, α = 0.3).

α

0.2 0.3 0.4 0.5 0.6

R
c
o
s
t
(α

)

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
Centralized

Yu (K=8)
uncoded (K=8)
partial (K=8)
Yu (K=4)
uncoded (K=4)
partial (K=4)

α

0.2 0.3 0.4 0.5 0.6
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
Decentralized

Yu (K=8)
uncoded (K=8)
partial (K=8)
Yu (K=4)
uncoded (K=4)
partial (K=4)

Figure 3.5.: Comparison of partial caching, coded and uncoded schemes for di˙erent

number of users (N = 8,M = 2).

˝le segment multiple times to compose di˙erent messages can be suboptimal when

I/O is considered. The proposed algorithms strike a balance between coded and

50

uncoded transmissions, showing better performance than traditional schemes both in

the worst case and the average case.

Besides network protocols, as we studied in Chapter 2 and Chapter 3, storage

hardware is another constraint which limits the system performance. In next two

chapters, we will focus on another storage system, non-volatile memories, and study

how to utilize signal processing approaches to improve the reliability.

51

4. SIGNAL PROCESSING FOR NAND FLASH MEMORIES

4.1 Introduction

NAND Flash is a non-volatile memory technology which o˙ers signi˝cantly higher

speeds and power e°ciency than hard drives, but its higher cost is still an obstacle

for its widespread use. In order to reduce the cost, manufacturers are scaling the

technology and trying to pack more bits in each cell. One of the main problems that

NAND ˛ash memories are facing today is the reliability of the stored information [46].

A ˛ash cell is a ˛oating gate transistor whose threshold voltage can be adjusted by

injecting charges into its ˛oating gate. Information is stored by setting this voltage

threshold to speci˝c values. In its simplest form, one bit is stored in each cell, de-

pending on whether it is charged or discharged. Memories of this type are known as

SLC. In order to increase the capacity (and reduce their cost accordingly) most appli-

cations now use MLC memories, which can be programmed to four di˙erent voltage

levels and store two bits in each cell. Some manufacturers have gone even further,

producing memories which store three (TLC) or even four bits in each cell [47, 48].

As Flash memory technology scales and more bits are stored in each cell, the

signal to noise ratio observed in the programmed voltages decreases. One of the

main sources of noise, which is becoming increasingly important as the technology

scales and is expected to get even worse for the forthcoming 3D ˛ash structures,

is inter-cell interference (ICI) [13, 49]. The shift in threshold voltage of one cell can

change the threshold voltage of its neighbors due to the parasitic capacitance-coupling

e˙ect [50]. Extensive measurements have shown that the ICI noise created by a cell

is proportional to the voltage to which it is being programmed [51]. Other sources

of noise include Gaussian noise, caused by overprogramming and charge leakage, and

impulse noise, caused by defective or broken cells [52].

52

Additionally, ˛ash cells have a limited lifetime. Before data can be written to

a page1 , the block must have been erased (i.e., all the cells need to be discharged).

The tunneling of charges into and out of the ˛oating gate causes damage to the

dielectric barrier that holds the charges, limiting the range of programmed voltages

and the number of times that each cell can be written. The amount of damage that a

cell su˙ers in a single write operation increases super-linearly with the programmed

voltage [14]. Hence, writing data patterns that are represented by a lower threshold

voltage could prolong the lifetime of the ˛ash [53�56].

This chapter proposes two new signal processing methods. The de˝nitions for

page, block, and read threshold will be given in Section 4.2, together with some nec-

essary background on NAND ˛ash memories. Then Section 4.3 studies a new read

method, which we call multi-page read, that can help alleviate some of the chal-

lenges that the ˛ash memory industry is facing. A multi-page read operation selects

multiple pages in a block, biases them with di˙erent read thresholds, and returns a

combination of their stored information. Section 4.4 proposes a new data represen-

tation scheme which increases endurance and signi˝cantly reduces the probability of

error caused by inter-cell-interference. The method is based on using an orthogonal

code to spread each bit across multiple cells, resulting in lower variance for the volt-

ages being programmed in the cells. This new data representation method is also

shown to present many of the advantages that spreading sequences bring to wireless

communications. For example, multiple information sequences can be written on the

same cells at di˙erent times without interfering with each other. It also allows storing

additional information on an already programmed memory in such a way that the

new information is hidden by the noise. At last, Section 4.5 summaries the whole

chapter. The results of this chapter are published in [17�19].

1 Cells in a NAND ˛ash are grouped into pages, which is the smallest unit for write and read
operations. Pages are grouped into blocks, which is the elementary unit for erase operations

53

4.2 Background

A ˛ash cell, illustrated in Fig. 4.1, is a ˛oating gate transistor whose threshold

voltage can be adjusted by Fowler-Nordheim (FN) tunneling [57] of charge into or

out of the ˛oating gate. If the control gate voltage is greater than this threshold,

the cell opens a channel between the drain and the source and we say that the cell

conducts. Otherwise, the cell acts as an open circuit and the cell does not conduct.

NAND ˛ash memories organize cells in array structures known as blocks, like the one

Control gate

Floating gate

Wordline

Bitline

Source Drain

P-substrate

dielectric

Tunnel oxide

Figure 4.1.: Floating gate transistor structure.

shown in Fig. 4.2. We refer to each row of cells in a block as a wordline and to each

column as a bitline. A page is a logical structure that includes one bit from each cell

in a wordline. SLC memories have one page per wordline, MLC memories have two,

and TLC have three. Blocks are the elementary unit for erase operations, but reads

and writes can be done at a page granularity. This wordline-bitline structure allows

programming or reading all the cells in a page in parallel, as described below.

54

Bit-line Bit-line Bit-line

Source line

Block

Word-line

Page

Word-line

Word-line

Word-line

Figure 4.2.: Bitline-Wordline structure of NAND ˛ash memory.

Program operation

The programming is done by sending high voltage pulses into one wordline and

biasing all other wordlines so that their cells conduct. Cells in the selected wordline

with grounded bitlines experience a high electric ˝eld across the ˛oating gate and the

substrate, triggering the FN tunneling. After each pulse, a verify read is performed

and cells which have reached the desired level of charge are inhibited from further

programming. This can be done by biasing their bitlines to a high voltage. This

programming method is called ISPP algorithm [58]. For MLC cells, the programming

includes two stages: the LSB programming leaves the cell either erased or at half its

maximum charge, and the MSB programming does the ˝ne adjustment of the ˝nal

voltage. The amount of electrons injected into the ˛oating gate is determined by both

the LSB and MSB bit values [59].

55

Erase operation

The erasing of a block follows an similar process to the programming, but us-

ing negative pulses to remove charges from the ˛oating gate instead. Additionally,

stronger and fewer pulses are used since there is little harm in over-erasing the cells.

Individual pages cannot be erased independently because a dielectric breakdown may

occur due to the interference between wordlines [60].

Read operation

The voltage threshold of the cells cannot be read directly, it can only be compared

with an adjustable reference (read voltage). Pages are read by biasing one wordline

with this read voltage l while all others are set to a high voltage Vpass (l � Vpass)

so that their cells conduct. Cells in the selected wordline whose threshold voltage is

below the read voltage l also conduct, causing the discharge of a capacitor through the

bitline, whereas cells with higher threshold voltage act as an open circuit, not letting

the current through. By sensing which capacitors got discharged, many bitlines can

be read in parallel.

4.3 Multi-page Read for NAND Flash

This section explains the multi-page read method and it is structured as follows:

Subsection 4.3.1 describes the multi-page read and explains how it should be imple-

mented. Then, Subsection 4.3.2 provides examples where the multi-page read can

help improve the reliability, speed, and endurance of NAND ˛ash memories.

4.3.1 Multi-page Read Method

The read operation described above provides one bit of information about each

cell in the selected wordline. If a bitline conducts, it means that the cell's threshold

voltage is below the read voltage. The corresponding bit is then read as "0". If a

56

sensing
margin

Vso

precharge TEVA

Icell

read as 1

read as 0

t

VTHSA

Figure 4.3.: ABL read operation timing diagram.

bitline does not conduct, it means that the cell's threshold is above the read voltage

and the corresponding bit is then read as "1". However, it is important to understand

that the bit values depend on the read threshold: the same page can yield di˙erent

bit values for di˙erent read thresholds2 .

From the perspective of sensing circuits, there exist multiple read architectures,

all of which use capacitances to integrate the bitline current. Most modern NAND

Flash memories use the All Bitline (ABL) architecture [61] shown in Fig. 4.4, which

includes a dedicated capacitor CSO and keeps the bitline voltage constant during the

evaluation phase. Fig. 4.3 shows the three phases in a read operation. First, CSO is

pre-charged to a high voltage VDD. Then MPCH is shut o˙ and conducting bitlines

experience a constant current Icell that discharges CSO (evaluation phase). After TEVA

seconds, the capacitor voltage is compared with a reference VTHSA and the read result

is output through a latch [62]. The total read time is dominated by the evaluation

time TEVA, which can be represented as:

(VDD − VTHSA)CSO
TEVA = . (4.1)

Icell

2 Some manufacturers use the reverse bit labels, "1" to denote conducting and "0" not conducting.
This convention makes no di˙erence towards our results, but OR operations should be replaced with
AND.

-----1
-----1

---1

57

I1

l2

Vpass Icell

SLS

s
e

le
c

te
d

 s
tr

in
g

VDD

source line

+

_

LATCH

OUT

SO

CSO

VTHSA

source line

MSLS

MPCH

PCH

SEL
MSEL

Figure 4.4.: ABL sense circuits for NAND ˛ash.

The current through a MOS transistor operating in ohmic region Icell with small

drain to source voltage VDS can be approximated by:

Icell = k [(VGS − VTH)VDS] , (4.2)

where VGS and VTH respectively represent the gate-to-source and threshold voltages

and k is a scaling parameter [62]. Hence, the equivalent resistance Roh for the tran-

sistor working in the Ohmic region is:

VDS 1
Roh = = . (4.3)

Icell k(VGS − VTH)

The multi-page read proposed in this section uses the same components and read

methodology as the ABL architecture, but instead of biasing a single wordline with a

read threshold and all others with Vpass, multiple wordlines are biased with di˙erent

58

read thresholds {l1, l2, . . .} while the rest are kept at Vpass as shown in Fig. 4.4. A

bitline will conduct only when all the selected cells have lower voltage than the corre-

sponding read thresholds. Since we are using value "1" to denote "not conducting",

this is equivalent to a bit-wise OR operation of all the selected wordlines.

The main problem of the ABL architecture is the static current consumption

during the pre-charge phase, specially by cells with threshold voltage much smaller

than the read voltage as indicated by Eq. (4.2). With multi-page read, however, fewer

bitlines will conduct and those that do will only draw strong currents if all the read

voltages are much larger than the corresponding thresholds. Hence, multi-page read

helps alleviate the power consumption problem.

Bitlines that do conduct will experience a read current very similar to that in

regular reads. Each bitline has hundreds of cells connected in series whose equivalent

resistance is determined by the gap between the read and threshold voltages according

to Eq. (4.3). This gap is smaller for cells being read than for those biased at Vpass,

but both are usually in the same order of magnitude. The equivalent resistance of

the whole string is then dominated by the hundreds of cells acting as pass transistors,

not by the few being read. If the read and threshold voltages are very close for a

cell, it would reach the saturation mode, thereby limiting the current independently

of VDS. Since Icell in Eq. (4.1) does not su˙er a signi˝cant decrease in either case, we

can conclude that the evaluation time TEVA in a multi-page read is similar to that in

a regular read, o˙ering comparable read speeds.

Additionally, the multi-page read method can be applied to improve several ap-

plications of ˛ash memories as we will discuss in Section 4.3.2.

4.3.2 Applications for Multi-page Read

ICI Equalization

The ISPP programming algorithm can compensate for the inter-cell interference

caused by previously programmed wordlines, but not for the interference of subsequent

59

write operations. Since wordlines are programmed in sequential order, most of the

ICI su˙ered by a speci˝c wordline is caused by the direct-above-neighbor. Extensive

measurements have shown that the change in threshold voltage su˙ered by the victim

cell is proportional to the threshold voltage of the aggressor cell, with a proportionally

factor γ that depends on the parasitic capacitance between the aggressor cell and the

victim cell.

The neighbor-cell assisted error correction (NAC) algorithm was proposed in [59]

to equalize ICI. The NAC method ˝rst performs one read of the aggressor wordline

and classi˝es the cells in the victim wordline as su˙ering weak or strong ICI depending

on the value programmed in their direct above neighbor. Then, it reads the victim

wordline with di˙erent thresholds, selectively chosing which result to keep for each

cell. It e˙ectively reads cells su˙ering strong ICI with a di˙erent threshold as those

su˙ering weak ICI, thereby reducing the probability of error. However, this algo-

rithm requires reading the aggressor wordline and thus reduces the read speed. We

propose to use the multi-page read method to read the victim and aggressor wordlines

simultaneously.

If we set a read threshold lvictim on the desired wordline and an intermediate

threshold laggressor on its neighbor, while the rest are set to Vpass, only bitlines which

ful˝l both conditions would conduct. This way we can use a single multi-page read to

detect the cells which have voltage below lvictim and are su˙ering weak ICI. Combining

these multi-page reads allows us to obtain similar results to the NAC algorithm.

For example: In MLC memories, each cell can be programmed to four di˙erent

levels, denoted S0, S1, S2, and S3. According to the su˙ered ICI, we further classify

Sweak , Sstrong , Sweak , Sstrongthem into 8 states: . . ., as Fig. 4.5 shows. The read0 0 1 1

thresholds for weak ICI cells are A1, B1, C1 and for strong ICI cells A2, B2, C2. The

six proposed reads are listed in Table 4.1.

To classify the cells into S0, S1, S2 and S3, we combine the results of the six

threshold comparisons. State Si (i = 0, 1, 2, 3) can be represented as (Si
weak OR

Sstrong can be found from the ˝rst three reads and Sstrong
i), where Si

weak
i can be found

\ __ I

---11

---11

---11

---11

60

A1 A2 B2B1 C1 C2

weak ICI strong ICI

S0
weak S0

strong S1
weakS1

strongS2
weak

S2
strong S3

weak
S3

strong

t

Figure 4.5.: Illustration of multi-page read method for MLC ICI equalization. The

curves represent histograms of threshold voltages across a page and vertical lines

represent read thresholds.

Vpass

lvictim

laggressor

Vpass

Bit-line

lvictim laggressor

Read_1 A1 t

Read_2 B1 t

Read_3 C1 t

Read_4 A2 Vpass

Read_5 B2 Vpass

Read_6 C2 Vpass

Figure 4.6 & Table 4.1: Bitline illustration & Multi-page reads for MLC ICI

equalization.

from the last three reads after eliminating weak ICI cells. For example, we classify

a cell as S1 i˙ {Read_1=0 and Read_2=1} OR {Read_4=0 and Read_5=1 and

Read_3=0}.

61

This strategy brings slightly more error between S2 and S3 than NAC, which

performs an additional read on the aggressor wordline. In order to reduce this error

C2 is slightly shifted, as shown in Fig. 4.5. However, the error is minor and this

strategy will save one read. Moreover, when ICI from the nearest neighbor is large,

this method provides lower BER than any other with reads on a single page ever

could.

Fig. 4.7 compares the channel capacity of a regular scheme using six reads to

produce soft information [63] with NAC and the multi-page read method for MLC

˛ash memories. It is assumed that S0, S1, S2, S3 are Gaussian distributed [13] with

the same variance σ = 0.15 and means 0, 1, 2, 3, respectively. The read thresholds

for all three methods were numerically optimized to maximize the resulting capacity.

The results show that as γ increases, the NAC and multi-page read method provide

signi˝cantly better performance. In fact, when ICI dominates over the Gaussian

noise, the proposed method would always provide higher capacity than reading the

desired page alone, regardless of how many reads the latter employs. This is due to

the fact that the multi-page read method provides some amount of equalization for

the channel. The ˝gure also shows that the performance of multi-page read is very

close to that for the NAC method despite it requires one less read operation.

Partial Erase

The erase operation consists of sending a series of voltage pulses into the gates of

all the cells in a block, until all the ˛oating gates have been discharged [64]. All cells

in the block su˙er the same pulses, despite some can be "fast erased" and others need

more negative pulses [65]. These pulses damage the dielectric barrier in the cells,

increasing BER and shortening their lifetime. This subsection shows how to apply

the multi-page read method to reduce the number of erase pulses sent, so that this

damage can be reduced and the erase operation can be accelerated.

I:..:.: _-•- I ~__J

62

γ (ICI coeffiecient)
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

ch
an

n
el

 c
ap

ac
it

y

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

Multi-page 6 reads
NAC 7 reads
Regular 6 reads

Figure 4.7.: Channel capacity for an MLC cell after 6 traditional reads, 6 multi-page

reads, and NAC with 7 reads.

Flash memories generally use a log-structured ˝le system, with a background

garbage collection process that keeps a pool of erased blocks ready to be written [66].

As new information arrives, the controller writes it in these blocks, ˝lling one before

moving on to the next.

Unlike the traditional erase algorithm, which continues issuing pulses until the

whole block is totally erased, we propose a partial-erase option where fewer pulses

are sent and a small number of cells remain incompletely erased. By reading all the

wordlines simultaneously with a very low read threshold, the controller can detect

which bitlines have cells that have not been completely erased, and store their indices

as part of the block's metadata. The controller may then chose to skip those bitlines

during the writing process, use a constraint code to mask the errors [52], or ignore

this information and rely on the ECC block to correct any errors that might arise.

Similar ideas can also be applied to worn-out ˛ash memories. Although it is

common to assume a uniform wear among all the cells, not all of them present the

same level of tolerance towards program-erase (P/E) cycles. This makes the reuse

63

of worn-out blocks meaningful. Lab collected data shows that erase errors, which

typically trigger the permanent retirement of a block, are caused by a few broken

cells that remain unerased, but most of the other cells are healthy. By setting all

wordlines to a small read threshold, we can detect which bitlines have broken cells

and skip them in subsequent writes.

Unfortunately, the multi-page read step may slow down the erase operation. The

gap between the read and threshold voltages could be relatively small for many cells

along the bitline, thereby limiting the current and extending the evaluation time.

However, the read step still takes much less time than sending the erase pulses.

According to [67], the erase operation for one block takes about 500µs while the read

operation takes only several nanoseconds. So the latency brought by the multi-page

read step is negligible in the partial erase operation.

WOM Codes

WOM (Write-Once-Memory) codes were designed for memories where bits can

change in one direction (e.g. , 0 to 1) but not the other [2,68], and they have recently

been proposed to allow multiple overwrites of a ˛ash page without erasing [69]. A

simple example of a WOM code is shown in Fig. 4.8. This example is using three

SLC (binary value) cells to write two bits twice. Initially, all three cells are erased

(state 000). The ˝rst two bits are written by transitioning to one of the states in the

˝rst generation, according to the labels shown in the plot. The second pair of bits, if

di˙erent from the ˝rst, is written by transitioning to one of the states in the second

generation. All transitions involve charging, not erasing, the cells so they are feasible.

However, WOM codes present some practical limitations that prevent their adop-

tion by the ˛ash memory industry: they signi˝cantly reduce the capacity and speed

of the memory. The example shown in Fig. 4.8 provides two bits of information for

every three cells read, so page length and read throughput are 33% lower than with

a traditional scheme.

64

In order to address these challenges, we propose aligning the WOM codewords

vertically, across wordlines, instead of storing the whole codeword on the same page.

The multi-page read allows us to rapidly compute the OR operation of multiple

wordlines, accelerating the decoding. Observe that, denoting the state of the cells

by b1b2b3, the two bits in the ˝rst generation are given by "b2 OR b3 " and "b1 OR

b3", respectively. A single multi-page read of the last two wordlines would provide

the ˝rst information bit and a single multi-page read of the ˝rst and third wordlines

the second information bit, as shown in Fig. 4.9. Each multi-page read provides a

sequence of information bits of the same length as a page, so the read throughput is

the same as in the traditional scheme.

Unfortunately, a similar idea cannot be applied to the second generation of writes.

Some codewords may still be in ˝rst generation states so it is necessary to read all

three pages individually to obtain two pages of information. This yields the same

rate as the regular WOM scheme, which performs one read to obtain 2
3 of a page of

information.

On average, for the example shown in Fig. 4.8, the proposed scheme with multi-

page reads would provide an information rate of 0.8 (4 pages of information after

5 reads), which is a signi˝cant improvement over the 0.66 rate shown by the usual

WOM scheme. Similar approaches might be possible for more advanced WOM codes.

Other Applications

The multi-page read provides a way of obtaining the bit-wise OR (or bit-wise

AND, if the discharged state is denoted by 1) of the information stored in multiple

wordlines using a single read operation3 . There are multiple applications that could

bene˝t from such feature: group testing, masking, constrained codes, hash lookups,

etc. Instead of reading multiple pages and storing them in registers to perform these

3 For MLC memories, ˝nding the OR of an MSB page would require two multi-read threshold com-
parisons, just like in a traditional MSB read.

-

-{

65

000

001

011

010

100

101

111

110

00

11
01

10

11

10

00

01

1st
generation

2nd
generation

Figure 4.8.: The WOM code on the cube.

0

1

0

1

0

0

0

0

0

0

0

1

Read 2

Read 1

decode: 10 01 00 11

.......

.......

.......

Figure 4.9.: Multi-page read to decode WOM code.

operations, the multi-page read allows us to obtain the result in a fraction of the time

by performing a single read.

4.4 Spreading Modulation for NAND Flash Memories

This section will explain a new signal processing approach: the spreading modu-

lation. This section is organized as follows: Subsection 4.4.1 introduces the system

model used in the rest of the chapter. Subsection 4.4.2 explains the spreading data

representation approach, analyzing its performance under di˙erent types of noise,

and Section 4.4.3 provides guidelines on how to adjust the spreading parameter. Sec-

66

tions 4.4.4 and 4.4.5 respectively show how the spreading approach can be used to

generate soft information and to hide data in the memory. Finally, Section 4.4.6

presents simulation results to validate the method.

4.4.1 System Model

In order to better illustrate the features of the proposed scheme, this thesis will

consider multiple scenarios with di˙erent noise distributions and memory types. From

a high level perspective, it will be assumed that in a write operation the host provides

a vector of (possibly encoded) information symbols b ∈ X M from an alphabet X ,

which are then mapped to a vector of voltages v0 to be programmed on the cells.

By the time that the cells are read, the voltages v0 will have su˙ered some amount

of white Gaussian noise [13, 70], denoted nw , as well as inter-cell interference (ICI),

denoted nICI . Therefore, the voltage actually stored in the cells at read time is

0 w ICI v = v + n, n = n + n . (4.4)

The noise due to leakage is also assumed to be Gaussian and is therefore absorbed

into the nw term.

ICI occurs when a shift in the threshold voltage of one cell changes the threshold

voltage of its neighbors due to the parasitic capacitance between cells, known as

�˛oating-gate interference" [50]. Extensive measurements have shown that the change

in threshold voltage su˙ered by the victim cell is proportional to the threshold voltage

of the aggressor cell, with a proportionality factor that depends on the parasitic

capacitance between the aggressor cell and the victim cell. This factor is commonly

known as coupling ratio and will be denoted by γ. Hence,

ICI n = γvaggressor. (4.5)

With the usual data representation scheme, each symbol b is mapped to a ˝xed

nominal voltage v0 . So, for the sake of simplicity, it will be assumed that they both

share the same alphabet X and b = v0 . In SLC memories these symbols are binary,

67

in MLC they can take four values (representing two bits of information), in TLC they

take 8 values (3 bits), etc. In general, the number of levels is chosen to be as large as

possible while still avoiding potential overlap between the levels and excessive damage

when programming the largest voltage, denoted Vmax.

Damage to ˛ash memory cells is caused by program/erase (P/E) cycling. Ac-

cording to [14] and the experimental results presented in Section 4.4.6, the damage

su˙ered by a cell when programmed to a voltage Vth is approximately proportional to

V 2 Most of the damage happens when cells are programmed to the largest voltage th.

Vmax, so writing data patterns that are represented by a lower threshold voltage could

prolong the lifetime of the ˛ash [14, 53].

The proposed data representation scheme will use a linear mapping between the

symbols b and the nominal voltages v0 , to be described in the next section. This

mapping will extend the number of possible voltages to be programmed, but also

reduce the number of cells programmed to Vmax, attenuate the ICI, and increase

robustness to impulse noise. This will result in increased capacity and extended

lifetime for the memory.

In practice, the discharged state in which the cells are left after being erased sets a

lower limit for the range of programmable voltages and the write procedure can only

push the cells towards higher voltages. Thus it is not possible to program NAND

˛ash cells with a negative voltage. However, for our derivations it will be useful to

assume that the range of programmable voltages is symmetric and the voltages v0

and symbols b can take both positive and negative values. SLC cells will therefore

have their voltage levels relabeled as −0.5 and +0.5, while MLC cells will be assumed

to take voltage levels −1.5, −0.5, 0.5, and 1.5. In general, if there are 2S symbols

in the alphabet X , they will be labeled as X = {±0.5, ±1.5, . . . , ±(S − 0.5)}. The

largest symbol in the alphabet will be denoted by Vmax = S − 0.5. This represents a

simple shift of the physical reference system. The rest of the chapter assumes that

the symbols bi and voltages vi
0 have zero mean.

-

68

4.4.2 The Spreading Approach

This section introduces the spreading modulation and then analyzes its perfor-

mance against three types of noise: Gaussian, ICI, and impulse noise. We ˝rst study

the trade-o˙ between damage and Gaussian noise. The SNR can be increased by

widening the range of programmed voltages, but doing so increases the damage suf-

fered by the cells. Then we study how the proposed modulation can attenuate ICI

0

and impulse noise, respectively.

In a traditional ˛ash memory, each cell stores a ˝xed number of bits. There is usu-

ally some redundant bits introduced by the ECC or RAID schemes but, ultimately,

each bit is stored in a speci˝c cell. Cells have a ˝xed number of voltage levels to which

they can be programmed and all the levels are written with the same frequency. This

section proposes a new data representation scheme which uses orthogonal codes to

spread each bit across multiple cells, similar to DS-CDMA transmission in wireless

communications. This data representation scheme reduces the variability of the volt-

ages being programmed in the cells, resulting in improved endurance and additional

robustness towards impulse noise and ICI.

i , the proposed scheme usesInstead of mapping each symbol bi to a ˝xed voltage v

a matrix with orthogonal columns C (e.g., a Walsh matrix) to map the symbols b into

voltages v0 to be programmed. For example, when mapping four symbols b ∈ X 4

into four cells, the voltages to be programmed are: ⎡ ⎢⎢⎢⎢⎢⎢⎣
0
1

0
2

0
3

0
4

⎤ ⎥⎥⎥⎥⎥⎥⎦ =
k
4
·

⎡ ⎢⎢⎢⎢⎢⎢⎣
1 1 1 1

1 −1 1 −1

1 1 −1 −1

⎤ ⎥⎥⎥⎥⎥⎥⎦ ·
⎡ ⎢⎢⎢⎢⎢⎢⎣

b1

b2

b3

⎤ ⎥⎥⎥⎥⎥⎥⎦ ,
v

v

v

1 −1 −1 1 b4v

where k is an adjustable parameter that controls the range of voltages being pro-

grammed. By scaling k, we can introduce more separation between the programmed

69

voltage levels, but the damage su˙ered by the cells and the power consumed would

also increase. In general, when M symbols are to be programmed into N ≥ M cells,

v 0 =
k
Cb, (4.6)

M

where C is a {−1, 1}N×M matrix with orthogonal columns and kVmax is the maximum

voltage to be programmed (remember that v0 are not the programmed voltages, but

shifted versions of them). By scaling k, we can introduce more separation between

the programmed voltage levels, but the noise is not a˙ected by this scaling. We will

refer to this operation as spreading.

By spreading each information symbol across multiple cells, we increase the num-

ber of possible programmed voltages in each cell, so symbols and nominal volt-

ages no longer share the same alphabet. For example, in the SLC case where

bi ∈ {−0.5, 0.5} and M = N = 4, our scheme would have ˝ve possible levels for each

cell: v0 ∈ {−0.5k, −0.25k, 0, 0.25k, 0.5k}. In general, if Vmax is the largest symbol ini

the alphabet X , the voltage levels after spreading are in the range [−kVmax, kVmax].

When the read operation is performed, the voltages are multiplied by a de-

spreading matrix CT , which is the left inverse of the spreading matrix. Because

of the properties of Walsh sequences, the de-spreading matrix is the transpose of the

spreading matrix. Continuing with the previous example, when N = M = 4 ⎡ ⎢⎢⎢⎢⎢⎢⎣
b̂
1

b̂
2

b̂
3

⎤ ⎥⎥⎥⎥⎥⎥⎦ =
1
k
·

⎡ ⎢⎢⎢⎢⎢⎢⎣
1 1 1 1

1 −1 1 −1

1 1 −1 −1

⎤ ⎥⎥⎥⎥⎥⎥⎦ ·
⎡ ⎢⎢⎢⎢⎢⎢⎣

v1

v2

v3

⎤ ⎥⎥⎥⎥⎥⎥⎦ ,
b̂
4 1 −1 −1 1 v4

where b̂
i, i = 1, 2, 3, 4 represent the information estimates after reading. In general,

Mˆ CTb = v, (4.7)
Nk

The processes of spreading and de-spreading discussed above are shown in Fig. 4.10.

b 6

70

Spreading
Flash
Write/Read

De-spreading
V

0 V

Figure 4.10.: Illustration of the spreading approach.

Combining Eqs. (4.4), (4.6), and (4.7), the estimated information symbols can be

represented as:

The noise can be arbitrarily attenuated by decreasing , but that involves sac-

NXM
b̂
i = bi + ±nj ,

Nk
i = 1, 2, . . . , M. (4.8)

j=1

M
Nk

ri˝cing capacity by decreasing M
N or using a wider range of programmed voltages by

increasing k. Since most practical applications are not willing to compromise capac-

ity, the rest of the chapter assumes M = N , which means that the storage space is

the same as in the regular scheme.

Gaussian Noise and Damage

For ˝xed voltage range (k = 1) and signal-independent Gaussian noise, spreading

actually decreases the signal-to-noise ratio (SNR) at read time. Assuming indepen-

dent and identically distributed noise components ni ∼ N (0, σ2) [70], the SNR of the

regular and spreading schemes are:

Ps Ps
SNRregular = SNRspread = , (4.9)

σ2 N σ2
k2

where Ps = E[b2
i] represents the power of the stored symbols. It is easy to increase

SNRspread when needed by increasing the scaling constant k, but doing so widens

the range of programmed voltages and thus causes more damage and consumes more

power. This subsection studies such tradeo˙.

One of the advantages of the spreading scheme is that it reduces the probability of

programming the maximum voltage as shown in Fig. 4.11, thus reducing the damage

to the ˛ash memory. The amount of damage su˙ered by the memory is approximately

71

proportional to the square of the voltage programmed. As mentioned in Section 4.4.1,

cell voltages must be non-negative so in practice they are shifted to bi + Vmax in

the regular scheme and to vi
0 + kVmax in the spreading scheme when E[bi] = 0 and

E[vi
0] = 0. Denote Tspread and Tregular the damage with the spreading and the regular

scheme, respectively. Then,

� �
Tregular = a · E (bi + Vmax)

2

= a(E[b2] + V 2),i max � �
0Tspread = a · E (vi + kVmax)

2 � �
k2

= a E[bi
2] + k2V 2 , (4.10)

N max

for some constant a. For k = 1 (i.e., both schemes have identical programming

range), spreading causes less damage than the regular scheme but it lowers the SNR.
√

For k = N both schemes have the same SNR, but spreading causes more damage.

Section 4.4.3 will elaborate how to choose an optimal k in between.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

1

2

3
 regular scheme

programmed voltage

pe
rc

en
ta

ge

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

1

2

3
 spreading scheme

programmed voltage

pe
rc

en
ta

ge

Figure 4.11.: Distribution of cell voltages for both modulation schemes when

M=N=4, k=1, σ = 0.1, γ = 0.2. Spreading leads to a distribution with less variance.

72

Inter-cell Interference

The previous section showed that when the noise is independent from the voltages

being programmed, our spreading scheme does not provide any improvement in terms
√

of BER unless k ≥ N . However, the main source of noise in new memory generations

is ICI, which is proportional to the voltages being programmed in the cells.

In most memories, ˛ash cells are organized in an array structure, where all the

cells in a wordline are programmed simultaneously and wordlines are programmed

in increasing order. The ISPP [58] algorithm used to program wordlines can com-

pensate for the inter-cell interference caused by previously programmed wordlines,

but not for the interference of subsequent program operations. Hence, most of the

ICI su˙ered by a speci˝c cell is caused by the direct-neighbor. This will be the only

ICI component considered in our analysis, but the simulations in Section 4.4.6 will

include 3 neighbors.

ICI wAssuming n � n and M = N , Eq. (4.8) becomes

NX1ˆ = bi + ±n ICI , i = 1, 2, . . . , M, bi
k j

j=1

ICI ICIwhere n is proportional to the programmed voltages. According to Eq. (4.5), n

can be represented as:

NXkγ
n ICI = ±bj .

N
j=1

So the estimated symbol can be represented as b̂
i = bi +Δbspread, where

N2Xγ
Δbspread = ±bj .

N
j=1

If the distance between the symbols is d, errors happen only when Δbspread ≥ d
2 . The

distribution of Δbspread is approximately N (0, γ2E[b2
i]) when N is large according to

73

the Central Limit Theorem. Then the probability of error for non-extreme symbols4

is approximately !
−d

P spread
e ≈ 2φ p , (4.11)

2γ E[b2
i] R 2

u − y
√1where φ(u) = e 2 dy. Note that in Eq. (4.11), the scaling parameter k has−∞ 2π

no e˙ect on ICI.

In the regular scheme, the estimated symbol is:

b̂
i = bi + γbj ,

with probability of error for non-extreme symbols � �
d

P regular = P |bj | > . (4.12)e 2γ

The main advantages of the proposed spreading scheme comes from the fact that

it leads to less variance in the programmed voltages than the regular scheme, as shown

in Fig. 4.11. As γ increases, the regular scheme introduces much more probability of

error than our spreading scheme. For example, if γ = 0.35 and X = {±0.5, ±1.5}

then d = 1 and for MLC memories

P regular P spread' 0.25 ' 0.2, (4.13)e(MLC) e(MLC)

for intermediate (non-extreme) symbols when Gaussian noise is negligible according

to Eq. (4.12) and Eq. (4.11). The lowest and highest symbol would su˙er half as

much probability of error in both cases.

As γ increases, Pe
spread increases slower than Pe

regular. So, when γ is large enough,

the spreading scheme has a better performance. It is also important to take into

account that the grouping of cells into spreading blocks must be done carefully. If the

same cells, say 1−4, were taken as a spreading block in two consecutive wordlines, the

ICI would have the form of a scaled codeword, and would therefore not be attenuated

by the de-spreading.

4 Non-extreme symbols refer to the symbols which are not programmed to the highest or lowest
voltage levels.

74

Impulse Noise

Another important advantage of the spreading approach lies on its increased ro-

bustness to impulse noise. Flash memories are currently being used in a wide variety

of environments. In most of them they compete with HDD and DRAM but there

are some cases in which ˛ash is the only viable option. One of those cases are satel-

lite applications. Hard drives have moving parts, and need a certain air pressure

for the head to ˛y appropriately. DRAM memories are volatile and require frequent

refreshing to avoid losing the information. Flash memories, however, are perfect for

satellite applications. Their lack of moving parts makes them very compact and shock

resistant, and they can be powered o˙ for extended periods of time without losing

information.

Satellites su˙er a signi˝cant amount of radiation, constituting one of the leading

causes of electrical component failures [71]. A high energy particle impacting on

a NAND ˛ash cell usually causes what is known as a stuck-at defect [52]. The

cell e˙ectively breaks and will henceforth be read as storing the same voltage value,

regardless of what it was meant to be programmed to. In the regular scheme, any

bit written to that cell will most likely be lost. The scheme proposed in this chapter,

on the other hand, spreads each bit across multiple cells, and has a chance to recover

the bit even if one of the cells is stuck at a given value.

Broken cells can usually be identi˝ed before they are read. The ISPP programming

mechanism checks the cell voltages after sending each pulse and, when the controller

detects that the cell voltage has not changed after having sent multiple pulses, the cell

is marked as broken. If this were known before the programming started, we could

just ignore that cell altogether and not store anything in it. Unfortunately, if the

broken cell is detected during programming, it is too late to stop the programming

of the other cells in the page.

Let p denote the probability of a cell breaking. We assume that the controller

knows which cells are broken, and can therefore assign them an arbitrary voltage at

75

read time, independently from the actual state they are in. In order to minimize the

resulting noise, broken cells will be read as having a voltage of 0, the average voltage

stored by a healthy cell.

Equation (4.6) shows that the nominal voltage programmed in the i-th cell is

0 T Tvi = ci b, where ci represents the i-th row of the spreading matrix C. If the i-th

cell is broken, the controller interprets vi = 0, which is equivalent to replacing i-th

column of the de-spreading matrix by zeros when the read operation is performed.

Denote by Ĉ the matrix C with the i-th row replaced by zeros, the estimated data

symbols can then be represented as:

1ˆ Ĉ Tb = · · C · b

=

N

1
N

⎡ ⎢⎢⎢⎢⎢⎢⎣
N − 1 ±1 · · · ±1

±1 N − 1 · · · ±1
.

⎡ ⎢⎢⎢⎢⎢⎢⎣

⎤ ⎥⎥⎥⎥⎥⎥⎦
b1

b2

. . .

⎤ ⎥⎥⎥⎥⎥⎥⎦ ,
±1 ±1 · · · N − 1 bN

where all the noise except impulse noise has been neglected. In other words, the

estimated information symbol b̂
i can be represented as:

N − 1 1
b̂i =

X
N

bi +
N

j 6=i

±bj i = 1, 2, . . . , N,

where the signs of the error terms depend on the spreading matrix and the signs of

the di˙erent bits.

In SLC ˛ash memories, an error will occur if the sign of b̂
i is di˙erent from the

sign of bi. This can only happen if the signs of the other bits align just right so

that the N − 1 error terms cancel out the correct N
N
−1 contribution. It happens with

probability
2N

1
−1 . Moreover, even when the signs align just right to give b̂

i = 0, we

still have a 50% chance of guessing the sign correctly. So the probability of error due

to broken cells is
2
N
N p(1 − p)N−1 + O(p2).

However, for the regular scheme, whatever bits were stored in the broken cells are

completely lost. The ECC will have to recover them if possible. If a cell is broken,

⎪⎪
⎪⎪

76

it has a
2
1 chance of storing the correct value, so the probability of error is p for the

2

regular scheme, which is much larger than with the spreading scheme.

In MLC ˛ash memories, however, our scheme no longer o˙ers advantages towards

impulse noise. Since there are more programming voltage levels, the error terms may

play a more important role because it may contain some large voltage levels. But

space applications generally use SLC memories because they are more reliable than

MLC.

4.4.3 Choice of Spreading Parameter

Increasing k can improve SNR through noise attenuation, but the range of pro-

grammed voltages becomes wider. It was shown in Fig. 4.11 that the probability of

programming a very large or small voltage with the spreading scheme is very low, so

it could be helpful to increase k and then crop those extremes. If the gains in terms

of noise attenuation obtained by increasing k make up for the cropping noise, the

overall SNR will increase.

Instead of increasing k and then cropping the largest voltages, our scheme crops

both high and low voltages symmetrically, so as to minimize the cropping noise.

Assuming that the desired range of programmed voltages is [−Vmax, Vmax], the quan-

tization noise introduced by cropping is ⎧
0 ∈ [−Vmax0 if v , Vmax]⎪⎨ i

0 0−v + Vmax if v > Vmaxqi = ⎪⎩ i i

0 0−v − Vmax < −Vmax,if vi i

0 0where i = 1, 2, . . . , N and v is the i-th component of the programmed voltage vi

de˝ned in Eq.(4.6). The information symbols read can be represented as:

1 1ˆ CT CTb = b + n + q,
k k

where n is write noise and ICI noise as de˝ned in Eq.(4.4) and q = [q1, q2, . . . , qN]
T

is the quantization noise.

⎪⎪
⎪⎪

77

In other words, for each estimated information value b̂
i:

N NX X1 1
b̂
i = bi + ±(n ICI + n w) + ±qj .

k k
j=1 j=1

To minimize the overload distortion introduced by cropping, we hope to crop only the

largest and smallest voltages in our scheme, ±kVmax. These levels are programmed

with probability
L
2
N , where L is the number of possible voltage levels, hence qj can

be represented as: ⎧ ⎪ L
2
N±(k − 1)Vmax with probability⎨

qj = ⎩⎪ 0 with probability L
L

N

N
−2

The Gaussian noise, ICI, and quantization noise are uncorrelated, so the total noise

power PN can be found by a simple sum of the components PN = Pw + PICI + Pq,

where:

N
σ2Pw =

k2

= γ2E[b2PICI i]

2N(k − 1)2

Pq = V 2 . (4.14)
k2LN max

As k increases the write noise decreases but the quantization noise increases. There

is a trade-o˙ between quantization noise and write noise. As shown in Fig. 4.12, the

optimal k which minimizes the total noise power and consequently maximizes the

SNR is: � �
2N(k − 1)2 N

k? V 2 σ2 = arg min max + .
k k2LN k2

The scaling parameter k should not be too large, so that the range of the pro-

grammed voltage of the spreading approach is close to that of the regular scheme.

However, if k is small, the distance between any two adjacent levels will be reduced

or compressed. For some memories, it may be hard to control the small voltage

increments between the levels in the spreading scheme, specially if k is small. The

over-programming could introduce Gaussian noise, but the total power of this noise

78

1 1.1 1.2 1.3 1.4 1.5

0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

k (scaling parameter)

P
N
 (

p
o

w
er

 o
f

n
o

is
e)

Figure 4.12.: Quantization noise power as a function of k for a SLC ˛ash memory

with M=N=4, σ = 0.1, and γ = 0.2

would still be lower than that in the regular scheme, since the programming pulses

would also be smaller.

In addition to cropping, there are other ways to increase SNR and at the same time

maintain the same programming range: we can reassign the programmed voltages to

reduce the probability of error. That is, we can increase the distance between the

voltage levels with higher probability and decrease the distance between the voltage

levels with lower probability. This scheme is more complex than cropping and is

suitable for ˛ash memories with high computational capability. We will not discuss

it in detail in this chapter.

4.4.4 Obtaining Soft Input

There are two types of decoders in ˛ash: hard-decoders and soft-decoders. The

di˙erence between them lies in the input and output dictionary: Hard-decoders usu-

ally have the same input and output dictionary which is a ˝xed set of deterministic

79

symbols; Soft-decoders operate on log-likelihood ratios (LLR), specifying the proba-

bility of each input being a noisy version of each symbol. Soft-decoders can correct

more errors, but they require more reads and a more complex decoding algorithm.

Some ˛ash controllers use a hard-decoder when BER is low and switch to a soft one

when the former one fails [72].

In ˛ash memories, cells are read by comparing their voltage with a number of

reference thresholds. If a total of l reads have been performed on a page, each cell

can be classi˝ed as falling into one of the l +1 intervals between the read thresholds.

The problem of reliably storing information on the ˛ash is therefore equivalent to

the problem of error-free transmission over a Pulse amplitude modulation (PAM)

channel [63]. The channel inputs represent the levels to which the cells are written,

the outputs represent read intervals, and the channel transition probabilities specify

how likely it is for cells programmed to a speci˝c level to be found in each interval at

read time [55, 73].

When we perform the minimum required number of reads on a page, cells can

only be classi˝ed into the nominal symbols. However, if we perform additional reads,

we can achieve a ˝ner quantization of the cell voltages. It is then possible to assign

an LLR value to each of these voltage intervals. The LLR value associated with a

read interval r between level i and level j is de˝ned as LLRr = log(Pir/Pjr), where

Pab denotes the transition probability from a to b. A hard decoder takes a greedy

approach mapping each interval to the most possible nominal symbol and returning

the closest codeword. A soft decoder operates on the LLR values and uses those

probabilities to perform a maximum likelihood estimation of the codeword.

As mentioned in section 4.4.2, the spreading approach brings more possible pro-

gramming voltage levels and requires more reads to distinguish them. This results

in a ˝ner quantization of the cell voltages and provides soft inputs to the decoder.

This holds even if we reduce the number of reads to be the same as in the regular

scheme, since the de-spreading step will combine the read voltages increasing the to-

tal number of possible values. For example, conventional SLC memories use a single

0 C

It 1\
C . . . 0

80

read to classify the cells into two states. The channel with the regular scheme is then

equivalent to a Binary Symmetric Channel (BSC). In the spreading scheme, however,

a single read will still classify each cell into one of two states, but after de-spreading

with N = 4, each component can take ˝ve possible values. The channel observed by

each symbol is then equivalent to the PAM channel with ˝ve outputs illustrated in

Fig. 4.13. As an example, Table 4.2 shows the transition probabilities for Fig. 4.13

when write noise is Gaussian with variance σ = 0.3 and ICI parameter γ = 0.5. Soft

information plays an important role when noise is large and helps to minimize the

probability of error. In our numerical simulation with strong noise in SLC mentioned

above(i.e., write noise with σ = 0.3 and ICI noise with γ = 0.5), the regular scheme

causes probability of error 0.1043 and the spreading scheme causes probability of error

0.0893.

Fig. 4.14 shows the symmetric capacity (i.e., capacity under uniform distribution

of inputs) of the channel in the MLC case with write noise N (0, 0.12), as a function

of the ICI parameter γ. When the ICI is weak, the regular scheme (using 3 reads) has

higher capacity than the spreading one, even when the latter uses 12 reads. However,

the capacity of the regular scheme decreases rapidly when the ICI increases, falling

below the capacity of the spreading scheme, even when the latter uses 3 reads.

1 2

51 2 3 4

P25P24

P23

P21P15
P14

P13
P12

P11

P22

Figure 4.13.: PAM channel equivalent to SLC ˛ash read channel in spreading

scheme with M = N = 4.

..

.. , ,

..
................

..

81

Table 4.2.: Transition probabilities and LLR values for SLC cells.

Pij j = 1 j = 2 j = 3 j = 4 j = 5

i = 1 0.0555 0.2048 0.1784 0.0578 0.0041

i = 2 0.0040 0.0580 0.1786 0.2034 0.0555

LLRj 2.6301 1.2616 -0.0011 -1.2582 -2.6054

0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.8

1

1.2

1.4

1.6

1.8

2

γ (ICI parameter)

C
ap

ac
it

y
(u

n
if

o
rm

 in
p

u
ts

)

Usual scheme
Spreading (12 reads)
Spreading (3 reads)

Figure 4.14.: Comparison of the channel capacity of the spreading scheme and

regular scheme for MLC ˛ash.

4.4.5 Security

Section 4.4.2 has shown how spreading can be bene˝cial to reduce the probability

of error when ICI is large. This section will show that it can also be used to hide

information using a technique known as superposition coding [74]. This technique

has been widely used in Direct-sequence spread spectrum (DSSS) communications to

make spread-spectrum signals appear wide-band and noise-like, thus making them

hard to detect [75].

82

The key idea of hiding information using superposition coding is making the mod-

ulated hidden information look like additional noise. In this chapter, we are going

to use a long Pseudo noise (PN) sequence [76] to spread a single symbol of hidden

information over many cells. This will create a very long sequence of voltage com-

ponents, which will be added on top of the original information stored in ˛ash in

plain view. The spreading and de-spreading process are described as follows: Denote

the spreading sequence (PN sequence) by d ∈ {+1, −1}L and a hidden information

symbol by h. The voltage components for the hidden information can be represented

as

ve = εdh,

where ε is a (small) scaling parameter that controls the range of programmed voltages.

The combined voltage vc for the original and hidden information is:

v c = b + εdh + n,

where b is the vector of L plain view information symbols and n is the noise as de˝ned

in Eq. (4.4).

If the distribution of the combined voltage vc still looks similar to the original

information to any unauthorized reader, hence making it di°cult for them to notice

the existence of the hidden information. For example, as shown in Fig. (4.15), the

distribution of the combined voltage of the original symbols and hidden information is

still similar to the distribution of the original information when we choose the scaling

factor ε appropriately. To make the combined voltage as random as possible, we may

decrease ε so that the power of hidden information is reduced. However, small ε

also brings higher probability of error when decoding the hidden information because

write noise will play a comparatively larger in˛uence.

Two steps are required to decode the hidden information. The ˝rst step is sub-

tracting the original information. Assuming that we can recover the original infor-

83

mation with low probability of error, the voltage left after subtracting the original

information is approximately:

v s ≈ εdh + n.

The second step is de-spreading using d, the decoded hidden information symbol

is:
sdTvbh =
Lε

LX 1
= h + ± ni,

εL
i=1

where L is the length of the spreading sequence.

Assume the write noise to be Gaussian with variance σ2 , the SNR after the de-

spreading process is:
PsLε

2

SNRPN = , (4.15)
σ2

where Ps is the power of each hidden information symbol.

According to Eq. (4.15), another way to increase the accuracy of the recovered

hidden information is to increase the length of the spreading sequence L. As shown

in Fig. 4.16, P hidden is lower for the same P original e e (equivalently, for the same noise

variance) when the length of the spreading sequence L is larger; and vice versa.

However, as L increases, so does the number of cells required to store each hidden

information symbol for hidden information, thereby reducing the e˙ective capacity of

the memory.

In order to both increase the accuracy of the recovered hidden information and save

storage space, we may group several information symbols together. Grouping means

that we can write several information symbols in one group of cells using orthogonal

spreading sequences and decode them separately. For example, Fig. 4.16 shows that

choosing the spreading sequence length to be L = 32 and using two overlapping

orthogonal sequences has a better performance than the case with L = 16 and a

single sequence, despite both schemes use the same storage space.

Additionally, the spreading approach supports multiple access: di˙erent hidden

information sequences can be written at di˙erent times using orthogonal spreading

t , · : : ·a· •
t : : : u : l
L.. : : .J

84

sequences and without erasing the cells between writes. This can be achieved by

shifting ṽ up to be non-negative, so that each write only needs to introduce a small

voltage increment on the cells, and shifting the read voltages down before despreading.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

5%

 original information only

pe
rc

en
ta

ge

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

5%

 hidden infomation only

pe
rc

en
ta

ge

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

5%

 combined distribution

voltage

pe
rc

en
ta

ge

Figure 4.15.: Voltage distribution for a SLC cell with σ = 0.1, spreading factor

ε = 0.1 and length of spreading sequence L = 16.

4.4.6 Simulation Results

This section compares the proposed data representation scheme with the tradi-

tional one through simulations. It evaluates both of them in terms of BER and

damage caused to the memory. We simulate 10 memory blocks with 128 pages per

block and 8096 cells in each page. Each cell is assumed to su˙er ICI from 3 neighbors

in the next wordline, with ICI coe°cients (γy, γxy) = (0.08, 0.006), where γy is the

ICI coe˙cient for the direct neighbor (the one in the same bitline) and γxy is the

ICI coe°cient for the two diagonal ones [13, 77]. The write noise is assumed to be

wGaussian with zero mean and σ = 0.1, so n ∼ N (0, 0.12).

~

\

' ' ' ' ',,

------------------ ~~ ,,,, _____ ,_,_,_,_,_,_ ,_,_,_,_ ,_,_ ,

85

0 0.05 0.1 0.15 0.2 0.25
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

P
e
hidden

P
eo

ri
g

in
al

L=32(2 groups)
L=16
N=8

P originalFigure 4.16.: SLC cell with σ = 0.2. e represents the probability of error of

the decoded original information and Pe
hidden represents the probability of error of the

decoded hidden information.

First, we study how BER increases with ICI when M = N , so that the storage

e°ciency is the same as that in the regular scheme. Assume M = N = 4, k = 1.1,

and the voltages v0 are cropped to be in the range [−1.5, 1.5] for a MLC memory and

[−3.5, 3.5] for a TLC memory. The ˝rst two curves in Fig. 4.17 and Fig. 4.18 (no

redundancy) show the results for MLC and TLC, respectively. When ICI is small the

regular scheme performs better in both MLC and TLC cells, but when ICI increases,

the spreading scheme provides lower BER.

We also study the case when there is redundancy. We assume N = 4 and M = 3,

that is, spreading 3 symbols over 4 cells, so that the code rate is 75% in the spreading

scheme. In the regular scheme, we use (15, 11) Hamming code to encode the input

information so that the code rate is almost the same as that in the spreading scheme.

The last two curves in Fig. 4.17 and Fig. 4.18 show that the spreading scheme provides

lower BER as ICI increases.

-+-
·-•-·
.........
-■-

.. ,, ,

,

, ·
,t1'

/

.. , '
, ,,,,·

.... -

.....

■-­--

86

0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

γ
y
 (ICI coefficient)

P
e

P
e
spread(no redundancy)

P
e
regular(no redundancy)

P
e
spread(with redundancy)

P
e
regular(with redundancy)

Figure 4.17.: Evolution of the probability of error as ICI increases for an MLC mem-

ory (i.e., b ∈ {−1.5, −0.5, 0.5, 1.5}4), when k=1.1, σ = 0.1, (γy, γxy) = (0.08, 0.006),

and broken rate p = 0.001.

Then, we study the case when the impulse noise dominates the BER in SLC. In

order to focus on the impulse noise, both the Gaussian noise and ICI are assumed to

be small. The results without parity are given by the ˝rst two curves in Fig.4.19 (no

LDPC), showing that the BER with the traditional scheme is much larger than with

the spreading scheme. Additionally, we analyzed the performance when the spreading

modulation was combined with an LDPC encoding of the information. Speci˝cally, we

used the (64800,58320) LDPC code which is embedded in matlab R2015b. When the

write noise and ICI noise is negligible, the problem of writing and reading information

from a ˛ash memory with the traditional modulation is equivalent to transmission over

a binary erasure channel (BEC). The spreading scheme, on the other hand, spreads

out the noise caused by broken cells, e˙ectively transforming the BEC channel into a

binary input AWGN channel, which is better for soft decoding. Fig.4.19 shows that

the spreading scheme begins to fail at a larger p and has lower BER among the output

bits.

https://Fig.4.19
https://Fig.4.19

87

0.1 0.12 0.14 0.16 0.18 0.2 0.22
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

γ
y
 (ICI coefficient)

P
e

P
e
spread(no redundancy)

P
e
regular(no redundancy)

P
e
spread(with redundancy)

P
e
regular(with redundancy)

Figure 4.18.: Evolution of the probability of error as ICI increases for an TLC

memory (i.e., b ∈ {±3.5, ±2.5, ±1.5, ±0.5}4), when k=1.1, σ = 0.1, γy : γxy = 0.08 :

0.006, and broken rate p = 0.001.

Finally, we designed an experiment to evaluate how the voltage level to which

a cell is programmed in˛uences the damage that it su˙ers. Our preliminary results

showed that when memories are programmed with highly structured data (e.g. 50%

of the cells in a wordline written to the same level), they behave abnormally. Hence

we tried to use random data in our experiment, while still imposing enough structure

to observe di˙erent amount of damage in di˙erent cells. Four blocks in a 19nm MLC

˛ash were repeatedly erased and programmed with random data, generated according

to a di˙erent distribution for each cell. For example, some cells were programmed to

the highest level 90% of the time, while others only reached that level on 10% of the

PE cycles. After the wearing phase, each cell was programmed 100 more times with

uniform random data and a dwell time of 1 hour at a temperature of 60C between

writes. The information was read back before each new write, so as to obtain an

average BER (proxy for damage) at the end of the 100 writes.

-+-
·-•-·
' "V "

-■-

,_,• •-·- ·--·

88

0.045 0.05 0.055 0.06 0.065
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

p

P
e

P
e
spread(no LDPC)

P
e
regular(no LDPC)

P
e
spread(LDPC)

P
e
regular(LDPC)

Figure 4.19.: Evolution of BER as cell broken rate p increases for an SLC memory

(i.e., b ∈ {−0.5, 0.5}4), when M=N=4, k=1.1, σ = 0.1, ICI coe°cient γ = 0.1, the

impulse noise dominates the BER.

Once the cells had been worn (to a di˙erent number of PE cycles for each block)

and the BER data had been collected, we performed a least squares ˝t to the model

(1) (2) (3) (4)
BERi = α1P + α2P + α3P + α4P , i = 1, . . . , 108 ,i i i i

(j)
where Pi denotes the probability of programming the i-th cell to level j on each

cycle of the wearing phase. The coe°cients obtained for each of the four blocks, which

should be proportional to the damage caused by programming each level, are shown

in Fig. 4.20. Assuming that the voltage levels are equally spaced5 , a clear superlinear

behavior can be observed. A quadratic model was adopted for simplicity, yielding the

expression in Eq. (4.10) for the damage with each scheme (without loss of generality,

we assumed a = 1).

5 Unfortunately, we were not able to verify this fact from our memory manufacturer.

D ■
'

'

; ... ir.,,,,
---........ ------

·······················•V ''''''''''''''' ' '''''''''v ····

....

, ,,, ,,,,

..

89

1 2 3 4
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Level programmed

α

PE = 20000
PE = 15000
PE = 10000
PE = 5000

Figure 4.20.: Coe°cients modeling the damage su˙ered by a 19nm MLC cell when

programmed to each voltage level, for di˙erent numbers of PE cycles.

4.5 Summary

This chapter proposes two signal processing approaches to improve the reliabil-

ity of NAND ˛ash memories. The ˝rst one is called multi-page read method. This

method reads multiple wordlines together and returns a bitwise OR (or AND, de-

pending on notation) of their stored information. We show that this read method can

improve the reliability by equalizing ICI noise, reduce the damage caused by erase

operations, and accelerate the decoding of certain WOM codes. Furthermore, the

proposed read method provides a very fast way of operating on the data without

actually having to read it, so it is very likely that there exist other applications that

can be studied in future research.

We also propose a novel data representation scheme where Walsh codes are used

to store the information in a NAND ˛ash memory, so that M symbols are spread out

over N cells. We only discuss the case where M = N so that the storage e°ciency is

the same as that in the regular scheme in this chapter. However, we could have better

90

performance in the proposed scheme at the cost of more storage space when N > M .

By increasing the number of possible voltage levels in each cell, disregarding the fact

that these levels could overlap, the proposed scheme can provide signi˝cant gains in

terms of robustness towards inter-cell interference and impulse noise. Additionally,

higher levels are programmed less frequently, reducing the damage su˙ered by the

cells and thereby extending the endurance of the memory. We also show that this

spreading technique can be used to overlap a hidden layer of information on top of the

one stored in plain view. This chapter provides analytical expressions for the SNR

and BER of this spreading scheme under Gaussian noise, ICI, and impulse noise. Its

performance is then studied through simulations. In next chapter, we will extend

these signal processing approaches to a new emerging non-volatile memory, Resistive

RAM.

91

5. SIGNAL PROCESSING FOR CROSSPOINT RESISTIVE

MEMORIES

5.1 Introduction

Resistive RAM (ReRAM) has become a research hit in memory industry because

of its high density, fast access time and low power consumption. It uses memory

resistor (�memristors" in short) to store information. A memristor is a nonlinear

resistor whose value can be adjusted by pushing current across its terminals. An SLC

ReRAM cell has two states: high resistance state (HRS) and low resistance state

(LRS), while MLC cells may have other intermediate levels.

Memristors are implemented in the form of a metal oxide layer sandwiched be-

tween two metal electrodes. When a voltage is applied to a ReRAM cell, conductive

˝laments (CF) are either formed or ruptured depending on the voltage polarity. The

cell's resistance depends on the strength of the CFs and thus can be controlled by the

programming current. This feature makes multiple-level ReRAM cells possible.

There are two types of architectures for ReRAM memories: MOS-accessed and

crosspoint. In MOS-accessed architectures, each memristor is paired with a transistor

that isolates the cell from the rest of the array when it is not in use. This 1T1R (one

transistor one resistor) architecture provides superior isolation between neighboring

cells, power e°ciency, and access time, but the transistors dominate the cell size,

increasing the area and consequently the cost of the memory. Crosspoint architectures

employ diodes (1D1R) or no selector device at all (0T1R) instead of MOS transistors

to control cell access [20,78]. Crosspoint architectures for ReRAM o˙er higher density,

power e°ciency, and endurance than most other emerging memory technologies, but

they su˙er sneak currents that cause signi˝cant write and read noise.

92

Typically, writing or reading the information stored in a cell is done by biasing

the corresponding wordline with a given voltage, grounding the corresponding bitline,

and measuring the ˛ow of current coming out of the bitlines, as shown in Fig. 5.1.

Other wordlines and bitlines are partially biased with a smaller voltage, so as to

reduce the current through the unselected cells. Ideally, all the current would be

˛owing through the selected cell, but in practice there are some additional currents

˛owing through the some unselected cells, especially the cells in the same wordline

or bitline as biased (half-selected cells). These additional currents are called sneak

currents [20], as illustrated in Fig. 5.1.

The magnitude of the sneak currents increases dramatically with the size of the

memristor array. This is specially critical during programming: cells located far from

the driver can experience signi˝cantly di˙erent voltages depending on the state of

the other cells in the same bitline and wordline, low when they are all LRS and high

when they are HRS. If the voltage drop across the cells is too weak they do not get

programmed, but increasing the driver's voltage can cause undesired programming

of the cells closer to it. This voltage drop problem can be mitigated using dual-port

write as proposed in [79], but at the cost of doubling the area and power required for

the drivers.

Sneak currents are also a problem during read operations. The state of a cell

is read out by measuring the current leaving the selected bitline [78]. Large cur-

rents correspond to cells in the LRS and small currents to cells in the HRS.However,

sneak currents introduce noise in the measured currents and can cause errors in the

estimation of cell resistances.

The sneak current problem is even more severe in MLC memories, which use

intermediate resistance levels between LRS and HRS to store multiple bits in each

memristor. MLC memories have higher density but also lower noise margins than

SLC memories [80]. The scaling of the technology is causing the HRS resistance

to increase while the LRS resistance remains nearly constant, e˙ectively increasing

---- ------ -- ---,~ ~----
--t-- 1.-➔- ----- --- ---- --- --- ---- \

)

I I

I / I
I

I I
I I
I !
I I
I I
I I
I I I

/ I

I I

\ I
I

\
\ I '

93

sw

Vw1

Vw2

V
w3

Vw4

V
w5

Vw6

Vb6Vb5Vb4Vb3Vb2Vb1 0

Wordline

BitlineDesired

path

Sneak

path

Figure 5.1.: Illustration of sneak currents.

the noise margins and making room for additional levels1 . Consequently, MLC is

becoming the norm in the industry.

Several approaches have been proposed to deal with sneak currents in crosspoint

ReRAM arrays. At the device level, it is desirable to have the current through a

cell decrease superlinearly with the voltage across its terminals, so as to reduce the

sneak currents through half-selected cells. This non-linearity is achieved with special

materials or by including a selector in each cell [20]. There also exist methods which

perform additional reads to estimate the sneak current (often called background noise)

and then subtract it from the current obtained at read time [78]. A more precise

alternative is multistage reading, which performs three or more reads of the target

cell [80]. These methods can cancel the sneak current, but they sacri˝ce speed and

power e°ciency.

This chapter proposes and analyzes the potential of multiple signal processing

methods to ˝ght the sneak currents problem. The rest of this chapter is organized

as follows: Section 5.2 explains our model of sneak currents as a form of inter-cell

interference and states the assumptions that will be made throughout the chapter.

1 HRS can increase up to 16MΩ when the cell size shinks to 10nm [81].

94

Section 5.3 proposes the di˙erent techniques. Section 5.4 presents simulation results

to validate the methods. Finally, Section 5.5 summarizes the chapter. The results of

this chapter are published in [21].

5.2 System Model

Writes and reads of a MLC ReRAM memory can be done on a cell by cell basis

as shown in Fig. 5.1, multiple cells at a time, or even a entire wordline at a time

by grounding and sensing the current in all the bitlines. Experiments show that the

latter is more power e°cient than single cell operations [82], but it has signi˝cant

disadvantages in terms of area and reliability. This chapter assumes that multiple

cells are written and read at a time, but not necessarily the whole wordline.

A critical feature of crosspoint ReRAM architectures is the non-linearity of the

cells. That is, the current through a memristor decreases superlinearly as the volt-

age across its terminals is reduced. This relationship is captured in a non-linearity

coe°cient
R(V/p)

kr(p, V) = p × , (5.1)
R(V)

where R(V/p) and R(V) are the resistances of the cell biased at V/p and at V ,

respectively. If kr(p, V) is large, the resistance increases rapidly as the voltage drops.

For example, when kr(2, V) = 2000 the resistance of a half-biased cell is 1000 times

larger than that of a fully biased cell. Memristors have an inherent amount of non-

linearity, but it is not su°cient for typical array sizes [82]. The rest of the chapter

will assume that each memristor is paired with a dedicated selector to increase the

non-linearity coe°cient to kr(2, V) = 2000 [20].

The resistance of the highest and lowest levels are ˝xedby the device but there exist

multiple choices of intermediate resistance levels. An ISO − ΔR allocation spaces

the resistances linearly, resulting in low power consumption but long sensing latency.

An ISO − ΔI allocation spaces the currents (inverse resistances) linearly, increasing

noise and power consumption to facilitate read operations. The ISO − Δ log(R)

95

allocation provides a trade-o˙ between the previous two by spacing the resistances

geometrically [83].

There exist multiple read schemes, with di˙erent biasing for wordlines and bitlines.

The biasing voltages for selected and non-selected wordlines will be denoted by Vsw

and Vw, respectively. Selected bitlines will be assumed to be grounded and non-

selected bitlines will be biased to a voltage Vb. Two of the most popular biasings

are Vw = Vb = 0 (ground-ground) and Vw = Vb = Vsw/2 (half-biasing) [84]. The

former reduces the sneak currents but consumes a lot of power and causes signi˝cant

voltage drop in long wordlines [80]. Half biasing alleviates the voltage drop problem

and lowers power consumption but su˙ers stronger sneak currents. The rest of the

chapter assumes a half-biasing scheme for reading.

Reads are subject to two main sources of noise: sneak currents and voltage drop.

The estimated resistance Rc ij at crossing (i, j) can be represented as:
Rc ij = Rij + Zdrop − Zsneak, (5.2)

where Rij is the exact resistance, Zdrop is the error caused by the voltage drop along

the wordline, and Zsneak is the error caused by sneak currents ˛owing into the bitline

being read. The voltage drop noise is most prominent in bitlines far from the driver. It

reduces the measured current, hence increasing estimated resistance. Sneak currents,

on the other hand, are similar for all wordlines. They increase the measured current,

hence reducing the estimated resistance. The next subsections will develop simpli˝ed

models for both sources of noise.

5.2.1 Sneak Currents

With half-biasing, non-selected wordlines keep a nearly constant voltage of Vsw/2

throughout. Consequently, the sneak current ˛owing into a selected bitline depends

mostly on the resistances on that bitline. Ignoring the voltage drop results in the

circuit model shown in Fig. 5.2. Let Rij denote the resistance of the memristor

~

I

96

located on the i
th wordline and jth bitline of a n × n array, then the current measured

when reading cell (i, j) is

I
total

= Iij + I
sneak

, (5.3) ij ij

where
Vsw

I
sneak X Vsw

Iij = , = (5.4)
Rij

ij
kr · Rwj 1≤w≤n,w6=i

represent the desired and sneak currents, respectively. If the resistance is estimated

c Vsw
as the read voltage divided by the measured current, i.e. Rij = Itotal , then

ij

! 1
Rc ijs = Rij P Rij . (5.5)

1+ w6=i kr Rwj

The sneak currents shown in Eq. (5.4) can be understood as a form of inter-cell-

interference (ICI) between the cells in the same bitline. ICI has been extensively

studied for other types of memories, such as NAND Flash [13, 17, 49]. Section 5.3

shows how some of the existing methods for dealing with ICI in other technologies

can be used in ReRAM memories.

Vsw

R1j
Vsw/2

R2j
Vsw/2

Rij

Rnj
Vsw/2

Figure 5.2.: Circuit model for sneak currents in ReRAM.

i i

97

Ri1RiaRibRin

Rwire Rwire Rwire

Vsw

Rwire Rwire

Vsw/2Vsw/2Vsw/2Vsw/2

Figure 5.3.: Circuit model for voltage drop in ReRAM.

5.2.2 Voltage Drop

The second source of noise is the voltage drop along the selected wordline. Ignoring

the sneak currents through other wordlines results in the circuit model shown in

Fig. 5.3, where Rwire represents the resistance of the connection between adjacent

memristors on the same wordline. Denoting by Ii1,Ii2,...,Iin the currents leaving

the selected wordline i through each bitline, the voltage at the j-th cell is given by:

Vij = Vsw − Rwire · [1 2 3 ... j j ...j] ·

⎡ ⎢
⎢⎢⎢⎢
⎢⎣

Ii1

Ii2

. .

.

⎤ ⎥
⎥⎥⎥⎥
⎥⎦
. (5.6)

Iin

If all the currents are known, it is possible to cancel the voltage drop through equal-

Vij
ization: applying Ohm's law (Rij =) to Eq. (5.6) yields: Iij

R = diag(1/I) · (Vsw − Rwire · A · I),

where R and I are vectors of resistances and currents for the selected wordline and

Aij = min(i, j). However, in large arrays it is only possible to read a few bitlines at

a time. Otherwise, the power consumed becomes too large and the excessive voltage

drops introduce non-linear e˙ects.

98

VswIf the resistances are estimated as = then
Iij

Rvc
ij ' Rij

⎛ ⎜⎜⎜⎝

Rij

1 + Rwire [1 2 . . . j . . . j]

c
⎡ ⎢⎢⎢⎣

α1/Ri1

. . .

⎞ ⎟⎟⎟⎠
⎤ ⎥⎥⎥⎦ , (5.7)

αn/Rin

where α = 1/kr for half-biased bitlines and α = 1 otherwise. Once again, the voltage

drop can be understood as a form of Inter-cell-interference (ICI), this time between

the cells in the same wordline.

If both sneak currents and voltage drop are taken into account and resistance

Rij) = log(Rij) − logc
c ! Rijlevels are exponentially spaced, the estimated resistance can be approximated as:

X Rij
1 +

krRwj 6=i

log(
w

+ log

⎛ ⎜⎜⎜⎝
⎡ ⎢⎢⎢⎣

α1/Ri1

. . .

αn/Rin

⎞ ⎟⎟⎟⎠
⎤ ⎥⎥⎥⎦ . (5.8)1 + Rwire[1 2 . . . j . . . j]

5.3 Compensation for Sneak Currents

In ReRAM memories, information is modulated into cell resistances: SLC cells

take two resistance levels, storing one bit of information, and MLC cells take four

resistance levels, storing two bits of information. However, there is no inherent limi-

tation in the number of levels that a cell can take and it is relatively easy to program

other resistance levels with little write noise [83]. It is therefore possible to increase

the number of levels that the cells take and use the redundancy to improve the relia-

bility of the channel. This is commonly known as coded modulation.

Coded modulation can be used to reduce the number of errors in the memory

[85, 86] or to reduce ICI and other sources of noise [17, 51]. This section proposes

two techniques for reducing the voltage drop and sneak current noise: spreading

modulation and distribution shaping.

--
�

99

5.3.1 Spreading Modulation

Spreading modulation was proposed in [17] to reduce ICI in NAND ˛ash. This sec-

tion shows how the same method can be used to address the sneak currents in ReRAM,

with some additional advantages. The main idea is to use orthogonal spreading se-

quences to store multiple information symbols in the same cells without interfering,

similar to the Code Division Multiple Access (CDMA) method used in wireless com-

munications.

In its most general form, the spreading modulation uses a N ×M Walsh submatrix

(i.e., with ±1 entries and mutually orthogonal columns) denoted C to map a vector

of M data symbols b (assumed zero-mean) to a vector of N cell currents I, where

N ≥ M . The corresponding cells are then programmed to appropriate resistances so

that, when biased at Vsw, their currents are I. For example, when N = 4 and M = 3 ⎡ ⎢⎢⎢⎢⎢⎢⎣
I1

I2

I3

⎤ ⎥⎥⎥⎥⎥⎥⎦ = α ·

⎡ ⎢⎢⎢⎢⎢⎢⎣
1 1 1

−1 1 −1

1 −1 −1

⎤ ⎥⎥⎥⎥⎥⎥⎦ ·
⎡ ⎢⎢⎢⎣

b1

b2

⎤ ⎥⎥⎥⎦+ β

⎡ ⎢⎢⎢⎣
1
. . .

⎤ ⎥⎥⎥⎦ , (5.9)

b3 1
I4 −1 −1 1

where the scaling and shifting parameters α and β can be used to conform with the

feasible range of currents. In general, the modulation can be expressed as

Iwritten = αCb + β1,

and the demodulation (or despreading) as

1ˆ CTb =
�

Iread − β1 .
αN

The bene˝ts of this scheme are two-fold. First, it programs intermediate resistance

levels more often than extreme ones, thereby reducing the variance in the currents

through the cells. Sneak currents are then more predictable and it becomes simpler to

compensate for them, as shown in Fig. 5.4. Furthermore, the voltage drop problem

during programming is signi˝cantly alleviated by the reduction in number of LRS

100

cells. The second bene˝t is that each information symbol is spread over many cells,

so the information becomes less vulnerable to cell failures [17]. ReRAM cells do not

su˙er gradual drifts in their resistances, unlike Flash or PCM, but they are prone

to large magnitude errors caused by sudden transitions to their lowest or highest

resistance states [83].

−5 −4 −3 −2 −1 0 1 2 3 4 5

x 10
−6

0

1%

2%

3%

4%

5%

regular scheme

sneak current

pe
rc

en
ta

ge

−5 −4 −3 −2 −1 0 1 2 3 4 5

x 10
−6

0

1%

2%

3%

spreading scheme

sneak current

pe
rc

en
ta

ge

Figure 5.4.: Distribution of sneak currents centered at 0.

The spreading can also be done vertically, across cells on the same bitline. In this

case, sneak currents are automatically canceled during despreading for symmetric

spreading sequences, since sneak currents are nearly identical for all the cells in a

bitline. However, it requires reading multiple wordlines to recover the information.

Reading all N wordlines allows for recovering of all M information symbols, but it is

also possible to recover a single symbol using two reads. The ˝rst read activates the

wordlines corresponding to positive entries in the spreading sequence, and measures

the sum of their currents ˛owing down the bitline. The second read does the same

with the negative entries. Then, it is just a matter of subtracting both currents and

estimating the information symbol.

17- I

,
,I,'

T

, ,.
,

, ... ,

, , ,,
,_

101

5.3.2 Distribution Shaping

Another alternative for addressing the sneak current and voltage drop problems

without expanding the modulation is to shape the distribution of the programmed

levels to approach the channel capacity. The magnitude of the sneak currents and

voltage drops depend on the data written and the bitlines being read, as shown by

Eq. (5.8). Figure 5.5 illustrates this dependence for a 256 × 256 SLC ReRAM with

LRS = 103Ω, HRS = 106Ω. The mean shift and variance for the HRS remain almost

the same for all bitlines but for the LRS they both increase with the distance to the

drivers.

Large resistances cause smaller voltage drops and sneak currents on other positions

but they su˙er more noise themselves. The sneak current ˛owing into a wordline

is independent of the position within the array, but bitlines far from the drivers

su˙er and create stronger voltage drops. Intuitively, the distribution should favor

high resistances at bitlines far from the driver so as to reduce the noise in all other

positions, and use a balance distribution for the ˝rst bitlines since they barely su˙er

any voltage drop.

1 50 100 150 200 250
−2

−1.5

−1

−0.5

0

0.5

1

Bitline Number

M
ea

n
sh

ift

HRS
LRS

1 50 100 150 200 250
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Bitline Number

va
ria

nc
e

HRS
LRS

Figure 5.5.: Noise shift and variance for 256 × 256 SLC ReRAM with LRS = 103Ω,

HRS = 106Ω, Rwire = 1Ω, and kr = 2000.

--

102

The optimal distribution depends strongly on the array's characteristics and needs

to be found numerically for each case. Once the desired distribution has been found,

it is necessary to design an encoder and decoder tailored to that distribution. One

possible way of achieving this is to use a lossless data compressor as decoder and the

corresponding de-compressor as encoder. Iterative source/channel decoding can then

be used to correct errors [87].

5.4 Simulations

This section provides simulation results to validate the model proposed in Sec-

tion 5.2 and analyze the techniques proposed in Section 5.3. The simulations are

based on a system of linear equations for the cross-point ReRAM obtained from

Kirchho˙'s Current Law (KCL), which was shown in [82] to be highly accurate. Ex-

cept where stated otherwise, all simulations are for a 512x512 array with Rwire = 1Ω,

kr = 2000, and Vsw = 1. Resistance levels are (103 , 104 , 105 , 106) and reads are

done 16 cells at a time, evenly spaced along the wordline. For example, bitlines

1, 33, . . . , 481 are read simultaneously, as are bitlines 2, 34, . . . , 482.

First, we compare the resistance estimates predicted by the model in Eq. (5.8)

with those obtained from the simulations as Rc ij = Vsw . Figure 5.6 shows the average
Iij

di˙erence between both estimates, normalized by the exact resistance, for di˙erent

bitlines and resistance levels. It can be observed that the relative error is quite small,

specially for large resistances and bitlines far from the voltage drivers, which are the

most critical cases.

Figure 5.7 compares the BER observed with the spreading modulation scheme in

Eq. (5.9) with that of a typical MLC modulation concatenated with an error correcting

code of similar rate. For small arrays, both of them show negligible BER, but the

spreading modulation provides signi˝cantly lower error rates for arrays larger than

256 × 256. The spreading modulation requires multiple reads on di˙erent wordlines

' ' ' ' ' -

103

(four in this case, since the spreading is done vertically), but it also returns more data

so read throughput is not a˙ected.

A signi˝cant portion of the gains obtained by the spreading modulation technique

stem from the lower fraction of cells in LRS state. Figure 5.8 shows the capacity-

maximizing distribution of levels for each bitline, discretized to the closest percentage

point. It can be observed that, for the case under consideration, far bitlines should

reduce the frequency of LRS and use the other three levels with equal probability.

The information-theoretic capacity increases from 1.81 bits per cell when all four

levels are equiprobable to 1.96 bits per cell with the distribution in Fig. 5.8. The

attenuation of sneak currents and voltage drops more than compensates for the loss

in capacity due to the asymmetric input distribution.

0 64 128 192 256 320 384 448 512
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

bitline number

re
la

tiv
e

er
ro

r

R = 1 kΩ
R = 10 kΩ
R = 100 kΩ
R = 1 MΩ

Figure 5.6.: Relative error between the simulated resistance estimates and those

predicted by Eq. (5.8).

5.5 Summary

Crosspoint resistive memories are a very promising storage technology providing

high density, fast access time, and low power consumption. As the memristors scale,

the gap between the LRS and the HRS is becoming wider, so it can be expected

Ll

, ___ _
I

104

220 240 260 280 300 320 340 360
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

array size

B
E

R

P
e
regular

P
e
spreading

Figure 5.7.: Evolution of the BER as the array size grows. The regular scheme uses

a (15,11) Hamming code and the spreading modulation has N = 4, M = 3, so the

rate is approximately 75% for both.

0 100 200 300 400 500 600
12

14

16

18

20

22

24

26

28

30

bitline number

P
er

ce
n

ta
g

e

R=1kΩ
R=10kΩ
R=100kΩ
R=1MΩ

Figure 5.8.: Capacity-maximizing distribution of resistance levels per bitline. LRS

cells cause more noise, so they are chosen less often; the other levels are equiprobable

so their graphs overlap.

that most ReRAM memories will soon store multiple bits in each cell. Unfortunately,

resistive memories su˙er from voltage drops and sneak currents which limit the size

of the arrays. A lot of e˙ort is being put into increasing the non-linearity of the cells

105

through better materials and selectors, but there is little research available from the

perspective of signal processing.

This chapter proposed a simple analytical model for estimating the read noise and

two data representation techniques for reducing it. The ˝rst is a coded modulation

scheme which spreads each data symbol across multiple cells, reducing the variance in

the programmed resistances and thereby making noise more predictable. The second

scheme consists of shaping the distribution of programmed levels to reduce noise

levels. Both schemes were evaluated through simulations.

106

6. SUMMARY AND FUTURE WORK

In this thesis, we utilize signal processing approaches to solve problems in two storage

systems: caching networks and non-volatile memories. Algorithms are proposed to

improve the e°ciency of information delivery in networks and reliability in storage

hardware. Section 6.1 and Section 6.2 present a summary of our work and some

suggested directions for future research in each of these two systems.

6.1 Caching Networks

Caching has been investigated as a useful technique to reduce the network load by

prefetching some contents during o˙-peak hours. It contains two phases: placement

and delivery. In the placement phase, the users have access to the database ˝ll their

caches. In the delivery phase, each user requests one ˝le and only the server has

access to all ˝les. The server delivers messages to the users to ful˝l their requests.

Our work focuses on designing caching and delivery strategies for content delivery

networks bases on Maddah-Ali and Niesen's coded caching scheme [1].

We ˝rst propose coded caching algorithms for reducing the peak data rate in multi-

user multi-server systems with distributed storage and di˙erent levels of redundancy

in Chapter 2. The content delivery network is assumed to be ˛exible, in the sense

that there is a path from every server to every user. Files are encoded using erasure

codes and distributed among servers to ˝ght with disk failures. Some systems use

stripping across multiple servers, while others store whole ˝le as a single unit for

simplifying book-keeping. We propose algorithms for both cases in this thesis. It

shows that, by striping each ˝le across multiple servers, the peak rate can be reduced

proportionally to the number of servers. Then it addresses the case where each ˝le

107

is stored as a single unit in one server and proposes di˙erent caching and delivery

schemes depending on the size of the cache memories.

One possible direction for future work is extending our scheme to distributed

system with more advanced erasure codes. In Chapter 2, we developed RAID-4

codes and RAID-6 codes to combine coded caching and distributed storage. However,

more advanced erasure codes are used in real network systems. Therefore, it will

be interesting to study how this process can be generalized to larger systems and

more advanced erasure codes, such as fractional repetition codes [35, 36] or other

RAID-6 [39] structures. It is also interesting to study the case where ˝les have

di˙erent popularity. All the former work [3,88] has focused on the case where all data

nodes (disks, servers,. . .) have identical probability of failure and cost of recovery.

This makes sense for error correction applications but when the data consists of

˝les with di˙erent size or popularity, it would be useful to make some ˝les easier to

recover than others. Yet another interesting problem would be to ˝nd erasure codes

for systems where di˙erent nodes have di˙erent failure probabilities.

Our second contribution is study of the tra°c load-I/O trade-o˙ for coded caching

in Chapter 3. In this work, we study the caching and delivery scheme for the system

identical to [1]: users connect to a single server through a broadcast link. The I/O

performance for the coded caching scheme proposed by Maddah-Ali and Neisen [1]

is suboptimal when there are redundant requests. When the server constructs mes-

sages, the same segment could be read multiple times if it used to construct di˙erent

messages, which dramatically increases I/O reads. This thesis proposes caching and

delivery algorithms which combine coded and uncoded transmission to leverage the

trade-o˙ between tra°c load and disk I/Os. Our algorithms can improve both the

average and worst case performance in terms of the user requests. In the future, it

would be interesting to extend our work to study the tra°c load-I/O trade-o˙ with

coded prefetching.

108

6.2 Non-volatile Memories

Our research on non-volatile memories mainly focuses on improving hardware

reliability and endurance. In Chapter 4, we study NAND ˛ash memories. A NAND

˛ash memory is fundamentally an array of ˛oating gate transistors, known as ˛ash

cells, whose threshold voltages can be programmed to represent di˙erent information

symbols. In order to reduce the cost, manufacturers are trying to shrink the cell and

pack more bits in one cell, which brings reliability challenges, specially ICI noises. ICI

is a phenomenon by which programming a cell increases the voltage of its neighbors.

Two methods are proposed in this thesis to improve the reliability of NAND ˛ash:

multi-page read and spreading modulation. The multi-page read method reads mul-

tiple wordlines together and returns a combination of their stored information. It is

shown that this read method can improve the reliability of the stored information by

equalizing ICI noise, reduce the damage caused by erase operations, and accelerate

the decoding of certain constrained codes. The spreading modulation spreads stored

information across multiple cells using Walsh codes. Higher levels are used less fre-

quently than in the regular scheme, providing signi˝cant gains in terms of robustness

towards ICI and reducing the damage su˙ered by the cells. We also show that this

spreading technique can be used to overlap a hidden layer of information on top of

the one stored in plain view.

In Chapter 5, we focus on another type of promising non-volatile memories, Re-

sistive RAM. Re-RAM uses memory resistors to store information, whose value can

be adjusted by pushing current across its terminals. In order to increase the den-

sity, crosspoint architectures are used. But it brings other problems, mainly related

to sneak currents ˛owing through deactivated cells. We propose a simple analytical

model for estimating the read noise and two data representation techniques for reduc-

ing it. The ˝rst one is spread modulation which is extended from that of NAND. It

reduces the variance in the programmed resistances and thereby making noise more

109

predictable. The second scheme consists of shaping the distribution of programmed

levels to reduce noise levels.

One interesting future work could be extending these signal processing approaches

to some new emerging memory architectures like 3D ˛ash memories [89], which o˙er

much higher capacity and have become widespread among ˛ash manufacturers. In-

stead of shrinking cells within a 2D plane, 3D ˛ash memories stack up cells in the

vertical direction [90, 91] and read noises become even more pronounced in this 3D

array architecture [92].

APPENDIX

110

A. PROOF FOR LEMMA 2.4.3

In this appendix, we will elaborate on the pairing scheme in Lemma 2.4.3 from Chap-

ter 2, specially for the case with even K and symmetric requests.

De˝nition A.0.1 Let χA denote a set of messages (or, equivalently, subsets of t +1

users) to be sent by server A and χB denote a set of messages to be sent by server B.

If there is an injective function providing each element in χA with an e˙ective pair in

χB , we say that there is a saturating matching for χA.

In order to reduce the peak rate we want to separate all the messages to be

transmitted (equivalently, subsets of t +1 users) into two groups χA and χB such that

there are as many e˙ective pairs as possible, as we shall see.

To better illustrate the allocation scheme, the problem of ˝nding e˙ective pairs

is mapped to a graph problem. Let G be a ˝nite bipartite graph with bipartite sets

χA and χB, where each message (or user subset) is represented as a vertex in the

graph and edges connect e˙ective pairs from χA and χB . The idea of our design is

to allocate as many messages as possible to χA, while guaranteeing the existence of a

saturating matching for χA based on Hall's marriage Theorem [93].

Theorem A.0.1 (Hall's Marriage Theorem [93]) Let G be a ˝nite bipartite graph

with bipartite sets χA and χB. For a set u of vertices in χA, let NG(u) denote its

neighbourhood in G, i.e. the set of all vertices in χB adjacent to some element of u.

There is a matching that entirely covers χA if and only if

|u| ≤ |NG(u)|

for every subset u of χA.

■

⎪⎪
⎪⎪

111

Corollary A.0.1.1 If all vertices in χA have the same degree dA and all the vertices

in χB have the same degree dB (dA ≥ dB), then there is a saturating matching for

χA.

Proof For any u ⊆ χA, all edges connected to u are also connected to NG(u), hence

|NG(u)| · dB ≥ |u| · dA. Since dA ≥ dB , we know that |u| ≤ |NG(u)|. According to

Theorem A.0.1, there is a saturating matching for χA.

In order to compute the peak rate in the worst case, we assume that all K users � �
request di˙erent ˝les. Since each subset contains t + 1 ˝les, there are

t+1
K messages

to allocate between χA and χB. We classify these subsets according to the number of

requests from server A: sets of type w will have w requests from server A and t+1−w

from server B. The following proposition states that the messages of the same type

are not able to pair with each other.

When t is even and the demands are symmetric, type w sets and type t+1−w sets

form a symmetric bipartite graph, so there exists a saturating matching according to

Corollary A.0.1.1. When t is odd, type (t + 1)/2 sets are paired with the union of type

(t − 1)/2 sets and type (t + 3)/2 sets. Since the vertices in type (t − 1)/2 sets and type

(t + 3)/2 sets are connected to the same number of vertices in type (t + 1)/2 sets, this

bipartite graph also ful˝lls the condition in Corollary A.0.1.1. Other sets are paired

as in the case with t even, that is, type w sets are paired with type t + 1 − w sets.

These pairings are illustrated in Fig.A.1.

When t is even, there is a matching for every candidate ˝le set, thus the peak rate

is cut by half compared with the traditional single server scheme. When t is odd,

some vertices of types (t − 1)/2, (t + 1)/2, or (t + 3)/2 could fail to be paired. Denote

the ratio of unpaired messages when t is odd by Δ. Any two servers can collaborate to

ful˝ll those requests, so the normalized overall peak rate RT with symmetric demands

is given by: ⎧
RC (K, t) if t is even⎪ 21 ⎨

RT (K, t) = ⎪ � �⎩ 1 1
2 +

6 Δ RC (K, t) if t is odd,

112

w

t is even

(a)

w

t is odd

(b)

Figure A.1.: Pairing illustration. w is the number of ˝les from server A in a message.

The pairing loss Δ is limited. The worst case occurs when there is a big di˙erence

between the number of vertices of type (t + 1)/2 and the number of vertices of types

(t − 1)/2 or (t + 3)/2. In both cases, the pairing loss Δ is bounded by 1
3 .

VITA

113

VITA

Tianqiong Luo received her B.S. from Fudan University, Shanghai, China, in 2013.

She is currently pursuing the Ph.D. degree of Electrical and Computer Engineering

at Purdue University. Her research interests involve signal processing and coding for

caching networks and non-volatile storage systems.

REFERENCES

114

REFERENCES

[1] M. A. Maddah-Ali and U. Niesen, �Fundamental limits of caching,� IEEE Trans.
Inf. Theory, vol. 60, no. 5, pp. 2856�2867, 2014.

[2] R. L. Rivest and A. Shamir, �How to reuse a �write-once" memory,� Information
and control, vol. 55, no. 1, pp. 1�19, 1982.

[3] A. G. Dimakis, P. Godfrey, Y. Wu, M. J. Wainwright, and K. Ramchandran,
�Network coding for distributed storage systems,� IEEE Trans. Inf. Theory,
vol. 56, no. 9, pp. 4539�4551, 2010.

[4] J. S. Plank, �The RAID-6 liber8tion code,� International Journal of High Per-
formance Computing Applications, 2009.

[5] C. Tian and J. Chen, �Caching and delivery via interference elimination,� arXiv
preprint arXiv:1604.08600, 2016.

[6] T. Luo, V. Aggarwal, and B. Peleato, �Coded caching with distributed storage,�
arXiv preprint arXiv:1611.06591, 2016.

[7] D. Beaver, S. Kumar, H. C. Li, J. Sobel, P. Vajgel et al., �Finding a needle in
haystack: Facebook's photo storage.� in OSDI, vol. 10, no. 2010, 2010, pp. 1�8.

[8] S. Ghemawat, H. Gobio˙, and S.-T. Leung, �The google ˝le system,� in ACM
SIGOPS operating systems review, vol. 37, no. 5. ACM, 2003, pp. 29�43.

[9] K. Rashmi, P. Nakkiran, J. Wang, N. B. Shah, and K. Ramchandran, �Having
your cake and eating it too: Jointly optimal erasure codes for I/O, storage, and
network-bandwidth.� in FAST, 2015, pp. 81�94.

[10] O. Khan, R. C. Burns, J. S. Plank, W. Pierce, and C. Huang, �Rethinking erasure
codes for cloud ˝le systems: minimizing I/O for recovery and degraded reads.�
in FAST, 2012, p. 20.

[11] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, �The exact rate-memory trade-
o˙ for caching with uncoded prefetching,� in IEEE Int. Symp. on Information
Theory Proceedings (ISIT). IEEE, 2017, pp. 1613�1617.

[12] T. Luo and B. Peleato, �The rate-I/O trade-o˙ for coded caching,� submitted to
IEEE Commun. Lett., 2018.

[13] G. Dong, S. Li, and T. Zhang, �Using data postcompensation and predistortion
to tolerate cell-to-cell interference in MLC NAND ˛ash memory,� IEEE Trans.
Circuits Syst. I: Reg. Papers, vol. 57, no. 10, pp. 2718�2728, Oct. 2010.

115

[14] W. Wang, T. Xie, and D. Zhou, �Understanding the impact of threshold voltage
on MLC ˛ash memory performance and reliability,� in Proc. 28th ACM Int.
Conf. on Supercomputing (ICS). ACM, 2014, pp. 201�210.

[15] S. Moshavi, �Multi-user detection for DS-CDMA communications,� IEEE Com-
mun. Mag., vol. 34, no. 10, pp. 124�136, Oct. 1996.

[16] F. Adachi, M. Sawahashi, and H. Suda, �Wideband DS-CDMA for next-
generation mobile communications systems,� IEEE Commun. Mag., vol. 36,
no. 9, pp. 56�69, Sep. 1998.

[17] T. Luo and B. Peleato, �Spread programming for NAND ˛ash,� in IEEE Int.
Conf. on Communications (ICC). IEEE, 2015, pp. 277�282.

[18] ��, �Spreading modulation for multilevel nonvolatile memories,� IEEE Trans.
Commun., vol. 64, no. 3, pp. 1110�1119, 2016.

[19] ��, �Multipage read for NAND ˛ash,� IEEE Trans. Circuits Syst. II, Exp.
Briefs, vol. 64, no. 1, pp. 76�80, 2017.

[20] C. Xu, D. Niu, N. Muralimanohar, R. Balasubramonian, T. Zhang, S. Yu, and
Y. Xie, �Overcoming the challenges of crossbar resistive memory architectures,�
in IEEE 21st International Symp. on High Performance Computer Architecture
(HPCA). IEEE, 2015, pp. 476�488.

[21] T. Luo, O. Milenkovic, and B. Peleato, �Compensating for sneak currents in
multi-level crosspoint resistive memories,� in 49th Asilomar Conference on Sig-
nals, Systems and Computers. IEEE, 2015, pp. 839�843.

[22] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong, and S. Sankar,
�Row-diagonal parity for double disk failure correction,� in FAST-2004: 3rd
Usenix Conference on File and Storage Technologies, 2004.

[23] H. Ghasemi and A. Ramamoorthy, �Improved lower bounds for coded caching,�
in IEEE Int. Symp. on Information Theory Proceedings (ISIT). IEEE, 2015,
pp. 1696�1700.

[24] U. Niesen and M. A. Maddah-Ali, �Coded caching with nonuniform demands,�
in Computer Communications Workshops (INFOCOM WKSHPS), 2014 IEEE
Conference on. IEEE, 2014, pp. 221�226.

[25] J. Zhang, X. Lin, C.-C. Wang, and X. Wang, �Coded caching for ˝les with distinct
˝le sizes,� in IEEE Int. Symp. on Information Theory Proceedings (ISIT). IEEE,
2015, pp. 1686�1690.

[26] M. Ji, A. M. Tulino, J. Llorca, and G. Caire, �Caching and coded multicasting:
Multiple groupcast index coding,� in IEEE Global Conf. on Signal and Informa-
tion Processing (GlobalSIP). IEEE, 2014, pp. 881�885.

[27] M. Ji, A. Tulino, J. Llorca, and G. Caire, �Caching-aided coded multicasting
with multiple random requests,� in IEEE Information Theory Workshop (ITW).
IEEE, 2015, pp. 1�5.

[28] J. Hachem, N. Karamchandani, and S. Diggavi, �E˙ect of number of users in
multi-level coded caching,� in IEEE Int. Symp. on Information Theory Proceed-
ings (ISIT). IEEE, 2015, pp. 1701�1705.

116

[29] S. P. Shariatpanahi, S. A. Motahari, and B. H. Khalaj, �Multi-server coded
caching,� arXiv preprint arXiv:1503.00265, 2015.

[30] R. Blom, �An optimal class of symmetric key generation systems,� in Workshop
on the Theory and Application of of Cryptographic Techniques. Springer, 1984,
pp. 335�338.

[31] C. Suh and K. Ramchandran, �Exact-repair MDS code construction using in-
terference alignment,� IEEE Trans. Inf. Theory, vol. 57, no. 3, pp. 1425�1442,
2011.

[32] S. El Rouayheb, A. Sprintson, and C. Georghiades, �On the index coding problem
and its relation to network coding and matroid theory,� IEEE Trans. Inf. Theory,
vol. 56, no. 7, pp. 3187�3195, 2010.

[33] Z. Bar-Yossef, Y. Birk, T. Jayram, and T. Kol, �Index coding with side informa-
tion,� IEEE Trans. Inf. Theory, vol. 57, no. 3, pp. 1479�1494, 2011.

[34] M. A. R. Chaudhry and A. Sprintson, �E°cient algorithms for index coding,� in
IEEE INFOCOM Workshops. IEEE, 2008, pp. 1�4.

[35] S. El Rouayheb and K. Ramchandran, �Fractional repetition codes for repair
in distributed storage systems,� in Proc. 48th Annu. Allerton Conf. Commun.,
Control, and Comput. (Allerton). IEEE, 2010, pp. 1510�1517.

[36] Q. Yu, C. W. Sung, and T. H. Chan, �Irregular fractional repetition code opti-
mization for heterogeneous cloud storage,� IEEE J. Sel. Areas Commun., vol. 32,
no. 5, pp. 1048�1060, 2014.

[37] C. Huang, M. Chen, and J. Li, �Pyramid codes: Flexible schemes to trade
space for access e°ciency in reliable data storage systems,� ACM Trans. Storage
(TOS), vol. 9, no. 1, p. 3, 2013.

[38] J. R. Santos, R. R. Muntz, and B. Ribeiro-Neto, Comparing random data allo-
cation and data striping in multimedia servers. ACM, 2000, vol. 28, no. 1.

[39] Y. Wang, X. Yin, and X. Wang, �MDR codes: A new class of RAID-6 codes
with optimal rebuilding and encoding,� IEEE J. Sel. Areas Commun., vol. 32,
no. 5, pp. 1008�1018, 2014.

[40] U. Niesen and M. A. Maddah-Ali, �Coded caching with nonuniform demands,�
IEEE Trans. Inf. Theory, vol. 63, no. 2, pp. 1146�1158, 2017.

[41] M. Ji, A. M. Tulino, J. Llorca, and G. Caire, �On the average performance of
caching and coded multicasting with random demands,� in 11th Int. Symp. on
Wireless Communications Systems (ISWCS). IEEE, 2014, pp. 922�926.

[42] S. A. Saberali, H. E. Sa˙ar, L. Lampe, and I. Blake, �Adaptive delivery in caching
networks,� IEEE Commun. Lett., vol. 20, no. 7, pp. 1405�1408, 2016.

[43] M. A. Maddah-Ali and U. Niesen, �Decentralized coded caching attains order-
optimal memory-rate tradeo˙,� IEEE/ACM Trans. Netw. (TON), vol. 23, no. 4,
pp. 1029�1040, 2015.

117

[44] E. J. O'neil, P. E. O'neil, and G. Weikum, �The LRU-K page replacement al-
gorithm for database disk bu˙ering,� ACM SIGMOD Record, vol. 22, no. 2, pp.
297�306, 1993.

[45] Z. Chen, P. Fan, and K. B. Letaief, �Fundamental limits of caching: Improved
bounds for small bu˙er users,� arXiv preprint arXiv:1407.1935, 2014.

[46] R. Frickey, �Data integrity on 20nm SSDs,� in Flash Memory Summit, 2012.

[47] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, �Flash memory cells-an overview,�
Proc. IEEE, vol. 85, no. 8, pp. 1248�1271, Aug. 1997.

[48] B. Shin, C. Seol, J.-S. Chung, and J. J. Kong, �Error control coding and signal
processing for ˛ash memories,� in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS),
2012, pp. 409�412.

[49] M. Qin, E. Yaakobi, and P. H. Siegel, �Constrained codes that mitigate inter-
cell interference in read/write cycles for ˛ash memories,� IEEE J. Sel. Areas
Commun., vol. 32, no. 5, pp. 836�846, May 2014.

[50] J.-D. Lee, S.-H. Hur, and J.-D. Choi, �E˙ects of ˛oating-gate interference on
NAND ˛ash memory cell operation,� IEEE Electron Device Lett., vol. 23, no. 5,
pp. 264�266, 2002.

[51] Y. Kim, B. Kumar, K. L. Cho, H. Son, J. Kim, J. J. Kong, and J. Lee, �Modula-
tion coding for ˛ash memories,� in International Conf. on Comput., Netw. and
Commun. (ICNC). IEEE, 2013, pp. 961�967.

[52] Y. Kim and B. V. Kumar, �Coding for memory with stuck-at defects,� in IEEE
Int. Conf. on Communications (ICC). IEEE, 2013, pp. 4347 � 4352.

[53] H.-W. Tseng, L. Grupp, and S. Swanson, �Understanding the impact of power
loss on ˛ash memory,� in Proc. 48th Design Automation Conf. (DAC). ACM,
2011, pp. 35�40.

[54] A. Jagmohan, M. Franceschini, L. Lastras-Montano, J. Karidis et al., �Adaptive
endurance coding for NAND ˛ash,� in Proc. IEEE GLOBECOM Workshops.
IEEE, Dec. 2010, pp. 1841�1845.

[55] B. Peleato and R. Agarwal, �Maximizing MLC NAND lifetime and reliability
in the presence of write noise,� in IEEE Int. Conf. on Communications (ICC).
IEEE, 2012, pp. 3752�3756.

[56] B. Peleato, R. Agarwal, and J. Cio°, �Probabilistic graphical model for ˛ash
memory programming,� in IEEE Statistical Signal Processing Workshop (SSP).
IEEE, 2012, pp. 788�791.

[57] R. Katsumata, M. Kito, Y. Fukuzumi, M. Kido, H. Tanaka, Y. Komori,
M. Ishiduki, J. Matsunami, T. Fujiwara, Y. Nagata et al., �Pipe-shaped BiCS
˛ash memory with 16 stacked layers and multi-level-cell operation for ultra high
density storage devices,� in Proc. IEEE Symp. on VLSI Technol., 2009, pp. 136�
137.

118

[58] K.-D. Suh, B.-H. Suh, Y.-H. Lim, J.-K. Kim, Y.-J. Choi, Y.-N. Koh, S.-S. Lee,
S.-C. Kwon, B.-S. Choi, J.-S. Yum et al., �A 3.3 v 32 mb NAND ˛ash memory
with incremental step pulse programming scheme,� IEEE J. Solid-State Circuits,
vol. 30, no. 11, pp. 1149�1156, Nov. 1995.

[59] Y. Cai, G. Yalcin, O. Mutlu, E. F. Haratsch, O. Unsal, A. Cristal, and K. Mai,
�Neighbor-cell assisted error correction for MLC NAND ˛ash memories,� in ACM
Int. Conf. on Meas. and Modeling of Comput. Syst. ACM, 2014, pp. 491�504.

[60] J. E. Brewer and M. Gill, Nonvolatile Memory Technologies with Emphasis on
Flash. Wiley, 2008.

[61] R. Cernea, L. Pham, F. Moogat, S. Chan, B. Le, Y. Li, S. Tsao, T.-Y. Tseng,
K. Nguyen, J. Li et al., �A 34MB/s-program-throughput 16Gb MLC NAND
with all-bitline architecture in 56nm,� in IEEE Int. Solid-State Circuits Conf.
(ISSCC), 2008, pp. 420�624.

[62] R. Micheloni, L. Crippa, and A. Marelli, Inside NAND Flash Memories.
Springer, 2010.

[63] J. Wang, T. Courtade, H. Shankar, and R. Wesel, �Soft information for LDPC
decoding in ˛ash: Mutual information optimized quantization,� in IEEE Global
Communications Conf. (GLOBECOM). IEEE, 2011, pp. 5�9.

[64] G. Wu and X. He, �Reducing SSD read latency via NAND ˛ash program and
erase suspension,� in Proc. of the 10th USENIX Conf. on File and Storage Tech-
nol., vol. 12, 2012, pp. 10�10.

[65] S. C. Hollmer, C.-Y. Hu, B. Q. Le, P.-l. Chen, J. Su, R. Gutala, and C. Bill,
�Erase verify scheme for NAND ˛ash,� Dec. 28 1999, US Patent 6,009,014.

[66] E. Gal and S. Toledo, �Algorithms and data structures for ˛ash memories,� ACM
Computing Surveys (CSUR), vol. 37, no. 2, pp. 138�163, 2005.

[67] J. Cooke, �Flash memory 101: An introduction to NAND ˛ash,� Micron Tech-
nology Inc: Boise, 2006.

[68] E. Yaakobi, S. Kayser, P. H. Siegel, A. Vardy, and J. K. Wolf, �Codes for write-
once memories,� IEEE Trans. Inf. Theory, vol. 58, no. 9, pp. 5985�5999, 2012.

[69] R. Gabrys and L. Dolecek, �Constructions of nonbinary WOM codes for multi-
level ˛ash memories,� IEEE Trans. Inf. Theory, vol. 61, no. 4, pp. 1905�1919,
Apr. 2015.

[70] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, �Threshold voltage distribution in
MLC NAND ˛ash memory: Characterization, analysis, and modeling,� in Proc.
Design, Autom., Test in Eur. Conf. (DATE), Mar. 2013, pp. 1285�1290.

[71] S. Gerardin, M. Bagatin, A. Paccagnella, K. Grurmann, F. Gliem, T. Oldham,
F. Irom, and D. Nguyen, �Radiation e˙ects in ˛ash memories,� IEEE Trans.
Nucl. Sci., vol. 60, no. 3, pp. 1953�1969, 2013.

[72] B. Peleato, R. Agarwal, J. Cio°, M. Qin, and P. H. Siegel, �Towards minimizing
read time for NAND ˛ash,� in IEEE Global Communications Conf. (GLOBE-
COM). IEEE, 2012, pp. 3219�3224.

119

[73] Y. Maeda and H. Kaneko, �Error control coding for multilevel cell ˛ash memories
using nonbinary low-density parity-check codes,� in Proc. IEEE Int. Symp. Defect
Fault Tolerance VLSI Syst. IEEE, 2009, pp. 367�375.

[74] L. Wang, E. Sasoglu, B. Bandemer, and Y.-H. Kim, �A comparison of super-
position coding schemes,� in IEEE Int. Symp. on Information Theory (ISIT).
IEEE, 2013, pp. 2970�2974.

[75] B. Sklar, Digital communications. Prentice Hall NJ, 2001, vol. 2.

[76] T. S. Rappaport et al., Wireless communications: principles and practice. pren-
tice hall PTR New Jersey, 1996, vol. 2.

[77] D.-h. Lee and W. Sung, �Direct and indirect measurement of inter-cell capaci-
tance in NAND ˛ash memory,� in Proc. of IEEE Workshop on Signal Processing
Systems (SiPS). IEEE, 2014, pp. 1�6.

[78] C. Xu, X. Dong, N. P. Jouppi, and Y. Xie, �Design implications of memristor-
based RRAM cross-point structures,� in Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2011. IEEE, 2011, pp. 1�6.

[79] Y. Zheng, C. Xu, and Y. Xie, �Modeling framework for cross-point resistive mem-
ory design emphasizing reliability and variability issues,� in Design Automation
Conference (ASP-DAC), 2015 20th Asia and South Paci˝c. IEEE, 2015, pp.
112�117.

[80] M. A. Zidan, H. A. H. Fahmy, M. M. Hussain, and K. N. Salama, �Memristor-
based memory: The sneak paths problem and solutions,� Microelectronics Jour-
nal, vol. 44, no. 2, pp. 176�183, 2013.

[81] H. Nazarian, �Versatile RRAM technology and applications,� in Flash Memory
Summit, 2015.

[82] D. Niu, C. Xu, N. Muralimanohar, N. P. Jouppi, and Y. Xie, �Design trade-o˙s
for high density cross-point resistive memory,� in Proc. ACM/IEEE international
symp. on Low power electronics and design. ACM, 2012, pp. 209�214.

[83] C. Xu, D. Niu, N. Muralimanohar, N. P. Jouppi, and Y. Xie, �Understanding the
trade-o˙s in multi-level cell ReRAM memory design,� in 50th ACM/EDAC/IEEE
on Design Automation Conference (DAC). IEEE, 2013, pp. 1�6.

[84] J. Zhou, K.-H. Kim, and W. Lu, �Crossbar RRAM arrays: Selector device re-
quirements during read operation,� IEEE Trans. Electron Devices, vol. 61, no. 5,
pp. 1369�1376, 2014.

[85] H.-L. Lou and C.-E. W. Sundberg, �Coded modulation for digital storage in
analog memory devices,� Apr. 3 2001, uS Patent 6,212,654.

[86] B. M. Kurkoski, �Coded modulation using lattices and reed-solomon codes, with
applications to ˛ash memories,� IEEE J. Sel. Areas Commun., vol. 32, no. 5, pp.
900�908, 2014.

[87] R. Bauer and J. Hagenauer, �On variable length codes for iterative
source/channel decoding,� in Proc. of Data Compression Conference(DCC).
IEEE, 2001, pp. 273�282.

120

[88] N. B. Shah, �On minimizing data-read and download for storage-node recovery,�
IEEE Commun. Lett., vol. 17, no. 5, pp. 964�967, 2013.

[89] Y.-H. Hsiao, H.-T. Lue, T.-H. Hsu, K.-Y. Hsieh, and C.-Y. Lu, �A critical exami-
nation of 3D stackable NAND ˛ash memory architectures by simulation study of
the scaling capability,� in IEEE International Memory Workshop (IMW). IEEE,
2010, pp. 1�4.

[90] Y. Kim, R. Mateescu, S.-H. Song, Z. Bandic, and B. V. Kumar, �Coding scheme
for 3D vertical ˛ash memory,� in IEEE Int. Conf. on Communications (ICC).
IEEE, 2015, pp. 264�270.

[91] Y.-M. Chang, Y.-H. Chang, T.-W. Kuo, Y.-C. Li, and H.-P. Li, �Disturbance
relaxation for 3D ˛ash memory,� IEEE Trans. Comput, vol. 65, no. 5, pp. 1467�
1483, 2016.

[92] S. Buzaglo, P. H. Siegel, and E. Yaakobi, �Coding schemes for inter-cell interfer-
ence in ˛ash memory,� in IEEE Int. Symp. on Information Theory Proceedings
(ISIT). IEEE, 2015, pp. 1736�1740.

[93] P. Hall, �On representatives of subsets,� J. London Math. Soc, vol. 10, no. 1, pp.
26�30, 1935.

	Signal Processing for Caching Networks and Non-volatile Memories
	Recommended Citation

	tmp.1645115890.pdf.fIr7o

