
Resiliency Mechanisms for In-Memory
Column Stores

Dissertation

zur Erlangung des akademischen Grades
Doktoringenieur (Dr.-Ing.)

vorgelegt an der
Technischen Universität Dresden

Fakultät Informatik

eingereicht von
Dipl.-Inf. Till Kolditz

geboren am 10. September 1985 in Berlin-Mitte

Gutachter: Prof. Dr.-Ing. Wolfgang Lehner
Technische Universität Dresden
Fakultät Informatik, Institut für Systemarchitektur
Lehrstuhl für Datenbanken
01062 Dresden

Prof. Dr. Carsten Binnig
TU Darmstadt
Fachbereich Informatik
Data Management Lab
64289 Darmstadt

Tag der Verteidigung: 26. Oktober 2018

Dresden im November 2018

ii

ABSTRACT

The key objective of database systems is to reliably manage data, while high query throughput and
low query latency are core requirements. To date, database research activities mostly concentrated
on the second part. However, due to the constant shrinking of transistor feature sizes, integrated
circuits become more and more unreliable and transient hardware errors in the form of multi-bit
flips become more and more prominent. In a more recent study (2013), in a large high-performance
cluster with around 8500 nodes, a failure rate of 40 FIT per DRAM device was measured. For
their system, this means that every 10 hours there occurs a single- or multi-bit flip, which is
unacceptably high for enterprise and HPC scenarios. Causes can be cosmic rays, heat, or electrical
crosstalk, with the latter being exploited actively through the RowHammer attack. It was shown
that memory cells are more prone to bit flips than logic gates and several surveys found multi-bit
flip events in main memory modules of today’s data centers. Due to the shift towards in-memory
data management systems, where all business related data and query intermediate results are kept
solely in fast main memory, such systems are in great danger to deliver corrupt results to their
users. Hardware techniques can not be scaled to compensate the exponentially increasing error
rates. In other domains, there is an increasing interest in software-based solutions to this problem,
but these proposed methods come along with huge runtime and/or storage overheads. These are
unacceptable for in-memory data management systems.

In this thesis, we investigate how to integrate bit flip detection mechanisms into in-memory data
management systems. To achieve this goal, we first build an understanding of bit flip detection
techniques and select two error codes, AN codes and XOR checksums, suitable to the requirements
of in-memory data management systems. The most important requirement is effectiveness of the
codes to detect bit flips. We meet this goal through AN codes, which exhibit better and adaptable
error detection capabilities than those found in today’s hardware. The second most important goal
is efficiency in terms of coding latency. We meet this by introducing a fundamental performance
improvements to AN codes, and by vectorizing both chosen codes’ operations. We integrate bit flip
detection mechanisms into the lowest storage layer and the query processing layer in such a way
that the remaining data management system and the user can stay oblivious of any error detection.
This includes both base columns and pointer-heavy index structures such as the ubiquitous B-Tree.
Additionally, our approach allows adaptable, on-the-fly bit flip detection during query processing,
with only very little impact on query latency. AN coding allows to recode intermediate results
with virtually no performance penalty. We support our claims by providing exhaustive runtime and
throughput measurements throughout the whole thesis and with an end-to-end evaluation using the
Star Schema Benchmark. To the best of our knowledge, we are the first to present such holistic
and fast bit flip detection in a large software infrastructure such as in-memory data management
systems. Finally, most of the source code fragments used to obtain the results in this thesis are
open source and freely available.

iii

iv

ACKNOWLEDGEMENTS

First of all, I thank my adviser Wolfgang Lehner for accepting me into the database group and giving
me the opportunity to work on this thesis. At times it was not certain that I would successfully
finish this work, but he believed in me and gave me support to finally submit the thesis.

Second, I am very grateful to Dirk Habich and Carsten Binnig for co-advising my thesis, as well as
for all the valuable discussions and hints. Furthermore, I thank the whole database group for the
great atmosphere, censorious opinions on talks and papers, as well as the fun with lab coats, Nerf
guns, carrera race tracks, Mario cart tournaments and so on. In particular, I thank my colleagues
Dirk (again), Schlegi, Kiki, Tobi, Martin, Kai, Claudio, Hannes, Ulrike (both), Jules, Johannes
(both), Zippi, Patrick, Annett, Alex, Juliana, Lars (both), Robertron, Maik, Timbo, Katrin, and
everybody else.

I am deeply thankful to my family, especially my wife Anja and son Dante, our parents and the
whole family, for supporting me, lending me strength, keeping many things away from me so I
could concentrate on my work, so very often. At times, it was difficult to unite my obligations to
the family and the commitment to the PhD thesis and I cannot thank you enough for your support
and your sacrifices.

Finally, I am grateful to all my friends who were responsible for the other, non-research part of my
life and whom I can still call friends despite sometimes long times of not sending any signs of like
;-) Especially, I thank Tommek, Jurki, Benno, Gorath, Hannes, Robbi, Modro.

Till Kolditz
20th August 2018

v

vi

CONTENTS

1 INTRODUCTION 1
1.1 Contributions of this Thesis . 3

1.2 Outline . 5

2 PROBLEM DESCRIPTION AND RELATED WORK 7
2.1 Reliable Data Management on Reliable Hardware 8

2.2 The Shift Towards Unreliable Hardware . 11

2.3 Hardware-Based Mitigation of Bit Flips . 15

2.4 Data Management System Requirements 17

2.5 Software-Based Techniques For Handling Bit Flips 19
2.5.1 Operating System-Level Techniques . 19
2.5.2 Compiler-Level Techniques . 20
2.5.3 Application-Level Techniques . 21

2.6 Summary and Conclusions . 23

3 ANALYSIS OF CODING TECHNIQUES 25
3.1 Selection of Error Codes . 26

3.1.1 Hamming Coding . 30
3.1.2 XOR Checksums . 32
3.1.3 AN Coding . 33
3.1.4 Summary and Conclusions . 36

3.2 Probabilities of Silent Data Corruption . 37
3.2.1 Probabilities of Hamming Codes . 41
3.2.2 Probabilities of XOR Checksums . 44
3.2.3 Probabilities of AN Codes . 50
3.2.4 Concrete Error Models . 59
3.2.5 Summary and Conclusions . 62

3.3 Throughput Considerations . 63
3.3.1 Test Systems Descriptions . 64
3.3.2 Vectorizing Hamming Coding . 64
3.3.3 Vectorizing XOR Checksums . 73
3.3.4 Vectorizing AN Coding . 74
3.3.5 Summary and Conclusions . 74

3.4 Comparison of Error Codes . 75
3.4.1 Effectiveness . 75
3.4.2 Efficiency . 78
3.4.3 Runtime Adaptability . 87

3.5 Performance Optimizations for AN Coding 88
3.5.1 The Modular Multiplicative Inverse . 88
3.5.2 Faster Softening . 88
3.5.3 Faster Error Detection . 89
3.5.4 Comparison to Original AN Coding . 90
3.5.5 The Multiplicative Inverse Anomaly . 92

3.6 Summary . 96

vii

4 BIT FLIP DETECTING STORAGE 99
4.1 Column Store Architecture . 100

4.1.1 Logical Data Types . 102
4.1.2 Storage Model . 103
4.1.3 Data Representation . 103
4.1.4 Data Layout . 111
4.1.5 Tree Index Structures . 112
4.1.6 Summary . 115

4.2 Hardened Data Storage . 115
4.2.1 Hardened Physical Data Types . 116
4.2.2 Hardened Lightweight Compression . 119
4.2.3 Hardened Data Layout . 122
4.2.4 UDI Operations . 123
4.2.5 Summary and Conclusions . 124

4.3 Hardened Tree Index Structures . 124
4.3.1 B-Tree Verification Techniques . 125
4.3.2 Justification For Further Techniques . 126
4.3.3 The Error Detecting B-Tree . 126

4.4 Summary . 130

5 BIT FLIP DETECTING QUERY PROCESSING 133
5.1 Column Store Query Processing . 134

5.2 Bit Flip Detection Opportunities . 141
5.2.1 Early Onetime Detection . 141
5.2.2 Late Onetime Detection . 142
5.2.3 Continuous Detection . 143
5.2.4 Miscellaneous Processing Aspects . 147
5.2.5 Summary and Conclusions . 148

5.3 Hardened Intermediate Results . 149
5.3.1 Materialization of Hardened Intermediates 149
5.3.2 Hardened Bitmaps . 156

5.4 Summary . 158

6 END-TO-END EVALUATION 161
6.1 Prototype Implementation . 162

6.1.1 AHEAD Architecture . 162
6.1.2 Diversity of Physical Operators . 163
6.1.3 One Concrete Operator Realization . 166
6.1.4 Summary and Conclusions . 168

6.2 Performance of Individual Operators . 169
6.2.1 Selection on One Predicate . 170
6.2.2 Selection on Two Predicates . 171
6.2.3 Join Operators . 176
6.2.4 Grouping and Aggregation . 181
6.2.5 Delta Operator . 188
6.2.6 Summary and Conclusions . 189

6.3 Star Schema Benchmark Queries . 189
6.3.1 Query Runtimes . 190
6.3.2 Improvements Through Vectorization 194
6.3.3 Storage Overhead . 195
6.3.4 Summary and Conclusions . 196

6.4 Error Detecting B-Tree . 198
6.4.1 Single Key Lookup . 198
6.4.2 Key Value-Pair Insertion . 201

6.5 Summary . 201

viii Contents

7 SUMMARY AND CONCLUSIONS 203
7.1 Future Work . 206

A APPENDIX 209
A.1 List of Golden As . 210

A.2 More on Hamming Coding . 212
A.2.1 Code examples . 212
A.2.2 Vectorization . 212

BIBLIOGRAPHY 217

LIST OF FIGURES 231

LIST OF TABLES 237

LIST OF LISTINGS 241

LIST OF ACRONYMS 243

LIST OF SYMBOLS 245

LIST OF DEFINITIONS 247

Contents ix

x Contents

1
INTRODUCTION

1.1 Contributions of this Thesis

1.2 Outline

The key objective of database systems is to reliably manage data [159], where high query throughput
and low query latency are core requirements [2]. To satisfy these requirements, database systems
constantly adapt to novel hardware features [22, 31, 42, 78, 107, 135]. In the recent past,
we have seen numerous advances, in particular with respect to memory, processing elements, and
interconnects [28, 67, 142]. These improvements effectively enabled the introduction of in-memory
data management systems (DMSs), where all business and query-related data is completely kept in
fast main memory. The respective hardware developments were enabled by the constant decrease
of transistor feature sizes. Despite the hardware improvements, we have also known for a long time
that hardware is unreliable. In the database community, research on hardware errors was restricted
to a few classes [62]. However, the constant shrinking of transistors spawned a new type of errors,
that of transient soft errors also known as bit flips [130, 198].

Although it was intensively studied and commonly accepted that hardware error rates increase
dramatically with the decrease of the underlying chip structures [27, 68, 172], most database
system research activities neglected this fact. Traditionally, the focus has been put on improving
performance characteristics, in terms of increasing throughput or decreasing latency, by exploiting
new data structures and algorithms. Meanwhile, the detection and correction of soft errors in
the hardware was left to the hardware and operating systems communities. Especially for main
memory, undetectable silent data corruption (SDC) may occur as a result of transient bit flips.
Such faulty data is today mainly detected and corrected at the dynamic random access memory
(DRAM) and memory-controller layer [172]. However, since future hardware becomes less and
less reliable [26, 68, 150, 166] and since error detection as well as correction by hardware becomes
more expensive [81], this free-ride will come to an end in the near future.

Borkar found that, statistically, the relative failure rate per transistor increases by 8 % per bit and
technology node generation [26]. Since the density of both logic and memory circuits increases
exponentially, soft error rates of the whole chips increase exponentially as well, as Figure 1.1
illustrates [26]. We give a recent example for the exponential increase in main memory size. In
2010 the first 8GiB DRAM modules were available and on a single central processing unit (CPU)
socket with 8 DRAM slots, this allows 64GiB of total main memory. More recently, Samsung
started mass production of their first 128GiB double data rate-4 (DDR4) DRAM modules in late
2015 [44]. For a single CPU socket with 8 DRAM slots, this allows 1TiB of main memory, which
corresponds to an increase to 16× the capacity per module in about 5 years, or a 1.74× increase
per year. In his paper, Borkar predicted only for technology nodes up to 16nm, while today vendors
already ship products with transistor feature sizes of 10nm and below[146].

Figure 1.1: Soft-error failure-in-time of a chip, from [26]

Sridharan et al. conducted a field study on DRAM and static random access memory (SRAM)

2 Chapter 1 Introduction

memory faults and errors in [173]. They collected data over several years from two large production
systems, comprising in total more than 45 Billion DRAM device-hours. They find that faults in
SRAM cells, typically used in CPUs, might not pose a significant threat to system reliability. In
contrast, they conclude that hardware faults in DRAM will be much more significant and will
require new error handling techniques. Even more alarming is the observation that the single error
correction, double error detection (SECDED) capabilities of current error correcting code (ECC)
main memory modules may be too weak for future error rates. Sridharan et al. measured undetected
error rates of around 40 FIT1 [174] per memory device (a single chip), which they describe as
“unacceptably high [...] for many enterprise data centers and high-performance computing
systems” [173]. Regarding the system where this error rate was measured, this translates into a
single or multi-bit flip every 10 hours. More studies show findings which support the negative trend
of the degrading memory reliability, as well as the fact that multi-bit flips make up an increasing,
non-negligible part of all errors [72, 164, 165, 173]. Additionally, the wear and tear of circuits
leads to varying error rates and increasing numbers of bit flips during a system’s life time, where
heat stimulates this effect [68]. Now, since main memory-centric data management systems have
become the de-facto standard with all major vendors shipping some type of in-memory DMS [40,
47, 95, 147], the reliability of all the data kept in main memory is in greatest peril.

In this thesis we investigate the detection of transient hardware errors – bit flips – in in-memory
data management systems, as a first step towards hardware error tolerant DMSs, where we concen-
trate on bit flips in data, i.e. data caches in the CPU, in main memory, and interconnects between
these. To achieve this, we use two error control codes, which are applied to the managed data.
An exceptional challenge is to keep the unavoidable overheads, in terms of additional memory
consumption and processing time, as low as possible. Especially, in-memory DMSs almost ex-
clusively work in fast main memory and avoid slow I/O to secondary storage like hard disk drives
(HDDs) or solid state disks (SSDs). To keep the processing time overhead as low as possible, we
investigate in detail at which places which of the error codes is beneficial. The memory overhead
is directly linked with the detection capabilities and we will show the trade offs among which one
has to choose for trading storage and runtime overheads against reliability.

1.1 CONTRIBUTIONS OF THIS THESIS

The contributions of this thesis can be summarized as follows.

(1) Lead to a New Database Research Domain for handling multi-bit flips which occur in several
hardware components and which can not be handled by contemporary bit flip handling
techniques. In the database domain there has not been the need to care about bit flips,
because the bit flip rates and weights have been low enough so that hardware and operating
system (OS) could mask such errors. With the prospect of increasing bit flip rates, it will be a
necessity to deal with bit flips also on the software layer, to retain both efficient and effective
error handling. In this course, we formulate five Requirements R1 to R5 for handling bit
flips inside in-memory DMSs, and offer first solutions for the detection of multi-bit flips.
With this work, we hope to pave the way for future researchers so that they build upon,
extend, or complement the approaches presented in this thesis.

1One FIT is one error in one Billion device-hours.

1.1 Contributions of this Thesis 3

(2) Detailed Analysis of Coding Techniques with regard to the data management domain for
detecting bit flips. We investigate the general applicability of existing approaches, where
we conclude that these are insufficient and that we need data management system-specific
techniques based on data coding schemes. We select three schemes for which we conduct
detailed runtime measurements for many operations used in database systems. An arithmetic
error coding called AN coding, as well as bit-wise exclusive OR (XOR) checksums turn out
to be suitable candidates for in-memory DMS-specific software-based bit flip detection.

(3) Silent Data Corruption Probabilities are devised and compared for the three selected coding
schemes. In contrast to related work, we provide optimality criteria for selecting best AN
coding parameters. Additionally, we distinguish between “superAs” and “goldenAs” as the
set of candidates for the best parameter and the best parameter under a specific optimality
criterion, respectively. As compression plays a crucial role in modern DMSs, we provide
golden As for all data bit widths between 1 and 32 bits and all parameter A bit widths
between 2 and 16 bits, which constitutes unprecedented coverage. For that to achieve, we
furthermore introduce a new approach for computing these probabilities for non-linear codes
using approximation on GPU-clusters. We show how to transform our counted conditional
probabilities into unconditional ones, exemplarily for the binary symmetric channel (BSC).
By that, we provide a toolbox for choosing appropriate coding schemes based on desired
data bit widths, redundancy margins, and error detection capabilities.

(4) AN Coding Improvements are developed which make it feasible to employ this software
coding approach for in-memory DMSs. By that, AN coding allows error detection on value
granularity at comparable speeds of block-based techniques like checksums. These improve-
ments also allow pervasive vectorization of this code family, which is an important aspect
for in-memory DMSs. We recapitulate vectorization of the selected approaches and refine
it for AN coding since for error detection this is enabled only by our coding improvements.
Compared to original AN coding, we improve throughputs for AVX2 execution to factors of
up to 18×.

(5) Bit Flip Detecting Storage is introduced, based on AN coding and XOR checksums, where
we focus on columns and pointer-based index structures. We will show that we only need to
adapt the lowest layer of a DMS and that our techniques can seamlessly be combined with
many of the modern data representation techniques. Due to the pervasive use of compression
in modern DMSs, mostly only integers are stored in columns, and for that, our improved
AN coding is a perfect fit for bit flip detection. As a consequence, all base columns and
intermediate results can be completely AN encoded.

(6) Bit Flip Detecting Query Processing builds upon the bit flip detecting storage concept, mak-
ing column-store query processing aware of error detection techniques. We identify several
opportunities for error detection, where we show that a continuous, pervasive approach can
be employed for end-to-end detection on each and every data element. Since AN coding
allows to execute arithmetic operations directly on code words, a very tight integration of
coding in physical query processing operators is possible. This enables continuous bit flip
detection at run-time during query processing.

4 Chapter 1 Introduction

Introduction1

Problem Description and Related Work2

Analysis of Coding Techniques3

Bit Flip Detecting Storage4

Bit Flip Detecting Query Processing5

End-to-End Evaluation6

Summary and Conclusions7

Figure 1.2: Structure of the thesis.

(7) Adaptable Error Detection is enabled through the use of AN coding and our findings for the
silent data corruption probabilities. Its single code parameterA can be chosen depending on
the data width and hardware error model, so that a desired minimal detectable bit flip weight
is guaranteed by the code. Our coding improvements also allow during query processing to
re-encode data on the fly with little to no runtime overhead. This aspect is very important,
because it is highly expected that the error model changes during a DMS’s life-time and bit
flip detection techniques must therefore be adaptable at run-time, too.

(8) End-to-End Evaluation shows that our developed concepts greatly reduce the work and
storage overheads compared to existing software-based, general-purpose approaches. Espe-
cially, double or triple modular redundancy introduce more than 2- and 3-fold overheads,
respectively, regarding all aspects of storage and query execution. In contrast, our approach
shows execution overheads of only 20% on average for the star schema benchmark (SSB)
and storage overheads adjustable to the actual error model for error detection.

1.2 OUTLINE

The structure of this thesis is illustrated in Figure 1.2 and in great part reflects the contributions.
First, in Chapter 2 we discuss the problem of multi-bit flips, then make the reader acquainted with
the topic of error handling in general, and introduce known techniques from the hardware stack.
We will then formulate a set of requirements for software-based approaches and discuss existing
ones. We will see that none of them meets our special requirements. The major outcome is, that
replication-based techniques are not suitable in our context and that the only alternative is error
control coding. Based on this, in Chapter 3 we dissect three software-based data coding techniques
in greater detail, which includes discussion on coding operations and their performance in terms
of silent data corruption, memory consumption, and coding runtimes. We afterwards present new

1.2 Outline 5

improvements for AN coding, which allows vectorization of all code operations. As the major
outcome, we will regard AN coding and XOR checksums for later use. Afterwards, we discuss
our hardened storage concepts in Chapter 4, where we integrate the two error control codes in
the storage layer. We will show that, the codes should be used at different places. Building upon
that, we introduce in Chapter 5 our hardened query processing concepts, where we introduce three
opportunities at which error detection can take place, where all of them show different advantages
and disadvantages. To proof the feasibility, we conduct an end-to-end evaluation in Chapter 6,
where we first discuss our prototype implementation and then present runtime measurements first
for individual query operators and then all of the SSB queries in total. Finally, we conclude the
thesis in Chapter 7 where we also provide directions for future work.

6 Chapter 1 Introduction

2
PROBLEM DESCRIPTION AND RELATED

WORK

2.1 Reliable Data Management
on Reliable Hardware

2.2 The Shift Towards Unreli-
able Hardware

2.3 Hardware-Based Mitigation
of Bit Flips

2.4 Data Management System
Requirements

2.5 Software-Based Tech-
niques For Handling Bit
Flips

2.6 Summary and Conclusions

In this chapter, we provide a detailed problem statement and discuss why transient hardware errors
in the form of bit flips are an important challenge. Therefore, in Section 2.1 we first revisit the
reliability assumptions and considered failure classes in DMSs and how research in the database
community concentrated only on the efficiency aspect of data management. Then, we elaborate
on how hardware becomes less and less reliable in Section 2.2, where we also show several causes
which were confirmed by past research. This leads to an increase in transient error rates, which
requires error handling techniques. We will shortly present a taxonomy on such techniques to
clarify and introduce several terms. Afterwards, we will present approaches trying to mitigate
bit flips in hardware Section 2.3. As we will see, these hardware-based techniques will not scale
on their own to accommodate the increasing error rates. We will then derive requirements for
a software-based solution in Section 2.4. Based on these, we evaluate research from software
communities for dealing with the increase in transient errors in Section 2.5. As we will see, these
are also inappropriate for the data management domain and we will conclude that we need specific
techniques for tackling transient hardware errors in main memory-centric data management system.
Section 2.6 summarizes and concludes this chapter.

2.1 RELIABLE DATA MANAGEMENT ON RELIABLE HARDWARE

The most important objective of data management is the reliable data storage and query process-
ing [159]. This is a nontrivial task, because all hardware and software contain flaws. For instance,
on a HDD data tracks may become corrupt and therefore HDDs employ ECCs to recover those
tracks, which is the same for storage medias like CDs, DVDs, and the like. Still, even HDDs
can have undetected errors in their data, which requires additional software techniques to detect
them [170]. Also, more modern storage devices like SSDs require strong error correction codes to
guarantee correct retrieval of data, e.g. recent ones correct up to 550 bit errors for each 4KB block
of data [8]1. The OS works as an abstraction layer between hardware and applications and does
not only provide generic interfaces to hardware, but also tries to mask as many remaining errors as
possible. For instance, device drivers may have errors due to software bugs or erroneous hardware
states and the operating system can, instead of stopping user processes, restart that device driver
without the application ever noticing it [38]. An OS, in turn, requires some minimal amount of
reliable hardware components, which allow it to function properly and which allow masking of
certain errors. For this minimal set of components, in the operating systems domain, Engel and
Döbel introduced the term Reliable Computing Base [46], which they define as follows.

Definition 1 (Reliable Computing Base). “The Reliable Computing Base (RCB) is a subset of
software and hardware components that ensures the operation of software-based fault-tolerance
methods and that we distinguish from a much larger amount of components that can be affected by
faults without affecting the program’s desired results.” [46]

Figure 2.1a illustrates how we understand the RCB. On the one hand, some hardware and OS
components may be unreliable in the sense that they can not or should not handle all possible
errors themselves. On the other hand, there are hardware and OS components which handle and
mask the errors to provide a reliability abstraction (denoted as dashed line) to applications and
data management systems, in particular. One important type of errors are transient bit flips, which
were observed already several decades ago. There, e.g., the main memory state is changed on the
physical level due to environmental influences and not due to software-issued write operations [27,

1There are no numbers given how much additional, redundant code bits are required to achieve this correction rate.

8 Chapter 2 Problem Description and Related Work

Unreliable Components RCB

Hardware

Operating System

Data Management System

(a) High-level schematic of the resilient computing base.

Storage (HDD/SSD/...)

CPU
Core

A
L
U

Register
File

L1 I L1 D

Core

...

Caches
L2, L3, ...

DRAM

...
DRAM

Reliable Component

Unreliable Component

(b) Detailed view of hardware components assumed to be reliable or unreliable.

Figure 2.1: The contemporary RCB (a) and more detailed view of the hardware components (b).
In essence, all components except the mass storage devices are assumed reliable.

130, 150, 165, 197]. The danger of bit flips is that they change data in a silent way, so that if
not detected, applications work on wrong data. Solutions were developed at the hardware and OS
level. On the hardware level, SECDED ECC DRAM was introduced [198], where today for any
8-byte block all single bit flips can be corrected and all double bit flips can be detected. This
may happen either in the DRAM modules or in the memory controller, which nowadays typically
resides inside the CPU. When, however, a non-correctable bit flip is detected, the operating system
receives a hardware signal and typically terminates the affected process. The OS can detect bit flips
at some occasions, e.g. when a process’s virtual memory mapping table becomes corrupt. Again,
when errors are detected there, the OS typically terminates the affected process. More recently,
there were proposed automatic OS-based replicated execution schemes for arbitrary applications
to mitigate effects of bit flips [43]. As a consequence, in the database community the problem of
transient bit flips was left aside and was paid little to no attention during the last three decades.
Figure 2.1b shows in more detail some hardware components which are of interest in the case of
main memory-centric DMSs, as well as whether they are today assumed reliable from the DMS
perspective. The CPU and its sub-components, as well as main memory, which is typically DRAM,
and the interconnects between them are assumed reliable in the sense that the application (DMS) is
shielded from transient errors, as described before. However, as we will see in an instant, storage
devices are assumed unreliable in the sense that single tracks or sectors may become corrupt over
time, or that a whole device may fail.

2.1 Reliable Data Management on Reliable Hardware 9

The RCB can also be seen respectively from the view of applications, where (part of) the OS is
included as software component in the RCB. In the remainder of this thesis, we will use this broader
sense of an RCB shown in Figure 2.1a, as it better depicts the view from a data management system.
DMSs implicitly assume an RCB, but the fact that not all errors can be masked by hardware and OS
poses a serious threat to the reliability assumption of DMSs. By that, all along, data management
systems had to deal with various types of errors or failures. There have mainly been considered
four classes of failure so far [62], with three of them visualized in Figure 2.2. These first three are
concerned with physical (hardware) failures and are most important for our case.

(a) System Failures occur due to a power failure (loss of power), where the volatile whole
memory state becomes lost. As a consequence, DMSs keep a persisted database on some
non-volatile storage media, e.g. HDDs or SSDs.

(b) Hardware may fail due to manufacturing failures or wear and tear and this especially af-
fects the mass storage devices which hold the persisted database state. This is reflected in
Figure 2.1b, where all hardware components except the mass storage devices are assumed
reliable. Consequently, part of or the whole non-volatile storage may be lost, which is called
Media Failure. Solutions are, e.g., to use Redundant Array of Independent Disks (RAID)
systems [136] or additional archive and log backups.

(c) Besides power and media failures, there may be errors during writing the persistent state onto
storage devices. For instance, an error in a storage device’s firmware or in the OS may lead to
partial writes, which leads to inconsistent states. This may also happen due to a power loss,
where not all desired content could be written to disk in time. These problems are called
Single-Page Failures. One proposed solution for this class is to use page recovery indexes
and rebuild pages from older versions and the database log.

The fourth and last class are transaction failures, which occur due to multiple concurrent users
accessing the same data. This class does not affect the reliability requirement of data management
with regard to hardware errors, which is why we do not further consider this last class. All these
failure classes have in common that DMSs have made the implicit assumption that the underlying
systems guarantee a certain degree of reliability – the RCB. For instance, when there is a power
failure and a system is restarted, then all volatile memory is lost, and not just a part of it. A DMS
can then detect that it restarted and apply appropriate measures to fix any data inconsistencies.
Likewise, errors could be reliably attributed to one of the failure classes. This is also known as
fail-stop behavior. Consequently, as Figure 2.1b showed, DMSs today assume CPU, main memory,
and interconnects reliable, whereas storage devices are considered unreliable.

(a) System Failure (b) Media Failure (c) Single Page Failure

Figure 2.2: Contemporary data management failure classes (a), (b), and (c), after [62, Figure 1].

10 Chapter 2 Problem Description and Related Work

By taking care of the above failure classes, contemporary DMSs could meet the reliability re-
quirement. By that, the community could mainly focus on the second most important requirement
of data management: the efficient data storage and query processing [2]. First of all, maximum
query throughput, maximal query concurrency, and minimal query latency are desired. Second,
the memory footprint should be kept as low as possible, to keep as much data in fast main memory
as possible and to allow as many parallel transactions as possible, since each query requires some
private memory. Third and finally, DMSs are constantly adapted to novel hardware features [22,
31, 42, 78, 107, 135], which in turn typically enable to improve throughput, latency, concurrency,
and memory footprint. In the recent past, we have seen numerous advances, in particular with
respect to memory, processing elements, and interconnects [28, 67, 142]. For instance, vector
instruction sets allow to process many data elements in parallel by single instructions. In the
previous decades, these hardware advancements also have led to a shift in the community towards
in-memory database systems [21, 100, 101, 176]. As main memory has become ever cheaper
and denser, this allowed to store and process most if not all business data completely in main
memory. By that, the efficiency of data management could be greatly improved, and e.g. new main
memory-centric data structures [39, 83, 102] and data storage formats [6, 36] were developed.

2.2 THE SHIFT TOWARDS UNRELIABLE HARDWARE

Basically, the aforementioned hardware speed improvements and increasing amount of features
supported by novel hardware, are possible due to the constant shrinking of transistors. Since several
years already, we speak of nano-scale transistors and the nano-era, where, today, integrated circuit
manufacturers already produce transistors with feature sizes of 10nm and below [146]. For the
last decades, about every 18 months the transistor feature size could be decreased so far that the
transistor density could be doubled, also known as “Moore’s Law” [121] (cf. Figure 2.3a). As a
consequence, the transistor density (cf. Figure 2.3b) and transistor count increased exponentially
for both CPUs (cf. Figure 2.3c) and DRAM modules (cf. Figure 2.3d). By that, in turn, there
has been a constant increase in computational power in terms of increasing frequencies, numbers
of cores and hardware threads, ever extended instruction set architectures (ISAs) and vectorization
capabilities. In particular, the hardware components CPU, main memory, and interconnects are of
main interest here, being the main drivers for performance improvements.

101

104

107

1010

1013

1975 2015

Feature Size [nm]

(a)

1975 2015

Transistor Density

(b)

1975 2015

Transistor Count

(c)

1975 2015

Memory Size [B]

(d)

101

104

107

1010

1013

Figure 2.3: Historical development of (a) transistor feature size (technology node), (c) number of
transistors (CPUs), (b) transistor density (CPUs), and (d) main memory module capacity.

2.2 The Shift Towards Unreliable Hardware 11

Unfortunately, this leads to an exponential increase in transient bit flips [27, 68, 172]. The
transistor feature size reduction leads to less and less atoms storing the electrical charge required
for distinguishing between the off and on states. As a result, ever smaller voltage ranges drive
the toggling of the transistors and, by that, external influences more easily affect a transistor’s
state [150]. This is anything but new as such effects have been observed already since the late
seventies [11, 30, 130, 197]. Hardware-based protection like parity bits and ECCs helped to retain
the RCB, but scaling up such techniques is very challenging [68, 150, 166]. The following external
influences are suspected to be the main causes for bit flips [82, 150]:

1. cosmic rays (or energetic particles in general),

2. manufacturing defects (e.g. transistor variability),

3. heat and heat gradients, as well as

4. disturbance errors (electrical cross-talk).

When hit by a cosmic ray, for instance, a charge could be induced in a so far non-conducting
transistor or a memory cell, or it could cause a short circuit leading to discharge of a DRAM cell’s
capacitor. Heat directly influences the conductivity and threshold voltage of transistors [163].
Electrical cross-talk means, e.g., that reading or writing one memory cell can change the state of
surrounding memory cells [125]. Zhu et al. showed that circuits also become more susceptible
due to energy-saving techniques such as voltage and frequency scaling [196]. Finally, transistor
variability may result in largely varying gate switch delays [127], or lead to varying sensitivity to the
aforementioned causes of error. While the rate rises how often bit flips appear, multi-bit flips also
become more and more prominent and studies showed that they already make up a non-negligible
amount of total bit flips [82]. Kim et al. found that all newer DRAM modules are affected and
they observed one to four bit flips per 64 bit word even for ECC DRAM [82]. This is more
than such DRAM modules can reliably detect. Several studies proved that hardware components
become more susceptible in total to bit flips, which is already observable today in large clusters
and computer farms [72, 164, 165]. A contemporary assumption is still, that at most a single
bit flips per process execution. This is an error model called single event upset and is to become
obsolete, as the above shows. On top of that, the error behavior changes at run-time, especially due
to hardware aging effects [150], where heat further stimulates this [68]. In summary, bit flip rates
increase exponentially and multi-bit flips become more and more frequent, while aging effects
worsen the situation and lead to error models varying at system run-time.

While all hardware components are affected, memory cells are more susceptible than logic gates [68,
72, 81]. The former are much more vulnerable to electromagnetic interference effects [82, 125]
as well as to data retention problems, because they have to store their state for an arbitrarily long
duration. A practical solution to tackle interference effects in DRAM is to increase the DRAM
refresh rate, so that the probability of inducing disturbance errors before DRAM cells get refreshed
is reduced [82, 125]. However, refresh operations waste energy and degrade system performance by
interfering with memory accesses [82, 125]. In addition, with increasing DRAM device capacities,
the following effects with regard to DRAM refresh arise at the same time as well. (data retention
problem) [79, 80, 110, 125]. First, more refresh operations are necessary to maintain data correctly.
Second, smaller DRAM capacitors require lower retention times [125]. Third, the voltage margins
separating data values become smaller, and as a result the same amount of charge loss is more likely
to cause multi-bit flips [79, 80, 110, 125]. Theses effects increase as DRAM device capacities
increase [79, 80, 110, 125] and in a recent field study, more than 20% of the observed errors were
large multi-bit faults [173].

12 Chapter 2 Problem Description and Related Work

Unreliable Components RCB

Hardware

Operating System

Data Management System

(a) High-level schematic of the future resilient computing base.

Storage (HDD/SSD/...)

CPU
Core

A
L
U

Register
File

L1 I L1 D

Core

...

Caches
L2, L3, ...

DRAM

...
DRAM

Reliable Component

Unreliable Component

(b) Detailed view of hardware components assumed to be reliable or unreliable.

Figure 2.4: The future RCB (a) and the reliability of its components (b).

Furthermore, emerging non-volatile memory technologies like PCM (phase change memory) [98],
STT-MRAM [91], and PRAM [191] exhibit similar and perhaps even more reliability issues [79,
80, 110, 125]. For example, PCM are based on multi-level cells (MLC) to store multiple bits in
one cell which is achieved by using intermediate resistive states for storing information, in addition
to the low and high resistance levels [118]. A major problem in PCM is that a time-dependent
resistance drift can have the effect that a different value than the originally stored one will be
read [118]. Furthermore, if one cell drifts to the incorrect state, other cells are also highly likely to
drift in the near future. Due to this correlation, multi-bit flips at run-time are much more likely in
MLC PCM [118]. Moreover, heat produced by writing one PCM cell can alter the value stored in
many nearby cells [118]. This was observed for up to 11 cells in a 64 byte block [77].

As a major consequence, the RCB from Figure 2.1 is greatly affected and changes. There will be a
growing proportion of the errors which the RCB cannot mask any longer, as depicted in Figure 2.4a.
The increasing number of unreliable components is detailed in Figure 2.4b: While today DMSs
assume errors only in mass storage devices (cf. Figures 2.1b and 2.2), in the future they have to
assume errors in central components like the CPU, main memory, and interconnects. Regarding
the CPU, for now we assume that only the data cache can be affected. We will consider later
what happens if the CPU becomes even less reliable and how we can detect errors in arithmetic
operations.

To deal with these issues, some form of error handling is required. Error handling in general is a
very broad field, for which Avižienis et al. compiled a taxonomy of error types and countermeasures

2.2 The Shift Towards Unreliable Hardware 13

in general [12]. We will now shortly make the reader familiar with several terms used throughout
this thesis and relate them to this work. First of all, there is an important distinction between faults,
errors, and failures (cf. Figure 2.5a). In short, from a (sub-)system’s view, there may be some
external or internal fault, which may lead to an internal erroneous state – the error. This error, in
turn, may lead to a failure of that (sub-)system, where an abnormal behavior is observed by other
(sub-)systems. This failure may then be the external fault for some other (sub-)system so that the
initial fault propagates through several layers of a larger system. For an example, consider the case
for memory cells as depicted in Figure 2.5b: the initial fault may be a cosmic ray (external) or a
damaged flip-flop transistor (internal). This in turn may trigger the internal state to change from
0→ 1 or 1→ 0 and, actually, a bit flip occurs – an error in the memory cell. When this cell’s state
is read, this internal error manifests as a failure to the environment, which in turn may become an
external fault from the perspective of an application. For instance, when this memory cell held
part of a pointer stored by the application, the pointer may now contain an invalid address not yet
allocated to the application’s virtual memory space. Trying to read or write at this invalid address
triggers an actual error in the application, because the operating system will now emit a SIGSEGV
segmentation fault signal. This leads to a failure which, finally, the user sees as an error message
and which typically results in the operating system forcing termination of the affected application.
This example shows the significance of the problem of bit flips: they may activate errors on many
different system layers and they may stay undetected for an arbitrary amount of time. Furthermore,
Avižienis et al. distinguish between transient (soft) and permanent (hard) errors (cf. also [20]),
where e.g. the latter can be a permanently faulty memory cell which cannot store any charge (in
the case of DRAM). Based on this, we regard bit flips as the following:

Definition 2 (Bit Flip). A bit flip may be any of a fault, error, or failure, depending on the (sub-)
system we look at and, consequently, we will use it as synonym for any of the three terms. In this
thesis, we are exclusively considering physical faults, which includes some types of faults which
are also categorized as development faults and interaction faults [12]. Examples for physical
faults are: production defects, physical deterioration (e.g. aging), or physical interference (e.g.
electrical cross talk such as RowHammer [125]). We do not consider faults such as software flaws
or bugs, logic bombs, hardware errata, intrusion attempts, viruses or worms, or input mistakes [12,
Figure 5 (a)]. In this thesis we do not explicitly distinguish between transient and permanent faults.

Whether distinguishing between transient and permanent faults is necessary, whether it can really
help in our context, and, if so, how to do the distinction is deliberately subject to future work.
Throughout the remainder of this thesis, we will always have to relate to the number of bits that
flip in a data unit, which we define as follows:

Definition 3 (Bit Flip Weight). We denote the number of flipped bits per data unit, e.g. a data or
code word, as bit flip weight (BFW). As symbol we use b, which means that b bits flipped in that
data unit.

Dependability describes which guarantees a system delivers with reference to some error model.
An error model, in turn, characterizes the anticipated errors that may occur. Dependability is only
a very abstract term and Avižienis et al. consider 6 attributes in their taxonomy [12]: availability,
reliability, safety, confidentiality, integrity, and maintainability. While an error class such as
hardware errors may concern several of these classes, especially safety, in this thesis we concentrate
on the reliability attribute. To achieve reliability, Avižienis et al. classify available means into four
categories: 1. fault prevention, 2. fault removal, 3. fault forecasting, and 4. fault tolerance. First,
fault prevention may occur on the hardware level by eliminating the chance of transient errors,
which however is not possible considering the current trends of hardware susceptibility. Second,

14 Chapter 2 Problem Description and Related Work

System A

external
fault

internal
fault

error propragation

externally
visible
failure

System B

external
fault

externally
visible
failure

(a) Concept

Memory

cosmic
ray

bit flip

CPU OS
Appli -
cation

error
propragation

invalid
pointer

SIGSEGV
signal

process
termination

(b) Example

Figure 2.5: The distinction between faults, errors, an failures and how it depends on the point of
view.

fault removal means replacing faulty components, which implies down times when replacing
integral pieces such as the CPU or main memory modules. Third, fault forecasting techniques
try to estimate future incidences an likely consequences of errors to allow preventive actions
such as component replacement. Fourth and finally, fault tolerance incorporates techniques which
provide the ability to still deliver service even in the presence of bit flips. Especially in the data
management domain, down times should be avoided so that fault tolerance techniques are most
desirable. To achieve fault tolerance, Avižienis et al. further divide means into error detection
and recovery. Naturally, we first have to detect that there actually is a bit flip. This may happen
preemptively, where service delivery is suspended, or concurrently to the running service. Again,
service suspension should be avoided and a concurrent detection technique is desirable. In this
thesis, we will deal only with the first aspect, error detection. Furthermore, we strive to achieve
concurrent error detection, because we believe that error rates and bit flip weights will otherwise
increase too much to provide both efficient and reliable data management.

2.3 HARDWARE-BASED MITIGATION OF BIT FLIPS

Fault-tolerance techniques for countering the increasing numbers of (multi-) bit flips were proposed
for the hardware layer. Regarding bit flips in memory, this mostly includes increasing the strengths
of employed error correction codes [81]. This, however, is achieved at the expense of larger
code blocks for which more bit flips are detected. For instance, Kim et al. investigate the use of
2-dimensional codes for In total, little to no more bit flips can be detected for the total amount
of memory, but larger burst errors are then detectable with higher probability. The main problem
here is the use of general purpose codes and worst case assumptions, because at the hardware level
there is no knowledge about the actually running applications. Increasing the bit flip detection
capabilities of these general purpose techniques is challenging and very expensive to cope with
future transient error rates. The main bottlenecks are greatly increasing coding latencies and
energy consumption [81]. Naseer and Draper suggest a double error correction (DEC) code for
SRAM memory cells [126]. Compared to an SECDED implementation, their encoder requires

2.3 Hardware-Based Mitigation of Bit Flips 15

between 70% and 107% more chip area and incurs up to 25% coding latency. Their decoder, in
turn, adds between 359% and 12905% chip area and between 56% and 67% coding latency [126].
Apart from the fact that their approach is targeted for SRAM instead of DRAM, they buy their
improvements in coding latency by a vast amount of chip area, where they store precomputed
mappings for correction. That these precomputed mappings could themselves get corrupt over
time is not part of their considerations.

Several other approaches were introduced to handle bit flips in the CPU. Mahmood and McCluskey
use a watchdog processor for detecting errors [112]. This is a co-processor which monitors the
system behavior and thereby performs error detection. The expected behavior must be provided
to the watchdog co-processor beforehand, so that it can compare the desired and actual system
behavior. This information may contain memory access behavior, control flow characteristics,
expected control signals, or the reasonableness of results [112]. Since data management systems
execute arbitrary user queries and store and process arbitrary data, it seems impossible to describe
the required information about such a system for a watchdog processor. Austin introduced DIVA,
which assumes a main high-performance, out-of-order core and a second, simpler core, which
is used to validate the first core’s execution [10]. Furthermore, they use a watchdog timer to
detect deadlocks and livelocks in the CPU. However, this only deals with faulty execution, but not
with faults in memory. Several real system implementations replicate part of or whole hardware
blocks and use additional checkers to validate all the redundant computing. Examples are Compaq
NonStop Himalaya [70], IBM S/390 [171], and the Boeing 777 airplanes [192, 193]. There are
many other proposals which reduce overheads – in terms of number of hardware blocks, system
complexity, monetary costs – by using the already available redundancy of modern multi-threaded
or multi-core architectures – simultaneous multi-threading (SMT) – i.e. execution units in terms
of redundant cores or hardware threads. Saxena and McCluskey were the first to exploit redundant
threads for mitigating transient errors [160]. Rotenberg expanded SMT to AR-SMT by leveraging
micro architectural improvements [157]. Reinhardt and Mukherjee introduced the concept of
simultaneous redundant multi-threading (RMT), which increases the performance of AR-SMT
by comparing redundant data streams before storing them to memory [151]. Vijaykumar et al.
developed the SRTR processes, which again expands the RMT concept. They added fault recovery
by delaying commits and possibly rewinding to a known good state [179]. All of these techniques
introduce massive work overhead, as they all execute everything at least twice. This always reserves
twice as many resources as are originally needed, even in the case of error-free execution. Even
if the runtime overhead could be reduced by some of these, the total amount of work is increased
several times. Consequently, such techniques incur overheads that are very high, either in terms of
memory consumption or additional amount of work.

Meanwhile, other communities have well embraced the fact that hardware becomes unreliable [68,
150]. Since recently, a growing number of researchers strive to handle bit flips also at the upper
layers of the hardware / software stack [150, 166]. One advantage is, that then, knowledge about the
individual applications can be used to select the most effective and efficient solutions for handling
(multi-) bit flips. For instance, hardware and operating system can not know about the actual type
of data an applications stores or processes. These lower layers can only apply general purpose
techniques, which are typically operating on fixed-sized blocks of data (e.g. ECC DRAM). In
contrast, an application knows exactly what kinds of data and data structures it stores and processes
and can therefore select bit flip handling techniques which can be more efficient or more effective
than the general purpose techniques from the lower hardware/software layers. However, only
hardware and OS have access to some data structures hidden from the applications, like virtual
memory mapping tables. An application cannot handle errors there, especially because only the
OS may in turn know about the exact implementation of such data structures. Another example is
compiled, executable code: Application developers should not necessarily deal with protecting the

16 Chapter 2 Problem Description and Related Work

executable machine code, but the compiler or OS should deal with this. Consequently, we share
the belief that all the individual layers in the hardware / software stack must investigate for what
part of a system they are actually responsible for, and in how far there are layer-specific techniques
to deal with increasingly unreliable hardware.

2.4 DATA MANAGEMENT SYSTEM REQUIREMENTS

Scaling hardware-based solutions to tackle the increasing problem of transient bit flips is very
challenging [68, 81, 150, 166]. The research of software-based solutions which aid the hardware
and each other [68, 150] is a required step towards reliable data management. Contemporary
in-memory DMSs are not prepared to handle these more and more frequently occurring, arbitrary
bit flips in an effective or efficient manner. Generally, any undetected bit flip destroys the reliability
objective of data management in the form of (i) false negatives (missing tuples), (ii) false positives
(tuples with invalid predicates), or (iii) inaccurate aggregates in a silent way. As we showed
above, replication techniques introduce very high overheads, either in terms of additional space
or additional work. In order to cope with the increasingly unreliable hardware, we need to
integrate bit flip detection into the DMS itself. Based on our observations, we define the following
RequirementsR1 toR5 which must be met by a software solution for tackling bit flips:

RequirementR1 – Effectiveness
The reliability assumption of data management must be preserved under the assumption of increas-
ing bit flip rates and weights. Since the RCB cannot mask all such errors, DMSs must introduce
bit flip detection and correction mechanisms, which can handle given bit flip rates or weights.
These mechanisms must be effective in the sense that they provide sufficient guarantees to detect
(or correct) certain bit flip rates and weights.

RequirementR2 – Efficiency
Bit flip handling techniques introduced in data management – a software layer – lead to an overhead
in terms of query latency and memory footprint, which is unavoidable. This overhead must be
as little as possible and must pay off hardware advances to be feasible. This means, bit flip
handling techniques should introduce less overhead than future hardware generations bring speed
and memory improvements. Since modern data management systems leverage hardware features
such as vector instruction sets, error control techniques must be able to leverage such hardware
features, too.

RequirementR3 – Adaptability
Bit flip rates and weights will vary with hardware generations and during a system’s life time
due to hardware aging effects [150]. Therefore, bit flip handling techniques must be adaptable to
changing error models at run-time.

RequirementR4 – Availability
Especially in the data management domain, down times of systems should be avoided as much
as possible, which for businesses otherwise means reduced income and increased operational
expenses due to recovery times. Therefore, DMSs should be fault-tolerant and bit flip handling
mechanisms should run concurrently to the normal operation – both in the sense of the taxonomy
by Avižienis et al. [12] – to provide zero-downtime service.

2.4 Data Management System Requirements 17

(a) System Failure (b) Media Failure (c) Single Page Failure (d) (Multi-)Bit Failure

Figure 2.6: Extended data management failure classes (a), (b), and (c), including the new failure
class of bit flips (d)

RequirementR5 – Separation of Concerns
We support the idea of interdisciplinarity [150, 166], because there are aspects of bit flip handling
which are out of the scope of our domain. Since we view the problem of bit flips from a data
management-centric view, we should concentrate on protecting the business data and all data
structures and temporary data which are used for query processing on the managed data. We can
also safely assume that the actual data, both databases and query intermediate data, are much larger
than the executable machine code. Furthermore, designing fault-tolerant algorithms – in addition
to data structures – could be part of our domain, but are not considered in this thesis. Aspects like
the control-flow of programs or data structures from other layers like the OS are out of our reach
and scope.

Requirement R1, effectiveness, is by far the most important one in this thesis. A DMS must be
able to guarantee the detection of bit flips in its data to some desired degree. Otherwise, it would
be superfluous. Next to the requirements, we also need an error model, which is abstract in the
sense that, as we argued above, the actual bit flip weights and rates will vary during run-time.

Definition 4 (Thesis Error Model). In accordance to Requirement R5 and since memory cells
are more susceptible to bit flips than logic gates, in this thesis we restrict the set of affected hardware
components to (cf. Figure 2.4b):

1. CPUs, in particular the data caches,
2. main memory, mainly in the form of DRAM, and
3. interconnects between CPU and main memory.

This means, we primarily care about error detection in our most precious good – data. It is
furthermore not our task to detect bit flips in the executable code of a DMS, because this problem
should be solved, e.g., by the compiler. Furthermore, we do not distinguish between transient and
permanent bit flips, in accordance to Definition 2. We do not restrict the bit flip weight in our
error model, because these numbers will depend on the actual hardware. Since solutions must
be adaptable anyways (Requirement R3), it would at most be reasonable to provide an upper
boundary of the weights and rates, but that could even be different for the various hardware
components.

The problem of bit flips has an impact on the previously presented failure classes in DMSs (cf.
Figure 2.2), which we extend as shown in Figures 2.6a to 2.6c. On the on hand, while only
CPU, (main) memory, and storage have been previously considered, we now also include the

18 Chapter 2 Problem Description and Related Work

interconnects, depicted as double arrows. On the other hand, we consider bit flips and transient
errors in general as a new failure class shown in Figure 2.6d. This failure class expresses our thesis
error model described in Definition 4. Also, we will only consider a single server system and no
distributed computer environments.

The goal of this thesis is to find or develop bit flip detection techniques suitable for data
management, which satisfy all of the above Requirements R1 to R5 and which cover our (very
generic) error model. In the following we will provide an overview of software-based techniques
and show that, so far, there is none which satisfies all of our requirements. This, in turn, underlines
the necessity of this research direction in the data management domain.

2.5 SOFTWARE-BASEDTECHNIQUES FORHANDLINGBIT FLIPS

There are several software-based techniques which are directly targeted at or related to the handling
of bit flips. In the following, we will have a closer look at operating system (Section 2.5.1), compiler
level (Section 2.5.2), and application level techniques (Section 2.5.3) and we will evaluate them
against our requirements RequirementsR1 toR5.

One fundamental technique shared by virtually all of the following bit flip handling means is
n-way modular redundancy, a generalization of triple modular redundancy (TMR) introduced
by Lyons and Vanderkulk [111]. There, either hardware resources (resource redundancy), data
storage (space redundancy), data processing (time redundancy), or any combination of these are
replicated n times. Replication of data means to store the same data n times, while replication of
hardware resources implies e.g. running nmachines, or using n hardware threads to solve the same
task. Additionally, the n must be compared to detect errors or to vote a majority to even correct
errors. Hardware replication typically, but not necessarily, involves replication of data. Redundant
processing can be done alone by using the same hardware to execute a task n times on the same
data, but since this increases the runtime by a factor of n, typically, redundant hardware resources
are used to not increase the runtime as much. Many applications of double modular redundancy
(DMR) or TMR were proposed [43, 93, 94, 138, 170] and all show that the overhead is much too
high for in-memory column stores. All variants imply that the same tasks – and usually the same
computations – are executed redundantly n times and that some sort of reliable voter compares
the n different results. This always introduces the new problem of guaranteeing that the voter
itself is reliable. Furthermore, DMR alone allows only detection of errors upon mismatch between
the two replicas, while TMR allows to correct errors by choosing the majority, i.e. 2-out-of-3.
When two replicas contain the exact same error, TMR “corrects” to the wrong result and when all
three replicas differ, TMR can still only detect the error, albeit introducing three-fold overheads,
contradicting with RequirementR2. Consequently, we disregard techniques like DMR or TMR.

2.5.1 Operating System-Level Techniques

On the OS level, Döbel et al. introduced Romain, a framework which provides hardware error
detection and correction capabilities to applications in a transparent manner [43]. It basically
supports arbitrary n-way modular redundancy by starting n distinct processes and is supposed to
support legacy or proprietary third-party software on commercial-off-the-shelf (COTS) systems
without recompilation. Not all application state is duplicated, as read-only memory regions are

2.5 Software-Based Techniques For Handling Bit Flips 19

shared among all replicas. Overheads in run-time are reduced by comparing the processes’ states
only before their state is externalized, e.g. CPU exceptions, page faults, or system (OS) calls.
Each process is halted until all replicas reach the same externalization point and then some select
application state is compared to detect errors. While their benchmarks show runtime overheads
of up to 20% for DMR and up to 30% for TMR, the total redundant work still amounts to at least
200% and 300%, respectively, due to the process replication. Furthermore, all all writable memory
regions are implicitly replicated, as well. Together this overhead is infeasible for in-memory DMSs,
as this greatly limits the amount of processing power and main memory, since typically most of
the used main memory is not read-only. [170] present a survey on integrity checking techniques
for storage [170]. They find that there are three most commonly used techniques. First, mirroring
(n-way modular storage redundancy) simply replicates all data. Second, RAID parity uses XOR
to compute M parity blocks of a set of N disk blocks, such that N +M blocks are stored, and the
loss or corruption of any M blocks can be repaired [170]. Third and finally, checksums are used
to detect errors, where typically hash functions are used and special requirements like security are
addressed by cryptographic hash functions [170]. These techniques, however, only assure that data
on disks is free of corruption and it is implicitly assumed that all data in main memory is error-free,
as well. With the assumption of having all business data in main memory and only working on
that in-memory data, their considerations do not directly apply for us.

2.5.2 Compiler-Level Techniques

On the compiler level, several solutions were proposed. Shirvani et al. use software ECC for main
memory data [168]. Oh and McCluskey proposed procedure duplication and argument duplication
at source level [132]. They targeted at enabling software fault tolerance while minimizing energy
utilization. Rebaudengo et al. developed a source-to-source pre-pass compiler, which additional
generates fault detection code whilst using a high level programming language. This introduces
3× to 5× overhead and still exhibits undetected error rates between 1 to 5% [149]. Oh et al.
proposed error detection by duplicated instructions (EDDI) [134] and control-flow checking by
software signatures (CFCSS) [133] These are software-only approaches which modify programs
during the compilation phase. EDDI works, as the name suggests, by duplicating instructions
and, for that, it uses different registers and variables for the redundant instructions. This helps
to detect errors e.g. in the CPU’s Arithmetic Logic Unit (ALU), but not to protect e.g. the
execution path (branches), which is what CFCSS aims at. It assigns unique signatures to all
nodes in a program graph and adds appropriate instructions for error detection. The signatures
are computed and embedded during program compilation. Both approaches are too inefficient
with regard to in-memory data management. Reis et al. introduced software-implemented fault
tolerance (SWIFT), which introduces several refinements to EDDI and implements a software-only
signature-based control-flow checking scheme [152]. While EDDI strives to protect memory data
structures as well, SWIFT assumes that these are well protected by hardware mechanisms like
parity or ECC. While the compiler techniques may be sensible solutions for legacy or non-database
software, they alone are not sufficient to meet our RequirementsR1 toR5. On the one hand, EDDI
reduces overhead by exploiting instruction-level parallelism (ILP), but since DMSs do the same to
minimize query latency, these are contradicting techniques. Further, performance improvements
as in SWIFT can only be achieved when the data can already be assumed to be reliably stored.
This is not the case for us, as we discussed earlier in this chapter. On the other hand, we do not
consider protection of the control flow itself in this thesis, which is due to several reasons. First,
we assume that memory cells are much more vulnerable to bit flips than others and that business
data (non-executable memory regions) will be several orders of magnitude larger than executable
memory regions and thereby consume virtually all main memory. Second, in compliance with

20 Chapter 2 Problem Description and Related Work

Requirement R5, we seek separation of concerns and want to concentrate on protecting data and
data structures. Techniques like SWIFT could be used to protect the control flow.

2.5.3 Application-Level Techniques

Shirvani et al. consider a separate task for error detection and correction (EDAC), which periodically
sweeps certain main memory regions of a system, which were previously registered by a program
for sweeping [168]. They use a block-oriented error code which is agnostic to the actual data
stored and processed. Their sweep task, called EDAC program, has high priority, pauses other
tasks and must complete one memory sweep before any other task resumes. They integrate two
separate programs which can even cross-check each other to detect bit flips in the EDAC programs
themselves. Their main interest is in protecting the code regions containing executable code,
because they observed that machine code of the OS itself as well as applications is often enough
damaged by bit flips, such that the system must be reset regularly. Nonetheless, their technique
can be used to protect data, too. An application must explicitly ask the EDAC program to sweep
its memory regions through inter-process communication. This work is evaluated in a real space
satellite, where they have a bit flip-hardened system and a COTS system side-by-side, whereas
the former is used to evaluate execution of the latter. They show that on hardware which is not
specially hardened against the higher radiation in space, their technique considerable improves the
reliability of the system. However, their approach contradicts with our Requirement R4 in the
sense that a program is paused during a memory sweep. While this time may be short for a satellite
system with a very restricted amount of memory, this is not feasible for multi-terabyte systems for
in-memory DMSs, where a complete sweep may take the time of many queries. Furthermore, their
approach being agnostic to the actual data types and structures might keep from choosing the most
effective (or efficient) error code, which is against RequirementsR1 andR2.

In the database domain, there is also some related work, however not directly targeted towards the
handling of arbitrary, transient bit flips in hardware. Lots of related work considers certain kinds
of software bugs which lead to data corruption and mostly for disk-based DMSs instead of main
memory-centric ones.

Pittelli and Garcia-Molina investigated the use of a triple modular redundant setup where a database
is replicated across three computers, all of them executing the same transactions in the same
order [138]. Their aim is to protect against arbitrary hardware faults in one of the three replicas,
while they argue that their approach can be easily extended to n-modular redundancy [138]. Their
definition of a failure is simplified to the fact that a database page differs from the majority of the
replicas of this page. During operation, a query is distributed to and executed by all replicas in
the same order. The results from all replicas are sent to the user and signatures of each result are
generated and sent to voters, one on each node, to check for inconsistencies between the replicas.
Since no additional error detection mechanisms are explicitly added, the authors state themselves
that error detection can take a while and transaction may even work on corrupt data [138]. A voter
only checks for corruption of the local replica and when it detects one, it tries to reconstruct a valid
database with the help of the other nodes. Pittelli and Garcia-Molina use a two-phase operation
where first the failing node asks the other replicas for consistent copies and then installs them in
the second phase. To detect corruption, signatures ares used which shall represent (parts of) the
whole database in an efficient manner [138]. Pittelli and Garcia-Molina use a hierarchical four-byte
checksum, where the one representing the whole database is constructed from each of the page
checksums. For detecting errors only the small database-wide checksum is exchanged and when
an error is detected in one node, the large set of page checksums is transferred to detect the faulty

2.5 Software-Based Techniques For Handling Bit Flips 21

pages. Afterwards, the respective pages are transferred to rebuild a consistent database snapshot.
On the one hand, heir approach satisfies our Requirement R4, as they do not halt the valid nodes
during recovery of the faulty node. On the other hand, network messaging across nodes incurs high
latencies. While their hierarchical checksum approach seems fast and viable, they do not provide
measurements for TMR versus unprotected query runtimes. Since all results are returned to the
user, it seems that the voting must be done at the user again. When the results are only returned
after the voting, this would lead to higher latencies.

Shortly after, [177] introduced a method for protecting critical DMS data structures against software
errors [177]. In their context, this may happen due to extensibility, where client code in the form
of user-defined operators, access methods, etc. is executed inside the DMS. They use operating
system support to write-protect certain memory regions, to prevent buffer overruns, stray writes,
and the like. [177] present three variations, with the first one unguarding on a per-record basis
(the respective memory page) before a record update and regarding afterwards. Each guard and
unguard operation requires a system call, which can be very costly [177]. The second variant is
called deferred write update model, where all records are left guarded until the end of transaction.
For updates, records are copied to writable memory regions and only modified there. Another
system call allows then to copy the modified copies into their respective places at the end of a
transaction. This includes first unguarding the respective regions and then guarding them again.
The third variant is called expose segment update model, where all pages are guarded and unguarded
at once. As they show, protecting all data structures and the whole buffer pool of an in-memory
database leads to query runtime overheads between 70% and 116% [177]. This work is not suited
for protection against transient hardware errors, because bit flips are not induced by that sort of
software bugs considered here. Even in write-protected pages, bit flip can happen and especially
those bits which denote a page being protected could flip. Furthermore, protection overheads of
more than 100% are undesirable, contradicting RequirementR2.

Bohannon et al. could still assume that hardware was becoming more reliable in the early 2000’s
and dealt with software errors, such as the “addressing error”, which includes buffer overflows
and “wild writes” [19]. They consider direct corruption due to addressing errors and indirect
corruption due to processes working with already corrupted data and thereby writing corrupt data
again. To detect such unintended modifications, they introduce a special interface for modifying
data, which additionally takes care of so-called code words, which cover a whole protection region.
They describe several requirements to the code word scheme and argue that several code word
schemes would satisfy them, but effectively use a simple XOR of all words in the protection
region [19]. Bohannon et al. introduce three corruption detection techniques, where the first,
read prechecking, requires latches for serializing access to the code word (checksum). There, for
reading the checksum is recomputed and validated against the stored one, however the authors do
not note whether this is done in advance or concurrently to reading. For updates, exclusive latches
are acquired during updates of the checksum. This variant shall prevent using corrupt data. The
next one, data code word, shall detect direct corruption, by postponing the checksum comparison
to a periodic, asynchronous maintenance operation, which they call audit. Their third variant,
data code word with deferred maintenance, tries to further reduce contention on latches by storing
code word updates in a log and updating the actual checksum during log flushes. One problem
with checksum-based approaches in general is the chance that when data is read several times to
compute the checksums for detection and updates, then in between these passes an arbitrary bit flip
is not detected. Furthermore, as we will discuss in more detail in Section 3.2.2, XOR checksums
can exhibit poor error detection performance compared to other coding schemes. Unfortunately,
Bohannon et al. do not introduce their special interface, so that we can not evaluate whether it
contains more flaws. Their performance evaluation shows that for a read-and-update workload,
their methods lead to throughput overheads (in operations per second) between 8.5% and 22.4%

22 Chapter 2 Problem Description and Related Work

on favorable sizes of the protection region.

Also in security-related research did we find some related work regarding the “corruption” of data.
Barbará et al. examine the case where an intruder wants to replace the latest data with old one
on disk, for personal gain or to corrupt a service [15]. They assume that the intruder already
gained knowledge about the system’s internal structure and architecture and thus has the ability
to store old data and protection information. To detect data corruptions, they use two levels of
checksums over large blocks of data. The first level involves computing one checksum per data
block and table attribute, while the second level computes checksums for several combinations of
first-level checksums. In essence, Barbará et al. assume that the only unknown to the intruder are
the secret keys for generating the checksums and they argue that something must be secure to build
upon. Each change of a data item requires a chain of updates to those second-level checksums
which cover the respective first-level checksum. As a consequence, to successfully inject old data
without triggering a checksum mismatch on both levels, an intruder must overwrite all respective
data blocks such that all the checksums on both levels match [15]. For our scenario, this is
insufficient. First, they assume disk-based database systems, where the I/O costs can mitigate the
costs of additional computations of checksums. Second, we do not assume a malicious adversary
at the disk level, but arbitrary transient hardware errors (especially in main memory). While their
technique detects errors which were induced while data was on disk, they cannot detect hardware
errors. For instance, assume that a transaction changes a data item of one disk block and assume
that some hardware error(s) silently corrupted data in main memory, then the checksums will be
computed on that non-maliciously changed data. This is, because only data loaded from disk to
memory is not trusted, but data in main memory is trusted, which clearly excludes the setting of
this thesis.

From our perspective, the presented contemporary, general-purpose, software-based fault-tolerance
techniques are either not appropriate to handle bit flips and protect our most precious good – the
business data – or introduce too high overheads in terms of memory consumption, computing
work, or both. Optimizations for reducing the run-time or redundant work overhead assume that
data errors are detected by other means, which is not feasible in our case. Further, these techniques
exhibit rates for undetected errors, which we assume unacceptable in our domain. This leaves
the most crucial part of what reliable data management should store and process: data. The only
conclusion we can draw is, that DMSs have to take care of handling bit flips in data and data
structures themselves, in the application layer.

2.6 SUMMARY AND CONCLUSIONS

Reliable data storage and processing is the key objective of data management, in general. As
we first discussed, the RCB could mask and hide most if not all errors in the lower hardware /
software stack from applications. By that, DMSs could assume reliable hardware and operating
systems, except mass storage devices. In the database domain, three failure classes concerning
physical failures have been considered so far, ranging from system failures, over media failures
to single page failures. The second most important requirement for DMSs is efficient storage
and processing, which is achieved in part by adapting to modern hardware features. It is now
widely acknowledged that hardware becomes less and less reliable due to the constant reduction of
transistors feature sizes and accompanying negative side effects on the physical layer. Bit flip rates
are exponentially increasing and bit flip weights exceed the error detection capabilities of error
detection schemes employed today. Consequently, the RCB is reduced – more components become
unreliable and less errors are masked. An additional challenge is that the error behavior changes

2.6 Summary and Conclusions 23

at run-time, due to hardware aging effects. By that, the key requirement of data management
– reliability – can not be met on future hardware anymore and the speed improvements are no
longer a free ride. The database community could neglect these issues so far and, to the best of
our knowledge, since several decades we take a first step towards handling them in the DMS itself
by introducing bit flip detection. This is a very important step, because it is first and foremost
crucial to detect that a bit flip occurred and, by that, to avoid silent data corruption. We formulated
Requirements R1 to R5 for data management-specific solutions under bit flips, for effectiveness,
efficiency, adaptability, availability, and separation of concerns. Within this thesis, we regard the
following hardware components being affected by bit flips: 1. data caches in the CPU, 2. main
memory, and 3. interconnects between these. Most of the related work used some form of n-
modular redundancy of space, time, resources, or a combination of these. We believe that data
management systems must handle bit flips themselves in software, because today’s solutions are
either inappropriate or too costly, with regard to our requirements. To meet our set of requirements
for multi-bit flip detection, we will examine error control codes as an alternative to n-modular
redundancy.

24 Chapter 2 Problem Description and Related Work

3
ANALYSIS OF CODING TECHNIQUES

3.1 Selection of Error Codes

3.2 Probabilities of Silent Data
Corruption

3.3 Throughput Considerations

3.4 Comparison of Error Codes

3.5 Performance Optimizations
for AN Coding

3.6 Summary

The aim of this chapter is to select and evaluate error control codes suitable for storage and
processing in main memory-centric DMSs. Therefore, we first provide an overview of error control
codes and then select three potential candidates in Section 3.1. We examine the selected ones in
greater detail regarding their coding operations (Sections 3.1.1 to 3.1.3) and their ability to detect
errors (Section 3.2). We show that AN codes exhibit very beneficial properties regarding storage
and processing of integers. We then compare the error codes regarding our RequirementsR1 toR3
– effectiveness, efficiency, and adaptability – in Section 3.4. There, we show grave disadvantages of
AN codes in terms of processing overheads. Afterwards, we present a fundamental improvement
to AN coding in Section 3.5, which was not proposed before, and which greatly improves the
efficiency of error detection and decoding. Finally, Section 3.6 summarizes this chapter.

The main contributions of this chapter are the following:

1. We investigate the use of error control codes in data management systems.

2. We introduce the terms data hardening and data softening to distinguish the purpose of error
coding from the type of coding used by other domains like data compression or security. We
will give two definitions which build upon each other. The first set of definitions will be
given shortly, while the second set will be provided later in this chapter in Section 3.5.4.

3. With respect to Requirements R1 to R3, we select a few error control codes which could
be employed for software-based fault-tolerance in main memory-centric DMSs. Part of this
discussion was published in [87].

4. We provide a detailed analysis of the silent data corruption probabilities of the selected error
codes.

5. To the best of our knowledge, we are the first to propose improvements for detection and
decoding of AN coding, which greatly increase decoding and error detection throughput and
which enable vectorization using SIMD instructions. This was published in [87].

3.1 SELECTION OF ERROR CODES

Error control coding is based on information theory, which was established by Shannon in 1948.
Shortly after, Hamming and Golay developed the first applicable error control codes [57, 66]. We
will use “error code” or just “code” as an abbreviation for error control code throughout this thesis.
Since then, many code families were found and we will briefly introduce a few of them and discuss
their applicability in our context. There is a rich amount of literature on this topic, including
many standard text books such as [25, 109, 122]. Error coding adds redundancy to information
to detect or even correct errors that corrupt data during transmission or storage, as depicted in
Figure 3.1. An error code maps (encodes) a data word from the data domain onto a code word
from the code domain. Only the code words in this mapping are considered valid. Since the code
adds redundancy, there are other possible code words which do not belong to the mapping and
are considered invalid. An important metric for error codes is the Hamming distance dH, which
denotes the number of symbols in which two code words differ. In our case it suffices to assume
that a symbol is a single bit. An error in transmission or storage may transform a valid code word
into an invalid one and there are codes which allow to correct invalid code words to the original
data word.

26 Chapter 3 Analysis of Coding Techniques

data word space D
code word space C

valid word

invalid word

Hamming distance

encode

decode

error

Figure 3.1: Basic graph representation of error coding.

There are other domains like data compression and security, which also use certain data coding
operations for changing the data representation into a desired, different form. Before we proceed
with the introduction of error coding schemes, we introduce new terms to distinguish from these
other domains. For instance, in the domain of compression, those coding operations are called
compression and decompression for mapping into another data representation and back, respec-
tively. Regarding security, especially in the cryptography domain, there are operations to encrypt
and decrypt1 data to protect it from malicious modifications. Both domains, compression [4] and
security [169], play important roles in the data management domain, as well. In our case, we want
to use data coding to detect bit flips which occur due to hardware errors, and not due to some
malicious or otherwise intended action. Consequently, to distinguish this area, we give new terms
for our encoding and decoding operations.

Definition 5 (Data Hardening). We denote the process of encoding data as data hardening, since
data is literally firmed so that corruption in the form of bit flips becomes detectable.

Definition 6 (Data Softening). We denote as data softening the decoding of data, as it becomes
(more) vulnerable to corruption in the form of bit flips again.

Several dimensions of classifying error codes exist [25, 109, 122]:

• Based on how redundancy is added, codes are divided into block codes and convolutional
codes, both being widely employed. For instance, block codes are used in server-grade ECC
DRAM memory modules and convolutional codes are used for deep space transmission [114],
just to name two examples.

• Based on channel error type, there can be codes for independent error control or for burst
errors.

• Referring the error control strategy, there are error detecting and error correcting codes.

• Based on the possibility of separating the information symbols from the redundant ones,
there are systematic codes, which contain the original data symbols in clear. In contrast,
non-systematic codes do not contain them in clear so that data and code bits cannot be
separated.

Block Codes are codes where the total coded information can be divided into blocks of n
symbols. We here assume that such a symbol is a bit representing either 0 or 1, i.e. the Galois
Field GF(2). The blocks are called code words and n is the code length, while the data length is

1We are well aware that data can be cryptographically signed as well, to detect malicious modification, but we want
to show analogies between the operation of mapping from and to another domain.

3.1 Selection of Error Codes 27

denoted as k. The important property here is that each code word can be decoded individually.
For block codes, typically the notation (n, k, dH) is given, which presents the most important
characteristics of the code. Block codes can further be distinguished being linear or non-linear.
For a linear code, each linear combination of any two code words results in another code word,
where linear combination is the binary addition without carries of two code symbols. The first
error codes were linear block codes and the very first ones being Hamming codes [66] of which a
single error correcting, double error detecting variant is still widely used. For now it suffices to
know that code words are generated by multiplying a data word vector against a code generator
matrix, which produces a code word vector. Generally speaking, the code bits are parity check
bits over different sets of the data bits. While Hamming codes originally only have code word
lengths n = 2m− 1, shortening allows arbitrary data word lengths to be used. Shortly after, Golay
codes were introduced [57], which have a fixed data and code length of 12 and 23, respectively. In
contrast to Hamming codes, the Golay code can correct all triple errors, but requires lookup tables
for coding, which makes it impractical, because such tables need to be stored in main memory
and can be corrupted as well. Reed-Muller codes [122, Chapter 2.3] are a family of codes where
hardening works by evaluating a Boolean function over all possible values of an input word, which
can again be expressed as multiplication with a generator matrix. The matrix consists of k + 1
rows, where the first row is the all-1-vector and the remaining k − 1 rows form all possible 2k−1

bit combinations. Since the generator matrix, or any of its permutations, does not contain the
identity matrix, Reed-Muller codes are non-systematic. Decoding works by selecting for each
code bit a subset of the 2n−k parity-check equations and trying to correct errors in each code bit
individually. From [122, Chapter 2.3] we conclude that this is only efficiently doable in hardware
using majority-logic circuits. Interestingly, when appending an additional overall parity-check bit
to Hamming codes, this results in a Reed-Muller code. Binary cyclic codes are a subclass of
linear block codes and comprise several families of codes. They provide more structure than the
previous codes which allows efficient implementation of hardening and softening [122, Chapter
3]. A linear block code is cyclic if and only if every cyclic shift of a code word is again a valid
code word. A nice property is that all code words (seen as polynomials) are multiples of a single
generator code word (polynomial). This makes it at least easier to create a generator matrix,
whereas matrices for systematic or non-systematic codes can be found. BCH codes are one such
family of cyclic codes. Original Hamming codes are also instances of binary cyclic codes [122,
Chapter 3.1]. The parity-check matrix is obtained by cyclic shifts of a parity-check polynomial.
In hardware, hardening and softening is realized using cyclic shift registers. Cyclic Redundancy
Check (CRC) codes are another form of cyclic codes. Here, a potentially large data block is divided
by a polynomial and its remainder is used as the error check symbol. CRC codes are typically used
for error detection only [122, p. 45]. There are even more complex codes like Reed-Solomon (RS)
codes, Turbo codes, Low-Density Parity-Check (LDPC) codes, which however are more complex
to encode and decode. Turbo and LDPC codes are iteratively decodable codes, which means the
decoding algorithm is iterated several times to improve the error correction performance. Most
of the above codes require special hardware circuits to be implemented in an efficient manner,
so that a software-based implementation is already out of the question. Non-systematic block
codes are also unfavorable, because they require to decode whenever we want to access the data,
especially for frequent operations in DMSs like arithmetic and comparison operations. Hamming
codes can be implemented relatively easy in software and as was shown they are instances of other
code families, covering in fact a wide range of the types we briefly presented. Therefore, we will
investigate Hamming codes in more detail after this general error code introduction.

Checksums are a further type of linear, systematic block codes. A checksum is a value computed
from an arbitrary input sequence designed solely for error detection, where a potentially large
input sequence is mapped to a comparatively small, usually fixed-sized value (with regard to the

28 Chapter 3 Analysis of Coding Techniques

application). As the name suggests, the input sequence is somehow summed up to gain a check
value. However, nowadays the term checksum is also used when actually hash functions are applied.
There exists a multitude of algorithms with varying complexity and hardware support, e.g. parity
bits, parity words, Message-Digest Algorithms (e.g. MD5) [156, 170] or cyclic redundancy checks
(e.g. CRC32) [137, 170]. In the case of parity bits (words), the data bits (words) are summed up
using the binary exclusive or operation (XOR,⊕). Parity words are also referred to as Longitudinal
range check (LRCID) [90]. The size of the resulting checksum can be arbitrary, but is usually
either a single bit or aligned to machine words, respectively, for the sake of hardening throughput
performance. In contrast to other checksums, parity words are one of the simplest methods to
compute a checksum. Furthermore, XOR checksums can be computed using Single Instruction
Multiple Data (SIMD) instructions of modern CPUs, which we will cover in detail later. Here it
suffices to note that this is important for main memory-centric DMSs. Therefore, We will include
the word-aligned XOR method into our further considerations. In the following we will simply use
“XOR” as an abbreviation and we will call the computation of the checksum “hardening” as well.

Arithmetic error codes are a type of block codes whose unique feature is that arithmetic operations
on code words result in valid code words again [13]. These are considered for protecting the
arithmetic part (ALU) of processors, as well as transmission and storage of data. Avižienis
suggests that the same code could also be used throughout a whole computer system, which could
result in all data being hardened [13]. Avižienis calls this “concurrent diagnosis [. . .] which
occurs concurrently with the operation of the computer” [13]. By that, transient and permanent
faults can be detected without replicated storage or execution. This code class is very interesting
due to its code-preserving property under arithmetic operations. One representative of arithmetic
codes is the AN code, which has received some attention already some time ago [32, 41, 51]
and we will investigate it in more detail, too. AN coding has gained lots of interest over the last
decade, often used as a compiler technique to harden programs in total [49, 154, 155, 161] and
in the embedded community [69], where it was more recently proposed for protecting controller
execution in the automotive domain [55].

Convolutional Codes were invented shortly after the first block codes by Elias [45]. These are in-
tended for infinite sequences of information symbols, where the contents of a code symbol depends
also on previous information symbols. The code symbols do not necessarily have the same length.
For instance, from the information sequence i1, i2, i3, . . . the code sequence i1, i

′
1, i2, i

′
2, i3, i

′
3, . . .

is generated, where each i
′
n = f(i1, i2, i3, . . .) is a function of the previous information symbols.

Consequently, for convolutional coding, memory is required to store the last information symbols.
Decoding happens by a kind of backtracing, an iterative process, where the decoder tries to find
out what is the most likely input sequence which produced the generated message. Depending on
how much time is available for decoding, the process can iterate several times and improve the
decoding result. In contrast to block codes, this does not happen with a checker matrix, but using
the Viterbi algorithm [180], which we do not sketch here, but which can be found in virtually all
literature covering convolution codes, e.g. [25, 109]. The decoding process quickly incurs prob-
lems regarding computational and memory complexity. Furthermore, since the decoding depends
on a history, or sequence, of code symbols, obtaining a single value is not trivial any longer. By
that, we do not further regard this type of codes for employment in in-memory DMSs. We believe
that the throughput performance implications are way too high as to do convolutional coding in
software, which goes against Requirement R2, even though the memory consumption might be
smaller than for other codes with the same error detection capabilities.

3.1 Selection of Error Codes 29

To summarize the above, we distinguish coding operations regarding error detection from other
domains by introducing the terms hardening and softening in Definitions 5 and 6, respectively.
While there is a huge range of available error control codes, we will investigate in further detail the
following three code families Hamming codes, XOR checksums, and AN codes. For the remainder
of this thesis, we will need the following definitions:

Definition 7 (Bit Width). |S| represents the largest effective bit width of any element in set S. We
will also call this the bit width of set S.

Definition 8 (Population Count). JxK denotes the population count of x, which is the number of
bits set to 1 in the binary representation of x.

3.1.1 Hamming Coding

Hamming codes are originally known from telecommunications and systematically add parity bits
over different sets of a data word’s bits [66]. It is a family of block codes, meaning that one code
is suited for a dedicated data block width, e.g. 64 bits. They are defined by the triple (n, k, d)
which means its code words are n bits wide in total, its data (block) width is k bits and d denotes
the minimal Hamming distance which will be explained in Section 3.2. Sometimes, also the short
notation n/k is used. Hamming codes are employed in today’s server-grade ECC main memory
modules, where usually an additional 8 bits are stored for every 64 data bits, which is called
a 72/64 Hamming code, or (72, 64, 4) in the (n, k, d)-notation. We will use the two notations
interchangeably in the following. In theory, a code word c is obtained with the help of a generator
matrix G multiplied with the data word (or message) m as

c = mG,

G =
(
Ik|P

)
.

(3.1)

Referring to the (n, k, d)-notation, Matrix G has n columns and k rows and it consists of the
k-by-k identity matrix Ik and the parity check sub-matrix P . This form ofG ensures the systematic
property of codes. For each data width, there are potentially multiple different generator matrices.
Although this may result in different codes, they have the same properties. For each such code
there exists a parity check matrix H with n columns and n− k rows. A received code word v can
be validated by computing the syndrome S by

S = vHT . (3.2)

The syndrome vector S is the zero vector 0⃗ if and only if v is a valid code word. Matrix G and H
are formed such that their product results in the all-zero vector:

GHT = 0⃗. (3.3)

For single bit flips, the syndrome directly indicates the position of the flipped bit. Assuming that
G is in the systematic form, checker matrix H is of the form

H =
(
P⊤|In−k

)
. (3.4)

30 Chapter 3 Analysis of Coding Techniques

G =

⎛⎜⎜⎝
1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

⎞⎟⎟⎠
(a) Generator matrix.

H =

⎛⎝ 1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

⎞⎠
(b) Checker matrix.

Figure 3.2: The standard 7/4 Hamming code example.

Consequently, it consists of the transposed checker sub-matrix from G (which has k columns and
n − k rows) and the (n − k)-by-(n − k) identity matrix. The standard examples for the (7, 4, 3)
Hamming code are given in Figure 3.2, with the generator and the checker matrices shown in (a)
and (b), respectively.

Extended Hamming Codes

In their basic form, Hamming codes have either only single error correction or double error
detection capabilities (more details in Section 3.2.1). There is also an extended variant that adds
an overall parity bit and can do both at the same time. The additional parity bit is generated over
both all data and all other parity bits and increases the minimal Hamming distance of Hamming
codes from 3 to 4 and also the total code width by 1. Extended Hamming codes are thus said to
have SECDED capabilities. Extending codes in general is framed in [122, Chapter 6]. Originally,
Hamming codes have fixed code word widths of n = 2m − 1 bits where m > 1 and k = n −m,
i.e., there are m parity bits. By that, for the original form there are (127, 120, 3), (63, 57, 3) etc.
codes, while in the extended form there are (128, 120, 4), (64, 57, 4) etc. codes. In the following
we will expect the extended form unless otherwise noted. An example for a (7, 4) Hamming code
is given in Appendix A.2.1, Table A.5a.

Shortened Hamming Codes

To obtain a code with less data bits, e.g., a (72, 64, 4) code2, the (128, 120, 4) code is shortened
by using less data bits (64 instead of 120) and the same amount of parity bits. We define kb as
the basic Hamming code data width, ks as the shortened Hamming code data width, and their
difference as k∆ by

k∆ = kb − s. (3.5)

Such codes can be constructed by removing the lower k∆ rows in the generator matrix G and all
resulting k∆ zero-columns. The latter removes those columns which would just project the now
removed data bits. For shortened (binary cyclic) codes such as Hamming codes, the same encoder
and decoder can be used [122, p. 45]. Shortening codes in general is framed in [122, Chapter 6].
Examples of shortening codes are given in Appendix A.2.1, Tables A.5b and A.5c.

2Such a code was first proposed for the IBM model 360 mainframe [71] and is used in server-grade ECC DRAM
main memory.

3.1 Selection of Error Codes 31

Code 12 11 10 9 8 7 6 5 4 3 2 1

Pattern
Position
Binary 11002 10112 10102 10012 10002 01112 01102 01012 01002 00112 00102 00012

Data 8 7 6 5 4 3 2 1Position

p1 • • • • • • 0x5B16
p2 • • • • • • 0x6D16
p3 • • • • • 0x8E16
p4 • • • • • 0xF016
pall • • • • • • • • • • • • (*)

Figure 3.3: Pattern for the parity bits of the shortened Extended 13/8 Hamming Code. The ith

parity bit pi computes the parity over all data bits whose binary representation of the code position
has the ith least significant bit (LSB) set to 1. The right-most column shows the AND-ing pattern
for each parity bit. (*): The overall parity pall extends a 12/8 to a 13/8 Hamming code and includes
all data bits and also the other parity bits.

64 56 48 40 32 24 16 8 Pattern

p1 • • • •• • • • • • • • • • • • • • • •• • • • • • • •• • • •• •• 0xAB 55 55 55 56 AA AD 5B
p2 •• •• • • •• • • •• • • •• • • •• •• •• •• •• •• •• •• • 0xCD 99 99 99 9B 33 36 6D
p3 •••• •••• • ••• • ••• • ••• •• •• •• •• ••• • ••• 0x78 F1 E1 E1 E3 C3 C7 8E
p4 • ••••••• • ••••••• •• •••••• ••• •••• 0x01 FE 01 FE 03 FC 07 F0
p5 • •••••••• ••••••• •• •••••••• ••••• 0x01 FF FE 00 03 FF F8 00
p6 • •••••••• •••••••• •••••••• •••••• 0x01 FF FF FF FC 00 00 00
p7 ••••••• 0xFE 00 00 00 00 00 00 00

Figure 3.4: Pattern for the 72/64 shortened Extended Hamming Code. All shorter codes, like 39/32
or 13/8 (cf. Figure 3.3), can be derived from this scheme by removing the appropriate leading parts
and removing parity bits with empty remaining lines. The overall parity bit (pall) is not shown here
as it only builds the parity across all data and parity bits.

Practical Construction

Practically, we need to neither generate matrices nor do matrix multiplication at all, since the code
bits are actually parity check bits over different sets of data bits. The basic patterns for selecting
the data bits are shown in detail for a 13/8 code in Figure 3.3 and condensed for a 72/64 code
in Figure 3.4. Both are shortened Extended Hamming codes. For each parity bit, the data bits
are selected by a fixed pattern, i.e. each is computed by AND-ing a pattern with the data word,
followed by counting the one-bits (population count) and producing an even parity. For shortened
(Extended) Hamming codes, the appropriate k∆ columns are removed and also the patterns are
appropriately shortened by k∆ bits. From Figure 3.4, other shortened codes can be derived by
removing further columns and parity bits when they do not cover any data subsets anymore.

3.1.2 XOR Checksums

XOR checksums are, like Hamming codes, systematic and linear codes. In general, parity bits are
generated over a block of data items. We denote the set of all possible data items as D, the number
of these items over which a checksum is generated as #D, and the set of possible checksums is X.
The bit width of the data items |D| is not necessarily equal to the bit width of the checksum |X|. A
code word consists of

k = #D · |D|
n = k + |X| = #D · |D|+ |X|

bits. We can also describe the construction of XOR checksums with the help of a generator matrix
exactly as in Equation (3.1). For parity bits, the generator matrix G is defined as

32 Chapter 3 Analysis of Coding Techniques

cbit
XOR =

(
d1 d2 d3 . . . p

)
= dGbit

XOR

=

⎛⎜⎜⎜⎝
d1
d2
d3
...

⎞⎟⎟⎟⎠
T ⎛⎜⎜⎜⎝

1 0 0 · · · 1
0 1 0 · · · 1
0 0 1 · · · 1
...

...
...

. . .
...

⎞⎟⎟⎟⎠
=

(
d1 d2 d3 · · · | p

)
(a) Parity bit.

cword
XOR =

(
c1 c2 c3 · · ·

)
= dGword

XOR

=

⎛⎜⎜⎜⎝
d1
d2
d3
...

⎞⎟⎟⎟⎠
T ⎛⎜⎜⎜⎝

1 0 0 · · · 1 0
0 1 0 · · · 0 1
0 0 1 · · · 1 0
...

...
...

. . .
...

...

⎞⎟⎟⎟⎠
=

(
d1 d2 d3 · · · | p1 p2

)
(b) 2-bit word.

Figure 3.5: XOR generator matrix examples.

Gbit
XOR = (Ik|1⃗k), (3.6)

where Ik is the k-by-k identity matrix and P = 1⃗k is a vector with k elements, all set to 1. Vector
1⃗k has the effect that all bits in the data word are added together, which for binary addition is
carry-less addition in GF(2) and this is the same as XOR-ing them together. The resulting code
word cbit

XOR consists of all data bits di and the parity bit p. For parity words, the generator matrix is
defined as

Gword
XOR = (Ik|V1 . . . V|X|). (3.7)

Each of the vectors Vi generates the parity over the i-th bit of each |X|-wide block. Therefore,
Vi has elements i, i + |X|, i + 2|X|, . . . set to one and all others set to zero. Examples of XOR
generator matrices are given in Figure 3.5 for parity bit (a) and 2-bit word (b) checksums, which
can be easily extended to other word widths. The parity-check matrix HXOR is constituted of the
second part of the generator matrix, i.e. only the parity-generating columns (V1) or (V1, . . . V|X|),
with the identity matrix below (in transposed form), which selects the appropriate parity bit for
checking:

Hbit
XOR =

(
1⃗k
1

)⊤
= (1⃗n)

⊤, (3.8)

Hword
XOR =

(
V1 . . . V|X|

I|X|

)⊤
. (3.9)

The check matrices are transposed to satisfy Equations (3.2) and (3.3). The syndrome S is
computed the same as for Hamming codes as in Equation (3.2) and the code word is again only
valid when S = 0⃗ holds and Equation (3.3) holds likewise, too. In practice, the parities are
computed bit-parallel in word-wise XOR operations and can be folded into the desired word-size
at the end.

3.1.3 AN Coding

Arithmetic codes were first mentioned in the mid-1950s when Diamond proposed one form of AN
coding [41]. Shortly after, his work was extended by Brown in 1960 [32]. Later, AN codes were

3.1 Selection of Error Codes 33

developed for detecting errors in processors, mainly in the field of embedded systems [51, 161].
As we noted above, AN codes received quite some attention during the previous decade and was
even proposed to be used in the automotive domain [55]. A code word c ∈ C is computed by
multiplying a constant A ∈ A onto the data word d ∈ D (a concrete example is given below):

c = d ·A (3.10)

A, DΘ, and CA
DΘ

respectively are the sets of all possible parameters A, data words d of type Θ,
and code words c obtained by multiplying the respective A onto all d ∈ DΘ. In contrast to the
previous codes, the data type will later be important. Since AN coding only works on integers, the
parameter set is a subset of the set of integers: A ⊆ Z \ {0, 1}. A = 1 makes no sense, because
it is the neutral element for multiplication. As a result of the multiplication, the domain of code
words CA

DΘ
expands such that only multiples of A become valid code words, and all other values

are considered non-code words. The choice of “good” As will be discussed in Section 3.2.3. In
contrast to the previous two codes, the data itself is modified and the resulting code words are
non-systematic. Due to the convolution of multiplications it is not trivial anymore to obtain the
original data words and a division is required for decoding:

d = c/A (3.11)

Errors are detected by testing the remainder of the division by A, which must be zero, otherwise
the code word was corrupted (cε) e.g. by some bit flip weight b:

c ≡ 0 (mod A) (3.12)
(cε = c ◦ b) ̸≡ 0 (mod A) (3.13)

where ◦ can be a binary operation like, e.g., XOR (⊕), OR (|), or AND (&), or an arithmetic
operation like +,− depending on the actual error model. A very useful feature of AN coding
is the ability to operate directly on hardened data. In particular, due to the monotony of the
multiplication, the following operations on two hardened operands yield the expected results:

c1 ± c2 = (d1 ·A)± (d2 ·A) = (d1 ± d2) ·A (3.14)

c1 ◦ c2 = (d1 ·A) ◦ (d2 ·A)
1/A≡ d1 ◦ d2 , ◦ ∈ {<,≤,=, . . . } (3.15)

Care must be taken for operations like multiplication

OK c1 · d2 = d1 · d2 ·A, (3.16)
BAD c1 · c2 = (d1 ·A) · (d2 ·A) = d1 · d2 ·A2, (3.17)

OK c1 · c2 ⇒ c1 · c2/A = d1 · d2 ·A, (3.18)

34 Chapter 3 Analysis of Coding Techniques

and division

OK
c1
d2

=
d1 ·A
d2

=
d1
d2
·A, (3.19)

BAD
c1
c2

=
d1 ·A
d2 ·A

=
d1
d2
, (3.20)

OK
c1
c2
⇒ c1

c2
·A =

d1 ·A
d2 ·A

·A =
d1
d2
·A. (3.21)

Equations (3.16) and (3.19) are valid operations using a hardened and a softened operand. In
contrast, the result from Equation (3.17) be invalid due to the resulting A2 and Equation (3.20)
would produce a softened result. By that, for multiplication with 2 hardened operands, one operand
must be divided byA, as in Equation (3.18)). For division the result must be multiplied byA, as in
Equation (3.21), whereas the correct order of the additional multiplication is crucial. The division
of the two code words must take precedence to prevent a possible integer overflow and to retain
the correct integer division semantics. This is, because

(d1 ·A)÷ (d2 ·A) ·A ̸= (d1 ·A)÷ (d2),

where ÷ denotes integer division, which rounds down to the lower integer (a÷ b ≡ ⌊a/b⌋). As an
example, consider d1 = 3, d2 = 2, and A = 5, where(

(3 · 5)÷ (25̇)
)
· 5 = (15÷ 10)5̇ = 5 ̸= 7 = 15÷ 2 = (3 · 5)÷ 2.

The following provides a concrete code example, which will also serve as a continuous example
throughout this chapter:

Example 1. Our continuous code example in decimal representation for A = 233:

Hardening 1, 165 = 5 · 233
Softening 5 = 1, 165/29

Detection 1, 165 ≡ 0 (mod 233)
(1.164ε = 1, 165⊕XOR 1) ≡ 232 (mod 233)

Arithmetic 1, 165 + 2, 097 = (5 · 233) + (9 · 233) = (5 + 9) · 233
= 3, 262

Comparison 1, 165 < 2, 097 = (5 · 233) + (9 · 233) ≡ 5 < 9

For detection, the second line represents a bit flip of the LSB in its binary representation.

AN Coding Derivatives

Diamond was the first one who mentioned AN codes as “Checking Codes”, in 1955 [41]. These
are of the form

c = a · n+ b,

n = (c− b)/a.

There, codes were investigated which would support addition of code words which would result in
valid code words, again. These already include a checksum b, which is added on top of parameter a.

3.1 Selection of Error Codes 35

However, this was only mentioned in the correspondence part of the proceedings of the IRE [41].
Shortly after, Brown provided a much more detailed description [32]. First, codes of the form
An + B are considered. The problem here is, that while arithmetic operations on code words
are possible, the signature must always be handled carefully. For instance, when adding two code
words

c1 + c2 = An1 +B +An2 +B = A(n1 + n2) + 2B,

B is added up and must be treated accordingly. Furthermore, other arithmetic operations such as
multiplication or division are much more complicated. Brown also considered codes with b = 0
and even error correction, but only for codes with a minimal Hamming distance of up to 3. Several
decades later, Forin also describes extensions to add next to the static signature Bc (ANB-codes)
also a timestamp D on top (ANBD-codes) [51]:

c = A · d+Bc(+D) with 0 < Bc < A.

There, decoding becomes more complicated and signature and timestamp must be known at compile
time. This is not feasible for database systems with huge amounts of arbitrary data and arbitrary
combinations of operations in query processing. The additional timestamp makes handling of
arithmetic operations on code words even more complex than before.

Subsequent work by Schiffel allows to harden existing software binaries or to add hardening at
compile time, where not all variables’ states need to be known in advance [161]. This is called
software encoded processing (SEP) and compiler encoded processing (CEP), respectively. The
former, SEP, leads to runtime overheads between 2× and 25× [161, Section 7.4.2], whereas
the latter introduces overheads between 2% . . . 81% for AN codes, however these measurements
are done in a 10-MBit half-duplex network environment and denote the reduction of throughput
in queries per second [161, Section 8.5.4]. Outside of that network setting, fully AN encoded
benchmarks exhibit slowdown from 2× to 75×. Furthermore, in her work she only describes
hardening integers of size |D| ∈ {1, 8, 16, 32} bits and pointers, where the hardened values are
always 64 bits large. For database systems this would incur way too much memory overhead, an
aspect we will discuss in detail later in Section 4.1.3.

Ulbrich et al. use AN coding in the CoRed project for software-based fault-tolerance in mixed-
criticality control applications [178]. They provide useful hints and discover pitfalls, e.g. when
mapping the decimal arithmetic to binary arithmetic with fixed-width native data widths [69]: For
instance, if an invalid code word is dividable by A without remainder, it is larger than the largest
encodable value of the original data width dmax ∈ D. Furthermore, Ulbrich et al. only consider
the two fixed data widths of 8 and 16 bits and As of the same width, respectively, which leads to
code word widths of 16 or 32 bits, respectively. Considering that some database systems use all
data widths from 1 to 32 bits, their findings are too meager.

3.1.4 Summary and Conclusions

In this section, we discussed error control codes in general and chose three code families for further
investigation to be used in main memory-centric DMSs. We started with introducing the terms
hardening (encoding) and softening (decoding) for distinguishing from other coding domains like
compression and security. Then, we gave a general overview of the huge range of error control
codes, which can be classified using several metrics. Most importantly, we can distinguish between
block codes and convolutional codes on the one hand, and between systematic and non-systematic
ones on the other hand. We discussed a wide range of codes and we saw that some code families

36 Chapter 3 Analysis of Coding Techniques

are specific instances of other code families. For instance, original Hamming codes are specific
instances of BCH codes, while when appending an extra overall bit to Hamming codes, they
become instances of Reed-Muller codes. We chose the three code families Hamming codes, XOR
checksums, and AN codes to further investigate for use in main memory-centric DMSs. Then,
in Sections 3.1.1 to 3.1.3 we presented the details of Hamming codes, XOR, and AN codes,
respectively, regarding their basic coding operations and derivatives. For Hamming codes, we
can use extended variants with an additional overall parity bit and we can shorten them to obtain
a desired data width. Furthermore, Hamming codes can be computed using vectorized SIMD
instructions, which we will discuss in detail later in Section 3.3. In theory, coding operations for
both Hamming and XOR use matrix operations over data word vectors, but in practice today’s
CPUs support native instructions like population counting and bit-parallel XOR-ing. For these
codes, error detection is done by recomputing the code bits and comparing those against the stored
code bits. Using AN codes, hardening works my multiplying integers with a constant A, softening
works via integer division, and error are detected by checking whether the remainder of the division
byA is zero. A major advantage over the first two codes is the ability to directly execute arithmetic
and comparison operations on AN code words. While there are also some derivatives for AN
coding, we disregard them, because they make the coding operations much more complex and
arithmetic operations cannot be done as easily any longer.

In order to be able to choose among these three codes, we need to take a closer look regarding our
Requirements R1 to R3 for effectiveness, efficiency, and adaptability, respectively. Therefore, in
the following Section 3.2, we will investigate the codes’ probabilities of SDC, which means how
good the codes can detect bit flips, which conforms to our RequirementR1.

3.2 PROBABILITIES OF SILENT DATA CORRUPTION

No error code is perfect in the sense that it could detect all errors or bit flips. Consequently,
the important performance criterion regarding effectiveness (Requirement R1) of codes is the
probability that they will not detect a bit flip in a code word. When this happens, an undetectable
decoding error occurs and in the end corrupt data will be used. Figure 3.6a visualizes the problem
at hand: Starting from the data word space D, a code maps a data word into the code word space
C. From there we distinguish four cases:

1. In the best case, the code word stays unaltered and can be decoded back into the original data
word.

2. A bit flip may keep the altered code word inside the original code word’s sphere of correction.
For Hamming, this is only the case for single bit flips. Then, the corrupted code word can
still be decoded into the original data word. For error detecting codes like AN coding this
case does not exist. Following the naming Hamming distance, we will call the sphere of
correction Hamming sphere.

3. A bit flip may lead to such an invalid code word which differs so much from any other code
word that it will be detected as invalid in any case. For Hamming, we know that this is the
case for all double bit flips.

4. The last and worst case is when a bit flip leads to either directly another code word or into
another code word’s sphere of correction. This case cannot be detected and will decode into
a different data word than was originally hardened, which is commonly called SDC.

3.2 Probabilities of Silent Data Corruption 37

data word space D
code word space C

(a) Detailed graph representation of error coding.

valid word

invalid word

Hamming sphere

soften

harden

bit flip

Hamming distance

c1

0

c2

41 2 3

(b) Hamming distance dH and Hamming sphere
between two code words c1 and c2.

(c) Bit flip trace. Multiple corruptions of a code
word are irrelevant as we are only interested in
the state which is read from main memory or
cache. The dH between the original and last
code word are important.

Figure 3.6: Concepts regarding the decoding error probability.

In general, to argue about the detection capabilities, we need to find the distance distribution of
each code. For that, we need the Hamming distance dH between all code words, which is indicated
in Figure 3.6a by the gray arrows between the upper two code words. Figure 3.6b additionally
shows the steps in between two arbitrary code words, where the Hamming distance between c1
and c2 is four (dH = 4). To illustrate how to compute the actual probability of SDC, we model
the set of all code words (valid and invalid) as a bidirectional, weighed graph, as in Figure 3.6a.
There, each vertex represents a code word and each edge represent the transition (bit flip) which
leads between each two code words, where The edge weight is equal to the Hamming distance. The
Hamming distance, in turn, is the Hamming weight of the error pattern and is the population count
of the corresponding bit flip. The distance distribution is the histogram of all edge weights between
all valid code words. We only consider valid code words, because we assume that we intentionally
only store valid ones. Since the graph is fully connected, a series of bit flips that actually occurs
in reality can be modeled by the edge between the original code word and the one that is actually
read. All intermediate states are not observed anyways and need not be considered. In Figure 3.6c
a series of bit flips is shown on a code word and it shall emphasize that only the actual state which
is read is of interest.

Typically, to keep things simple, a code is evaluated by its minimal Hamming distance dH,min,
which is the smallest Hamming distance between any of a code’s valid code words. dH,min restricts
the number of bit flips a code can correct. This restriction is the Hamming sphere around each code
word, shown in Figures 3.6a and 3.6b as blue dashed circles around the code words (in Figure 3.6b
it is only an arc). The Hamming sphere is the n-dimensional sphere which includes all invalid code
words which can be corrected to the according nearest valid code word. All code words which are
not included in any sphere can not be corrected, because there is no nearest valid code word. The
Hamming sphere is constrained by the minimal Hamming distance dH,min, as its radius t is given
by

38 Chapter 3 Analysis of Coding Techniques

t =

⌊
dH,min − 1

2

⌋
, (3.22)

and each sphere contains

t∑
i=1

(
n

i

)
(3.23)

invalid code words. This has an important implication: any code with dH,min ≥ 3 can in principal
correct some invalid code words, namely all invalid ones which are inside the Hamming sphere.
There are perfect codes like the original (neither shortened nor extended) Hamming code where all
invalid code words are inside the Hamming sphere of exactly one valid code word. The example
code in Figure 3.6b has a minimal Hamming distance of four (dH,min = 4) so that the sphere radius
is one. By that, the example code can correct all single bit flips and detect all double bit flips. It
is an example of the (shortened) extended Hamming codes used in ECC DRAM. The Hamming
spheres shown in Figure 3.6 are projections from the n-dimensional code space. While this metric
may have been sufficient for former assumptions where only 1 or 2 bits flip, it will be too simple
a metric for the future. First, larger numbers of bit flips are expected and, second, the bit flip
weight is expected to increase over a system’s life time (aging). By that, we also must consider
the probabilities in how far a code can detect higher bit flip weights (≥ dH,min). To compute the
probability of SDC for a given code C, we need the actual distance distribution KC, defined as

KC = {κCb | 1 ≤ b ≤ n = |C|}, (3.24)

where we call κCb the elements or counts of the distance distribution of weight b, for code C. In
other words, κCb is the number of undetectable transitions between two valid code words of weight
b. We also need the possible bit flip weight distribution, which is the upper bound for the number
of possible b-bit flips that can happen. We call this bound βCb and it includes all the transitions
from the 2k valid code words (with k = |D|) to all other valid and invalid code words of weight b:

βCb = 2k ·
(
n

b

)
, 1 ≤ b ≤ n = |C|. (3.25)

The binomial coefficient is used because the order of how the bits flipping is irrelevant. Each code
has exactly 2 ·

(
2k

2

)
undetectable transitions, if there are no restrictions on the allowed sequence

of code words. This is exactly the number of transitions between any two valid code words
c1 ↔ c2, c1 ̸= c2 and exactly the sum of all κCb . The factor 2 is required, because we count two
transitions per pair, forth and back, and we can determine this sum in a general manner:

3.2 Probabilities of Silent Data Corruption 39

∑
KC

det =
n∑

b=1

κCb

= 2 ·
(
2k

2

)
= 2 · 2k!

2! · (2k − 2)!

= 2 · 1 · 2 · 2 · . . . · 2k

1 · 2 · [1 · 2 · . . . · (2k − 2)]

= (2k − 1) · 2k (3.26)

Equation (3.26) applies for error detecting codes only. For error correcting codes, we also need to
consider the transitions into the correction sphere around each code word. Using Equations (3.22)
and (3.23), we generalize Equation (3.26) to also include correcting codes:

∑
KC

t =
t∑

i=0

(
n

i

)
·
∑

KC
det =

t∑
i=0

(
n

i

)
· (2k − 1) · 2k (3.27)

For detecting-only codes we set t = 0, resulting in
t=0∑
i=0

(
n

i

)
= 1⇒

∑
KC

t=0 = 1 · (2k − 1) · 2k.

and for an SECDED code, we can set t = 1, which results in
t=1∑
i=0

(
n

i

)
= 1 + n⇒

∑
KC

t=1 = (1 + n) · (2k − 1) · 2k.

As a consequence, all codes with the same (n, k) parameters have the exact same number of
undetectable bit flips. The different qualities arise from their different shapes of the distance
distributions and whether a code is used for correction or not. We do not assume a specific
error model, so consequently, we will restrict the following considerations to the conditional
probabilities, i.e. the raw distance distributions. At the end of this section, we will show how to
obtain unconditional probabilities by combining the conditional probabilities with two concrete
error models: (1) equal bit flip probabilities, and (2) the binary symmetric channel (BSC). Anyhow,
the conditional SDC probability is P (SDC|b)C or for short ϕC

b for code C, that a b-bit flip is not
detected. This is the proportion of undetected b-bit flips with regard to all possible b-bit flips (the
upper bound βCb). It is computed as

P (SDC|b)C = ϕC
b =

κCb
βCb

=
κCb

2k ·
(
n
b

) . (3.28)

There, κCb is the main coding-specific property that needs to be ascertained, whereas βCb can be
computed just from the code properties n and k. We will now have a closer look at the three codes
regarding their error detection capabilities. We will first revise from literature how to obtain them
for Hamming codes. Afterwards, we will devise strategies for XOR checksums and AN codes. For
both, there is to the best of our knowledge no sufficient description in the literature.

40 Chapter 3 Analysis of Coding Techniques

3.2.1 Probabilities of Hamming Codes

Since Hamming codes are linear codes, every code word is an error pattern which, when XOR-ed
onto another valid code word, results again in a valid code word. Conversely, all error patterns
that lead to undetectable bit flips are code words, i.e. both sets are identical. By that, the distance
distribution is simply the histogram of the Hamming weights of all code words, also called the
weight distribution

AH
t = |{c ∈ CH|wH(c) = t}| (3.29)

where wH(c) is the Hamming weight of code word c and At is the number of code words in
Hamming code CH with weight t. Consequently, for a binary linear code such as Hamming, the
weight distribution and the distance distribution are the same. Fortunately. for each binary linear
code in general, and each Hamming Code in particular, there exists a weight enumerator polynomial
which directly tells us the weight distribution of that linear code. For plain n, k, d Hamming codes
where n ∈ {2m−1|m ∈ N} and d = 3, there exists a generic weight enumerator [120, Section 3.5,
p. 98]:

A(z)H =
1

n+ 1

[
(1 + z)n + n(1− z)(1− z2)

(n−1)/2
]
. (3.30)

A few examples are given in [120], e.g. for the (7, 4) Hamming code the weight enumerator is

A(z)(7,4) =
1

8

[
(1 + z)7 + 7(1− z)(1− z2)3

]
= 1(z0) + 7z3 + 7z4 + z7. (3.31)

This means there are 1 code word of weight 0 (obviously, the data word 0 results in all code bits
0), 7 code words of weight 3, 7 code words of weight 4, and 1 code word of weight 7 (all 1s). For
the (15, 11) Hamming code the weight enumerator is

A(z)(15,11) =
1

16

[
(1 + z)15 + 15(1− z)(1− z2)7

]
= 1(z0) + 35z3 + 105z4 + 168z5 + 280z6 + 435z7

+ 435z8 + 280z9 + 168z10 + 105z11 + 35z12 + z15

(3.32)

We quickly see the symmetry of the coefficients: 1, 7, 7, 1 for the former and1, 35, 105, . . . , 105, 35, 1
for the latter example. We included (z0) which is essentially the all-zero code word, to show the
symmetry, but it does not play any role for the further considerations on SDC, because the all-zero
error does not actually change the code word. Now, we still need to obtain the distance distribution
elements κHb from the weight enumerator A(z)H for Equation (3.28), to obtain the conditional
probability ϕC

b . Since the set of code words is identical to the set of error patterns for any code
word, to get the number of transitions from any valid code word to any other valid one, each
enumerated weight must be multiplied by the number of valid code words 2k (with k = |D|):

κHb = 2k ·A(z)H[b], (3.33)

3.2 Probabilities of Silent Data Corruption 41

where [b] is the b-th component from weight enumeratorA(z)H, i.e. the factor of zb. When plugged
into Equation (3.28), this results in

ϕH
b =

κHb
βb

=
2k ·A(z)H[b]

2k ·
(
n
b

) =
A(z)H[b](

n
b

) . (3.34)

Consequently, to obtain the SDC probability we only need to compute (or count) the weight

distribution and divide it by the appropriate binomial coefficient
(
n

b

)
. Note that, since A(b = 0)

includes the all-zero code word, it follows that ϕH
b=0 = 2k, which is the transition from each valid

code word to itself and which is of course not an error. In other words, these transitions denote the
non-bit flip case.

Extended Hamming Codes

From the above weight enumerators (Equations (3.30) to (3.32)) we can easily derive ones for the
Extended Hamming codes which add the overall parity bit. We therefore add the factors of the z
with odd exponent to the ones with the next higher even exponent. This is, because the exponent
of z is the Hamming weight of the respective code words and the additional parity bit is 0 for even
Hamming weights and 1 for odd ones. For instance, this will result in the enumerators

A(z)(8,4) = z0 + 14z4 + z8 (3.35)

A(z)(16,11) = z0 + 140z4 + 448z6 + 870z8 + 448z10140z12 + z16 (3.36)

for (8, 4) and (16, 11) Hamming codes, respectively. We can obtain the extended Hamming weight
distribution κHext

b directly from the original Hamming code’s weight distribution by

κHext
b =

{
0 , when b ≡ 1 mod 2

κHb + κHb−1 , otherwise
(3.37)

Note that, for b = 0, there is no κHb−1 so that in this case this term is set to zero. We also want
to emphasize that, the detecting-only Extended Hamming detects all odd error patterns due to the
parity bit.

Correcting Extended Hamming Codes

Equations (3.30) to (3.37) only provide the error pattern distribution for detection-only Hamming
codes. Due to correction, the 1-bit sphere must be taken into consideration (cf. Figure 3.6
and eq. (3.27)). Then, all transitions which lead to invalid code words which are 1 bit away from
all other code words are also not detectable, because these are corrected to that next code word.
An undetectable error pattern of weight b thus leads to additional n − (b − 1) error patterns of
weight b + 1, and additional b + 1 error patterns of weight b − 1 (note the mixed signs). Since

42 Chapter 3 Analysis of Coding Techniques

κHext
b = 0 for any odd error pattern, only the numbers for these odd ones change, but not those

of the even error patterns. Since for b = n there is no κHext
b+1 , in this case that term is zero. The

adapted enumerated weights κH
cor
ext

b of all the error patterns can thus be easily obtained by

σH(x) = κ
Hcor

ext
b =

{
κHext
b , when b ≡ 0 mod 2

κHext
b−1 ·

(
n− (b− 1)

)
+ κHext

b+1 · (b+ 1) , otherwise
(3.38)

Shortened Correcting Extended Hamming Codes

It is not as easy to obtain the error pattern weight distribution for multi-shortened Extended
Hamming Codes, e.g. (13, 8), (22, 16), (39, 32), . . . codes [54, 97]. One would need them in
database systems to naturally reflect the built-in data types of tiny, short, normal and big integers
(8-, 16-, 32-, and 64-bit integers, respectively). There are also systems which put this to the extreme
being tailored to work on any bit width from 1 to 32 bits [189]. A method that is sufficient in these
cases is the brute force weight counting of all code words. It is easy to see that the required work
of this brute force approach increases by each additional data bit with a factor of two, because
now there are twice as many code words to determine the weight for. A possibility to reduce
the complexity is to reuse previous codes’ distributions. When an additional data bit does not
require another parity bit in an (n+ 1, k + 1) Hamming code, we can trivially see that its weight
distribution includes the one from the (n, k) Hamming code. Otherwise, when an additional data
bit does require an additional parity bit, i.e. we have an (n + 2, k + 1) code, then the additional
parity bit only covers this new most significant data bit. Consequently, it is important only for
those (new) code words that have the new most significant data bit set to one and we can see that
the weight distribution from the (n, k) code is also included. By that, we only have to count the
additional code words and we can reduce the complexity of the weight enumeration by a factor of
2. On our second evaluation system (cf. Table 3.7), for a (47, 40) shortened correcting Extended
Hamming code it takes about 10.5 minutes to compute the SDC probability of the reduced code
word set and 21.1 minutes to compute the SDC probabilities of all codes up to and including that
(47, 40) code. Projecting the runtime up to the (72, 64) code, counting the weight distribution
would take approximately 335 years on a single machine for our second evaluation system.

In the following we will always only assume (shortened) correcting Extended Hamming codes.
Figure 3.7 displays the distance distributions for the 4 codes (13,8), (22,16), (30,24), and (39,32).
For each code, it shows both the upper bound βHb of possible bit flips as gray line, the code’s
distance distribution κHb as bars (right x-axis), as well as the conditional SDC probability ϕH

b as
colored line. First of all, since dH,min = 4, there are no undetectable errors for b ∈ {1, 2}. Second,
there is a zigzag pattern in both the distance distribution and more so in the SDC, which is close
to 1 for most of the odd b. The probabilities decrease for larger codes and for the (39,32) code, the
high ones for the odd b are between 48 and 70%. This implies that for odd bit flip weights, chances
of decoding error are very high. This is due to the correction capability of Extended Hamming
codes, by which the 1-spheres (cf. Figure 3.6a) of all valid code words are included in the counted
transitions. In particular, the additional overall parity bit makes all code words have an even weight
so that only even bit flip weights lead to other valid code words. The 1-sphere adds the odd counts,
so that without correction, κHb would be zero for all odd b.

The zig-zag patterns shown in Figure 3.7 apply to all code widths. This indicates the probabilities
of SDC of today’s server-grade ECC main memory modules. Especially for the odd bit flip weights

3.2 Probabilities of Silent Data Corruption 43

10
0

10
5

0 2 4 6 8 10 12 14

10
−3

10
−2

10
−1

10
0

10
0

10
5

10
10

0 5 10 15 20

10
−3

10
−2

10
−1

10
0

10
0

10
5

10
10

10
15

0 5 10 15 20 25 30

10
−3

10
−2

10
−1

10
0

10
0

10
5

10
10

10
15

10
20

0 5 10 15 20 25 30 35 40

10
−3

10
−2

10
−1

10
0

c
o
u
nt
s
κ
b

n=13,k=8

pr
o
ba
bi
li
t
y
p
b

n=22,k=16

c
o
u
nt
s
κ
b

undetectablebitlipweightb

n=30,k=24

pr
o
ba
bi
li
t
y
p
b

undetectablebitlipweightb

n=39,k=32

βHb

κHb

pHb

Figure3.7:ConditionalSDCprobabilitiesforshortenedExtendedHammingcodes(13,8),(22,16),
(30,24),(39,32)(Ĥ=Hcorext).

≥3,correctingHammingcodesexhibitveryhighdecodingerror(SDC)probabilities.Hamming
codesthemselvescannotbescaledtodetecthigherbitlipweightsduetotheirstructure,i.e.the
ixedconstructionpatterns.

3.2.2 ProbabilitiesofXORChecksums

BesidessomeverybasicconsiderationsasthesebyMaxino[115,116],intheliteraturethereis
littletonodetailedinvestigationofthewholerangeofpossiblesilentdatacorruptionprobabilities.
WewillnowshowawaytosuccinctlycomputetheweightdistributionofarbitraryXORchecksum
codes. Wederivemethodstoexactlycomputethedistributionsfor1-,2-,and3-bitchecksums
andarbitraryblocklengths.Weassumethattheblocklengthisalwaysamultipleofthechecksum
width,sothatablockonlycontainscompletedatawords. Determiningtheundetectederror
probabilityofchecksumsingeneralisatleastasdiicultasforHammingcodes,becauseitalso
dependsonthreeparameters:

1.theactualchecksumtype(e.g.summation,XOR-ing,CRC,...),

2.thechecksumwidth(e.g.16bitsforCRC-16,32bitsforCRC-32,...)and

3.theactualblocksize.

Theirstone(checksumtype)isresponsibletogenerateacodegraphwhereallvalidcodewords
areasfarawayfromeachotheraspossible,withrespecttotheHammingdistance.Thesecond
(checksumwidth)deinesthecode’smargin,i.e.thesizeofspaceofcodewords.Largermargins
allowcodeswithlargerminimalHammingdistance.Thelatter(blocksize)determinesoverhow
manydataunitsthechecksumisbuilt.Changesinanyofthethreeparametersleadtovariation
inthenumberofpossiblecodewordsandvariationinthedistributionofvalidcodewords,which
resultsinvaryingdetectionproperties.Considerationsforsummationchecksumsarediscussedby
Wakerly[181].However,theonlyusefulpropertyderivedthereisthattheminimumHamming
distanceofsuchcodesistwo.Bythat,summationchecksumscanonlyguaranteetodetectatleast
allsinglebitlips. WewillnowconsiderthecaseforXORchecksums.

44 Chapter3AnalysisofCodingTechniques

Since XOR checksums are generated by simply XOR-ing all data elements with each other, any
2 bit flips in the exact same position, regarding the checksum width, cancel each other out. By
that, the minimum Hamming distance of such codes is always 2. What can also be seen relatively
easy is that any odd-numbered bit flip is detectable. Furthermore, the larger the data block over
which the checksum is built, the larger the total chance of decoding errors, because there are more
potential collisions.

Due to the XOR operation, XOR checksum codes are linear codes. By that, as for Hamming codes
the distance distribution can be derived from the weight distribution and Equation (3.34) applies
appropriately. However, the problem of computing or counting the weight distribution is still a
hard problem and even harder than for Hamming codes. Again, with every code bit the effort
doubles and since checksums operate on blocks of data, with every additional data word that is
covered by a checksum, the time for counting multiplies by 2|D|.

Weight Distribution Matrix

We made a first step towards computing arbitrary weight distributions for XOR checksums de-
pending on a given checksum width and depending on a given number of data words protected by
that checksum. Here, we assume that all data words have the same bit width as the checksum. To
do so, we counted the weight distribution for increasing checksum widths (1 . . . 6) and increasing
numbers of data words (1 . . . 8). As an example, for the 2-bit case the raw weight distributions are
shown in Table 3.2. While we could not deduce formulas for any arbitrary checksum widths and
any arbitrary code lengths, we found that grouping the distributions by the data weight (population
count, JDK) and by the checksum weight (JXK) leads to important findings. Therefore, we define
the (XOR checksum) Weight Distribution Matrix W#D,|X|

XOR for a given number of data words (#D)
and checksum width (|X|) as:

W#D,|X|
XOR =

|D|∑
JDK=0

|X|∑
JXK=0

w#D
JDK,JXK (3.39)

Here, w#D
JDK,JXK is, for a number of data words #D, the number of code words of weight JDK+ JXK

grouped by data weight JDK and checksum weight JXK. Examples are given in Table 3.1 for
1-bit checksums over increasing block lengths, i.e. numbers of data words #D. These matrices
are an intermediate step towards computing the codes’ weight distributions and there are several
observations, which we verified for all counted weight distributions:

1. To obtain the weight distribution elements, the upward-right, colored diagonals’ cross totals
must be summed up (Counting Pattern matrices):

κXOR
b (#D, |X|) =

∑
JDK+JXK=b

w#D
JDK,JXK

2. Each weight distribution, in turn, represents the first column of the following matrix which
covers one more data word. This means, when adding another data word to a checksum
block, the previous weight distribution is fully included, because that new data word could
be all-zero. Especially for the 1-bit case, the weight distribution for d = #D numbers of data
words equals the d-th line in Pascal’s triangle, except that each second entry is set to zero.

3.2 Probabilities of Silent Data Corruption 45

|X| = 1 Counting Pattern Weight Weight

#D JDK JXK Row Distribution
0 1 Sum b κb

0 1 0 11 1 0 1 1

Col Sum 1 1

0: 1
1: 0
2: 1

0 1 0 1
1 0 2 22
2 1 0 1

Col Sum 2 2

0: 1
1: 0
2: 3
3: 0

0 1 0 1
1 0 3 3
2 3 0 33

3 0 1 1

Col Sum 4 4

0: 1
1: 0
2: 6
3: 0
4: 1

0 1 0 1
1 0 4 4
2 6 0 6
3 0 4 4

4

4 1 0 1

Col Sum 8 8

0: 1
1: 0
2: 10
3: 0
4: 5
5: 0

Position Pattern Next Rightmost

JXK JXKJDK 0 1 0 1

0 1 0 1 0
1 0 1 0 1

0 1 0 1 0
1 0 2 0 2
2 1 0 1 0

0 1 0 1 0
1 0 3 0 3
2 3 0 3 0
3 0 1 0 1

0 1 0 1 0
1 0 4 0 4
2 6 0 6 0
3 0 4 0 4
4 1 0 1 0

Table 3.1: Weight distributions and patterns for 1-bit XOR checksums.

3. Since XOR produces only even weighed code words, the non-zero entries in the matrices
follow a zig-zag pattern, which extends for wider checksums and more data words.

4. As shown in the “Position Pattern” matrices, there are two more abstract, alternating patterns:
trapezia, and triangles. The patterns of the first two distributions have zero-length sides so
that they appear as a line and a triangle. For wider checksums, the patterns extend to the
other rows and columns. The upper right corner is always zero, while the lower left and lower
right ones are alternatingly zero. Further, the entries in the matrix are symmetric: (a) The
trapezia are point-symmetric, while (b) the triangles are line-symmetrical , as indicated by
the dotted lines.

5. The cross totals of the downward-right (south east) diagonals, as highlighted in the “Next
Rightmost” matrices, are the rightmost entries, in order, in the next matrix with one more
data word.

6. The row sums of each matrix equal a row from the Pascal Triangle (the binomial coefficients).
This is, because the data bits are distributed in that manner.

7. The column sums of each matrix are a power of two, multiplied by binomial coefficients:

col_sum(JXK) =
#D·|X|∑
i=0

w#D
i,JXK =

(
|X|
JXK

)
· 2|X|·(#D−1) (3.40)

8. For each column x = JXK, all weights are divisible without remainder by the one element in
the same column from the first matrix w#D=1

x,x

46 Chapter 3 Analysis of Coding Techniques

b
#D 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 1 0 2 0 1
2 1 0 6 0 9 0 0
3 1 0 12 0 38 0 12 0 1
4 1 0 20 0 110 0 100 0 25 0 0
5 1 0 30 0 255 0 452 0 255 0 30 0 1
6 1 0 42 0 511 0 1484 0 1519 0 490 0 49 0 0
7 1 0 56 0 924 0 3976 0 6470 0 3976 0 924 0 56 0 1
8 1 0 72 0 1548 0 9240 0 21942 0 21816 0 9324 0 1512 0 81 0 0

Table 3.2: Weight distribution triangle for 2-bit checksums. Each cell represents a κXOR,|X|=2,#D
b .

3rd weight3rd-last weight

Weight Distribution Triangle

When plotting the determined weight distributions of a given checksum width with increasing
numbers of data words, we obtain a Weight Distribution Triangle. For that, we can also infer
some generic rules that can be derived directly from the weight distributions themselves. This
resembles the incremental construction pattern of the Pascal Triangle. In Table 3.2 we exemplarily
show the weight distributions for 2-bit XOR checksums and up to 8 data words. For all checksum
widths greater than 1, the weight distributions can not be computed as easily as for the 1-bit case.
However, from the counted distributions, we found the following integer sequences that seem to
appear for all XOR checksum widths JXK. Since the weight distribution elements depend on the
three parameters (1) bit flip weight b, (2) checksum width |X|, and (3) number of code words #D,
we will use the following notation: κXOR,|X|,#D

b .

Column-Wise:

1. Column 0 is always one, just as in the Pascal Triangle, given for the sake of completeness,
since zero-bit flips are not of interest for SDC probabilities.

κ
XOR,|X|,#D
b=0 = 1 (3.41)

2. Every second column, i.e. those with an odd weight (b ≡ 1mod 2), is zero, because the XOR
checksum generates even parities across all bit lines.

3. The third column b = 2 (encircled in blue) equals the product of column 3 of the Pascal
Triangle (#D+ 1) and the checksum width |X|:

κ
XOR,|X|,#D
b=2 = |X| ·

(
#D+ 1

2

)
. (3.42)

4. The last column is alternatingly one and zero, where for odd b it is one and for even b it is
zero. This means that code word inversions (including the checksum) can only be detected
when the number of covered data words #D is even.

κ
XOR,|X|,#D
b=|X|·(#D+1) = (#Dmod 2) (3.43)

5. For odd numbers of data words, all of the last |X| columns are zero.

3.2 Probabilities of Silent Data Corruption 47

Row-Wise:

1. For any checksum width |X|, row #D = 1 equals the |X|-th row from the Pascal Triangle,
whereas a null is inserted in between each entry:

κ
XOR,|X|,#D=1
b =

⎧⎨⎩
(
|X|
b/2

)
b ≡ 0 mod 2

0 b ≡ 1 mod 2
(3.44)

2. The weight distribution elements of row #D = 2 can be directly computed as

κ
XOR,|X|,#D=2
b =

{
κ

XOR,|X|,#D=1
b · 3b/2 b ≡ 0 mod 2

0 b ≡ 1 mod 2
0 ≤ i ≤ |C| (3.45)

The above findings can be found in all the distance distributions which we computed (1 ≤ |X| ≤ 6
and 1 ≤ #D ≤ 8). With the help of these findings, we can already iteratively compute all weight
distributions for 1-, 2-, and 3-bit checksums from the weight distribution matrix W#D,|X|

XOR alone.
This is because the row sums in W#D,|X|

XOR are known to be the appropriate binomial coefficients,
because these reflect the data bit distribution. For the checksum weights up to 3, there are at
most 4 columns in the matrix. Since we also know the two symmetry patterns and the patterns
for constructing the numbers in the rightmost column, we can iteratively compute all the numbers
in the weight distribution matrix. Summing up the elements of the upward-right (north east)
diagonals delivers the actual weight distribution. For checksum codes with checksum width larger
than 3, there are multiple unknown in several rows of the weight distribution matrix, for which we
could not find deduction rules, yet.

Concrete Conditional Probabilities

We presented a first way towards determining the weight distribution for arbitrary checksum codes,
i.e. for arbitrary checksum weights and arbitrary numbers of covered data words. 1-, 2-, and
3-bit checksums can be arbitrarily derived, but for wider checksums a brute force enumeration
is still needed. Using Equation (3.28) we compute and display the conditional probabilities of
SDC for XOR checksums with 1 ≤ |X| ≤ 6 and 1 ≤ #D ≤ 8 in the following Figures 3.8a
to 3.8f, respectively. For the 5- and 6-bit checksum cases, Figures 3.8g and 3.8h show a zoomed-in
distribution, respectively. The figures reveal the following insights:

1. All distributions show a characteristic zig-zag pattern, where all odd-weight bit flips are
detected.

2. For parity bits (|X| = 1), the SDC probability of any even bit flip weight is exactly one.

3. For parity words,

(a) when the number of data words#D is odd, then code word inversions cannot be detected.
(b) Furthermore, for odd #D, the SDC probability increases for the high bit flips weights,

while for even#D the probabilities first decrease and then drop to zero (cf. #D ∈ {7, 8}
in Figures 3.8g and 3.8h).

48 Chapter 3 Analysis of Coding Techniques

0.0
0.2
0.4
0.6
0.8
1.0

0 1 2 3 4 5 6 7 8 9

κ
b

ϕb

(a) |X| = 1-bit.

0.0
0.2
0.4
0.6
0.8
1.0

0 2 4 6 8 10 12 14 16 18

κ
b

ϕb

(b) |X| = 2-bit.

0.0
0.2
0.4
0.6
0.8
1.0

0 3 6 9 12 15 18 21 24 27

κ
b

ϕb

(c) |X| = 3-bit.

0.0
0.2
0.4
0.6
0.8
1.0

0 4 8 12 16 20 24 28 32 36

κ
b

ϕb

(d) |X| = 4-bit.

0.0
0.2
0.4
0.6
0.8
1.0

0 5 10 15 20 25 30 35 40 45

κ
b

ϕb

(e) |X| = 5-bit.

0.0
0.2
0.4
0.6
0.8
1.0

0 6 12 18 24 30 36 42 48 54

κ
b

ϕb

(f) |X| = 6-bit.

0.00

0.05

0.10

0.15

0.20

0 5 10 15 20 25 30 35 40 45
0

0.05

0.1

0.15

0.2

κ
b

ϕb

(g) |X| = 5-bit zoomed in.

0.00

0.05

0.10

0.15

0.20

0 6 12 18 24 30 36 42 48 54
0

0.05

0.1

0.15

0.2

κ
b

ϕb

(h) |X| = 6-bit zoomed in.

#D = 1

#D = 2

#D = 3

#D = 4

#D = 5

#D = 6

#D = 7

#D = 8

Figure 3.8: Conditional SDC probabilities for 1- to 6-bit XOR checksums.

3.2 Probabilities of Silent Data Corruption 49

(c) Increasing numbers of data words have a negative impact on the detection rate for the
low end of bit flip weights. With each additional data word, the SDC probability in-
creases, especially for double-bit flips and then heavily decreases again (cf. Figures 3.8g
and 3.8h).

4. For even numbers of data words #D, the last |X| bit flip weights are zero.

5. Finally, in general the wider the checksum, the lower the probabilities for the middle bit flip
weights. For a fixed checksum width, the curves for increasing numbers of data words #D
are pretty close to each other in the middle part, except towards the lower and upper bound
of bit flip weights b.

3.2.3 Probabilities of AN Codes

Obtaining the SDC probabilities of AN codes is in general much harder than for codes like
Hamming or XOR. This is because the latter are linear codes where it suffices to count all the code
word weights. AN codes, and arithmetic codes in general, are non-linear codes so that we have to
count all code word distances, i.e. exhaustively compare all code words and compute the Hamming
distances (dH) between each and every code word. Furthermore, due to the convolution of the
multiplication used for hardening, each instanceA ∈ A has different error detection properties with
regard to the data type width |DΘ|. Earlier work by Massey [113] only considers the arithmetic
weights and distances. These do not apply here. We need the Hamming distances and weights,
because we do not assume arithmetic errors, but bit flips. He and previous work use the term linear
residue codes, where arithmetic linearity is meant and not the linearity as for Hamming and XOR
checksum codes. To avoid confusion we will refrain from using the notion of linear residue codes.
For AN codes, Hoffmann et al. computed the probabilities for data widths of 8 and 16 bits and
As up to 8 and 16 bits, respectively. They exhaustively computed all Hamming distances between
all code words, but only consider 2 code widths of 16 and 32 bits. However, the results from the
previous work are insufficient for the database domain, because

1. possibly all data bit widths between 1 and 32 bits are to be supported [189], and

2. larger As may be required for future error models.

Enumerating the Distance Distributions

The challenge is to obtain the distance distribution counts κCb in an efficient manner. For AN
coding, the convolution of the multiplication (hardening) cannot be described in a way which
allows simplifications. This part was developed together with Matthias Werner, a colleague from
the Center for Information Services and High Performance Computing at the Technische Universität
Dresden and this work was published in [184, 185]. Matthias Werner proposed the idea to try
the grid approximation, implemented the Cuda code for graphics processing units (GPUs), and
was responsible for submitting the compute jobs to the Taurus Bull cluster. We use the following
function to describe the naive approach:

δb(x, y) =

{
1, if dH(x, y) = b,

0, if dH(x, y) ̸= b,
0 ≤ b ≤ n .

50 Chapter 3 Analysis of Coding Techniques

Then, we can compute the weight distribution as

κCb =
∑
α∈C

∑
β∈C

δ(α, β) . (3.46)

The complexity of Equation (3.46) is O(4k). This is because we have to inspect all possible pairs
of code words, so that the number of distances #dH which must be enumerated is

#dH =

(
2|D|

2

)
. (3.47)

For an additional data bit, we have twice as many code words, so that it increases to

#dH =

(
2|D|+1

2

)
=

(
2 · 2|D|

2

)
. (3.48)

As a consequence, the effort about quadruples by every additional data word bit.

Proof. To show that Equation (3.47) develops to a quadruped increase, we write out in full the
binomial coefficient, first with generic parameter x and we set 2|D| = y:

(
2 · 2|D|

x

)
=

(
2y

x

)
=

(2y)!

x! · (2y − x)!

=
1 · 2 · ... · y · (y + 1) · ... · (2y − x) · (2y − x+ 1) · ... · 2y

x! · 1 · 2 · ... · y · (y + 1) · ... · (2y − x)

=
(y − x+ 1) · (y − x+ 2) · ... · y

x!

· (y + 1) · ... · (2y − x) · (2y − x+ 1) · ... · 2y
(y − x+ 1) · (y − x+ 2) · ... · y · (y + 1) · ... · (2y − x)

=

(
y

x

)
· (2y − x+ 1) · ... · 2y

(y − x+ 1) · ... · y

Next, we set x = 2 as in Equation (3.47):

(
2y

2

)
=

(
y

2

)
· (2y − 2 + 1) · (2y − 2 + 2) · ... · 2y

(y − 2 + 1) · (y − 2 + 2) · ... · y

=

(
y

2

)
· (2y − 1) · 2y

(y − 1) · y

≈
(
y

2

)
· 2y · 2y
y · y

= 4

(
y

2

)
.

3.2 Probabilities of Silent Data Corruption 51

|D| = n 1 2 3 4 5 6 7 8
#D 2 4 8 16 32 64 128 256

combinations #dH,n 1 6 28 120 496 2016 8128 32640
relative increase #dH,n

#dH,n−1
– 6 4.6 4.29 4.13 4.06 4.03 4.016

Table 3.3: Concrete numbers for the relative increase after Equation (3.48).

Instances for the number of combinations and the relative increase are given in Table 3.3. In
practice, the number of combinations only half as much due to the symmetry: between two code
words, only one edge is computed and can then simply be counted twice. But still, since this is an
exponential increase with a factor of 4, increasing data widths make it incredibly hard to determine
SDC probabilities using the exhaustive approach. For instance, relative to the effort to compute
the probabilities for a single A for 32-bit data, the effort to compute the probability for a single
A for 64-bit data is 464−32 = 432 ≈ 1.8 · 1019× as high. For parameter optimization, this must
be run many thousands of times, depending on the width of A. Especially, for AN coding each
odd A must be examined again for each data width |DΘ|. We call this naive approach exact, as
it examines all code words. For AN coding, Table 3.4 shows runtimes for the exact computation
of the weight distribution for a single A using a single CPU, a single GPU, or a small cluster of 4
GPUs on the left half. While for a single A the measured runtimes are not a problem, be reminded
that all odd As must be tested for a given parameter width. Using the numbers from Table 3.4, we
can extrapolate the necessary runtimes for 32-bit data with the help of Equation (3.48), whereas
for simplicity we use a factor of 4. The results are visualized in Figure 3.9. For the exact approach,
using a single CPU would take about 47.6 years, while using a single GPU would still take about
12.3 years, and finally using the small 4-GPU cluster would take 3.4 years.

To mitigate the huge runtimes, we use a sampling-based approach, which approximates the weight
distribution by comparing only a subset of all code words. Here, the main problem is the distribution
function for choosing the subset of code words. We investigated three different distributions:
pseudo-random (σpseudo), quasi-random (σquasi), and grid-point (σgrid). Note that σpseudo is prone
to clustering, while σquasi fills the space more uniformly. The probabilistic error of Monte-Carlo
(pseudo-random) is known to be O(1/√M) and for quasi-Monte-Carlo it is O((logM)q/M) with
number of dimensions q and number of iterations M [103]. The grid-point approach chooses
regularly aligned samples, given by σgrid(r) = (2k·r)/M . If M = 2k, then the grid sampling
yields the correct result, while random numbers still miss the solution due to collisions and gaps.

exact

k tCPU t1·GPU t4·GPU

8 7ms 1ms 3ms

16 376ms 130ms 41ms

24 382min 99min 27min

32 – – –

Table 3.4: Runtimes for computing the distance dis-
tributions of AN codes for A = 61. Average val-
ues after 5 runs on the Bull HPC-Cluster Taurus
at TU Dresden. CPU: 2×E5-2680 v3 Haswell 12-
core 2.50GHz, gcc5.3, OpenMP 4.0. GPU: NVIDIA
Tesla K80, CUDA 7.5

1ms

1s

1m

1h
1d

1y

8 16 24 32

Ru
nt

im
e

si
ng

le
A

Data Width [bits]

1 CPU
1 GPU
4 GPUs

47.6y
12.3y
3.4y

Figure 3.9: Extrapolation of the run-
times from Table 3.4

52 Chapter 3 Analysis of Coding Techniques

10−5

10−4

10−3

10−2

10−1

100

101 102 103 104 105
10−3

10−2

10−1

100

101

102

103

104

∆

t
in

s

M

k = 24, A = 61
1/
√
M

log(M)/M

texact

tpseudo

tquasi

tgrid

∆pseudo

∆quasi

∆grid

Figure 3.10: Convergence of maximum relative error ∆ and runtime t according to the number of
iterations M .

Algorithm 3.1 AN code distance distribution – basic algorithm
Input: k ≥ 2 (k = |D|)
Input: Value A > 0, n = k + h, h = ⌈log2(A)⌉
Input: Initial distance distribution cAb = 0, b = 0, . . . , n
Output: Distance distribution cA of code CA

1: for α = 0, . . . , (2k − 1) do ◃ outer loop is parallelized on GPU[s]
2: for β = σgrid(r), r = 0, . . . ,M do ◃ inner loop is processed by each thread
3: b← dH(Aα,Aβ)
4: κAb ← κAb + 1
5: end for
6: end for
7: return KA = {κAb }

Figure 3.10 shows a comparison between the three distributions of convergence and runtime for
the case k = 24 and A = 61⇒ n = 30 and includes the theoretic Monte-Carlo error boundaries.
Pseudo- and quasi-random numbers were generated with the cuRAND library. The 1D grid
approximation outperforms the random distributions in virtually all cases, yielding smaller error
∆ and lower runtime t. It is, furthermore, directly influenced by the value ofM , and we found that
odd values lead to much smaller errors than even ones.

Algorithm 3.1 shows the 1D grid approach for enumerating the weight distribution of an AN
code. For GPU clusters, we distribute the outer loop evenly across the GPUs. When symmetry is
exploited in line 2, the workload size of each GPU is computed by:

⌈2kωi+1⌉ − ⌈2kωi⌉, wi = 1−
√

1− i/N , 0 ≤ i < N=#GPUs (3.49)

ωi is the solution of
∫ i+1

i
1−x dx = 1/N for equal work size areas. The maximal relative error of

the estimation ĉAb is given by

3.2 Probabilities of Silent Data Corruption 53

∆ = max
b>0

| κAb − κ̂Ab |
κAb

,

where b = 0 is omitted due to κA0 = 2k. Algorithm 3.1 can be parallelized on GPUs, since the
Hamming distances of two code words can be computed independently. We use CUDA C/C++ for
programming Nvidia GPUs3. As registers of GPUs are 32-bit wide, the multi-GPU implementation
uses 32-bit integers as long as the array elements in a thread do not overflow. From Equation (3.28)
follows

max
b
κAb ≤ max

b
2k
(
n

b

)
= 2k

(
n

n/2

)
and the upper bound for using 32-bit integers is:

κAb,thread ≤
2k
(

n
n/2

)
threads

< 232 .

As the GPU uses 64 bits for the global array, the highest data word width for the GPU algorithm
is k = 33. There are many more technical details to tailor the counting towards the wide variety
of code widths and the details are presented in [184, 185].

We used both the exact and grid-point approaches on the multi-GPU cluster to exhaustively
enumerate the distance distributions for all data widths 1 ≤ |D| ≤ 32 and all widths of A
1 ≤ A ≤ 164. This goes further than in any previous work, since many more data widths are taken
into account. In Figure 3.11, we show examples of the resulting conditional SDC probabilities
for data widths 8 and 16 and A ∈ {17, 19, 21, . . . , 127}. The As are divided into three classes
according to their bit width, i.e. |A| ∈ {5, 6, 7}. Additionally, Figure 3.12 provides more examples
for k = 24 and |A| ∈ {5, 10, 16}. We observe the following:

1. Increasing |A| generally lead to decreased SDC probabilities, at the expense of larger code
words.

2. With increasing values of A (the parameter itself), the resulting pattern looks like a seesaw.
Generally speaking, for As between two consecutive powers of 2, larger values of A lead to
more balanced SDC probabilities.

3. Especially for low and high b, some As exhibit anomalies in the form of very high (bad)
probabilities, which confirms previous findings [69, 161]. This means that these parameters
are very bad for detecting bit flip weights equal to the minimal Hamming distance, or equal
or close to the code word width.

4. The “clutter” of the lines, which is very prominent for k = |D| = 8, is reduced with increasing
code bit widths |C|. For instance, The lines for k = |D| = 16 and |A| = 7 are much smoother
than all the other lines, of course except for the outliers at the front and end.

Figure 3.12a confirms how increasing |A| reduce the probabilities for undetected bit flips and it
shows difference of shapes between the lower and upper ends per |A|. Figure 3.12b shows how
the different As generate codes with much variety for the low and high b-borders. The flat regions

3The sources are available on https://github.com/brics-db/coding_reliability/
4The raw data and scripts are available on https://brics-db.github.io

54 Chapter 3 Analysis of Coding Techniques

https://github.com/brics-db/coding_reliability/
https://brics-db.github.io

0

0.01

0.02

0.03

0.04

0.05

0 2 4 6 8 10 12 14 16 0 5 10 15 20

p
A b

b

k = 8

b

k = 16

A ∈ {17, . . . , 31} A ∈ {33, . . . , 63} A ∈ {65, . . . , 127}

70

80

90

100

110

120

A

Figure 3.11: How parameter A influences the conditional SDC probability ϕC
b , for k = 8 and

k = 16. The A ∈ {65, . . . , 127} are additionally color coded from black to dark green.

1× 10−6

1× 10−5

0.0001

0.001

0.01

0.1

1

0 5 10 15 20 25 30 35 40

p
A b

b

k = 24

A=17

A=31

A=515

A=1021

A=32771

A=65533

(a) As close to powers of 2 with |A| ∈ {5, 10, 16}

1× 10−6

1× 10−5

0.0001

0.001

0.01

0 5 10 15 20 25 30 35 40

p
A b

b

k = 24

A=55831
A=63877

A=65519
A=64311

(b) More cases for |A| = 16 showing great differ-
ences at the two ends.

Figure 3.12: How parameter A influences the conditional SDC probability ϕC
b , for k = 24.

3.2 Probabilities of Silent Data Corruption 55

exact σgrid,1D,4·GPU

k tCPU t1·GPU t4·GPU tM ∆M M

8 7ms 1ms 3ms 6ms 0.0232 101
16 376ms 130ms 41ms 11ms 0.0031 1001
24 382min 99min 27min 354ms 0.0053 1001
32 – – – 5min – 1001

Table 3.5: Runtimes for exact and grid approximation
methods, extending Table 3.4.

1ms

1s

1m

1h
1d

1y

8 16 24 32

Ru
nt

im
e

si
ng

le
A

Data Width [bits]

1 CPU
1 GPU
4 GPUs
4 GPUs Approx

47.6y
12.3y
3.4y

5m

Figure 3.13: Visual comparison of the
runtimes from Table 3.5

follow the 2−h, h = ⌈log2A⌉ bound. A perfectly balanced code would follow this bound across all
weights, but this is only an utopia like unicorns. The patterns show thatAs which are arithmetically
close together may result in great variety of their detection capabilities.

Finally, we compare the runtimes between the exact and grid approximation methods in Table 3.5
and fig. 3.13. We can see how the grid approximation practically allows to compute the SDC
probabilities for 32-bit data and beyond. For a singleA on 32-bit data using the 4-GPU cluster, this
only takes 5 minutes, which is more than five orders of magnitude faster than the exact method.

Optimality Criteria

With the help of the distance distributions we can now choose desired As. Therefore, we have to
define an optimality criterion. Like previous work [69, 161], we start with a set of possible “super
A”s:

Definition 9 (Super As). For a given parameter bit width h = |A| and data bit width k = |D|,
the set of “super A”s denoted as Aσ

h,k ∈ Aσ
h,k contains those A which generate AN codes of width

n = h+ k with largest minimal Hamming distance dH,min.

This greatly reduces the set of possible parameter candidates. However, this generates almost
always sets with multiple candidates. We now further restrict this set of super As to single
candidates:

Definition 10 (Golden A). For a given parameter bit width h = |A| and data bit width k = |D|,
a “golden A” AΨ

h,k is a super A which satisfies some optimality criterion Ψ.

There are multiple possible choices for Ψ, which are application specific and may depend on what
error characteristics some specific hardware may exhibit. Consequently, the objective function
chosen for a concrete optimality criterion will most probably be tailored towards a specific hardware
error model. This, in turn, could be delivered by the hardware vendor for compile-time decisions,
or by the hardware itself at run-time for dynamic adaptation. However, this is beyond the scope
of this thesis and we will return to that subject in the future work Section 7.1. Since there are
no concrete hardware error models yet available, we will first define two very generic objective
functions. The first objective function

56 Chapter 3 Analysis of Coding Techniques

η(k,A) = max b , ϕk,A
x = 0 ∧ 0 ≤ x ≤ b (3.50)

returns the minimal bit flip weight that is detectable by the AN code defined by the given A and
data bit width k. The second objective function

ψ(k,A) = ϕk,A
b=η(k,A)+1 (3.51)

selects the first non-zero conditional SDC probability for the AN code defined by the given A and
data bit width k. Using these two objective functions, we define our first optimality criterion

Ψη(k, h) = max
(
η(k,A), 1− ψ(k,A)

)
, |A| = h, (3.52)

which selects for a given data bit width k and parameter bit width h the oneAwhich has the largest
minimal detectable bit flip weight and the lowest first non-zero conditional SDC probability.

Applying Ψη to the various combinations 1 ≤ k ≤ 32 and 2 ≤ h ≤ 16, we obtain 480 golden
As, listed in the appendix in Tables A.1 to A.4. While this is the complete list for Ψη, in a real
database system we may be only interested in the smallest A for a given minimal detectable bit flip
weight η and some data bit width k. The result is shown in Table 3.6, which may serve as a static
selector for parameter A, where a real database system may choose at run-time appropriate AN
codes depending on data bit widths or other data characteristics. Since we only computed A up to
16 bits, up to now, the table contains empty cells.

We noted above that the optimality criterion is application specific. In other contexts, other criteria
may be required, e.g. choosing those superAs which minimize the area underneath the conditional
SDC probability distribution curve. The third objective function

Aϕ(k,A) =

n∑
i=2

(
max(ϕi−1, ϕi)−min(ϕi−1, ϕi)

2
+ min(ϕi−1, ϕi)

)
, n = |C|, ϕx ≡ ϕk,A

x

(3.53)

computes the area underneath the SDC probability distribution curve for a code C. An appropriate
optimality criterion is then defined as

ΨAϕ(k, h) = min
(
Aϕ(k,A)

)
, |A| = h, (3.54)

which selects for a given data bit width k and parameter bit width h the one A which has the
smallest area under its SDC probability curve, irrespective of the minimal detectable bit flip weight
η. Using Equation (3.54) results in two differences. First, for virtually all categories (k, h) the
As differ. Second, for the same combination (k, h) we sometimes select golden As which have
smaller η than in Table 3.6. To circumvent the latter, we can combine the two previous optimality
criteria into the third one, given by

Ψη,Aϕ(k, h) = min
(
n− η(k,A), Aϕ(k,A)

)
, |A| = h, n = k + h = |C|, (3.55)

3.2 Probabilities of Silent Data Corruption 57

|DΘ|
η – minimal detectable bit flip weight

1 2 3 4 5 6 7 8

1 3/2 7/3 15/4 31/5 63/6 127/7 255/8 511/9
2 3/2 13/4 53/6 213/8 853/10 3285/12 13141/14 52565/16
3 3/2 29/5 45/6 467/9 1837/11 7349/13 23733/15
4 3/2 27/5 89/7 933/10 6777/13 31385/15
5 3/2 29/5 117/7 933/10 7085/13 31373/15
6 3/2 29/5 233/8 1899/11 7837/13 62739/16
7 3/2 29/5 217/8 1803/11 13963/14 55831/16
8 3/2 29/5 233/8 1939/11 13963/14 55831/16
9 3/2 29/5 185/8 1939/11 15717/14 55831/16

10 3/2 61/6 185/8 3739/12 27425/15
11 3/2 61/6 451/9 3739/12 27425/15
12 3/2 61/6 463/9 3737/12 29925/15
13 3/2 61/6 463/9 3349/12 27825/15
14 3/2 61/6 463/9 6717/13 63877/16
15 3/2 61/6 463/9 7785/13 63877/16
16 3/2 61/6 463/9 7785/13 63877/16
17 3/2 61/6 393/9 7785/13 63859/16
18 3/2 61/6 947/10 7785/13 63859/16
19 3/2 61/6 947/10 7985/13
20 3/2 61/6 985/10 7985/13
21 3/2 61/6 985/10 15507/14
22 3/2 61/6 985/10 15993/14
23 3/2 61/6 985/10 15993/14
24 3/2 61/6 981/10 15993/14
25 3/2 111/7 981/10 15685/14
26 3/2 111/7 981/10 15203/14
27 3/2 111/7 951/10 15203/14
28 3/2 111/7 951/10 29685/15
29 3/2 111/7 835/10 *29685/15
30 3/2 125/7 835/10 *31693/15
31 3/2 125/7 881/10 *32211/15
32 3/2 125/7 881/10 *32417/15

Table 3.6: Golden As per minimal detectable bit flip weight η after Ψη(k, h) – Equation (3.52) –
in the form A/|A|. Bold numbers are prime. *-numbers are obtained through grid approximation.

58 Chapter 3 Analysis of Coding Techniques

which selects for a given data bit width k and parameter bit width h the one A which has the
largest minimal detectable bit flip weight and the smallest area under its SDC probability curve.
The golden As obtained here differ from the second optimality criterion only in those situations
where the minimal detectable bit flip weight η was smaller than for the first criterion. This means,
all golden As selected by Equation (3.55) have the same η as those obtained by the first optimality
criterion from Equation (3.52).

3.2.4 Concrete Error Models

So far we argued that there are no concrete hardware error models available for future hardware.
We will now have a look at two transmission channel error models, which are considered in the
literature: (1) equal probability of all bit flip weights and patterns [53, 69], and (2) the binary
symmetric channel.

Equal Probabilities

In the first model, all bit flip weights and bit flip patterns are equally probable. When this assumption
holds, then each bit flip weight b ∈ 1, . . . , n with n = |C| occurs with the same probability

Pb = 1/n,

because there are n code bits. Consequently, the unconditional SDC probabilities of a code are
equal to the conditional ones, except for that constant factor 1/n. This factor is required, so that all
unconditional probabilities for detectable and undetectable bit flips sum up to 1 and not to n. In this
model, there is a bound pres on the error detection capability called residual error probability [53,
69], which is computed using Equations (3.25) and (3.27) as

pres =
undetectable errors

total errors
=

∑t
i=0

(
n
i

)
· (2k − 1) · 2k∑n
b=1 β

C
b

=
(2k − 1) · 2k

2k ·
∑n

b=1

(
n
b

) · t∑
i=0

(
n

i

)

=
2k − 1

2n − 1
·

t∑
i=0

(
n

i

)
≈ 2k

2n
·

t∑
i=0

(
n

i

)
= 2−h ·

t∑
i=0

(
n

i

)
,

(3.56)

with n−k = h. We will discuss the correlation between the conditional error probabilities and the
residual error probability later in the comparison in Section 3.4.1. For detecting codes, we again
set t = 0, which results in

pres,t=0 = 2−h,

which turns out to be the same as in [53, 69]. For an SECDED code like Hamming, we set t = 1,
which results in

pres,t=1 = (1 + n) · 2−h.
The residual error probability can then also be adapted to the error model using 1/n. The uncondi-
tional probability for this error model, P (SDC)CEq, for a bit flip weight b is computed as

P (SDC)CEq =

n=|C|∑
b=1

(
P (SDC|b)C · Pb

)
= 1/n

n=|C|∑
b=1

ϕC
b (3.57)

3.2 Probabilities of Silent Data Corruption 59

10−4

10−3

10−2

10−1

100

0 3 6 9 12 0 4 8 12 16 20
10−4

10−3

10−2

10−1

100

10−4

10−3

10−2

10−1

100

0 4 8 12 16 20 24 28 0 8 16 24 32
10−4

10−3

10−2

10−1

100

pr
ob

ab
ili

ty
n = 13, k = 8 n = 22, k = 16

pr
ob

ab
ili

ty

undetectable bit flip weight b

n = 30, k = 24

undetectable bit flip weight b

n = 39, k = 32

P (SDC|b)H

P (SDC)HEq

Pres

Pres,Eq

Figure 3.14: Unconditional and conditional SDC probabilities under the equal probabilities error
model for Hamming

Examples for the conditional SDC probabilities under the equal probabilities error model are shown
in Figure 3.14. There we see the distributions for four different data widths |D| ∈ {8, 16, 24, 32}
for the respective shortened correcting Extended Hamming Codes. It shows how the error model
decreases the SDC probabilities due to the assumption of the equal probabilities of patterns and
bit flip widths, i.e. due to the factor 1/n. The residual error probabilities are also plotted and this
shows that the correction capability increases the SDC probabilities for some bit flip weights above
this bound. The distributions of AN and XOR codes are similarly shifted downwards to lower
probabilities.

Binary symmetric channel

One other widely used error model in the coding theory domain is the binary symmetric channel
(BSC), depicted in Figure 3.15. There, the probability that a bit is flipped during the transmission

1

0

1

0
1− p

p

p

1− p

Figure 3.15: The binary symmetric channel (BSC) error model.

60 Chapter 3 Analysis of Coding Techniques

is p, while the chances of receiving a bit undisturbed is 1 − p. It is furthermore a common
assumption that bit flips are independent, which leads to the chance Pc that a code word of size n
bits is transmitted correctly as

Pc = (1− p)n. (3.58)

The probability Pb that inside an n-bit code word b bits flip is

Pb = (1− b)n−b · pb. (3.59)

The unconditional SDC probability for a BSC, a code C, and some bit flip probability p is then
obtained using Equation (3.28) by

P (SDC)CBSC,p =

n=|C|∑
b=1

(
P (SDC|b)C · Pb

)
=

n=|C|∑
b=1

(
ϕC
b · (1− b)n−b · pb

)
(3.60)

Figure 3.16 shows the effect of varying probability pwhen employing the BSC, i.e. Equation (3.60).
There, we compare a (13,8,4) correcting shortened Extended Hamming code against a (13,8,3) AN
code with the goldenA = 29. By that, both codes have the same code width and the same minimal
detectable bit flip weight η. On the x-axis we vary the bit flip probability p in various ranges to
show different levels of detail. Figure 3.16a highlights p ∈ [0.99, 0.1], where we see very different
curves for the Hamming and AN code. First, for very high probability of flipping bits (p→ 0.99),
Hamming has very high probability of SDC, whereas the AN code starts at a much lower total
probability and first has a short increasing part for p ∈ [0.99, 0.92]. This shows that the AN code
can detect large burst errors with much better probability. Interestingly, the total SDC probability
decreases until p = 0.48 for Hamming and until p = 0.45 for AN and then rises again. This is,
because then, lower numbers of bit flips become more probable where especially the Hamming
code then performs worse and worse in this interval. The ratio between the two codes is given in
orders of magnitude by P

Hamming
BSC /PAN

BSC. In this interval, AN is up to 3.5 orders of magnitude better
than the Hamming code with the same code width. Figure 3.16b reveals that in the lower range
p ∈ [0.5, 0.05], the SDC probability decreases greatly again for both codes, whereas for the AN
code the decrease starts much earlier (at p ≈ 0.275) than for Hamming (at p ≈ 0.08). This means
that the AN code is much more balanced, concerning the SDC probability, than the Hamming
code. Zooming further in, Figure 3.16c shows that for even lower bit flip probabilities (p < 0.1),
the AN code can far outperform the Hamming code. AN gets better and better compared to the
Hamming code with decreasing p, being almost 13.5 orders of magnitude better than Hamming
for p = 10−6.

The above shows that the conditional SDC probability can be combined with concrete error models.
By that, when concrete hardware error models become available, all of the conditional probabilities
which we counted can be transformed into unconditional probabilities. Furthermore, new objective
functions can be defined, which are tailored to these models. Based on that or other characteristics
of the application, the environment, the hardware etc., new optimality criteria could be defined.
Consequently, with all of the above findings we present a toolbox for choosing appropriate coding
schemes based on desired data bit widths, redundancy margins, and error detection capabilities.

3.2 Probabilities of Silent Data Corruption 61

1e-20
1e-18
1e-16
1e-14
1e-12
1e-10
1e-08
1e-06

0.0001
0.01

1

00.10.20.30.40.50.60.70.80.91
0
2
4
6
8
10
12
14

SD
C

Pr
ob

ab
ili

ty

R
at

io
[lo

g 1
0]

p

(a)

1e-20
1e-18
1e-16
1e-14
1e-12
1e-10
1e-08
1e-06

0.0001
0.01

1

00.0
5

0.10.1
5

0.20.2
5

0.30.3
5

0.40.4
5

0.5
0
2
4
6
8
10
12
14

SD
C

Pr
ob

ab
ili

ty

R
at

io
[lo

g 1
0]

p

(b)

1e-20
1e-18
1e-16
1e-14
1e-12
1e-10
1e-08
1e-06

0.0001
0.01

1

1e
-06

1e
-05

0.0
00

1
0.0

01
0.0

1
0.1

0
2
4
6
8
10
12
14

SD
C

Pr
ob

ab
ili

ty

R
at

io
[lo

g 1
0]

p

(c)

P (SDC)Hamming
BSC

P (SDC)AN
BSC (A = 29)

Ratio (Hamming/AN)

Figure 3.16: Concrete SDC probabilities for Hamming and AN (A=29) codes, with both k=8 and
n=13.

3.2.5 Summary and Conclusions

No code is perfect in the sense that it could detect all bit flips. The quality of a code regarding
effectiveness (RequirementR1) is determined by the probability of silent data corruption. It means
that in a DMS, undetected bit flips can lead to wrong query results. The detection performance of
error codes is typically compared using the codes’ minimal Hamming distance dH,min, which is
the smallest difference in the bit-wise representation between any two of a code’s code words. For
error-correcting codes, also the Hamming sphere is important, which for a valid code word includes
those invalid code words around it which can be corrected (cf. Equations (3.22) and (3.23)). The
downside of correction, however, is that many more multi-bit flips lead to SDC. This is when a
multi-bit flip leads from a valid code word into the correction sphere of another valid code word,
which then leads to decoding errors. Anyhow, the minimal Hamming distance is obtained through
the distance distributionKC (Equation (3.24)), which maps to any code word weight b (number of
bits set to one) the number of code words of that weight. From that we can derive the conditional
SDC probability ϕC

b that a b-bit flip will not be detected. In this thesis, we are interested not only
in the minimal Hamming distance, but we want to compare the codes across their whole distance
distributions to get a better understanding how “good” they are in the presence of all possible bit
flips. For original Hamming codes there are weight enumerators which directly tell the weight
distribution from which we can then derive the distance distribution. From these, we can easily
derive the distributions for extended Hamming codes, whereas for shortened Hamming codes

62 Chapter 3 Analysis of Coding Techniques

this is not as trivial and the weight distribution must be counted. We showed examples for the
final distance distributions and conditional SDC probabilities in Figure 3.7. Then, we described
a methodology towards computing the distance distribution for XOR checksums, because in the
literature we found no concrete descriptions of obtaining it, but only vague expressions like they
detect all odd numbered bit flips. In contrast to Hamming codes, the checksum width is typically
fixed and the number of data words (#D) over which the checksum is computed may greatly
vary. Using our methodology, we can iteratively compute the distributions for 1-, 2-, and 3-bit
checksums. We used weight distribution matrices and triangles to find patterns and rules for
computing the distribution for arbitrary #D. For AN codes, we currently must exhaustively
compute the distance distribution in a brute force manner, because due to the convolution of the
multiplication (the carries being unpredictable), AN codes do not exhibit such nice structures like
Hamming or XOR. Since the distance distribution for parameter A depends on the data width,
the brute force approach must be applied to all desired data widths and parameter widths. The
problem is that the complexity increases by about a factor of four with each additional data bit and
by factor of 2 with each additional bit for A. This becomes very costly especially for larger data
widths and we showed that by using a grid approximation method, we could reduce the runtime
for a single A and 32-bit data from 3.4 years down to 5 minutes, using a 4-GPU cluster in both
cases. This is more than 5 orders of magnitude faster. From all of the measured As, we still
need to filter the desired ones and therefore we defined two possible optimality criteria, which
select those golden As listed in the appendix in Tables A.1 to A.4. We might only be interested
in the smallest As which guarantee to detect a minimal bit flip weight and we gathered this set in
Table 3.6. Finally, we also showed how to employ the conditional probabilitiesϕC

b in concrete error
models for equal probabilities for all bit flip weights and patterns, as well as the binary symmetric
channel (BSC), a well-known error model from information theory. The latter shows that for an
error probability of p = 10−6, the AN code using our golden A with the same space overhead as
Hamming codes exhibits an SDC probability which is almost 13.5 orders of magnitude better than
that of the respective Hamming code. Our methods can be used to compute even larger parameters
A than we did until now (1 ≤ |A| ≤ 16) and also to pick golden As for future concrete hardware
error models.

3.3 THROUGHPUT CONSIDERATIONS

DMSs try to exploit as many hardware features to improve query throughput and latency. Modern
CPUs provide instructions which do one computation on multiple data units in parallel, in one
(or a few) cycles, which is known as SIMD processing. This SIMD concept is also referred to
as vectorized processing, because one operation is applied to a vector of data units. We will
use the terms vectorized processing, vector instructions, and vectorization to refer to this type of
computation. For main memory-centric DMSs, vectorization is a key technology for improving

Scalar
8 8
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

32 32 32 32 32 32 32 32
64 64 64 64

SSE /
NEON

128 128

AVX 256

Figure 3.17: Width of Scalar data and SIMD vectors in bits.

3.3 Throughput Considerations 63

query latency and throughput. This has become the standard to improve single-thread performance.
Therefore, in this Section we will consider the vectorizability of the three codes as a crucial part
of fulfilling the efficiency RequirementR2.

Lots of research was conducted on exploiting these features in DMSs [37, 105, 124, 139, 143, 144,
162, 175, 189, 190, 195] in order to speed up query processing, which is why we examine the
selected error codes for vectorizability, i.e. in how far coding operations can be vectorized. There
are different instruction sets available, which differ both in the available operations, the vector
size, i.e. how many data units are processed in parallel, and the supported data unit widths [74],
which is visualized in Figure 3.17. Among the well-known SIMD ISAs are Streaming SIMD
Extensions (SSE)5, Advanced Vector Extensions (AVX) and its extension AVX2, AVX-512, and
arm® NEON™ [9]. SSE and NEON™ operate on 128-bit vectors, while AVX and AVX2 use
256-bit vectors, and AVX-512 again doubles the vector width to 512 bits (cf. Figure 3.17). In the
following, we will show which operations on Hamming Codes, checksums, and AN codes can be
vectorized. We will assume x86 extensions like SSE (up to 4.2) and AVX (1, 2, or 512), but the
ideas can in general be mapped to other SIMD instruction sets like arm®NEON™.

3.3.1 Test Systems Descriptions

In the following, we will conduct several microbenchmarks so we take the opportunity here to
present the two test systems which we use throughout this thesis. We measure all following
benchmarks for the two systems from Table 3.7, where System 1 is one of the first Intel® Skylake
CPUs and the latter being an Intel® Xeon Phi™ standalone CPU. Both systems have quite different
hardware characteristics, where important differences are the number of cores (4 vs. 68), hyper-
threads (hardware threads per core, 2 vs. 4), the different base frequencies (2.7 GHz vs. 1.4 GHz)
and the different memory architectures and core interconnects. Also, the actual core architectures
are quite different. While both CPUs exhibit out-of-order execution, the Xeon Phi is based on much
weaker Silvermont Atom cores6. For both systems, we explicitly disable the Intel™turbo boost
feature and force the operating system’s scaling governor to performance for more stable results and
better comparability. We will conduct all benchmarks on both systems to provide runtime numbers
for two very diverse compute architectures. As we will see on several occasions, we measured
quite different runtime behavior for these two hardware platforms.

3.3.2 Vectorizing Hamming Coding

For hardening and error detection, software Hamming codes require only a small set of instructions,
namely bit-wise AND for extracting bit patterns from the original data (masking), bit population
count (popcount) to compute the actual parity bits, and comparison of the stored and newly
computed code bits. Since Hamming is a systematic code, for softening the original data can be
simply loaded or copied. To require as little operations as possible, the original data is stored
successively as individual vectors and the Hamming code bits (or bytes) are also stored in a single
block for each data vector. By that, data processing operations like addition, aggregations, or
filtering can be applied easily on the data bits. For data modification, the code bits can be easily
updated as well since they are stored separately.

5There are several versions: SSE, SSE2, SSE3, SSSE3, SSE4, SSE4a and SSE5, which we simply refer to as SSE.
6http://vrzone.com/articles/xeon-phi-knights-series-continues-landing-2015/64112.html

64 Chapter 3 Analysis of Coding Techniques

http://vrzone.com/articles/xeon-phi-knights-series-continues-landing-2015/64112.html

Category Type System 1 System 2

CPU

Name Core i7-6820HK Xeon Phi 7250
Codename Skylake Knights Landing
Frequency 2.70 GHz 1.40 GHz

Cores 4 68
Threads per Core 2 4
Total # Threads 8 272

L1i-Cache 32 KiB(pc) 32 KiB(pc)

L1d-Cache 32 KiB(pc) 32 KiB(pc)

L2-Cache 256 KiB(pc) 1024 KiB(2c)

L3-Cache 8192 KiB(sh) —
Core Interconnect Ring Bus Mesh

Vector ISAs SSE*,AVX-2† SSE*,AVX-2†,AVX-512‡

Main
Memory

Type — DDR4 —
Size 2 × 8 GiB = 16 GiB 6 × 32 GiB = 192 GiB

Frequency 2133 Mhz 2400 MHz

Software

OS Ubuntu 16.04
Compiler GCC 7.3 GCC 7.0

Turbo Boost off
Scaling Governor performance

Table 3.7: Basic Specification of the 2 measurement systems. DRAM frequencies are reported by
lshw. CPU Vector ISAs are reported by lscpu. (pc): per core. (sh): shared across all cores. (2c):
shared by 2 cores (1 tile). *: SSE, SSE2, SSSE3, SSE4.1, and SSE4.2. †: AVX and AVX-2. ‡:
AVX-512F, AVX-512PF, AVX-512ER, AVX-512CD.

The crucial point stays the generation of the Hamming code bits. For hardening and detection, the
AND operation is supported for whole vectors, while bit counting is currently only supported for
single values and must be done with right-shifts, logical ANDs, additions and subtractions [182,
Section 5.1, p. 82], all of which are in turn supported by modern server-grade CPUs’ SIMD
instruction sets. For instance, Mula et al. show population count vectorization using AVX2 [124]
and they also discuss population count algorithms in much more detail than it is necessary here.
Some of the presented approaches use table look-up to accelerate population counting. When
such tables are rather big, the problem is that such a table resides in main memory which can
become corrupt over time and we would need methods to maintain these tables’ integrity, i.e. bit
flip detection and correction. Another difference to their setting is, that we need not compute
population counts of long bitmaps, but compute individual popcounts for the parity bits, i.e.
multiple popcounts per Hamming code word. Consequently, there are many more instructions
besides the population counting and considerations for amortization over long bitmaps do not
apply. We will now first show how we vectorize popcount, compare 3 different approaches, and
then we show how the Hamming coding itself is vectorized.

Vectorized Population Counting

As Mula et al. note, there are basically 2 efficient population count techniques besides the hardware
based popcount instructions [124]. For the latter there is, however, currently no vectorized variant
available. Figure 3.18 visualizes the two techniques’ concepts. The first one is a binary tree adder,

3.3 Throughput Considerations 65

shown in Figures 3.18a and 3.18b. It works by a recursive pattern, which adds together neighboring
counts. It starts with considering each single bit as a count on its own and can be described as
follows:

1. Variable data contains the element for population counting.
2. Set shiftNum to 1.
3. While shiftNum < data bit width, do:

(a) Shift data right by shiftNum number of bits and store the result in variable shifted.
(b) Retain only the bits of interest for the original data and shifted by masking out all

other bits.
(c) Add together masked data and masked shifted and store the result again in data
(d) Double shiftNum

4. The rightmost log2|data| bits contain the bit population count.

Figure 3.18a visualizes the concept behind the binary tree adder for an 8-bit value. The right-shifts
are denoted by the arrows while + symbolizes the addition of the sub-sums, which are color
coded blue and red. The 8-bit case is straight forward and is the basis for the larger data widths:
Figure 3.18b consists of two parallel 8-bit tree adders and the counts for the bytes are added
together with multiplying by the bit pattern 0000 0001 0000 0001, so that the total population
count is found in the most significant byte. Here,× denotes the multiplication to add up individual
byte-population counts. Implementations for 32- and 64-bit adders are the same except that the
pattern is expanded appropriately to multiple “0000 0001”-bytes.

The second approach, proposed by Muła, looks up the population counts for 4 bits using a very
small lookup table [123], as depicted in Figure 3.18c. As we noted above, storing lookup tables in
main memory makes them vulnerable to bit flips, but such a small table can easily be recomputed
periodically or just before iterating over arrays of Hamming code words. It follows a 0 1 1
2-pattern which can be applied recursively on itself to generate larger patterns, which results in
the lookup tables from Figures 3.18c and 3.18d. In Figure 3.18c, the 4 upper and lower bits are
separately used as index to fetch the precomputed popcount from the lookup table. The resulting
counts are added up afterwards. In Figure 3.18d, the lookup table (denoted as Population Count
Table) is stored in a vector and the actual data vector is used as a shuffle mask to shuffle the
population count table units around. As in Figure 3.18c, this is done separately for the lower and
upper 4 bits of each byte in the vector element and the counts are added after the shuffling.

Figure 3.18e generalizes both techniques to vectorized multi-byte population count7. It starts
with vectorized byte-wise popcount which can be implemented using either of the two discussed
techniques and it then uses the multiplication improvement from Figure 3.18b. All steps are
vectorized and here the final shuffling step is explicitly included so that all population counts are
packed together. More details are given in Appendix A.2.2. In the following we will determine
which is the faster of the two techniques, to decide which one to use for Hamming coding.

7On more modern hardware platforms, vectorized population count may be available like VPOPCNT in Intel® Knights
Mill processors, which is however supposed to only support population counting on 32-bit and 64-bit integers, so that
for smaller integers a fallback may be faster than additional shuffling operations to align them to 32-bit boundaries.

66 Chapter 3 Analysis of Coding Techniques

(a) Binary adder pattern for computing the
bit population count of a single byte. Ar-
rows denote the right-shifts and masking
operations are omitted.

(b) Multi-byte population count using binary adder
for byte popcount and multiplication to add up all the
counts, after [188].

(c) Scalar byte-wise population count using
table lookup.

(d) Vectorized byte-wise population count using table
lookup. Data element boundaries in the vectors are de-
limited using black vertical lines.

(e) Generic vectorized population count with all steps being vectorized. Byte-wise population count is
implemented using (a) or (d) and the multiplication is done on input size granularity.The final shuffling
packs together the popcounts which reside in the elements’ highest bytes due to the multiplication. Data
element boundaries in the vectors are delimited using black vertical lines.

Figure 3.18: Population counting using binary adder for single byte integers (a) and multi-byte
integers (b), and byte-wise popcount using table lookup as scalar (c) and vectorized (d) variants.
(e) generalizes the concepts to vectorized multi-byte population counting. Neighboring sub sums
are colored alternating with blue and red background and the final result is colored gray.

3.3 Throughput Considerations 67

We measured the throughputs of the individual scalar and vectorized population counting variants.
For system 1, the results are shown in Figure 3.19, showing throughput in million integers per second
(MIPS). For the cases 8-bit (a), 16-bit (b), and 32-bit (c), we see that the second variants of SSE4.2
and AVX2 provides the highest throughputs for each ISA family. The throughput is dramatically
reduced with increasing bit widths. For AVX2 and SSE4.2, respectively, in the 8-bit case from
around 25 000 (unroll factors 4 and 8) and around 18 800 (factor 16) MIPS (Figure 3.19a), down
to about 8300 (factor 8) and 6700 (factor 16) for the 16-bit case (Figure 3.19b) and down to 3300
(factor 8) and 3200 (factor 16) MIPS for the 32-bit case. For 64-bit integers (Figure 3.19d), SSE4.2
variant 3 is fastest with factor 16 and slightly more than 2100 MIPS, otherwise the scalar code is
the fastest with also around 2100 MIPS (factors 2 . . . 16). Table 3.8 lists the highest throughput
numbers and the respective best unroll factors for system 1. There we can see that typically, the
best unroll factors are typically between 2 and 16, with only a few exceptions. Additionally, the
cells representing the fastest variant per bit case are highlighted in gray. The population counting
is only a sub-operation for Hamming hardening and we will verify shortly whether for the coding
itself these throughputs translate into respective ratios for hardening, as well.

We also measured the throughputs of the individual scalar and vectorized population counting
variants for system 2, shown in Figure 3.20. We see that throughputs differ greatly from those
for system 1. The results are shown in Figure 3.20. For some bit cases, the best throughput for
system 2 is even an order of magnitude smaller than for system 1. For the cases 8-bit (a), 16-bit (b),
and 32-bit (c), we see that the first variants of SSE4.2, AVX2 and AVX512 provide the highest
throughputs for each ISA family. For 64-bit (d), again the third variant of each vectorization family
is fastest, as for system 1. However, here, the scalar variant is already faster than the vectorized
ones since the 32-bit case. The throughputs are, again, dramatically reduced with increasing bit
widths, as can be seen in Table 3.9.

Vectorized Hardening

In the following, we will discover in how far the population count variants have an influence on
Hamming coding. The Hamming coding itself is simply the calculation of the even parity for
several data bit subsets. The schema for vectorized Hamming coding is depicted in Figure 3.21:
On the input data vector all patterns for selecting the data bit subsets are applied one after another,
where patterns are appropriately as in Figures 3.3 and 3.4. On each of the obtained data subset
vectors vevctorized popcount is applied as noted above. Afterwards, the even parity is obtained for
each data element’s population count (for each subset vector) by selecting the LSB. The individual
parity bits are interleaved so that for each data element the code bits are consecutively stored in
their own bytes. Assuming a vector operation can operate on k elements in parallel (k depends
on the data width), then k Hamming code words can be computed in parallel in a single hardware
thread. Each byte in the code bits part (bottom of Figure 3.21) contains the code bits of a single
data element of the original data vector. So finally, first the whole data vector is stored and then all
code bits arranged in individual bytes. As can be seen in Figure 3.4, a 64-bit data word requires
an additional 8 code bits for an Extended shortened Hamming code, so that a single byte suffices.
A concrete implementation is provided in Appendix A.2.2. We now show that the speed of the
population counting correlates with the Hamming coding throughput and that, as for the population
count, the fastest variant depends on the actual hardware platform. Additionally, this proves that
the selected method is indeed a very fast one and it allows to ultimately give a fair comparison later
against the other coding schemes.

68 Chapter 3 Analysis of Coding Techniques

Th
ro

ug
hp

ut
[M

IP
S]

0

5000

10000

15000

20000

25000

30000

20 22 24 26 28 210

Unroll Factor

(a) 8-bit

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

20 22 24 26 28 210

Unroll Factor

(b) 16-bit

Th
ro

ug
hp

ut
[M

IP
S]

0

500

1000

1500

2000

2500

3000

3500

20 22 24 26 28 210

Unroll Factor

(c) 32-bit

0

500

1000

1500

2000

2500

20 22 24 26 28 210

Unroll Factor

(d) 64-bit

Scalar SSE4.2 1
SSE4.2 2
SSE4.2 3

AVX2 1
AVX2 2
AVX2 3

Figure 3.19: Comparison of the different population count variants for system 1.

Bit Scalar SSE4.2 AVX2

Case 1 2 3 1 2 3

8 Highest MIPS 2416.6 9876.9 19 004.9 936.2 18 778.8 25 095.8 952.2
@ Unroll Factor 16 2 16 32 8 4 1024

16 Highest MIPS 673.0 4045.9 6976.3 1601.8 6670.5 8354.7 896.9
@ Unroll Factor 64 8 16 16 16 8 32

32 Highest MIPS 2253.6 1819.9 3198.5 1900.3 2263.9 3333.3 1504.7
@ Unroll Factor 8 8 16 16 8 8 8

64 Highest MIPS 2102.2 644.3 1039.5 2126.8 1058.7 628.3 1894.8
@ Unroll Factor 4 8 16 16 8 1024 8

Table 3.8: Best population count throughputs and unroll factors for system 1. Best variants per
SIMD variant and bit case are highlighted in gray.

3.3 Throughput Considerations 69

Th
ro

ug
hp

ut
[M

IP
S]

0
500

1000
1500
2000
2500
3000
3500
4000
4500

20 22 24 26 28 210

Unroll Factor

(a) 8-bit

0

100

200

300

400

500

600

20 22 24 26 28 210

Unroll Factor

(b) 16-bit

Th
ro

ug
hp

ut
[M

IP
S]

0

50

100

150

200

250

300

350

20 22 24 26 28 210

Unroll Factor

(c) 32-bit

0

50

100

150

200

250

300

350

20 22 24 26 28 210

Unroll Factor

(d) 64-bit

Scalar SSE4.2 1
SSE4.2 2
SSE4.2 3

AVX2 1
AVX2 2
AVX2 3

AVX512 1
AVX512 2
AVX512 3

Figure 3.20: Comparison of the different population count variants for system 2. Best variants per
SIMD variant and bit case are highlighted in gray

Bit Scalar SSE4.2 AVX2 AVX512

Case 1 2 3 1 2 3 1 2 3

8 Highest MIPS 608.5 2230.0 643.6 92.1 4353.9 1031.9 99.1 3514.8 1092.9 98.6
@ Unroll Factor 16 8 4 8 8 8 16 8 4 8

16 Highest MIPS 105.6 484.6 240.4 98.3 507.3 289.0 92.7 485.0 279.2 92.1
@ Unroll Factor 16 16 16 16 4 16 16 8 16 16

32 Highest MIPS 325.4 242.2 120.3 127.3 292.5 167.7 107.5 222.1 163.9 106.1
@ Unroll Factor 512 16 16 16 4 2 16 2 16 8

64 Highest MIPS 316.8 92.9 55.4 178.8 97.5 44.4 154.7 77.6 43.6 138.7
@ Unroll Factor 16 8 16 16 4 4 2 512 2 2

Table 3.9: Best population count throughputs and unroll factors for system 2.

70 Chapter 3 Analysis of Coding Techniques

D
at

a
Ve

ct
or

B
it-

w
is

e
A

N
D

M
as

k
1

Ve
ct

or

Su
bs

et
1

Ve
ct

or

. . .

D
at

a
Ve

ct
or

B
it-

w
is

e
A

N
D

M
as

k
N

Ve
ct

or

Su
bs

et
N

Ve
ct

or

SIMD Population Count

. pN. . .

Select LSB (even parity)

.

Data Vector . . .

Code Bits

Parity Bit Interleaving

Figure 3.21: Schema of vectorized Hamming coding with all steps being data-parallel.

We test all of the three discussed variants:

1. Binary adder as in Figures 3.18a and 3.18b.

2. Lookup table variant as in Figures 3.18c and 3.18d.

3. Scalar popcnt instruction with vector load/store and element-wise extract.

As a baseline we include the purely scalar variant which only uses the built-in hardware in-
struction popcnt and we prohibit automatic compiler vectorization through the compiler flag
-fno-tree-vectorize while we otherwise use the same settings as in Section 3.4.2. We use
automatic compiler-based loop unrolling for powers of 2, to see whether this is beneficial for Ham-
ming coding. Again, we use both measurement systems summarized in Table 3.7. Figures 3.22a
and 3.22b show the throughput on system 1 in MIPS for 16-bit (a) and 32-bit data (b). There, we
first see that the automatic, compiler-based loop unrolling brings only little to no gains beyond a
value of two. Second, we can see that the vectorized binary adders (1) and lookup variants (2)
greatly improve on the scalar variants. Variant 3 only uses vectorized load / store instructions and
the AVX variant is even slower than the scalar one for 16-bit data. On system 1, for 32-bit data
variant 3 is mostly faster than scalar for both SSE and AVX. Variant 1 (binary adder) improves on
scalar by 110 % (SSE) and 194 % (AVX), while variant 2 (lookup) improves on scalar by 154 %
(SSE) and 243 % (AVX). Comparing variants 1 and 2 with each other on system 1, this means the
lookup variant (2) improves Hamming coding over the binary adder (1) by 16 % (SSE) and 17 %
(AVX) for 16-bit data and by up to 21% (SSE) and 16 % (AVX) for 32-bit data.

Figures 3.22c and 3.22d show the throughput for system 2, again in MIPS, for 16-bit (c) and 32-bit
data (d). Again, the compiler-based loop unrolling has mostly only little to no effect. Furthermore,
the throughput numbers are about an order of magnitude lower than for System 1, which can be

3.3 Throughput Considerations 71

100

200

300

400

500

600

700

800

900

1000

20 22 24 26 28 210

Th
ro

ug
hp

ut
[M

IP
S]

Unroll Factor

(a) System 1: 16-bit

140

160

180

200

220

240

260

280

300

320

340

20 22 24 26 28 210

Th
ro

ug
hp

ut
[M

IP
S]

Unroll Factor

(b) System 1: 32-bit

10

20

30

40

50

60

70

80

20 22 24 26 28 210

Th
ro

ug
hp

ut
[M

IP
S]

Unroll Factor

(c) System 2: 16-bit

10

15

20

25

30

35

40

20 22 24 26 28 210

Th
ro

ug
hp

ut
[M

IP
S]

Unroll Factor

(d) System 2: 32-bit

Scalar SSE4.2 1
SSE4.2 2
SSE4.2 3

AVX2 1
AVX2 2
AVX2 3

Figure 3.22: Comparison of Hamming coding with different population count implementations in
MIPS on system 1 (upper two graphs) and systems 2 (lower two graphs).

72 Chapter 3 Analysis of Coding Techniques

largely attributed to the much lower core frequency and older core architecture. However, the most
important observation is that the binary adder now wins over the lookup approach and variant 3
for both SSE and AVX is substantially slower than the scalar variant. The binary adder (variant 1)
is 102 % (16-bit, SSE), 212 % (16-bit, AVX), and 18 % (32-bit, AVX) faster than scalar execution.
The picture is even more obscure for 32-bit data: The throughput for variants 1 and 2 is almost
cut in half (compared to 16-bit), while the scalar variant and variants 3 almost stay the same. Still,
the binary adder is superior but the scalar code is now the second fastest. Consequently, on this
architecture the binary adder (variant 1) should be used. Finally, the best unroll factors are all
exactly 2.

The measurements showed that the best variant depends on the actual hardware platform and we
will respect this in the upcoming comparison benchmarks.

3.3.3 Vectorizing XOR Checksums

As for Hamming coding, XOR checksums only require the creation (and comparison) of the
checksum over a block of data for hardening and error detection and since XOR checksums are
also systematic, softening is also simply reading or copying the original data. Checksum creation
can be easily vectorized as the XOR operation is available on whole vector widths for all SIMD
instruction sets (SSE, AVX, neon). A block of data is therefore interpreted as an array of vectors
which are successively XORed onto a zero-initialized checksum vector. This could in principal be
done in a tree-binary adder fashion or just sequentially, both of which have the same number of
XOR operations. When it is required to create checksums that are shorter than the vector width,
the tree adder method can be used to further condense it. This is a bit different from the method
presented for Hamming coding in that it does no shifting and masking of the individual bits, but
only full additions. For instance, from a 128-bit vector, a 32-bit checksum can be obtained by
XOR-ing first its higher an lower 64 bits and then that intermediate’s higher and lower 32 bits.
Table 3.10 lists the instructions used for computing XOR on different SIMD instruction sets.

Since checksums operate on larger chunks of data, processing or modification operations and the
checksum generation, for potentially both old and new data, could be done simultaneously. After
loading a vector, it is XOR-ed against the checksum accumulator vector, then the data is processed
or modified, whereas for the latter an additional accumulator for the new checksum is used. At the
end of a data block, the generated checksum is compared against the stored one and for modification
the checksum of the modified data is stored. However, the problem that bit flips are detected only
after the whole checksum is computed, remains and results from the processing or modification
operation must be undone or discarded.

SIMD ISA vector width [bits] instruction8 GCC intrinsic9

SSE 128 pxor _mm_xor_si128
AVX2 256 vpxor _mm256_xor_si256

AVX-512F 512 vpxord _mm512_xor_si512
NEON 128 veor e.g. veorq_u16

Table 3.10: XOR specific instructions and compiler intrinsics for different SIMD ISAs.

3.3 Throughput Considerations 73

SIMD ISA vector width [bits] data width [bits] instruction8 GCC intrinsic9

SSE 128 16 pmullw _mm_mullo_epi16
32 pmulld _mm_mullo_epi32

AVX 256 16 vpmullw _mm256_mullo_epi16
32 vpmulld _mm256_mullo_epi32

AVX-512BW
512

16 vpmullw _mm512_mullo_epi16
AVX-512F 32 vpmulld _mm512_mullo_epi32

AVX-512DQ 64 vpmullq _mm512_mullo_epi64
NEON 128 {8|16|32} vmul.i{8|16|32} vmul_{u|s}{8|16|32}

Table 3.11: Multiplication specific instructions and compiler intrinsics for different SIMD ISAs.

3.3.4 Vectorizing AN Coding

In contrast to Hamming and XOR, AN coding requires different operations for hardening, softening,
and error detection, namely multiplication (Equation (3.10)), division (Equation (3.11)), and
modulus (Equation (3.12)), respectively. From these three, only multiplication is directly available
as vectorized instruction, where some available instructions and compiler intrinsics are shown in
Table 3.11. In contrast, division is only available for single- and double-precision floating point
numbers (for SSE and the like, but not for arm® NEON™), and the modulus operation has no
vectorized counterpart at all [74]. For division, we convert the integers to the next larger floating
point type (floats), however, for SSE, AVX and the like, there are only conversion instructions for
32- and 64-bit data widths to single- and double-precision floats. Care must be taken to not loose
precision, which can happen when e.g. converting from large 64-bit numbers to both single- or
double-precision floats.

3.3.5 Summary and Conclusions

Vectorization is a crucial technique to improve query throughput and latency in main memory-
centric DMSs. As we have shown in this Section, the coding operations of all three code families
can be (to some degree) vectorized. For Hamming codes, we only need to vectorize the computation
of the code (parity) bits. There, each individual code bit can be computed in parallel for several
data words. For that, the population count is needed, since each code bit is a parity bit over a subset
of the data bits. Since there is currently no vectorized population count instruction available in the
considered vector ISAs, we investigated three different alternative implementations and measured
throughput numbers on our two evaluation systems. As we could see, the fastest method depends
on the underlying hardware. However, from a reliability perspective, not all of these techniques
are desirable. For instance, when using lookup tables, these need to be stored in unreliable main
memory and therefore they must somehow be hardened against bit flips, which goes beyond the
scope of this thesis. For XOR checksums, the situation is much better, because the considered
vector ISAs all support XOR instructions over whole vector registers. Finally, for AN coding only
the hardening (multiplication) can be vectorized, while for error detection (modulo) and softening
(division), there are no vector integer instructions available.

8For SSE/AVX see https://software.intel.com/sites/landingpage/IntrinsicsGuide.
For NEON™ see http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0489e/
CJAJIIGG.html

9For SSE/AVX see https://software.intel.com/sites/landingpage/IntrinsicsGuide.
For NEON™ see https://gcc.gnu.org/onlinedocs/gcc-4.4.4/gcc/ARM-NEON-Intrinsics.html

74 Chapter 3 Analysis of Coding Techniques

https://software.intel.com/sites/landingpage/IntrinsicsGuide
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0489e/CJAJIIGG.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0489e/CJAJIIGG.html
https://software.intel.com/sites/landingpage/IntrinsicsGuide
https://gcc.gnu.org/onlinedocs/gcc-4.4.4/gcc/ARM-NEON-Intrinsics.html

3.4 COMPARISON OF ERROR CODES

We previously presented the three coding schemes Hamming codes, XOR checksums, and AN
codes separately. Now, we compare them in accordance with our Requirements R1 to R3, i.e.
their effectiveness in Section 3.4.1, their efficiency in Section 3.4.2, and their runtime adaptability
in Section 3.4.3.

3.4.1 Effectiveness

RequirementR1 dictates that our error detection solution should be effective. The effectiveness of
a code comprises several aspects: 1. detection granularity (e.g. data block or data unit granularity),
2. SDC probabilities (summary and comparison of findings from Section 3.2), and 3. instruction
coverage (the ability to detect errors induced when a CPU executes an instruction), whereas the
first two influence each other. We will compare first the detection granularity, then the detection
capabilities, and finally instruction coverage.

Detection Granularity

All three techniques can allow bit flip detection on value granularity, but (XOR) checksums are
usually employed for larger blocks of data, e.g. whole disk blocks [59, 170]. For single-value
detection, when the XOR word size is as large as the data word, this ends up in data duplication.
Hardware Hamming (e.g. ECC main memory) has a constant data block width (64 bits) and is
thus oblivious to the actual data size, while software Hamming can be adjusted appropriately to
the actual data width, or it can also be tailored to various blocks of data. AN coding is by nature
designed to work on (integer) value granularity. Although it could be applied to blocks of arbitrary
length, e.g. by the use of an arbitrary precision math library [52, 56, 153], this is not feasible
due to the expensive determination of its parameter A (cf. Section 3.2.3). For Hamming and AN,
when covering multiple data units, the SDC probabilities are then “shared”, which then can greatly
increase the SDC probability of the individual data units.

Detection Capabilities

Hamming codes detect all 1- and 2-bit flips, but cannot detect all 3-bit flips, because although
they have dH,min = 4, the correction does not allow to detect any 3-bit flip which leads into the
correction sphere of another code word. Figure 3.7 shows that all Hamming codes exhibit a zig-zag
pattern for their SDC probabilities. Those for even bit flip weights (BFWs) are comparably low
with probabilities in the range of 0.13% . . . 7.7% for all shown data widths. Those for odd BFWs
are much worse with probabilities between 48.2% . . . 100%, i.e. for some data widths some BFWs
are always undetectable. For instance, the (13, 8) Hamming code can not detect any code word
inversions. For the k = 24 Hamming code, the probabilities are worse than for the other codes and
this shows that when we increase k such that no additional code bit is used for Hamming, the SDC
probabilities become worse.

XOR checksums can detect any odd BFWs, independent of the checksum width. Regarding even
BFWs, we see various effects: 1. All checksums widths exhibit comparably high SDC probabilities

3.4 Comparison of Error Codes 75

for 2-bit flips and the chances decrease afterwards. 2. For increasing checksum width, the chances
of SDC are reduced in total. 3. In contrast, for increasing #D, the chances of SDC are mostly
increased. 4. For odd #D inversion cannot be detected. 5. Finally, for even #D, the last |X|
BFWs are always detected. In summary, XOR checksums principally perform better with larger
checksum widths, the fewer data units they cover, and when they cover an even number of data
units.

The SDC probability of an AN code depends on the data width and the parameter width. Larger
data widths require largerAs to achieve the same minimal detected bit flip weight η (cf. Table 3.6).
Increasing the bit width of A also in principal reduces the SDC probabilities. The probability
distributions form a jigsaw pattern for As of the same bit width, where increasing As have a flatter
curve in the middle.

All three codes exhibit specific patterns regarding their SDC probabilities. Hamming and XOR
exhibit zig-zag patterns, where Hamming can only detect up to double bit flips reliably, while XOR
can detect reliably only all odd numbered BFWs. Furthermore, XOR and AN codes show anomalies
at the low and high BFW ends. While these are fixed and predictable for XOR checksums, for AN
codes we can find golden As which have optimal error detection behavior. The SDC probabilities
for Hamming are the worst, because it is an error correcting code, where many bit flips lead into
the correction sphere around code words. Generally, the larger the correction sphere is, the worse
such a code performs in comparison to detection-only.

At the end of Section 3.2 we gave examples for concrete (unconditional) SDC probabilities of
(13, 8) Hamming and AN codes under the BSC error model. Now, In Figure 3.23, we compare
the conditional probabilities of the data widths k ∈ {8, 16, 24, 32} bits. The unconditional prob-
abilities could be obtained the same way as in Section 3.2, but using the conditional probabilities
better shows the probabilities of the AN codes. pHb is the probability for the Hamming code and
the pAb,η are the ones for different AN codes, with the appropriate As taken from Table 3.6. For
every subgraph, the AN code with the smallest η (= 2) has the same code width as the respective
Hamming code. All subgraphs show that with additional code bits, the AN codes reduce the
probabilities of SDC and simultaneously increase the minimal detectable bit flip weight (η).

10−6
10−5
10−4
10−3
10−2
10−1
100

1 6 11 16 21 1 6 11 16 21 26 31
10−6
10−5
10−4
10−3
10−2
10−1
100

10−6
10−5
10−4
10−3
10−2
10−1
100

1 6 11 16 21 26 31 36 1 6 11 16 21 26 31 36 41 46
10−6
10−5
10−4
10−3
10−2
10−1
100

pr
ob

ab
ili

ty
p
b

k = 8, n ∈ {13, 16, 19, 22, 24}
pr

ob
ab

ili
ty

p
b

k = 16, n ∈ {22, 25, 29, 32}

pr
ob

ab
ili

ty
p
b

undetectable bit flip weight b

k = 24, n ∈ {30, 34, 38}

pr
ob

ab
ili

ty
p
b

undetectable bit flip weight b

k = 32, n ∈ {39, 42, 47}

pHb

pAb,η=2

pAb,η=3

pAb,η=4

pAb,η=5

pAb,η=6

(1 + n) · 2−n

2−(n[0])

2−(n[1])

2−(n[2])

2−(n[3])

2−(n[4])

Figure 3.23: Comparison of unconditional SDC probabilities for Hamming an AN.

76 Chapter 3 Analysis of Coding Techniques

Instruction Coverage

Besides bit flips in data, there may also be errors in a CPU’s ALU, so that e.g. arithmetic and
logic operations yield wrong results. We first consider arithmetic operations, where the cases of
updating an existing value and creating a new one lead to the same observations. Hamming and
checksum codes can not detect any instruction errors, because their redundant code information
can only be generated after an arithmetic operation has finished. By that, if there was a bit flip in
an instruction, the redundant code data would be updated on already corrupt data. In contrast, AN
codes are arithmetic codes and when applying arithmetic operations onto AN code words, both the
new data and the new redundant code information are computed during the very same operation.
By that, after any arithmetic operation we could immediately detect bit flips in the result that
occurred during the ALU operation. However, this property is not given when overflows occur.

Detecting bit flips in logic operations, like AND-ing or OR-ing, is not possible for any of the three
coding schemes. The only exception is the XOR operation, which leads to valid code words again
for Hamming and XOR checksums, as these are linear codes. Otherwise, the same as for arithmetic
operations applies to Hamming and XOR.Furthermore, all of these operations do not lead to valid
AN code words.

Error detection for comparison operations like <,≤,=, . . . (cf. Equation (3.15)) is much more
challenging, since comparisons are required for error detection by all codes. We could use
a technique similar to branch-avoidance by replacing the comparison with an array access, as
depicted in Figure 3.24. Suppose that for each comparison operator there is an infinitely large array
of Boolean values:

aOp[i] ∈ {⊤,⊥}, Op ∈ {<,≤, . . . }, i ∈ {−∞ . . . 0 . . .∞}.

The difference of the two operands yields the position in the array, where we find the Boolean
value representing the result of the original comparison operation. For instance, Figure 3.24a
illustrates the array contents for the equality comparison. There, we compute the difference of
the two operands c2 − c1 and the array contains only one true value at position zero, since
c2 = c1 ⇔ c2− c1 = 0. Likewise, for ’<’ comparison (Figure 3.24b), we find true only for i > 0
and for ’≤’ true is at all i ≥ 0. However, infinite arrays can not be stored in memory and their
contents would have to be verified at runtime as well. Consequently, errors in logic operations
(&, ∥,⊕,¬) cannot be detected by any of the codes. Bit operations like AND-ing, OR-ing, or
inverting all bits produce invalid code words. While for Hamming and XOR checksums the XOR
operation on two code words yield another valid code word, this is not true for AN coding. In total,
these operations must be protected in another way. Therefore, we assume reliable comparison and
logic operations. Both areas must be considered separately in future work.

fa
ls

e

true

fa
ls

e

∞

0

−∞

c1 = c2
a=[c2 − c1]

(a) Equal

tru
e

false

fa
ls

e

∞

0

−∞

c1 < c2
a<[c2 − c1]

(b) Less-Than

tru
e

true

fa
ls

e

∞

0

−∞

c1 ≤ c2
a≤[c2 − c1]

(c) Less-or-Equal
Figure 3.24: Replacing comparison by access to a Boolean array.

3.4 Comparison of Error Codes 77

3.4.2 Efficiency

RequirementR2 dictates that our error detection solution should be efficient. Regarding efficiency,
we first discuss the memory consumption, and then conduct microbenchmarks for several classes
of operations.

Memory Consumption

Hamming codes have a static structure and the number of redundant bits only depends on the data
bit width. By that, their memory overhead only depends on the data bit width. They are defined
as having 2m − 1 code bits, containing m redundancy bits, where m ≥ 2. Extended Hamming
codes add the overall parity bit, which results in 2m code bits andm+1 check bits. For shortened
Extended Hamming codes, the code length lies between two powers of 2, i.e. 2m−1 < |CHExt | ≤ 2m

for m+ 1 redundant bits and we can derive m by

m = ⌈log2 |CHExt |⌉.

Consequently, the overhead is
m

|D|
.

For XOR checksums, the memory consumption overhead depends on the checksum width and the
block width. When we can assume that the block size is always a multiple of the checksum width,
then the overhead is

1

#D
,

which is independent of the actual data width.

For AN codes, the memory overhead depends on both the data bit width and the bit width of
parameterA. Following, we assume the goldenAs from Tables A.1 to A.4. The memory overhead
is

|A|
|D|

.

Figure 3.25 shows the memory overheads for all codes in a single graph. There are multiple curves
for AN coding with the golden As for different minimal bit flip weights (η). The x axis represents
|D| for Hamming and AN, while it represents #D for XOR. We can see that AN with η = 2 has
almost always the same overhead up to data bit width of 32 bits like Hamming, which also has
η = 2. The little bumps in the Hamming curve indicate where an additional redundant bit is added
and AN codes seem to have such a bump exactly 2 data bit widths earlier. The curves indicate
logarithmic decrease of the memory overhead for all codes, where XOR has by far the least memory
overhead which is up to an order of magnitude less than Hamming and AN with η = 2.

Microbenchmarks Description

For measuring the efficiency of the coding operations, in the following we conduct microbench-
marks10 where we compare the three codes against each other. We test the following operations:

10The source code of the benchmarks is publicly available under https://github.com/brics-db/coding_
benchmark/. See also https://brics-db.github.io/coding_benchmark/

78 Chapter 3 Analysis of Coding Techniques

https://github.com/brics-db/coding_benchmark/
https://github.com/brics-db/coding_benchmark/
https://brics-db.github.io/coding_benchmark/

0.01

0.1

1

10

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61

Re
la

tiv
e

M
em

or
y

O
ve

rh
ea

d

|D| (Hamming, AN) / #D (XOR)

Hamming

XOR

AN (η = 2)

AN (η = 3)

AN (η = 4)

AN (η = 5)

AN (η = 6)

Figure 3.25: Memory overhead for (shortened) Extended Hamming and AN codes.

1. Hardening, 2. Error Detection, 3. Decoding, 4. Arithmetic, and 5. Aggregation . For each code
and operations, we also measure runtimes for Scalar, SSE4.2, and AVX2 coding variants. As we
described above, checksums are typically used for larger blocks of data. On the one hand, in the
benchmarks we honor that fact and also test XOR checksum aspects for varying data block sizes.
This allows certain optimizations like loop unrolling and much less data to be written. On the
other hand, since Hamming and AN work on value granularity anyways, we will investigate loop
unrolling for these two. This may allow some degree of optimization to compensate the inherent
advantage of checksums (less data to be written in total). For Checksums, the block size indicates
over how many values (not bytes) a checksum is computed, which are 16 bits wide for the sequential
case, 128 bits for SSE4.2 and 256 bits for AVX2. So e.g. for SSE4.2 on 16-bit data, a block of size
64 contains 64 ·128 bits per vector/16 bits per value = 64 ·8 = 512 values. For AN and Hamming, the loop
unrolling is designed the same, respectively. By that, when increasing the block size for XOR, less
checksums are computed in total. For XOR, the unroll factor is the same as the block size. We rely
on C++ template-meta programming to let the compiler unroll the code, for all codes. The SIMD
algorithms (SSE and AVX) take into account that the number of values may not be aligned to the
block size or loop unroll factor. That means, the scalar loop is used for the remaining values which
do not fit into SIMD registers. We provide absolute runtimes for a total of one Billion 16-bit data
values (100 001 integers × 10 000 iterations) per measured variant. Evaluation system 1 supports
both SSE4.2 and AVX2, so that we can test them all, and we prohibit implicit vectorization with the
GCC compiler flag -fno-tree-vectorize. Finally, for AN coding we used a 16-bit A resulting
in 32-bit code words and we tested both signed and unsigned coding variants. We will see that
there are sometimes significant differences in the runtimes. We will only concentrate on the direct
comparison between the codes and only shortly elaborate in how far vectorization improves or
worsens the operations’ runtimes. For the sake of brevity, in the following comparisons, we will
typically assume for each code the best unroll factor with the lowest runtimes and thereby the
highest MIPS, if not otherwise noted. Several graphs are quite similar to each other, so here we

3.4 Comparison of Error Codes 79

Ru
nt

im
e

[s
]

0
1× 108
2× 108
3× 108
4× 108
5× 108
6× 108
7× 108

20 22 24 26 28 210

(a) Scalar

0
2× 107
4× 107
6× 107
8× 107
1× 108

1.2× 108
1.4× 108
1.6× 108

20 22 24 26 28 210

(c) SSE4.2

0

2× 107
4× 107
6× 107
8× 107
1× 108

1.2× 108

20 22 24 26 28 210

(e) AVX2

XOR ANdivmod
U ANdivmod

S Hamming

Figure 3.26: Hardening runtimes.
XOR Hamming AN Unsigned AN Signed

Scalar 8 2 256 256
SSE4.2 32 2 16 16
AVX2 64 4 16 16

Table 3.12: Unroll factors and block sizes with fastest hardening runtimes.

will only show a subset. The figures show runtimes, so that lower values are better and the y-axis
scales often differ between scalar, SSE, and AVX measurement. Furthermore, here we only show
results for the Skylake system and

Hardening

Hardening speed is important when e.g. (batch) loading (much) data into the database, or when new
values are generated, or when values are recoded (see Section 3.4.3 below). Figure 3.26 displays
results for hardening microbenchmarks. As the graphs suggest, software Hamming coding is
almost an order of magnitude slower than XOR (≈ 6 . . . 7×) and AN (≈ 6 . . . 30×). XOR, in turn,
is 4× slower than AN for scalar execution (even up to 11×), but both are virtually equally fast
for vectorized executions. Remember that the numbers represent the fastest runtimes per coding
variant. Especially for hardening, we see no difference between unsigned or signed AN coding.
XOR and Hamming benefit quite well from vectorizing, while AN runtimes worsen as it requires
to convert the data types to wider ones and therefore needs additional instructions. Table 3.12
presents the best unroll factors for hardening runtimes, where we can see that mostly smaller unroll
factors are sufficient to achieve very good results. Although scalar AN execution has its best
runtimes with very high unroll factors, a factor of 1 gets close enough. For XOR and Hamming
we can conclude that unroll factors between 2 and 16 achieve (close to) the best runtimes.

Error Detection

The next elementary operation is error detection, where all data is simply checked for bit flips,
shown in Figure 3.27. For scalar execution (a), Hamming is 20× as slow as XOR and 2× as slow
as AN. For vectorized execution, Hamming has runtimes which are 12.7 . . . 14.8× as high as for
XOR. Compared to AN, Hamming is slightly faster for SSE (1.2 . . . 1.3×), but twice as fast for
AVX. Comparing XOR and AN, the former is about an order of magnitude faster than the latter for
scalar, SSE, and AVX execution (8.5 . . . 32×). For AN coding, we see that the unsigned modulus
is executed slightly faster than the signed one, which will be seen in the later comparisons which
include error detection, too. Again, XOR and Hamming benefit much better from vectorization

80 Chapter 3 Analysis of Coding Techniques

than AN, since for them error detection is the same as hardening, while AN requires the much
costlier modulus. Table 3.13 presents the best unroll factors for the error detection runtimes, where
we can see that mostly smaller unroll factors are sufficient to achieve very good results. Although
the SSE variants of Hamming signed AN have best unroll factors of 1024, we can conclude that
factors between 2 and 16 achieve (close to) best runtimes all code variants.

Ru
nt

im
e

[s
]

0

1× 108
2× 108
3× 108
4× 108
5× 108
6× 108

20 22 24 26 28 210

(a) Scalar

0

5× 107
1× 108

1.5× 108
2× 108

2.5× 108
3× 108

20 22 24 26 28 210

(b) SSE4.2

0
5× 107
1× 108

1.5× 108
2× 108

2.5× 108
3× 108

3.5× 108

20 22 24 26 28 210

(c) AVX2

XOR ANdivmod
U ANdivmod

S Hamming

Figure 3.27: Error detection runtimes.
XOR Hamming AN Unsigned AN Signed

Scalar 16 2 8 16
SSE4.2 4 1024 4 1024
AVX2 4 2 4 4

Table 3.13: Unroll factors and block sizes with fastest error detection runtimes.

Decoding

Decoding may be required when the database has to work on unencoded data, or when shipping
unencoded data to clients. Although decoding does not necessarily include the checking step, this
would normally be the case – to be sure that we decode only valid data. We measure decoding
with and without error detection to show the additional impact. Pure decoding for Hamming and
Checksums is to copy the data without the code bits, which is trivial since both are systematic

Ru
nt

im
e

[s
]

0
5× 107
1× 108

1.5× 108
2× 108

2.5× 108
3× 108

3.5× 108

20 22 24 26 28 210

(a) Scalar

0

2× 107
4× 107
6× 107
8× 107
1× 108

1.2× 108

20 22 24 26 28 210

(b) SSE4.2

0
2× 107
4× 107
6× 107
8× 107
1× 108

1.2× 108
1.4× 108
1.6× 108
1.8× 108

20 22 24 26 28 210

(c) AVX2

XOR ANdivmod
U ANdivmod

S Hamming

Figure 3.28: Pure decoding runtimes.

XOR Hamming AN Unsigned AN Signed

Scalar 16 1 8 8
SSE4.2 256 4 1 1
AVX2 256 256 1024 1024

Table 3.14: Unroll factors and block sizes with fastest decoding runtimes.

3.4 Comparison of Error Codes 81

Ru
nt

im
e

[s
]

0

1× 108
2× 108
3× 108
4× 108
5× 108
6× 108

20 22 24 26 28 210

(a) Scalar

0
5× 107
1× 108

1.5× 108
2× 108

2.5× 108
3× 108

3.5× 108
4× 108

20 22 24 26 28 210

(b) SSE4.2

0
5× 107
1× 108

1.5× 108
2× 108

2.5× 108
3× 108

3.5× 108
4× 108

4.5× 108

20 22 24 26 28 210

(c) AVX2

XOR ANdivmod
U ANdivmod

S Hamming

Figure 3.29: Decoding runtimes including error detection.

XOR Hamming AN Unsigned AN Signed

Scalar 8 1 16 16
SSE4.2 32 2 64 1
AVX2 64 256 1 256

Table 3.15: Unroll factors and block sizes with fastest decode-and-detect runtimes.

codes. In contrast, for AN coding we have to compute the unencoded value, i.e. divide. Figure 3.28
shows runtimes without detection. Here, AN is much worse than the other two coding schemes
and we see that the scalar runtime is similar to that of the scalar error detection runtime. This
means, that the CPU can execute the modulus about as fast as the division. For vectorized AN,
we convert the integers to the next larger floating point numbers, as described in Section 3.3.4.
For these there exist division operations and this is why for decoding, AN can benefit from the
vectorization. However, AN is about an order of magnitude slower than XOR or Hamming, with
runtimes being between 6 . . . 28× as high as for the other two codes. For Hamming and XOR, only
the redundant code bits need to be “ignored” and the data bits can just be copied, which is why
both seem about equally fast. XOR becomes faster than Hamming for larger block sizes, because
there are less and less checksums which need to be skipped. Since decoding is a mere copying for
XOR and Hamming, these differ only slightly, with XOR only about 34% faster than Hamming on
average (for the fastest block sizes and unroll factors). In contrast to the previous operations, XOR
and Hamming decoding (without detection) do not benefit from vectorization since they simply
write out data, while AN slightly improves. Table 3.14 presents the best unroll factors for the
decoding runtimes which are mostly in the lower range between 1 and 16. While some very high
unroll factors achieve best runtimes for XOR (SSE and AVX) and AN (only AVX2), there again
low unroll factors also achieve very good runtimes.

Figure 3.29 shows that, when enabling error detection before decoding, the detection primitives
dominate the runtimes and the picture is quite similar to the pure detection runtimes from Fig-
ure 3.27, with Hamming overtaking AN coding when using vectorized execution. The graphs also
show the difference in unsigned and signed runtimes for AN coding, which come to light even more
so for vectorized execution. Since the runtimes are dominated by the detection part, Hamming and
XOR again improve by vectorization in contrast to AN. Table 3.15 presents the best unroll factors
for decode-and-detect runtimes, where the same picture as before is repeated: there are a few high
unroll factors, but the majority is between 1 and 16. As the flat curves in Figures 3.28b and 3.28c
indicate, low unroll factors achieve very good results there, too.

82 Chapter 3 Analysis of Coding Techniques

Ru
nt

im
e

[s
]

0

1× 108
2× 108
3× 108
4× 108
5× 108
6× 108

20 22 24 26 28 210

(a) Scalar

0
2× 107
4× 107
6× 107
8× 107
1× 108

1.2× 108
1.4× 108
1.6× 108

20 22 24 26 28 210

(b) SSE4.2

0
2× 107
4× 107
6× 107
8× 107
1× 108

1.2× 108
1.4× 108

20 22 24 26 28 210

(c) AVX2

XOR ANdivmod
U ANdivmod

S Hamming

Figure 3.30: Pure addition runtimes.

XOR Hamming AN Unsigned AN Signed

Scalar 8 2 16 8
SSE4.2 16 1024 16 16
AVX2 32 512 512 16

Table 3.16: Unroll factors and block sizes with fastest addition runtimes.

Arithmetic

We now consider arithmetic operations addition, subtraction, multiplication, and division, and
show the runtime graphs for addition and division. These read the input values and write the result
back into a result array. The graphs are similar for the first three, whereas division shows quite
different behavior. The data is generated in a way such that no over- and underflows happen by not
setting some of the most significant bits (MSBs) and LSBs. We first show the runtimes without
error detection in Figures 3.30 and 3.31 and then with error detection in Figures 3.32 and 3.33.

Without error detection, AN coding can take full advantage of its arithmetic code properties: for
addition, subtraction, and multiplication, it is more than 26×, 6× and 5× as fast as Hamming
for scalar, SSE, and AVX execution, respectively. This is, because the Hamming codes must be
recomputed for every value. Since division is much more costly, AN is then only about 6×, 3×,
and 2× as fast as Hamming, respectively. Compared to XOR, AN is only faster for scalar execution,
being slightly more than 3× as fast as XOR. However, when using vectorization, XOR can get as
fast as AN for SSE and even slightly faster (1.2×) for AVX execution. For division, XOR is also
1.3× as fast as AN for SSE execution. XOR is 8× as fast as Hamming for scalar execution and 6×
as fast for vectorized execution, while for division XOR is 2×, 4×, and 3× as fast for scalar, SSE,
and AVX, respectively. For addition, subtraction and multiplication, XOR and Hamming again
improve by a factor of ≈ 3 . . . 5 when exploiting vector capabilities, whereas AN does not benefit
for these three operations. For division, however, all codes benefit by factors of 5.2 and 7.5 for
Hamming, 12.3 and 11.7 for XOR, and 2.6 and 2.8 for AN for SSE and AVX, respectively. For
XOR, the AVX2 execution slightly degrades the runtime improvement over scalar, compared to
SSE. Table 3.16 again shows the best unroll factors, with most of them being in the lower end. One
exception is Hamming with AVX2, which has quite a big drop in runtime for high unroll factors,
but this is still so much slower than XOR and AN so that its effect is diminishing.

The runtimes for the combination of arithmetic operations and error detection are shown in
Figure 3.32 for addition, subtraction, and multiplication, which are again quite similar to each
other, while division also exhibits quite different behavior as before, which is shown in Figure 3.33.
XOR is about an order of magnitude faster than Hamming, with its best runtimes being 8.2×,

3.4 Comparison of Error Codes 83

Ru
nt

im
e

[s
]

0
2× 108
4× 108
6× 108
8× 108
1× 109

1.2× 109
1.4× 109
1.6× 109

20 22 24 26 28 210

(a) Scalar

0
5× 107
1× 108

1.5× 108
2× 108

2.5× 108
3× 108

3.5× 108
4× 108

20 22 24 26 28 210

(b) SSE4.2

0

5× 107

1× 108

1.5× 108

2× 108

2.5× 108

20 22 24 26 28 210

(c) AVX2

XOR ANdivmod
U ANdivmod

S Hamming

Figure 3.31: Pure division runtimes.

XOR Hamming AN Unsigned AN Signed

Scalar 16 4 8 8
SSE4.2 1024 16 1 1024
AVX2 256 1024 4 4

Table 3.17: Unroll factors and block sizes with fastest division runtimes.

≈ 12×, and ≈ 14× lower for scalar, SSE, and AVX, respectively. XOR is slower than AN
coding for the scalar case, with best runtimes being ≈ 2× as high as for AN. However, the
better vectorization potentials for XOR become clear again and it is ≈ 9× and ≈ 16× faster than
unsigned and ≈ 10× and ≈ 18× faster than signed AN coding for SSE and AVX, respectively.
Compared to AN coding, Hamming has ≈ 4× and ≈ 1.4 higher runtimes than AN for scalar and
SSE, but for AVX2 Hamming even becomes slightly faster with runtimes being≈ 1.3× lower than
those of AN, with the unsigned AN variant being slightly faster then the signed one. Regarding
the vectorization, Hamming improves by 3× and 4.4×, XOR by 4.2× and 7.4× for SSE and
AVX2, respectively, while for AN the runtimes slightly worsen. As for the runtimes without error
detection, all codes benefit much more from vectorization for division, especially where Hamming
and XOR additionally benefit for the detection part. XOR improves by 4.4× and 6.6×, XOR by
13× and 12.6×, and AN by 1.6× and 1.5× for SSE and AVX2, respectively. Again we see that
SSE provides even slightly better improvements than AVX2 does. Table 3.17 shows the same
trend as before with low unroll factors between 1 and 16 making up the majority and Figures 3.31a
to 3.31c indicate that for the cases with very high best unroll factors, low ones also perform very
well. Hamming again exhibits the exception with AVX2, with quite a big drop in runtime for high
unroll factors, but in this case Hamming becomes faster or as fast as than AN, for addition and
division respectively.

Aggregation

Aggregation is a frequent database operation, too, with the main difference that typically many
more values are read than are written back as result, contrary to the previous arithmetic operations.
We measured computing the sum, average, minimum, and maximum over all values, so that only
a single result value is written to the result array. However, since the sum can become quite large
for so many values, the next larger native integer width is used, i.e. 32 bits for 16-bit data. The
data is generated in a way such that this data width suffices to store the complete sum over all
values by not setting some of the MSBs. All aggregation operation behave quite similar, so that
in Figure 3.34 we only show the results for pure summation and in Figure 3.35 the runtimes for
summation including error detection.

84 Chapter 3 Analysis of Coding Techniques

Ru
nt

im
e

[s
]

0

2× 108
4× 108
6× 108
8× 108
1× 109

1.2× 109

20 22 24 26 28 210

(a) Scalar

0
5× 107
1× 108

1.5× 108
2× 108

2.5× 108
3× 108

3.5× 108
4× 108

20 22 24 26 28 210

(b) SSE4.2

0
5× 107
1× 108

1.5× 108
2× 108

2.5× 108
3× 108

3.5× 108

20 22 24 26 28 210

(c) AVX2

XOR ANdivmod
U ANdivmod

S Hamming

Figure 3.32: Addition runtimes including error detection.

XOR Hamming AN Unsigned AN Signed

Scalar 8 1024 4 16
SSE4.2 16 8 8 8
AVX2 64 1024 1 8

Table 3.18: Unroll factors and block sizes with fastest add-and-detect runtimes.

Ru
nt

im
e

[s
]

0

5× 108

1× 109

1.5× 109

2× 109

2.5× 109

20 22 24 26 28 210

(a) Scalar

0

1× 108
2× 108
3× 108
4× 108
5× 108
6× 108

20 22 24 26 28 210

(b) SSE4.2

0
5× 107
1× 108

1.5× 108
2× 108

2.5× 108
3× 108

3.5× 108
4× 108

4.5× 108

20 22 24 26 28 210

(c) AVX2

XOR ANdivmod
U ANdivmod

S Hamming

Figure 3.33: Division runtimes including error detection.

XOR Hamming AN Unsigned AN Signed

Scalar 16 128 8 8
SSE4.2 1024 512 2 2
AVX2 256 1024 4 2

Table 3.19: Unroll factors and block sizes with fastest divide-and-detect runtimes.

Without error detection, the scalar runtimes show some weird behavior for which we did not further
investigate the cause, as the vectorized variants show much smoother behavior. XOR is slightly
faster than Hamming for scalar execution by a factor of 1.5×, while with SSE both are equally
fast and AVX2 brings a slight advantage for XOR again by a factor of 1.2×. Figure 3.34a shows
however that this is achieved by XOR only for large block sizes and XOR is otherwise in the same
range as Hamming. AN is about as fast as Hamming for scalar code with the fastest runtimes
differing by a factor of ≈ 1.2×. As Table 3.20 shows, the best unroll factors are again more in
the low end. Interestingly however, all codes get slower in the SSE case, due to the additional
conversion to the larger data types and because then only half as many values can be summed up
per vector instruction. With AVX2 this effect is reduced and the runtimes are improved over the
scalar case on average by a factor of ≈ 2×.

Including error detection primitives in the aggregation operation again vaults the runtimes to the

3.4 Comparison of Error Codes 85

ranges from pure error detection. For scalar execution, Hamming is 70× slower than XOR for sum
and average, and even 100× slower for computing minimum or maximum. For SSE and AVX the
differences are still high with 15 . . . 17× for sum and average and 22 . . . 24× for minimum and
maximum determination. Compared to AN, XOR is 30× and 20× faster for sum and average,
and almost 50× and 30× faster for the latter two operations. AN is faster than Hamming only for
the scalar case with a factor of ≈ 2×, but Hamming gets faster by 1.2 . . . 1.4× and 2.0 . . . 2.3×
compared to unsigned and signed AN coding and SSE and AVX2, respectively.

Results for 32-bit data on System 1

We now summarize the results on system 1 for 32-bit data. We will first consider the effects of
vectorizing the code, i.e. how much this can improve runtimes compared to scalar execution, and
then compare the codings against each other using the actual runtimes. We will mostly relate all
numbers and ratios to the findings from 16-bit base data.

For the basic coding operations hardening, error detection, decoding, and decode-and-check, the
improvements through vectorization are much smaller for all codes and AN coding often even
performs much worse with vectorization on 32-bit base data, compared to scalar execution. For
the arithmetic operations the picture is quite the same: increasing the base data width to 32 bits
makes the ratio between scalar and vectorized code worse than the ratio for 16-bit base data. While
XOR and Hamming can still benefit from vectorization in these cases, AN coding does not benefit
and for multiplication and division, the vectorized execution is even slower than the scalar one.
When also doing error detection before the arithmetic operations, XOR and Hamming again have
smaller improvements than for the 16-bit case, but SSE and AVX execution are still faster than
scalar execution. For AN coding, however, the runtimes stay about the same and where for 16-bit
base data only division could improve over scalar execution, with 32-bit base data this is not the
case anymore. In contrast, for the aggregation operations the vectorization improvements are larger
than for the 16-bit case for all codes. When error detection is also performed, vectorization again
brings less gains than for the 16-bit base data case. Here, while XOR becomes slightly faster
using SSE and AVX2, Hamming gets even slower and for AN vectorization has little to no effects.

Ru
nt

im
e

[s
]

0
1× 107
2× 107
3× 107
4× 107
5× 107
6× 107
7× 107

20 22 24 26 28 210

(a) Scalar

0
5× 106
1× 107

1.5× 107
2× 107

2.5× 107
3× 107

3.5× 107

20 22 24 26 28 210

(c) SSE4.2

0
2× 106
4× 106
6× 106
8× 106
1× 107

1.2× 107
1.4× 107
1.6× 107
1.8× 107

20 22 24 26 28 210

(e) AVX2

XOR ANdivmod
U ANdivmod

S Hamming

Figure 3.34: Runtimes for computing the sum of all values.

XOR Hamming AN Unsigned AN Signed

Scalar 1024 128 1 16
SSE4.2 8 8 8 8
AVX2 16 8 8 8

Table 3.20: Unroll factors and block sizes with fastest summation runtimes.

86 Chapter 3 Analysis of Coding Techniques

Ru
nt

im
e

[s
]

0
1× 108
2× 108
3× 108
4× 108
5× 108
6× 108
7× 108

20 22 24 26 28 210

(a) Scalar

0
5× 107
1× 108

1.5× 108
2× 108

2.5× 108
3× 108

3.5× 108

20 22 24 26 28 210

(c) SSE4.2

0
5× 107
1× 108

1.5× 108
2× 108

2.5× 108
3× 108

3.5× 108

20 22 24 26 28 210

(e) AVX2

XOR ANdivmod
U ANdivmod

S Hamming

Figure 3.35: Runtimes for computing the sum of all values, including error detection.

XOR Hamming AN Unsigned AN Signed

Scalar 1024 1 8 16
SSE4.2 16 512 4 4
AVX2 8 1024 4 1024

Table 3.21: Unroll factors and block sizes with fastest sum-and-detect runtimes.

In total, the vectorization improvements are much smaller when increasing the base data width
from 16 to 32 bits, and vectorization is mostly only useful for XOR and Hamming. Especially for
aggregation, only AVX could really improve the runtimes over scalar execution.

Now, we consider the actual runtimes and compare the codes against each other. The first obser-
vation is that the runtimes are (sometimes substantially) higher than for 16-bit data. XOR and
Hamming have virtually the same ratios as for 16-bit base data, but since XOR can benefit slightly
better from vectorization than Hamming, the SSE and AVX runtimes differ even more in favor of
XOR for 32-bit base data. This holds for all measured operations. Otherwise, AN coding becomes
slower relative to Hamming coding compared to the 16-bit data case. It is still faster for hardening,
whereas only 15×, 3.6×, and 2.9× for scalar, SSE, and AVX, respectively, while these factors
were about 30×, 7.2×, and 6× for 16-bit data. The trend continues for the other operations, as
well, so that AN coding is now typically slower than Hamming for all three execution variants.
For arithmetic operations, AN is still faster than Hamming, but with typically smaller ratios. For
error detection and detect-and-decode, AN is even slightly slower than Hamming, and now for the
aggregation operations sum and average AN is even faster than Hamming, but for minimum and
maximum determination AN is now slower than Hamming. Finally, while AN was faster than
Hamming for aggregation and error detection for 16-bit data, it is now the other way around for all
four operations on 32-bit data.

3.4.3 Runtime Adaptability

Requirement R3 dictates that our error detection solution should be adaptable to changing error
models at run-time. Hamming codes can hardly be adapted to changing error models due to its
static structure. Data values would have to be split up into multiple smaller blocks, so that each
data value is represented by a series of code words. This, however, requires multiple detection
and decoding steps to access the whole value. XOR can be tailored to changing error models by
decreasing the block width, or by increasing the checksum width. For the former, more checksums
are inserted in between the data elements and for the latter, wider checksums must be recomputed
using a coarser granularity. For AN codes we simply have to recode data with another golden

3.4 Comparison of Error Codes 87

A. We are only considering this aspect on the coding level and it is implementation-specific how
recoding must be realized in a concrete system.

3.5 PERFORMANCE OPTIMIZATIONS FOR AN CODING

RequirementR2 (efficiency) demands that the approach introduces as little overhead as necessary.
In the previous section, we showed that the memory overhead can be adjusted according to the data
width and the required error detection capabilities to satisfy the memory aspect of RequirementR2.
Unfortunately, error detection and softening are based on division and modulo computations, which
are expensive even on modern server-grade processors (cf. Figure 3.28 and [50]). For instance, on
an Intel® Skylake processor as in our measurement system 1, Fog measured that a scalar division
can take between 23 and 95 core clock cycles, while e.g. a scalar multiplication can take between
3 to 4 core clock cycles [50, p. 233]. The modulus operation is even more costly than the division,
as it may lead to multiple division steps. We now show how to circumvent the costly division
and modulus calculations and to the best of our knowledge we are the first to propose this for
AN coding. Despite the fact that AN coding already received quite some attention, the following
mathematical solution to faster AN coding has not been published so far [32, 41, 49, 51, 55, 69,
154, 155, 161].

3.5.1 The Modular Multiplicative Inverse

Today’s Processors’ ALUs work on the two’s complement representation of integers. By that, they
implicitly do computations in a residue class ring (RCR) modulo the power of two to the native
register width, i.e. ≡ 2n (n ∈ N) with typically n ∈ {3, 4, 5, 6} which corresponds to 8, 16, 32,
and 64 bits – today’s CPUs’ native register widths. In such an RCR, the division by any odd A can
be replaced by multiplication with the modular multiplicative inverse A−1:

A ·A−1 ≡ 1 (mod M) , M ∈ {28, 216, . . .} (3.61)

In the following, we will refer to the modular multiplicative inverse only as inverse for short. Only
odd numbers are coprime to any 2n (n ∈ N), so only for these there exists an inverse. Consequently,
we restrict ourselves in the following to use only odd As. The determination of the inverse can
not be done automatically by the compiler since the actual A and DΘ and thus CA

DΘ
will only be

known at run-time, as will be discussed later. Additionally, the code width may differ from the
native register widths.

3.5.2 Faster Softening

The inverse allows to simplify the softening, which becomes:

c/A ≡ c ·A−1 ≡ (d ·A) ·A−1 ≡ d (mod 2
|CA

DΘ
|
). (3.62)

The inverse can be computed with the Extended Euclidean algorithm (see e.g. [183, chapter10]) for
the RCR modulo 2|C

A
DΘ
|. When working with code word widths different from the processor’s native

88 Chapter 3 Analysis of Coding Techniques

register widths, the result must be masked, i.e. AND-ed with a bit mask having the appropriate
|CA

DΘ
| LSBs set to one. This is because there may be ones in the remaining MSBs from the

multiplication. However, we can also compute the inverse for register widths so that we need not
do any additional AND-ing operations. By that, we temporarily increase the code width, but not
the original data width. Using the inverse has two very important advantages:

1. Using the inverse relieves Equation (3.18) from the division.

2. The inverse enables more efficient recoding from one code word c1 = d · A1 into another
c2 = d ·A2, by multiplying with the factor A∗ = A−11 ·A2:

c1 ·A∗ = (d ·A1) · (A−11 ·A2) = d ·A2 = c2 (3.63)

The product (A−11 ·A2) is a constant factor and needs to be calculated only once, especially
when recoding multiple values, which we will use later.

The following example illustrates a code’s properties:

Example 2. For our example code from Example 1, whereA = 233, and |DΘ| = 8, it follows that

width of A |A| = 8

code width |CA
DΘ
| = 16

inverse A−1
= 55, 129 (unsigned)
= −10, 407 (signed)

3.5.3 Faster Error Detection

Using the multiplicative inverse allows to get rid of the modulo operator for error detection, too.
For that, as in [69], we must know the largest and smallest encodable data word:

dmax = max(DΘ), (3.64)
dmin = min(DΘ), (3.65)

where the latter is required for signed integers, only. The following table summarizes the typical
values for signed and unsigned integers:

dmin dmax

unsigned — 2|DΘ| − 1

signed −2|DΘ|−1 2|DΘ|−1 − 1

Computations on code words must be done in the code word domain and thus on register widths
≥ |CA

DΘ
|. Consequently, it follows that:

|c ·A−1| = |c| = |d∗| > |d| = |c| − |A| , d∗ = d. (3.66)

3.5 Performance Optimizations for AN Coding 89

I.e., when softening, the resulting data word d∗ is computed in the larger RCR (modulo 2
|CA

DΘ
|)

than the original data d requires (modulo 2|DΘ|). This becomes very useful, because we discovered
the anomaly that in this case it holds that:

d∗ > dmax → d∗ = (d⊕ ε) (3.67)
d∗ < dmin → d∗ = (d⊕ ε) (3.68)

where ε is an arbitrary, detectable bit flip of any weight and d∗ was softened from a corrupted code
word. This goes further than in [69], because we found that the anomaly occurs for any detectable
error. For signed integers, the binary representation contains ones in the |A| MSBs where there
should be zeros after the multiplication with the inverse. Likewise, the same holds for negative
integers, but now there are zeros in the |A|MSBs, where there should only be ones. For unsigned
integers, the first test suffices, while for signed integers both tests must be conducted. Consider the
following example for signed integers (sint):

Example 3. For our running example code from Examples 1 and 2 we setΘ =signed integer (sint),
so that |Dsint| = |A| = 8 ⇒ |CA

Dsint | = 16, A = 233, and A−1 = 55 129 (unsigned) = −10 407
(signed), and an example data word d = 5, multiplying with the inverse has the following effects:

1) 5 ·A = 1165 =

overflow
. . . 0000

|A|
0000 0100

|Dsint|
1000 11012

2) 1165 ·A−1 = . . . 0100 0000 0000 0000 01012
3) +1: 1166 ·A−1 = . . . 0100 1101 0111 0101 11102
4) −1: 1164 ·A−1 = . . . 0011 0010 1000 1010 11002

The first line shows the hardening, with the result in binary representation. The overflow column
contains bits that may convolve out of the code width and must be masked when the used ALU
registers are larger than |A|+ |DΘ. The second line is the softening of the valid code word, with
no zeros in the |A| MSBs. Lines 3 and 4 show softening of altered code words, where 1165 + 1
and 1165− 1 represent a double and single bit flip in the LSBs, respectively. For the signed case,
line 3 triggers the test from Equation (3.68) and line 4 the one from Equation (3.67). Here, the
anomaly is visible in the |A| MSBs.

It is in principle possible to compute in RCRs other than modulus powers of 2. However, there may
be rings where there exist no inverses for golden As [183, chapter10] and the effects we use for
faster softening may not be applicable in other RCRs. Consequently, we assume only computing
in RCRs modulo powers of 2, e.g. 8, 16, 32, or 64.

3.5.4 Comparison to Original AN Coding

Due to our coding improvements all AN coding operations can be naively vectorized, like for the
other codes. Now, only multiplication and comparison operations are needed and supported by all
considered SIMD ISAs. For shorter codes, especially ≤ 8-bit code words, not all instruction sets
provide the integer mullo multiplication, where only the lower half of the actual result is stored.
For these cases, special handling is required. For instance, up to SSE4.2 and AVX2 only 16-and
32-bit mullo is supported and AVX-512 adds 64-bit mullo [74]. Anyways, since AN coding is
non-systematic, the code words are a single unit and we need not care about location of the code

90 Chapter 3 Analysis of Coding Techniques

Detection Result 1 Detection Result 2 Operation Result

Comparison Comparison

Lower Boundary Decoded Word Upper Boundary

Multiplication Operation

Inverse Code Word Hardened Operand

Unsigned IntegersSigned Integers

Figure 3.36: Parallelism in AN coding operations using the multiplicative inverse.

bits. By that, we need less complex algorithms than for Hamming. Since data processing and
modification can be applied directly to the code words, no special handling of code bits is required.
Additionally, softening (multiplication with the inverse) and data processing or modification can
be applied in parallel by multiple vector units. Figure 3.36 visualizes the concept, where rectangles
represent values and ellipses denote operations. The multiplication of code word and inverse
leads to an intermediate (decoded word), which is then compared according to Equations (3.67)
and (3.68) against the data type’s lower and upper bounds. Meanwhile, the actual operation
can be performed on the original code word and the hardened operand while there are no data
dependencies. When dealing with signed integers, we need two comparisons and have up to three
parallel data flows which can be efficiently dealt with by out-of-order CPUs, while signed integers
require only one comparison and have up to two parallel data flows.

To confirm the improvements for coding and processing throughput, we conduct the same mi-
crobenchmarks as in Section 3.4.2. Since the improvements only have an impact on error detection
and decoding, we will only conduct those benchmarks again which include the error detection
primitives. The operations without error detection have virtually the same runtimes as before.
In the following, we again only compare the fastest runtimes and we show only a subset of the
available graphs. As can be seen from Figures 3.37 to 3.41, AN coding now is on a par with
XOR, except for a very few cases. For instance, for decoding, vectorization degrades the runtimes
compared to scalar code (Figures 3.38b and 3.40c), and for some cases AN is even faster than
XOR, e.g. for scalar detect-and-decode (Figure 3.39a) or scalar detect-and-add (Figure 3.40a). We
will now compare the runtimes of only the original and the improved AN coding. The reader can
see the difference in the graphs below, with the original AN coding shown as dotted lines and the
improved one with solid, decorated lines. Pure error detection (Figure 3.37) improves by factors
of 6.1×, 10×, and 18.8× for the unsigned case, and by factors of 6.1×, 6.5×, and 13.1× for the
signed case. Pure decoding (Figure 3.38) looks quite different, where the unsigned and signed
variants improve for scalar execution by factors of 15.6× and 18.1×, respectively, and for SSE by
2.6× and for AVX2 by 4.6×. While pure decoding does not improve as much as detection for the
vectorized cases, when performing error detection prior to decoding, the picture is again more like
for pure error detection (Figure 3.39). Then, for the unsigned case, the improved AN coding is
faster than the original by factors of 5.2× (scalar), 7.9× (SSE), and 12.1× (AVX), while the signed
variant improves by factors of 5× (scalar), 6.4× (SSE), and 10.9× (AVX). This shows that the
costly modulo operation for error detection had by far the greater impact on performance than the
division for softening. For the simpler arithmetic operations addition and subtraction (Figure 3.40),
the improvement factors are for unsigned 4.1× (scalar), 9.1× (SSE), and 12.9× (AVX), while for
the signed case they are 4× (scalar), 6.4× (SSE), and 12.8× (AVX). For multiplication the factors

3.5 Performance Optimizations for AN Coding 91

are slightly different with 3.6× (scalar), 7.7× (SSE), and 12.5× for unsigned integers and 3.7×
(scalar), 5.8× (SSE), and 11.4× (AVX) for signed integers. As division is costly anyways, the
same factors are much lower with 1.8×, 3×, and 3.8× for unsigned, and 1.8×, 2.9×, and 3.9× for
signed integers. For the aggregation operations (Figure 3.41) those factors are for unsigned and
signed integers 3.8 . . . 5× (scalar), 6 . . . 8.9× (SSE), and 11.7 . . . 18.4× (AVX), where the variants
for signed integers are the slower ones due to the second comparison which is required here.

The above shows that softening and error detection become much faster with the improved AN
coding. By that, AN coding is now fast enough to be considered for employing in main memory-
centric DMSs. As a consequence, recoding of hardened data now seems viable, too. It is only
a multiplication with a constant factor, as was shown in Equation (3.63), which in turn is as fast
as hardening. Given this fact, we need to adjust our Definitions 5 and 6 of data hardening and
softening to accommodate this ability.

Definition 11 (Data Hardening, Revised). We denote the process of increasing the bit flip detec-
tion capability by either encoding unencoded data or by using some error code-specific means as
data hardening. For AN coding, this means using a larger A with better detection guarantees, or
for XOR, we would use a larger checksum width. The term “encoding” will henceforth only be
used if and only if an unencoded value is hardened.

Definition 12 (Data Softening, Revised). We denote the process of reducing the bit flip detection
capability as data softening. For AN coding, this translates into using a smaller A with worse
detection guarantees. For XOR, this would mean using a smaller checksum width. The term
“decoding” will henceforth only be used if and only if a hardened value is returned to its unencoded
form.

3.5.5 The Multiplicative Inverse Anomaly

We want to provide a more formal explanation of the modular multiplicative inverse anomaly.
Therefore, we will now first provide an illustrative explanation of why multiplying invalid AN
code words with the multiplicative inverse will lead to bits being set or not set in the |A|MSBs of
the code word, where it should be the other way around. Afterwards, we provide two inequalities
that must hold for bit flips to be detectable. We cannot give a complete formal proof since the
convolution of multiplication is a hard problem, which is due to the unpredictability of carries11.

We first have to recapitulate that decoding is done in the code word domain, so that

c ·A−1 = d∗ , |c| = |A−1| = |d∗| < |d|

and we can write a data word d as the sum of its bits di:

d =

x∑
i=1

(di · 2i−1) , x = |d|, di ∈ {0, 1}.

In coding theory, this means we are computing in the Galois Field GF (2) where words are
composed of only ones and zeros. The same holds of course for any code word c and its bits ci,

11This is in contrast to, e.g., the binary XOR operation which is binary addition without carries

92 Chapter 3 Analysis of Coding Techniques

XOR ANdivmod
U ANdivmod

S ANinv
U ANinv

S Hamming

Ru
nt

im
e

[s
]

0

1× 108
2× 108
3× 108
4× 108
5× 108
6× 108

20 22 24 26 28 210

(a) Scalar

0

5× 107
1× 108

1.5× 108
2× 108

2.5× 108
3× 108

20 22 24 26 28 210

(b) SSE4.2

0
5× 107
1× 108

1.5× 108
2× 108

2.5× 108
3× 108

3.5× 108

20 22 24 26 28 210

(c) AVX2
Figure 3.37: Error detection runtimes for original and improved AN (Skylake).

Ru
nt

im
e

[s
]

0
5× 107
1× 108

1.5× 108
2× 108

2.5× 108
3× 108

3.5× 108

20 22 24 26 28 210

(a) Scalar

0

2× 107
4× 107
6× 107
8× 107
1× 108

1.2× 108

20 22 24 26 28 210

(b) SSE4.2

0
2× 107
4× 107
6× 107
8× 107
1× 108

1.2× 108
1.4× 108
1.6× 108
1.8× 108

20 22 24 26 28 210

(c) AVX2
Figure 3.38: Decoding runtimes of original and improved AN (Skylake).

Ru
nt

im
e

[s
]

0

1× 108
2× 108
3× 108
4× 108
5× 108
6× 108

20 22 24 26 28 210

(a) Scalar

0
5× 107
1× 108

1.5× 108
2× 108

2.5× 108
3× 108

3.5× 108
4× 108

20 22 24 26 28 210

(b) SSE4.2

0
5× 107
1× 108

1.5× 108
2× 108

2.5× 108
3× 108

3.5× 108
4× 108

4.5× 108

20 22 24 26 28 210

(c) AVX2
Figure 3.39: Detect-and-decode for original and improved AN (Skylake).

Ru
nt

im
e

[s
]

0

2× 108
4× 108
6× 108
8× 108
1× 109

1.2× 109

20 22 24 26 28 210

(a) Scalar

0
5× 107
1× 108

1.5× 108
2× 108

2.5× 108
3× 108

3.5× 108
4× 108

20 22 24 26 28 210

(b) SSE4.2

0
5× 107
1× 108

1.5× 108
2× 108

2.5× 108
3× 108

3.5× 108

20 22 24 26 28 210

(c) AVX2
Figure 3.40: Detect-and-add for original and improved AN (Skylake).

Ru
nt

im
e

[s
]

0
1× 108
2× 108
3× 108
4× 108
5× 108
6× 108
7× 108

20 22 24 26 28 210

(a) Scalar

0
5× 107
1× 108

1.5× 108
2× 108

2.5× 108
3× 108

3.5× 108

20 22 24 26 28 210

(b) SSE4.2

0
5× 107
1× 108

1.5× 108
2× 108

2.5× 108
3× 108

3.5× 108

20 22 24 26 28 210

(c) AVX2

Figure 3.41: Detect-and-sum of original and improved AN (Skylake).

XOR ANdivmod
U ANdivmod

S ANinv
U ANinv

S Hamming

3.5 Performance Optimizations for AN Coding 93

respectively. Using that notation we can express the decoding as:

d∗ = c ·A−1 =
x∑

i=1

x∑
k=1

(cka
−1
i · 2

i+k−2) , (ck, a
−1
i) ∈ {0, 1} (3.69)

= d ·A ·A−1 =
x∑

i=1

x∑
k=1

(dkaka
−1
i · 2

i+k−2) , (dk, ak, a
−1
i) ∈ {0, 1} (3.70)

The problem at hand is very hard due to the convolution, i.e. all the carries being unpredictable.
The following illustrates Equation (3.69) used for decoding of some AN code for which an inverse
actually exists and where the previous requirements hold that d ∈ DΘ, c ∈ CA

DΘ
, and x = |c| =

|A−1| = |d∗| > |d|:

c · A−1

= cx cx−1 . . . c1 · ax ax−1 . . . a1

= c1ax c1ax−1 . . . c1a1

⊕
...

⊕ cnax cnax−1 . . . cna1

⊕
...

⊕ cxax cxax−1 . . . cxa1

= d∗x d∗x−1 . . . d∗1
= d∗

Above, each code word element is multiplied with each element of the inverse and all products are
added together. For valid code words, in the resulting d∗ the |A| MSBs must either all be zero
(for unsigned or positive integers) or all be ones (for negative signed integers). Consequently, for
a valid decoded unsigned word it holds that

d∗ = 2x−1d∗x + 2x−2d∗x−1 + . . .+ 2|DΘ|d∗|DΘ|+1 + 2|DΘ|−1d∗|DΘ| + . . .+ 20d∗1 (3.71)

0 = d∗x = d∗x−1 = . . . = d∗|DΘ|+1 (3.72)

⇒ d∗ = 2|DΘ|−1d∗|DΘ| + . . .+ 20d∗1 (3.73)

For signed integers, this holds appropriately, whereas Equation (3.72) equals zero for positive and
equals one for negative signed integers, respectively.

Now, imagine a single bit flip that causes one of the code word elements to flip from one to zero,
e.g. at position n. Then, the multiplication will miss the addend, e.g. starting with cnax (indicated
as red line), transforming d∗ into a erroneous word d∗ε:

c · A−1

= cx cx−1 . . . c1 · ax ax−1 . . . a1

= c1ax c1ax−1 . . . c1a1

⊕
...

⊕
...

⊕ cxax cxax−1 . . . cxa1

= d∗x d∗x−1 . . . d∗1
= d∗ε

94 Chapter 3 Analysis of Coding Techniques

Since we only consider invalid code words, c ̸= 0 must hold, so there must be some ones which
are not propagated out of the non-data positions. From that it follows, that there must be some
leftover ones in the |A|MSBs which are not carried out. Conceptually, it is the same when a zero
flips to a one, where one of the lines which was formerly plain zero now has some value.

We will now develop inequalities which describe when bit flips are detectable. Therefore, we
model a bit flip not only as an XOR operation, but as the addition of some error number ε:

c = d ·A
d∗ = c ·A−1 = d ·A ·A−1 = d · 1 = d

cε = c+ ε = d ·A+ ε (3.74)
d∗ε = cε ·A−1 = (d ·A+ ε) ·A−1 = (d ·A ·A−1) + (ε ·A−1)

= d+ ε ·A−1 (3.75)

Since ε ̸= 0, it must hold that A−1 · ε ̸= 0, as well.

Example 4. Example for the anomaly, tailored to Equations (3.74) and (3.75) in decimal and
binary formats. For readability, the binary representation is separated into groups of 4 bits.

1)
5 (d) · 233 (A) = 1,165 (c) mod 216

0000 0000 0000 00012 0000 0000 1110 11012 0000 0100 1000 11012

2)
1,165 (c) ⊕ 15 = 1,154 (cε)

0000 0100 1000 11012 0000 0000 0000 11112 0000 0100 1000 00102

3)
1,165 (c) + 65,525 (ε) = 1,154 (cε) mod 216

0000 0100 1000 11012 1111 1111 1111 01012 0000 0100 1000 00102

4)
1,165 (c) · 55,129 (A−1) = 5 (d) mod 216

0000 0100 1000 11012 1101 0111 0101 10012 0000 0000 0000 01012

5)
1,154 (cε) · 55,129 (A−1) = 48,946 (d∗ε) mod 216

0000 0100 1000 00102 1101 0111 0101 10012 1011 1111 0011 00102

6)
65,525 (ε) · 55,129 (A−1) = 48,941 mod 216

0000 0100 1000 00102 1101 0111 0101 10012 1011 1111 0010 11012

Example 4 shows concrete examples for Equations (3.74) and (3.75). There, lines 2 and 3 are
equivalent regarding the 4-bit flip resulting in the erroneous code word cε. This shows that we can
model a bit flip, which is equivalent to an XOR operation, as an integer addition, too. Lines 4–6
show that cε · A−1 = d + ε · A−1. While line 4 decodes the valid code word, the result of line 5
shows the anomaly in the upper |A| = 8 bits. Line 6 resembles Equation (3.75):

d∗ε = d+ ε ·A−1 ⇔ ε ·A−1 = d∗ε − d.

With the numbers from Example 4 we obtain

ε
65, 625 ·

A−1
55, 129 = 48, 941 =

d∗ε
48, 946−

d
5 .

3.5 Performance Optimizations for AN Coding 95

Algorithm 3.2 Verify Equations (3.67) and (3.68)

1: for A ∈ {3, 5, 7, . . . , (216 − 1)} do
2: for |D| ∈ {1, 2, . . . , 24} do
3: |C| ← |A|+ |D|
4: A−1 ← euclidean(A, |C|) ◃ euclidean algorithm for arbitrary code word widths
5: dmin ← −2|D|−1
6: dmax ← 2|D|−1 − 1
7: cmin ← A× dmin
8: cmax ← A× dmax
9: for c = cmin, cmin + 1, . . . , cmax , c ̸≡ 0 (mod A) do ◃ Test all non-code words

10: if dmin ≤ (c×A−1) ≤ dmax then
11: Indicate Error
12: end if
13: end for
14: end for
15: end for

We now combine Equations (3.67), (3.68) and (3.75) by setting d∗ = d∗ε . It follows that a bit
flip ε, which is representable as the addition cε = c + ε, is detectable as soon the following two
inequalities are fulfilled

d+ ε ·A−1 > dmax ⇒ detectable bit flip (3.76)
d+ ε ·A−1 < dmin ⇒ detectable bit flip (3.77)

where for unsigned integers only the first inequation applies. Furthermore, Equations (3.76)
and (3.77) show that even when ε and thus cε are multiples of A, the bit flip is detectable as soon
as the inequations are satisfied.

We confirmed the anomaly experimentally for all odd As with 2 ≤ |A| ≤ 16, signed integers with
1 ≤ |Dsint| ≤ 24, and |CA

Dsint | = |A|+ |Dsint|. Note that it is irrelevant whether we interpret integers
as signed or unsigned, because the multiplication is the same for both in two’s complement number
representation and this is the standard for all modern processors. Algorithm 3.2 showcases that we
validated Equations (3.67) and (3.68) using an exhaustive test over all possible code words. Lines
1 and 2 iterate over all odd As and all data widths up to 24 bits, respectively. From these we derive
the code word width (line 3), which denotes the exponent for the RCR’s power of two and is the
input to our extended euclidean algorithm (line 4). From the data type (width) we can implicitly
define dmin, dmax, cmin, and cmax, the largest and smallest values in the data type and code domain,
respectively (lines 5–8). Finally, we test for all code words, whether their product with the inverse
is outside the original data domain, as denoted in Equations (3.66) to (3.68). On a 64-core AMD
Opteron 6274 server it took almost 50K CPU hours in total, about 780 hours per core or almost 33
days.

3.6 SUMMARY

There is a wide range of error control code families, which are typically designed for communication
systems, where forward error correction is often desired to avoid retransmission of data packets. In

96 Chapter 3 Analysis of Coding Techniques

SW-Hamming XOR Checksum
Improved

AN coding

Fine-Grained Detection ✓ ✗(1) ✓

Q
ua

lit
at

iv
e

O
ve

rh
ea

d
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Encoding high–medium low low
Detection high low low

Decoding∗ high low low
Arithmetic∗ high low low
Aggregates∗ high low low

Memory Overhead
parity bits
data bits

checksum bits
bits per block

|A| bits
data bits

Runtime Adaptivity ✗(2) ✗(2) ✓

Instruction Coverage ✗ ✗ Arithmetic(3)

Error Detection SEC-DED all odd weights(4) 1 . . .(5)

Table 3.22: Summary of properties of the error detection techniques. For the overheads we can
only do relative rating, as these depend on various factors. ∗: including error detection. (1):
typically, checksums are computed over larger blocks of data. Single-value is possible but all
overheads increase a lot. (2): adaptivity through different block sizes. (3): Errors in arithmetic
operations are detectable, e.g. addition, but not in logical ones, e.g. comparisons. (4): depends
on the actual checksum and is very complex to calculate. (5): Depends on data width and A, see
Section 3.2.3 and e.g. Table 3.6.

the data management domain, however, there are other requirements, first and foremost effectiveness
to detect a certain amount of bit flips in main memory (cf. Requirement R1), and moreover the
possibility to implement them in software in a way that they run efficiently (cf. RequirementR2).
We chose 3 code families, namely XOR checksums, software Hamming, and AN coding, where
the former two are systematic, linear block codes, while the latter is a non-linear, non-systematic
arithmetic code. The findings which we summarize in the following are condensed in Table 3.22.

After introducing their structure and basic coding operations for encoding, error detection, and
decoding, we investigated their effectiveness in terms of the probabilities of silent data corrup-
tion (SDC). There, we revised from literature the properties for Hamming coding, but for XOR
checksums there is virtually no literature available and for AN coding the existing results are
inappropriate. In particular, since DMSs support many different data widths and want to use as
few additional error code bits as necessary, we had to investigate the properties of XOR checksums
and AN codes in much greater detail than was done before. For checksums, the error detection
capabilities depend on the block length. One simple observation is, that all even numbers of bit
flips in the same bit locations (referring to the final parity word) cancel each other out. We derived
several rules to compute the actual conditional probabilities for arbitrary checksum (word) widths
and arbitrary numbers of data words aver which the checksum is built. By that, we can iteratively
compute all probabilities for 1-, 2-, and 3-bit checksums. For AN codes, the detection capabilities
depend on both the data length and the parameter A. It is required to do brute force determination
of the SDC probabilities, because they are non-linear codes. This is done by comparing all code
words against each other, for which the effort grows exponentially with a factor of 4. To mitigate
this, we showed that using grid approximation, which uses equidistant numbers, yields better
(smaller) approximation errors than pseudo- or quasi-random numbers. Furthermore, we provide
a freely available implementation for GPU clusters12, and we provide a table for all data widths
between 1, . . . , 32 bits and parameter widths between 2, . . . , 16 bits.

12See https://brics-db.github.io/coding_reliability.

3.6 Summary 97

https://brics-db.github.io/coding_reliability

Subsequently, we discussed using vector instructions of modern processors to accelerate the coding
operations. This is extremely important, because modern in-memory DMSs extensively use all
hardware features to improve system throughput and latency. As we showed, XOR operations
are available in several vector ISAs (cf. Table 3.10), while for Hamming the population counting
needed to compute the individual parity bits currently needs to be emulated. For the latter,
we investigated and measured three different techniques, where we also showed that on our two
measurement systems (cf Table 3.7), different techniques are fastest ones. For the original AN
coding, only the encoding step, requiring multiplication, is supported by the vector ISAs.

We then conducted an extensive comparison of the three selected error codes. First, we compared
their effectiveness regarding detection granularity, detection capabilities, and instruction coverage.
Regarding the first, only Hamming and AN are designed to work on value granularity, while XOR
checksums are better suited for larger blocks of data. Regarding the second aspect, we compared
the detection capabilities. Regarding the third, only AN coding allows to detect errors in CPU
instructions, because it is an arithmetic code. In contrast, for Hamming and XOR the code bits must
be computed separately, which does not allow detecting bit flips in CPU instructions. Afterwards,
we compared their efficiency, where we first analyzed their memory consumption. XOR and
Hamming have fixed consumptions, which only depend on the number of data words and the data
width, respectively. For AN this is more complicated, since it depends on both the data width and
the chosen parameter. We could show that with those golden As which exhibit the same error
detection capabilities as Hamming in terms of guaranteed minimal detectable bit flip weight, AN
can have mostly the same overhead as Hamming. Afterwards, we conducted microbenchmarks to
compare not only the speeds of the basic coding operations (encode, decode, and error detection),
but also some arithmetic (addition, subtraction, multiplication, and division) and aggregation (sum,
average, minimum, maximum) operations which are typical for data management and processing
systems. Table 3.22 summarizes these as qualitative overheads.

The benchmarks showed that original AN coding has severe throughput issues, which we afterwards
addressed by using the modular multiplicative inverse. This brings many benefits: First, costly
division and modulo operations are replaced by a single multiplication for decoding, and additional
comparisons for error detection. Second, coding then relies only on multiplication and comparison,
which are supported by the considered vector ISAs. Third, by using the inverse, error detection
consists of several independent data paths, which provides opportunities for out-of-order execution
CPUs to schedule multiple independent instructions more efficiently (cf. Figure 3.36). These
benefits are reflected in the speeds of coding operations, which we then again compared against
the other codes. In essence, by using the inverse, operations can improve by a factor of up to
≥ 18× for AVX execution. As a consequence, AN code operation speeds are close to those of
the block-oriented XOR checksums, while Hamming coding is mostly much slower than XOR
checksums and AN coding. Finally, as we showed, for AN coding the recoding of data is like
encoding, a multiplication with a constant factor.

In this chapter, we fulfill Requirement R1 – effectiveness – in the sense that we can choose for
concrete error models, i.e. bit flip rates and weights, a desired error code which guarantees a desired
minimal detectable bit flip weight. Due to the AN coding improvements, we fulfill RequirementR2
– efficiency – for coding operations and we found two error codes where all code operations can be
vectorized. We will investigate later in how far this impacts query runtimes. Furthermore, as we
provide AN coding parameter tables for many combinations of data and parameter bit width, we
can fulfill our Requirement R3 – adaptability – in the sense that we can choose at runtime values
from our computed parameter tables. Based on the above findings, we conclude that AN coding is
suitable for value-granularity bit flip detection on integers, while XOR should be used for bit flip
detection on larger blocks of data.

98 Chapter 3 Analysis of Coding Techniques

4
BIT FLIP DETECTING STORAGE

4.1 Column Store Architecture

4.2 Hardened Data Storage

4.3 Hardened Tree Index Struc-
tures

4.4 Summary

In this chapter, we use the two previously selected coding schemes, AN coding and XOR checksums,
to build a hardened storage layer for in-memory DMSs. Column stores are the de-facto standard
for in-memory data management systems. The earliest successfully introduced systems were
MonetDB in the late 1990’s [21, 23, 24], and C-Store in the early 2000’s [4, 176]. Up to now,
all major vendors released column store extensions to existing database systems or standalone
products, e.g. SAP HANA [47], IBM DB2 BLU [147], Microsoft SQL Server Hekaton [40], or
Oracle TimesTen [95]. However, the problem of unreliable hardware was so far mainly left to the
hardware and operating system. To change this, we provide the following main contributions in
this chapter:

1. We show that hardening in general is orthogonal to most if not all aspects of the storage of
data.

2. We show that AN coding in particular can be combined with many of the integer data
representation techniques.

3. We show that data hardening can thus be integrated in a holistic manner into the storage layer
of data management systems.

4. We extend the ubiquitous B-Tree index data structure with a few different methods for
detecting bit flips in the tree nodes, published in [88].

.

To the best of our knowledge, we are the first to integrate arbitrary bit flip detection in a holistic
manner into the storage layer of main memory-centric column stores. In the following, we first
revise the storage layer of modern column stores in Section 4.1. There, we discuss the basic storage
architecture, which includes the logical data types (Section 4.1.1), the storage model (Section 4.1.2),
the physical data representation (Section 4.1.3), physical data layouts (Section 4.1.4), as well as
index structures (Section 4.1.5). We will use this to show that hardening combinable with most
if not all of these aspects in Section 4.2. We describe how to harden data using the selected
data coding schemes, AN coding and XOR (Section 4.2.1). Afterwards, we demonstrate that
the used coding schemes are well combinable with lightweight data compression (Section 4.2.2).
Then, we discuss restrictions regarding the physical data layout when introducing data hardening
(Section 4.2.3). Finally, we also harden the ubiquitous B-Tree, which is a pointer-heavy data
structure (Section 4.3). Section 4.4 summarizes and concludes the chapter.

4.1 COLUMN STORE ARCHITECTURE

DMSs were first and foremost developed to provide user applications an abstraction of how data
is physically structured and stored [159]. In this section we will revise the storage layer of
modern in-memory column stores. We will discuss the basic architecture, including logical data
types in Section 4.1.1, physical storage models in Section 4.1.2, physical data representations in
Section 4.1.3, physical data layouts in Section 4.1.4, and finally index structures in Section 4.1.5.

The text book architecture of DMSs is called ANSI/SPARC architecture and is illustrated in
Figure 4.1. DMSs typically employ 3 layers of abstraction so that client applications need not
care how to physically structure and store data, but rather work with a logical data model and

100 Chapter 4 Bit Flip Detecting Storage

D
at

a
M

an
ag

em
en

tS
ys

te
m External Layer

Conceptual Layer
Data Model

Internal Layer
Physical Access Paths

Logical Data Independence

Physical Data Independence

Client
App 1

Client
App 2

Client
App 3

External
Schema 1

External
Schema 2

Logical
Schema

Physical
Schema 1

Physical
Schema 2

Figure 4.1: ANSI/SPARC three level architecture of DMSs, after [159]

declarative data query language. First, the result of data modeling, database design, and data
definition is the logical schema. This schema is maintained on the conceptual layer and describes
e.g. the tables (for relational databases). There can be multiple client applications which access the
same database. In the external layer, for each such application there may exist an external schema
containing (part of) the logical representation of the data to be stored, in form of e.g. views. The
logical schema is uniform for the individual external schemas and decouples the applications from
the physical schemas, which a DMS chooses to define the actual data representation, data layout,
and physical access paths. The physical schemas are maintained in the DMS’s internal layer.
For relational DMSs, the logical schema is to some degree standardized through concepts in the
structured query language (SQL)1 standard, whereas each DMS vendor typically provides some
slightly different variant. In contrast, the physical schema is completely specific to the individual
DMS.

In the following, we are interested in the lower two layers. A more detailed view is given in
Figure 4.2 which shows the concepts that each schema specifies. First, we will discuss the logical
data types provided by the logical schema in the conceptual layer, which we regard in this thesis.
Afterwards, we examine options for the physical storage model, data representation, and data
layout, which all constitute the physical schema. The storage model defines the primary and
secondary access paths, which means how to arrange the base data (tuples and attributes) and
which index structures can be used. The data representation further refines the storage model by
mapping the logical data types to underlying, implementation language specific, physical data types
and data structures. This mapping is very specific to each DMS. This also includes potentially
reducing the data domain by some data compression. Finally, the data layout again refines the data
representation by defining how the actual bits and bytes are arranged in main memory. This lowest
layer from the ANSI/SPARC architecture is of particular interest: it is the part which is changed
by introducing data hardening coding into data management systems. Due to the decoupling of
logical and physical schema, we only need to change this last layer and the client applications need
not know about any error control coding done inside the DMS.

1The ISO/IEC JTC 1/SC 32 group defines many SQL and related standards, see https://www.iso.org/
committee/45342.html.

4.1 Column Store Architecture 101

https://www.iso.org/committee/45342.html
https://www.iso.org/committee/45342.html

Logical
Schema

Physical
Schema

Logical
Data Types

Storage
Model

Data
Representation

Data
Layout

DMSspecific
Mapping

A B A refines B

C D C specifies D

Figure 4.2: The correlation between the logical and physical schemas and the concepts they specify.

4.1.1 Logical Data Types

Column stores typically support a fixed set of basic, logical data types, including integers, decimal
(fixed- or floating-point) numbers, and strings. Table 4.1 provides a running example for this
chapter, visualizing a table with four columns (attributes). This example table represents summaries
of orders, containing (1) an ID column as primary key attribute of type integer, (2) another integer-
type column with the total number of items in the order, (3) the order’s total prize represented
as decimal number with 2 digits after the dot, (4) the shipping mode of that order as a string,
and, finally, (5) the date and time when the order was submitted as a timestamp. The different
standards for the SQL define varying amounts of logical data types. Some of the major types2
used are categorized as follows: Integer data types such as TINYINT, SMALLINT, INT (or INTEGER), BIGINT,
and HUGEINT. The BOOLEAN type for binary true/false information. Character data types like CHAR (or
CHARACTER) for fixed-length strings, VARCHAR for variable-length strings, or TEXT, CLOB (Character Large
Object), BLOB (Binary Large Object) for large, unbounded strings. For the remainder of this thesis,
however, we do not consider large objects (BLOBs or CLOBs). There are Decimal data types like DECIMAL
or NUMERICAL, and floating-point numbers like REAL, FLOAT, and DOUBLE. Temporal data types such as
DATE, TIME, or TIMESTAMP, allow specifying either a date, a time, or both and optionally a time zone.

DMS users, like application developers, only deal with the logical data types from the conceptual
level. The DMS internally maps them to physical data schemas, which consist of three parts: (1)

2We use the types given in https://www.monetdb.org/Documentation/Manuals/SQLreference/
BuiltinTypes.

ID Number Total Order Shipping Order Dateof Items Prize Mode

2348534 5 173 665.47 “Mail” 2017-10-25 14:58 CET
2348535 10 46 929.18 “Air” 2017-11-04 13:37 CET
2348536 3 193 846.25 “Rail” 2017-11-10 10:42 CET

Type INTEGER TINYINT DECIMAL VARCHAR TIMESTAMP

Table 4.1: Logical Data Types in a Column Store

102 Chapter 4 Bit Flip Detecting Storage

https://www.monetdb.org/Documentation/Manuals/SQLreference/BuiltinTypes
https://www.monetdb.org/Documentation/Manuals/SQLreference/BuiltinTypes

the storage model, (2) the data representation, and (3) the data layout. In this order, the parts have
a decreasing degree of abstraction, where the storage model is a coarse description of the physical
layout of tuples and their values. The storage model allows (or makes feasible) to use specific data
representations, which are mappings from logical to physical data types. Finally, the data layout
defines in which order bits and bytes are actually stored. We will now describe the parts in the
given order.

4.1.2 Storage Model

In-memory column stores keep all business data and intermediate results for query processing
exclusively in main memory. One major difference was the introduction of a new data storage
model, which deviates significantly from classical row stores [40, 73, 96, 176, 200], as Figure 4.3
illustrates. This layout practically gives column stores their name and this layout is adopted by
virtually all major main memory centric data management system. We will use the conceptual
table from Figure 4.3a to clarify the differences, which contains 4 attributes A, B, C, and D, and a
few rows representing individual tuples. The differing column widths represent different effective
data widths of the columns’ data types. For instance, the columns may match those from Table 4.1
in the same order. The classical n-ary storage model (NSM) [36] used in row-oriented DMSs
stores all tuples in a row-wise fashion as shown in Figure 4.3b. There, all attributes of one tuple
are stored consecutively and then the next tuple is appended likewise. In contrast, column stores
maintain relational data using the decomposition storage model (DSM) [36], where each column
of a table is separately stored as a fixed-width dense array [3], as illustrated in Figure 4.3d. This
can be done either as a single large vector or as multiple smaller vectors, but that decision is
irrelevant for our discussion. For decomposition storage model (DSM), to be able to reconstruct
the tuples of a table, each column record is stored in the same (array) position across all columns
of a table [3]. This index, also called object identifier (OID) [21], can be stored explicitly so that
a column is stored as pairs of OID and value. OIDs can also be purely virtual, so that they are
then called virtual object identifiers (VOIDs) and not stored physically, as shown in Figure 4.3c.
For instance, since December 2016 MonetDB does not store any OID- or VOID-value-pairs, but
employs a so-called headless mode where only either values or OIDs are stored. Ailamaki et al.
introduced a hybrid storage model, called Partition Attribute Across (PAX), which tries to combine
the best of NSM and DSM [7]. There, each database page is stored NSM-like, containing all of a
table’s attributes, but inside the page the attributes are organized in a DSM fashion. By that, each
column is further divided into multiple vectors. The concept is very much as shown in Figure 4.3d,
where the illustrated block would only be a single database page. PAX is a model variant that
lies between the two extremes of NSM and DSM and since any considerations concerning DSM
can also by applied to PAX, we do not further distinguish between these two and, without loss of
generality (w.l.o.g), we only use the term of columnar storage.

4.1.3 Data Representation

The physical data representation is the second step in determining the physical schema. It is
comprised of two parts: a mapping between logical and physical data types and, optionally,
compression based on the chosen physical data type. The latter is of important, because DSM
allows using lightweight compression schemes, which are otherwise less feasible with NSM.

4.1 Column Store Architecture 103

A
a1
a2
a3

...

B
b1
b2
b3

...

C
c1
c2
c3

...

D
d1
d2
d3

...

(a) Conceptual Table.

a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3
a4 b4 c4 d4

...

(b) NSM Memory layout.

VOID

0
1
2

A
a1
a2
a3

...

VOID

0
1
2

B
b1
b2
b3

...

VOID

0
1
2

C
c1
c2
c3

...

VOID

0
1
2

D
d1
d2
d3

...

(c) Conceptual table extended with VOIDs.

a1 a2 a3 . . .

b1 b2 b3 . . .

c1 c2 c3 . . .

d1 d2 d3 . . .

...

(d) DSM Memory layout.

Figure 4.3: Row-wise NSM and column-wise DSM layouts.

Physical Data Types

The purpose of physical data types is to choose a data type provided by a certain programming
language to provide a physical form for the logical types. In the following, we provide primitive
type names known from the open-source C++ compiler GCC3, which can easily be mapped to
other languages’ or compilers’ data types.

For fixed-width data types, e.g. single character, integer, decimal and floating-point, column stores
utilize basic arrays of the respective type for the values of a column [3, 73]. Some column stores like
MonetDB utilize the smallest available native integer type for representing integer-based logical
types [21]. Boncz and Kersten distinguish between logical, physical, and implementation types
and the latter corresponds to what we here call physical data types. In [21], Boncz and Kersten
use their physical data types as an indirection to be able to switch between actual implementation
types for the same logical data type. This is really only used for their OID data type, which can be
implemented as VOID, which requires no actual physical storage, or as a 4-byte wide integer. Apart
from that, they store TINYINT as 1-byte integer (uint8_t), SMALLINT as 2-byte integer (uint16_t), INT as
4-byte integer (uint32_t), and HUGEINT as 8-byte integer (uint64_t).

Regarding decimal numbers, for the sake of correctness and accuracy, database systems typically
use fixed-point numbers and arithmetic instead of native floating point numbers (float / double).
Neumann provides detailed background information and discussion on this issue in a blog ar-
ticle [129]. In essence, rounding and precision loss problems of native floating-point numbers
and operations are usually unacceptable for database systems. This is why production systems
employ fixed-point arithmetic and there also exist several open-source libraries providing a variety
of mathematical operators [52, 56, 153]. One possibility of representing fixed-point numbers is
to split a number into powers of 100, so-called limbs, e.g. 1024 = 10 · 1001 + 24 · 1000. In this
case, each limb fits into a single byte and the position of the decimal point is stored separately, for
instance in column metadata, but of course the limbs can also be larger. Interesting here is what
we call the limb domain abundance (LDA) for such a representation, which means how much of

3https://gcc.gnu.org/

104 Chapter 4 Bit Flip Detecting Storage

https://gcc.gnu.org/

0

0.2

0.4

0.6

0.8

1

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Li
m

b
D

om
ai

n
A

bu
nd

an
ce

Effective Data Bit Width
bit-wise byte-wise

Figure 4.4: Limb domain abundance for limb-based rep-
resentation of decimal numbers (lower is better).

n LDA n LDA

8 0.609 10 0.023
16 0.847 20 0.046
24 0.404 30 0.069
32 0.767
40 0.091 40 0.091
48 0.645 50 0.112
56 0.861 60 0.133
64 0.458

Table 4.2: Selection of nu-
merical values for the limb
domain abundance (LDA)
from Figure 4.4.

the data domain (number of representable values) stays unused. It is computed for a bit width of
n by

LDA(n) = 1− 10⌊log10(2
n)⌋

2n
.

For instance, for single-byte limbs, 100 out of 256 numbers are represented per limb, which results
in

LDA(8) = 1− 100

256
≈ 0.61,

of the representable data domain to stay unused. In contrast, when e.g. using 4-byte limbs, 109

out of ca. 4 ∗ 109 numbers are used per limb, resulting in a domain abundance of

LDA(32) = 1− 109

232
≈ 0.77.

As we regard powers of 10, 4 bits are the smallest limb size. Figure 4.4 depicts this data domain
overhead for bit- and byte-widths up to 64 bits and we can see that the data domain efficiency is best
for multiples of ten. In contrast, the byte-wise limb representations have mostly very high domain
overheads, except for the 40-bit case. Table 4.2 shows a selection for bit- (right) and byte-wise
(left) limb representations for direct comparison. However, the principal criterion is of course the
range of decimal numbers that shall be represented. Based on the data distribution, a desired limb
width can be chosen. On the one hand, it may be selected such that it minimizes the total memory
consumption, by choosing the smallest limb width which can store “most” of the numbers in a single
or small amount of limbs. On the other hand, it may be chosen such that it minimizes the amount of
work for processing “most” of the numbers by using byte-wise limbs. For instance, for 64-bit limbs
the LDA is “only” ≈ 0.46, which is better than for the other register-aligned limb widths of 8, 16,
or 32 bits. Furthermore, 8-byte limbs can represent 19 orders of magnitude (10⌊log10 2

64⌋ = 1019),
or a range of ten quintillion numbers. The representation of decimal numbers dates back to the
early 1950s, when White considered coding single-digit decimals. While he describes different
methods to code the binary numbers to decimal digits, the assumption was that such techniques
would be integrated into circuits. However, not all computer systems provide hardware support
for decimals, but the Intel® x64 ISA provides a few instructions to work on binary-coded decimal
(BCD) integers4. These are unsigned 4-bit integers storing a single decimal digit and up to 18
digits can be stored in a packed 80-bit format in x87 FPU data registers, i.e. a single 80-bit register

4See e.g. https://software.intel.com/en-us/articles/intel-sdm volume 1, or directly https:
//software.intel.com/sites/default/files/managed/a4/60/253665-sdm-vol-1.pdf. Visited 21 March
2018.

4.1 Column Store Architecture 105

https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/sites/default/files/managed/a4/60/253665-sdm-vol-1.pdf
https://software.intel.com/sites/default/files/managed/a4/60/253665-sdm-vol-1.pdf

contains 18 4-bit limbs. According to the Intel® documentation, such a packed format can store
numbers in the range of −1018 + 1 . . . 1018 − 1. As we can see, we can achieve almost the same
using a simple 64-bit representation with ranges 0 . . . 1019−1 or−1018 . . . 1018−1, but then have
to deal with overflows, underflows, carries, etc. in software. As can be easily seen, the number
of operations for dealing with these arithmetic issues increases with decreasing limb sizes or with
increasing decimal ranges.

The temporal data types can be represented also as integers, e.g. as unix timestamps. The time
zone can be fixed for a whole column, as converting between time zones is a rather trivial task.

For variable-width data types like strings it is more complex, because these can be physically
represented in many different ways. A big problem is the large variety of character sets and
character encodings. The former is a mapping from glyphs (letters, numbers, symbols, etc.) to
numbers, while the latter is a mapping from the character set numbers to bit sequences, or directly
from glyphs to bit sequences. Today, the most well-known character set is probably Unicode5,
which defines not only almost all characters of all of today’s languages, but also many symbols
and even emojis, which we all simply refer to as glyphs. Today, version 10 is the latest one, which
supports 136,690 glyphs in total6. However, Unicode only defines the mapping between glyphs
and numbers, and there are many different character encodings. The best known encoding today
may be UTF-87, which encodes each Unicode glyph to a sequence of octets (single bytes) and fully
incorporates the important US-ASCII 8 character encoding. UTF-16 is an older format, which
encodes the Unicode glyphs using one or two 16-bit units. US-ASCII is an encoding which maps
127 glyphs (in its original form) to a byte representation. In Europe, the ISO/IEC 8859-1 standard,
also known as Latin-1, is also often used and it also incorporates the whole US-ASCII encoding.
The important difference between these encodings is the range of glyphs: US-ASCII and Latin-1
only support limited ranges in a way that all glyphs can be stored using a single byte. In contrast,
using the UTF-8 or UTF-16 encoding, glyphs may be stored with varying amounts of bytes, at most
up to 4 bytes. In practice, this becomes even more complex, as Unicode allows combined characters
such as special accented characters, which actually requires multiple glyphs. In principle, this poses
a similar problem as for decimal number representation. Both store the information in limbs of
various sizes, whereas the size is typically fixed for one columns or vector. To offload this problem
from query processing, for string columns nowadays some kind of dictionary coding is applied to
transform them into fixed-width-data columns [1, 3, 18]. This was used in MonetDB already as
enumeration type, so that low-cardinality columns could be represented with smaller physical data
types [21]. As a consequence, columns of the logical string data type actually store integers which
point into a separate data structure. We will cover more details in the following.

Lightweight Compression

Already a few decades ago, data compression was investigated for data management systems. At
this time, the main benefit was to reduce the I/O costs in terms of throughput (less data to read) and
seek times (less data accesses) of disk-based systems [76]. This directly translated into reduced
I/O transfer times and increased buffer hit rates [58, 60, 76, 199]. Meanwhile, main memory
systems were already considered as well by Roth and Van Horn [158]. For the latter, the aim is to
store not only as much base data as possible, but also to compress the working set of transactions,

5https://www.unicode.org/
6https://www.unicode.org/versions/Unicode10.0.0/, visited 24 March 2018.
7https://tools.ietf.org/html/rfc3629
8United States-American Standard Code for Information Interchange

106 Chapter 4 Bit Flip Detecting Storage

https://www.unicode.org/
https://www.unicode.org/versions/Unicode10.0.0/
https://tools.ietf.org/html/rfc3629

to avoid running out of main memory and enabling as many parallel in-memory transactions as
possible. Since then, researchers considered both primary (columns) and secondary (indexes) data
access paths [58, 186], as well as query optimization [34]. To store as much data in fast main
memory as possible, especially light-weight compression plays a crucial role in modern in-memory
data management systems [34] and particularly for column stores [145, 158]. Here, DSM shows
another great advantage over NSM: compression of values of the same data type (DSM) allows
for much better compression rates and speeds than compressing tuples with many different data
types (NSM) [4]. Here, we consider lightweight compression techniques, because they play a
crucial role for in-memory DMSs. Later, we will investigate whether and how AN coding can be
combined with these techniques. However, we do not consider any string compression techniques
in this thesis, but only integer lightweight compression.

Damme et al. distinguish between techniques and algorithms, where techniques work either on
the logical or physical data representation, and an algorithm is the incarnation of one or (the
combination of) more techniques [37]. Following that, one typically first applies one or more
logic schemes to reduce the value domain, and then apply a physical technique – typically some
form of null suppression – to actually reduce the required storage. Damme et al. identified
five basic lightweight compression techniques: dictionary encoding (DICT), run length encoding
(RLE), frame of reference (FOR), delta encoding (DELTA), and null suppression (NS). The
compression techniques are separated into logical and physical ones [37]. All schemes except
Null Suppression are considered logical, which means they typically aim to represent data as
integers, or to reduce the numerical values that represent the stored information [37]. In contrast,
Null Suppression is considered physical, which reduces the actual number of bits used to store
data [37]. The “goodness” of a compression scheme heavily depends on the actual data and the
actual workloads [37]. All have in common, that they work on integers or that the compressed
form is based on integers. In this thesis we will only consider the compatibility between error
coding and compression schemes, so that we disregard the problem of selecting good compression
schemes. Furthermore, we will also not consider any special optimizations.

DICT: Variable-length data like strings are “compressed” by encoding the original values using
a dictionary which replaces them with fixed-length integer data in the base column. The integer
code data can be processed easier and faster [3, 4, 18, 199]. By that, the column contains integers
and an additional data structure is required to store the actual strings. The simplest form constructs
a dictionary for an entire column or vector, sorted on frequency, and represents values as integer
positions in this dictionary [3]. Other possibilities are to use index-structures like trees or to sort
the dictionary entries lexicographically [18]. When columns are split into vectors, there may
still be a single dictionary per column, or a dedicated dictionary for each vector and dictionaries
may also be used across multiple attributes [18]. Figure 4.5 shows an example, with the original
table (a), the compressed column which stores only integers (b), and the dictionary entries (c).
Here we can also see that the IDs in the dictionary need not be consecutive, which can help to not
rebuild the dictionary whenever entries are added, removed, or altered [18]. The storage size of
the integers can further be reduced by the other, following techniques. In practice, not just strings
are dictionary encoded, but any logical data type can be dictionary coded, which makes sense
whenever the number of stored distinct values is (much) smaller than the whole data type domain.
As we noted above, we do not consider string compression and DICT is only a mapping and not a
string compression in the strict sense.

RLE: When there are many consecutive data elements with the same value, one can compact
their representation by storing only the value and the number of times it consecutively occurs,

4.1 Column Store Architecture 107

VOID
0

1

2

...

String
“Mail”
“Air”
“Rail”

...

(a) Original String Attribute

VOID
0

1

2

...

StringDict

30
10
80
...

(b) Compressed String Attribute

IDDict

10
30
80
...

Value
“Air”

“Mail”
“Rail”

...

(c) Attribute Dictionary

Figure 4.5: Example of dictionary encoding (DICT).

Original: 15 15 15 15 15 97 97 97 13 13 13 13

RLE: Val Len 15 5 97 3 13 4

Figure 4.6: Example of run length encoding (RLE).

Original: 180 176 185 190 178 165 173 195 179 184 189 172

FOR: 165 15 11 20 25 13 0 8 30 14 19 24 7

Figure 4.7: Example of frame of reference (FOR) with the smallest value as reference.

Original: 15 17 18 22 26 27 32 37 38 40 47 50

DELTA: 15 2 1 4 4 1 5 5 1 2 7 3

Figure 4.8: Example of delta encoding (DELTA).

Original: 15 17 18 22

Bit-Aligned: 151718222627323738404750

Byte-Aligned: 15 17 18 22 26 27 32 37 38 40 47 50

Word-Aligned: 15 17 18 22 26 27 32 37 38 40 47 50

Figure 4.9: Examples of null suppression (NS). The integer sequence is the same as in Figure 4.8.

108 Chapter 4 Bit Flip Detecting Storage

called a run [4, 158] (Figure 4.6). By that, only two (integer) values are stored for each run: (1)
the value itself, and (2) the run length.

FOR and DELTA: Instead of storing the values themselves, one can store only the difference
of each value to some reference value, which can be e.g. the smallest, largest, or average value.
When a single reference value is used for a batch of values, this is called FOR (Figure 4.7). This
reference value must be stored additionally to the actual data values. When the minimum value
is used, only positive differences are stored. An alternative is to use as reference each previous
value, called DELTA (Figure 4.8), which avoids storing the additional reference value. However,
this may lead to negative values and DELTA may be better suited for ascendingly sorted data so
that only positive (and potentially small) differences are stored.

NS: Null suppression aims at reducing the actually required number of bits used to store values
(Figure 4.9). According to Damme et al., there are three classes [194], illustrated in Figure 4.9: (1)
bit-aligned, (2) byte-aligned, and (3) word-aligned. The first two classes try to compress integers
using a minimal number of bits or bytes, respectively, where both store the values consecutively
and without a gap. In contrast, the word-aligned techniques arrange as many integers into word-
boundaries as possible, typically 32- or 64-bit words. As can be seen from Figure 4.9, each
technique results in a different storage requirement (size) for the integer sequence. Here, the
original integers would be stored using 4 bytes, with the byte boundaries indicated by dotted
lines. Bit-aligned null suppression uses for a block of integers the smallest number of bits to store
all integers in the block. While this results in the smallest memory footprint among the three
techniques, we see that integers cross byte- or word-boundaries, e.g. 27 and 37, respectively. In
contrast, byte-aligned compression leads to the largest memory footprint, and for word-aligned it is
somewhere between the other two techniques. Null suppression techniques can also be categorized
into using horizontal or vertical data layouts [37, 108], which is yet another design dimension
covered just below in Section 4.1.4.

Vectorized Compression Algorithms: While there already exists a large number of compression
algorithms, there is an even larger variety of implementations, while vectorization using SIMD
instructions has gained quite some attention [104, 139, 162, 175, 194]. We discussed the importance
of SIMD processing in main memory-centric column stores in Section 3.3. For compression
algorithms, vectorization improves performance in terms of compression, decompression, and
processing speeds [37]. Since this affects Requirement R2, we have to consider later on the
compatibility between (vectorized) error coding and compression techniques. For instance, one
specific null-byte suppression implementation is the vectorized 4-wise null suppression algorithm
by Schlegel et al. This algorithm is specialized for compressing four 32-bit uncompressed values in
parallel. Each value requires a 2-bit suppression mask to indicate the number of leading null-bytes,
which can be at most three in this case, so two mask bits suffice. They employ SSE byte shuffle
instructions and generate a one-byte mask, containing the four individual 2-bit masks of the four
compressed values.

Encoding may require multiple passes over the original input data for some of the above techniques.
For instance, FOR needs to find the reference value for a whole block or column of values in a first
pass over the data and then, in a second pass, use that reference value to compute the smaller output
values from all input values. Also, DICT may require multiple passes, e.g. when the dictionary is
sorted. Then, first the sorted dictionary may have to be created and afterwards the string values can

4.1 Column Store Architecture 109

ID Number Total Order Shipping Order Dateof Items Prize Mode

1 5 17 366 547 30 1 508 943 480
2 10 4 692 918 10 1 509 802 620
3 3 19 384 625 80 1 510 310 520

. . .

20 bits 5 bits 32 bits 8 bits 31 bits
uint32_t uint8_t uint32_t uint8_t uint32_t

2 dp CEST

Table 4.3: A possible physical data representation
with implementation types Θ.

Logical Physical

TINYINT (u)int8_t
SMALLINT (u)int16_t
INTEGER (u)int32_t
BIGINT (u)int64_t
TIMESTAMP (u)int64_t
STRING (u)char_t

Table 4.4: A possible map-
ping between logical and
physical data types.

be replaced by the dictionary indizes. In contrast, DELTA and RLE can be computed in a single
pass, because only consecutive values are considered in both techniques. Finally, for NS it depends
on the actual technique. For instance, 4-wise null suppression on its own requires only a single
pass. In contrast, SIMD-BP128 [104] requires to first compute the amount of bits needed to store
a block of values and then compress and materialize the data in the second pass. When combining
logical and physical techniques to a complex compression algorithm, there can be combinations
where everything can be done in a single pass (e.g. RLE + 4-wise NS), or where two or more passes
are required (e.g. DICT + DELTA + SIMD-BP128). For the latter case, it may also be required to
materialize intermediate logically compressed representations in order to apply the next logical or
physical technique. These considerations of course also apply to the decoding step. However, this
completely depends on the combination of techniques and the actual implementation and exploring
this configuration space is outside the scope of this thesis.

To summarize, the goal of lightweight compression is to represent the original data in some
small integer type. While dictionary coding can be used to store in the columns integer types
instead of non-integer types, all of the techniques are used to shrink the integer domain required for
storing (most of) the data. Finally, null suppression is used to physically store as few as possible
bits or bytes per value. The availability of vectorized lightweight compression algorithms is a
perfect fit for in-memory column stores, because the data is naturally aligned in a SIMD-friendlier
way than in NSM. By that, our data coding for error control must be compatible with lightweight
compression and SIMD, which in turn should allow to meet RequirementR2.

Example Mapping

We now exemplarily map the logical data types from Table 4.1 to physical ones in Table 4.3. To
recap, there we have two integer columns, ID and Number of Items, one decimal column, Total
Order Prize, one string column, Shipping Mode, and finally one timestamp column, Order Date,
in the respective order. In the row directly below the values, we assign exemplarily an effective bit
width to the columns, which is the smallest number of bits to represent all values in each respective
column. Now, we assume that integer columns are mapped to byte-, word-, etc. boundaries as
shown in Table 4.4. This is e.g. the case for MonetDB [21]. W.l.o.g we assume that the decimal
column can be represented using 32 bits in this case, so that it fits into the respective physical
int32_t integer data type. As an additional column parameter, we also need to store the according
number of two decimal places, indicated in Table 4.3 below the data type. The strings from the

110 Chapter 4 Bit Flip Detecting Storage

Storage

byte 0 byte 1 byte 2 byte 3

Bit-Packed

Byte-Packed

Word-Packed

effective bits
spare bits

(a) Packed.

Value a b c d e f g h

byte 1 a1 b1 c1 d1 e1 f1 g1 h1

byte 2 a2 b2 c2 d2 e2 f2 g2 h2

byte 3 a3 b3 c3 d3 e3 f3 g3 h3

bit bit group

...

(b) Vertical bit-parallel.

value vi v1 v2 v3 v4 v5 v6 v7 v8

machine
word 1 b1 b2 b3 b4 b5 b6 b7 b8

machine
word 2 b9 b10 b11 b12 b13 b14 b15 b16

byte

...
· · ·

byte

spare bits

Value

(c) ByteSlice.

Figure 4.10: Physical data layouts.

“Shipping mode ” column are encoded just as in Figure 4.5, where the individual characters are
stored in some single-octet char_t format like UTF-8. Finally, the timestamp column values can be
represented as UNIX timestamps, which fit into 32-bit unsigned integers. As an additional column
parameter, the time zone could be stored as well, e.g. the Central European Time (CET).

4.1.4 Data Layout

So far, we showed that column stores use a column storage model and that columns mainly contain
integers which may be compressed using lightweight compression techniques, with non-integers
being converted to integers with the help of dictionaries. Based on that, the issue remains of
how to actually layout the individual bits and bytes. First, we could simply store all data items
consecutively in a bit-, byte-, or word-oriented fashion, as in Figure 4.10a, which reflects a rather
natural data layout. On the one hand, byte- and word-packed layouts may introduce additional
spare bits. On the other hand, in the bit-packed layout individual values may cross byte- and
word-boundaries, which requires a bit more effort to access individual values, since shifting and
masking operations are needed. While the byte- and word-packed layouts can be quite obviously

4.1 Column Store Architecture 111

accessed using SIMD instructions9, Willhalm et al. showed how to do this for bit-packed data as
well [189, 190].

Li and Patel introduced a new data layout which is beneficial especially for sequential scan
operations called Vertical bit-parallel method [108]. Since their Horizontal bit-parallel method is
in general like the bit-packed layout we do not consider it here. Also, their BitWeaving methods
are specialized variants of the bit-parallel methods and we only concentrate on the basic idea
here. In the vertical layout, each of a value’s bits are stored separately and the bits of a set of
values are stored consecutively. Figure 4.10b shows for an example of eight values the storage,
where each i-th byte contains the i-th bit of each value. The advantages of that layout are: (1) it
inherently treats any number of effective bits, (2) many values are processed in parallel (bit-by-bit),
(3) and for filtering data, early pruning is possible which leads to less memory being accessed. Its
disadvantages are the costly generation of that layout at load time and the costly re-materialization
of individual values. For the former, the individual bits of many values must be extracted and
packed together, while for the latter, many bytes must be accessed and bits be shifted to materialize
a single value.

Shortly after, Feng et al. introduced another data layout which is not only beneficial for scans
of whole columns, but also for lookups of individual values [48]. Its idea is a mixture of the
previously mentioned horizontal and vertical layouts, shown in Figure 4.10c. There, each value is
divided into bytes and in the fashion of the vertical layout, the bytes of multiple values are stored
next to each other in one machine word. This method is very SIMD-friendly, because bytes are the
smallest unit for multi-operand instructions and the machine word width can easily be chosen to
be 64 bits (x64), 128 bits (SSE), 256 bits (AVX) etc. When the number of effective bits is not a
factor of eight, then padding zeros are introduced to fill each value’s last byte. In their approach,
the effective bits are stored in the MSBs so that the spare bits start at the LSBs.

Regarding the example mapping from Table 4.3 again, we constructed a case where the effective bit
width of some columns is smaller than the implementation data type. A concrete DMS could now
decide to store the values in a bit-packed or bit-parallel fashion to reduce the storage requirements
compared to a naive realization which uses only the available implementation types, i.e. -byte- or
word-packed layout. In this concrete example, a tuple requires at least 20 + 5+ 32+ 8+ 31 = 96
bits when bit-packing all values and 32 + 8 + 32 + 8 + 32 = 112 bits when byte-packing all
values, which is an overhead of ≈ 17%. Be reminded that packing (data layout) and aligning
(compression) are two different techniques.

4.1.5 Tree Index Structures

Although DSM already yields much better data locality for column scans, index structures are
still used as secondary access paths for in-memory column stores [39, 83, 100, 102, 148]. The
B-Tree [16] and variations like the B*-Tree [84], or the B+-Tree [35] were the most famous index
structures for disk-based DMSs [35] and even for in-memory DMSs there are several adapta-
tions [39, 100, 106, 135]. In contrast to the rather simple column layout, tree index structures
are typically very pointer-heavy data structures. In the following, we will concentrate on B-Trees,
since this is still one of the major index structures. We will first describe the structure of B-Trees
and afterwards the basic operations on them. Then, we will discuss changes to the structure and
operations which are introduced by major variants.

9This holds at least for most of the x86 SIMD ISA variants of SSE and AVX.

112 Chapter 4 Bit Flip Detecting Storage

Level
0

Level
1

Level
2

MD p0 k1|v1 p1 . . . pf−1 kf |vf pf MD p0 k1|v1 . . .

MD p0 k1|v1 p1 . . . pf−1 kf |vf pf MD p0 k1|v1 . . .

MD p0 k1|v1 p1 . . . pf−1 kf |vf pf

Figure 4.11: Basic B-Tree structure. Pointers are highlighted gray.

B-Trees are tree index structures which store multiple key-value-pairs (kx|vx) per node, as indicated
in Figure 4.11. The keys are typically sorted [16] and in the following, we assume an ascending
sort order, but all descriptions can be easily matched to other sort orders. Each node typically
fills one or a few disk blocks and node sizes of up to 4 KiB are common. A B-Tree of order
d may contain up to 2d keys and in each node, except the root node, there must be stored at
least d keys. This means, in each B-Tree node there are between d . . . 2d key-value-pairs. We
denote the actual number of pairs in node i as fi, the fill level of that node, and the set of
pairs as {(k0|v0), (k1|v1), . . . , (kfi−1|vfi−1)}. Next to these pairs, nodes contain fi + 1 pointers
{p0, p1, . . . , pNi}, i.e. always exactly one more pointer than keys or at most 2d+1. The jth pointer
links to the child node which contains those keys which are in the range between keys kj−1 and
kj from the current node. The exceptions are the first and last pointer, obviously, which point to
nodes containing keys smaller than k0 and larger than kfj , respectively. The values contain the
payload, which in the case of unique keys can be inline data, e.g. integers, or an indirection to the
actual data like record identifiers (RIDs). When a key may be associated with multiple values, then
the value can point to a list of the actual values. For in-memory B-Trees, an additional padding
(not shown in the figures) may be used to align nodes to a certain memory boundary, e.g. to align
nodes to the native memory page size. Additionally, each node may keep some metadata (MD),
typically at the front, for instance to store the node’s tree level (cf. levels in Figure 4.11) which is
zero at the lowest (leaf) level and largest at the highest (root) level (cf. Figure 4.11), and the node’s
number of contained keys (fill level). According to Graefe and Stonecipher, many implementations
also contain sibling pointers among nodes on the same level [64], and compression is also used to
reduce nodes’ storage footprint [17, 141]. In the following, we describe the basic operations on a
B-Tree.

Lookup. The primary goal of index structures is to fasten the lookup of keys and associated
values. For a given pair (kl|vl), the lookup works top-down from the root and is essentially the
same for each node. First, in a node the largest key kx which is equal to or smaller than kl is
searched. When there is such a key kx, then we follow pointer px to the next child node, otherwise
the last pointer pf is followed. When there is a key which exactly matches the lookup key kl, the
associated value is returned immediately and the traversal ends. When the leaf level is reached but
there is still no key match, then the lookup returns some “not found” status.

Batch Lookup. Next to looking up individual keys, index structures are also used to search for
ranges of keys. Since the keys are stored sorted, such a batch lookup can easily return multiple
keys from a node. When the searched range spans several nodes, the parent node(s) are used to

4.1 Column Store Architecture 113

continue the search in the siblings.

Insertion. The addition of new key-value-pairs is realized through some insert method, which
takes as input an appropriate key-value pair. First, the tree is traversed exactly like for the lookup.
When the key already exists, the value is overwritten or, in the case of multiple values, appended
to the list of values. Otherwise, the new key is inserted into the leaf node where no match was
found. When the node is not full, yet, then the key is inserted by moving the larger keys to the
right, and then inserting the key-value-pair at the appropriate position. When the leaf node is,
however, already full, then that node must be split (node split). For that, the list of all keys including
the new key is split up, such that the very middle key kmid is pushed to the parent node and the
half containing the larger keys are moved into a newly created node. The middle key kmid must
be inserted into the parent node, where an additional node split may be required, which works
respectively and may propagate up to the root.

Removal. Opposite to insertion, keys can also be removed from the index. As for insertion, the
key is looked up, where not finding an exact match results in no action. Otherwise, when multiple
keys are allowed, the value is removed from the list. When that list becomes empty, or when only
single values are used, then the key-value-pair is removed from the node. When the current node
is a leaf, then all the larger keys are moved to the left. Otherwise, in a non-leaf node, the left-most
key of the right subtree of the deleted key must be moved to that position. Furthermore, the number
of contained keys may become lower than the minimal allowed number d, which requires merging
the current node with other nodes (node merge). For that, the siblings must be inspected and the
nodes’ contents must be redistributed such that the restriction on the number of keys is still met for
all siblings. This also involves exchanging keys with the parent node. Again, this operation may
propagate up to, but not including, the root level, because the root node may contain any number
of keys.

B-Tree Variants

It was realized early on that the original B-Tree design was inefficient with respect to all operations.
The restriction that there must be at least d keys in a node may in the worst case lead to all nodes
being populated only by 50%, which leads to bad storage efficiency, and deeper trees, which in
turn results in more traversal steps [16, 35]. Also, for node splits, node merges, or when range
lookups span multiple nodes, the parent node is required to access sibling nodes, which may require
additional traversal steps.

The B∗-Tree variant [84] changes the minimal key requirement such that each node must be filled at
least by a proportion of 2/3. The node splitting during insertions is delayed through redistributing
keys in the neighbors until 2 nodes can be split into 3, which again are filled by 2/3 each. This
increases the minimal storage utilization to 66%, which in turn speeds up lookup operations due
to smaller tree heights [35].

In the B+-Tree variant [35], the values are only stored in the leaf level. Furthermore, all nodes
in the leaf level contains pointers to their neighbors, resulting in a single- or double-linked list of
leaf nodes. By that, inner and leaf nodes have different layouts, because inner nodes need not store
values and by that have space for additional keys and pointers, while the leaf nodes need not store
any pointers at all. However, batch lookups become cheaper, because the leafs are interlinked.

114 Chapter 4 Bit Flip Detecting Storage

Some other variants which are tailored to in-memory systems, like the FP-Tree, lift the requirement
of sorting the keys in each node, because the sorting overhead may now be a limiting factor [135].
There, nodes become more complex because fingerprints are introduced to reduce the amount of
keys against which to compare the search key.

4.1.6 Summary

In this section, we revised the basic storage architecture of main memory-centric column stores.
We saw that the ANSI/SPARC architecture provides an abstraction for client applications in the
form of logical and physical schemas. The physical schema furthermore describes how data is
stored in memory. First, the physical storage model defines that data is managed in the column-
oriented DSM data layout, where columns are stored separately. The data representation describes
how logical data types are mapped to implementation data types. Here we showed that the
columns basically contain only integers, while helper structures like dictionaries store variable-
width data like strings. Instead of floating point numbers, fixed point arithmetic is used in the
form of decimal numbers. The storage consumption of columns and indexes can be reduced
using lightweight compression algorithms, which may be composed of several of the five basic
compression techniques. Additionally, there are several physical data layouts which describe how
the bits and bytes of the (compressed) values are actually arranged in main memory. Finally, we
revised the B-Tree and some of its derivatives as fundamental and wide-spread index structures.
In the following, we will discuss how data hardening works together with all these aspects.

4.2 HARDENED DATA STORAGE

Based on the general column store architecture that we revised in the previous section, we can
ascertain the following points:

1. The logical data types are only conceptual and are not affected by any physical data coding.
This is beneficial, because changing the physical schema does not change anything for client
applications (cf. Figure 4.1). Due to the abstraction, we only need to change the physical
layer from the ANSI/SPARC architecture.

2. The storage model (DSM) consist of two main data structures: (1) data arrays as primary
access path and (2) index structures as secondary access path.

3. The physical data representation constitutes of fixed-width integer or decimal data types for
columns and index structures. When columns are dictionary coded, additional data heaps
store the original values. As we noted earlier, decimal numbers are in the end represented as
integers, as well. In the following, we consider integer and string physical data types.

4. Lightweight integer compression is used to reduce the original data domains and dictionary
coding is used to also represent strings as integers in the base columns and store strings in a
separate dictionary structure.

5. There are in principal two physical data layouts: horizontal and vertical packed layouts. The
former stores the values consecutively next to each other, while the latter rips values apart
and stores individual bits or bytes from different values next to each other.

4.2 Hardened Data Storage 115

ID Number Total Order Shipping Order Dateof Items Prize Mode

985 558 15 299 927 907 6990 1 329 379 205 880
1970 1170 4 134 460 758 2330 1 330 136 108 220
2955 351 17 077 854 625 18 640 1 330 583 568 120

A 985 117 881 233 881
|A| 10 7 10 8 10
|C| 30 12 42 16 41

Table 4.5: Hardened integer columns, each with an A tailored
to the data representation, extended from Table 4.3. Here, we
assume a desired minimal detectable bit flip weight η = 3.

IDDict Value

2330 “Air”
0x5a16

6990 “Mail”
0x2916

18 640 “Rail”
0x3616

Table 4.6: Dictio-
nary with AN hardened
IDs and XOR hardened
string values.

layout η
1 2 3 4

bit-packed 106/96→ 10% 126/96→ 31% 141/96 → 47% 160/96 → 67%
word-packed 184/112→ 64% 192/112→ 71% 224/112→ 100% 240/112→ 214%

Table 4.7: Overheads for different minimal detectable bit flip weights η and data layouts for our
running example from Table 4.5 using the appropriate As from Table 3.6.

6. There are many compromises to be made regarding mainly the storage and processing
requirements of the chosen storage model, data representation, and data layout. An error
detection technique should integrate seamlessly and put as few as possible restrictions on the
available variant space of the physical schema.

In the following, we will discuss how we modify the parts of the physical schema, by means of
the error control codes which we selected in Chapter 3. For our hardened storage approach, we
consider all of the above aspects. Most of the discussion of this section was published, in particular
the discussion regarding hardening integers with AN coding in [87], the combining of lightweight
compression and AN coding in [85, 86] and furthermore, we published the considerations for
hardened B-Trees in [88] and gave a live demonstration, where we used a heat gun to stress real
DRAM memory modules while running queries against our hardened B-Tree [89].

4.2.1 Hardened Physical Data Types

For data arrays with integer values, we harden values using AN coding, which requires only
multiplication with the constant factor A (cf. Equation (3.10)). By that, the required amount of
storage increases from the data width to the code width. The additional memory consumption
must be considered, which may affect the choices for data representation and very likely also the
data layout. As we discussed, each DMS may use different mappings from logical data types to
the physical data representation. This results in different data widths for each column, or even
each vector, when the DMS horizontally partitions columns, e.g. with the PAX storage layout.
Since we can set A for each column and vector individually, it can be chosen according to the
actual data representation, including lightweight compressed integers. As an example consider
Table 4.5, which shows an AN coded physical data representation of the integer columns from
Table 4.3. W.l.o.g, for this example we assume a minimal detectable bit flip weight η = 3, but this

116 Chapter 4 Bit Flip Detecting Storage

in practice depends on the actually assumed error model or other demands and might even vary
for the different columns. For our running example, the chosen As (cf. Table 3.6) and the code
bit widths are given in the last two rows of table 4.5. The storage increase per tuple, compared to
unencoded storage and assuming a bit-packed horizontal data layout, is

30 + 12 + 42 + 16 + 41

96
=

141

96
→≈ 47%,

whereas when assuming a word-packed data layout for both uncoded and coded data, the storage
overhead is

64 + 16 + 64 + 16 + 64

112
=

224

112
→ 100%.

The overhead varies with varying minimal detectable bit flip weight η and some more examples
are given in Table 4.7. While in Figure 3.25 we compared the memory consumption for individual
data widths, this includes multiple columns of varying data types but the same η. The numbers are
again different when each column is hardened for a different η.

Next, we consider variable-width data types decimals and strings, for which the case is a bit more
complex. Both are based on physical representations which potentially use multiple units for
storage: limbs or character encoding units, respectively. We will use the notion of limb throughout
this discussion referring to both concepts. However, due to their nature, both data types are
used quite differently. While strings typically have a fixed encoding using typically single-byte
limbs, limb sizes for decimal numbers can vary much more. Arithmetic operations are typically
only done on numbers, while pattern matching or filtering are done on both types. Moreover,
typically different types of aggregates are computed, e.g. sum, average, minimum, and maximum
for decimals, and e.g. shortest, longest, or average number of limbs for strings. Therefore, we will
consider both types separately.

For decimals, based on the limb-like representation there are two options for hardening: (1) harden
each limb individually, or (2) regard the full value as a huge number and harden it as a whole.
Since decimals are numbers, it seems only natural to harden them using AN coding. The first
approach requires adapting the algorithms to work on larger limbs, as each limb becomes a code
word on its own. Since computer systems have a maximal word size, today typically 64 bits, the
additional code bits can further reduce the limb data domain, as we cannot use arbitrarily large
limbs. Using the second approach allows to leave the algorithms unchanged, but unfortunately,
deriving the detection capabilities for huge arbitrary data widths is very expensive, as we showed in
Section 3.2.3. There we noted that, relative to 32-bit data, the effort to compute the probability for
a single A for 64-bit data is 464−32 = 432 ≈ 1.8 · 1019× as high. For decimals, currently only the
first approach is feasible, but when determining optimal As for large code widths becomes viable,
then the second approach may be a much better alternative, as it primarily leads to much less space
overhead. For instance, protecting 32-bit data against η = 4, we need A = 32417 and |A| = 15
bits. But when we split it up into four 8-bit limbs, then we need A = 1939 with |A| = 11 bits, so
that in total we have 4 · (8+11) = 76 bits, in contrast to the 47 bits for the former case, which is an
overhead of 76÷47−1 ≈ 62%. Additionally, as we have shown in Figure 4.4 and table 4.2, larger
limbs generally tend to have less data domain abundance. Finally, coded decimal numbers which
have less limbs require less operations when processing them, to care for overflows, underflows,
carries, etc. Consequently, this is more a matter of technical feasibility and today we have to use
the first, less efficient approach for large decimals, while when it becomes viable to compute SDC
probabilities for very large data widths, then the second, more efficient approach should be used.

As for decimals, we could consider strings either as a huge number, or more naturally as a sequence
of character encoding units, which we will refer to in the following as “limbs”, too. We just

4.2 Hardened Data Storage 117

0

2

4

6

8

10

12

14

std::strcmp

naive
naive XOR

naive AN

Kankowski

K. XOR

K. AN

Re
la

tiv
e

Ru
nt

im
e

(a) 8-bit limbs, relative runtime.

0

1

2

3

4

5

6

std::strcmp

naive
naive XOR

naive AN

Kankowski

K. XOR

K. AN

Re
la

tiv
e

Ru
nt

im
e

(b) 16-bit limbs, relative runtime.

Figure 4.12: Relative runtimes for string comparison on system 1.

std::strcmp Naive Naive XOR Naive AN Kankowski10 K. XOR K. AN

8-bit 1.00 6.36 6.44 12.85 0.89 0.94 2.41
16-bit 1.00 3.20 3.79 5.84 0.90 0.96 2.77

Table 4.8: Numbers for Figure 4.12.

0

2

4

6

8

10

12

14

16

18

20

std::strcmp

naive
naive XOR

naive AN

Kankowski

K. XOR

K. AN

Re
la

tiv
e

Ru
nt

im
e

(a) 8-bit limbs, relative runtime.

0

1

2

3

4

5

6

7

8

std::strcmp

naive
naive XOR

naive AN

Kankowski

K. XOR

K. AN

Re
la

tiv
e

Ru
nt

im
e

(b) 16-bit limbs, relative runtime.

Figure 4.13: Relative runtimes for string comparison on system 2.

std::strcmp Naive Naive XOR Naive AN Kankowski10 K. XOR K. AN

8-bit 1.00 11.75 8.50 18.50 1.19 1.60 6.16
16-bit 1.00 3.40 4.26 7.25 1.19 1.59 4.51

Table 4.9: Numbers for Figure 4.13.

118 Chapter 4 Bit Flip Detecting Storage

discussed that for huge numbers, AN coding is currently impractical, so encoding a whole string
as a single number is infeasible. Also, as we have seen, the optimal code parameter varies a lot
for varying data widths so that for the same η, each string might be encoded with a different A,
depending on the actual string’s length. Encoding each limb (character encoding unit) would be
possible, but this would require to adapt all string operations, at least to handle larger limbs. Since
string values can be pretty long, checksums make more sense in this case. As a consequence,
operations on string values need to compute the checksum in parallel to the string operation.
Further, there are some operations which need not work on all characters, like prefix matching. For
these, now all characters must be touched to create the checksum, assuming there is one checksum
per string value. We measured string comparison runtimes for unprotected, XOR, and AN variants
for 8-bit and 16-bit limbs, with the results from measurement system 1 shown in Figure 4.12 and
the numbers given in Table 4.8. There, we compare the C++ standard implementation std::strcmp
against naive (scalar) and SSE4.2 implementations, where the SIMD variants are based on a very
efficient implementation by Peter Kankowski10, denoted by a leading “K.”. We measured the
string comparison runtime for a total of 64 · 220 ≈ 67 Million limbs, whereas we generate two
equal strings so that both are compared until their end. Figures 4.12a and 4.12b show the relative
runtimes for 8-bit and 16-bit limbs, respectively. The graph and table values are relative to the
standard implementation std::strcmp. Figures 4.12a and 4.12b have a quite similar form and we can
see that the naive implementations are very slow compared to the vectorized versions, whereas the
Kankowski version is even slightly faster than the standard implementation, which is why we used it
as a base for the hardened string comparison. As a consequence, the vectorized XOR variant is even
faster than the GCC’s standard implementation and only slightly slower than the base Kankowski
variant. In contrast, the runtimes for the vectorized AN variant are 2.41× and 2.77× as high as the
standard implementation for 8-bit and 16-bit limbs, respectively. We did the same measurements
on system 2, with the results shown in Figure 4.13 and table 4.9. There, all naive and Kankowski
variants have higher relative runtimes than for system 1. For system 2, The Kankowski algorithm
is 19% slower than the GCC implementation and also the K. XOR variant is much slower relative
to std::strcmp with 60% longer runtimes. The K. AN variant’s performance drops to 6.16× and
4.51× relative runtime. In essence, from a throughput perspective this shows that for both systems,
XOR is much better suited for protecting the actual string values. Table 4.6 displays the hardened
example dictionary for our example mapping in Table 4.5. Here, the dictionary IDs are hardened
using AN coding such that they match the IDs stored in the Shipping Mode column. The string
values are appended by an XOR checksum, which is shown as hexadecimal number below each
string.

Consequently, to harden the columnar base data, we use AN coding for integer data. Since strings
are typically dictionary encoded, the column actually contains encoded IDs or offsets, which in turn
point into the additional dictionary data structure, which contains the actual XOR encoded string
values. This is a performance tradeoff, to better satisfy Requirement R2. In contrast, since XOR
checksums have a fixed structure and offer little adaptability, AN coding might be the better choice
when RequirementR1, (effectiveness) and RequirementR3 (adaptability) are more important.

4.2.2 Hardened Lightweight Compression

We will now consider the interplay between the presented lightweight compression techniques and
error coding techniques. At first sight, these are contradicting goals, because compression reduces
the data size, while error coding increases it. However, both can be elegantly combined so that the
impact of hardening is smaller, compared to the raw base data size. Furthermore, as we can see

10See https://www.strchr.com/strcmp_and_strlen_using_sse_4.2.

4.2 Hardened Data Storage 119

https://www.strchr.com/strcmp_and_strlen_using_sse_4.2

from Tables 3.6 and A.1 to A.4, the smaller the data size, the smaller the A to achieve the same
error detection guarantees for η. Consequently, compression can have a double positive effect. We
will now consider how hardening and compression are actually combined.

As we described above, the logical techniques DICT, RLE, FOR, and DELTA are basically map-
pings between one source data domain and a typically smaller target integer domain. Consequently,
it seems quite natural to fit with AN coding and Figure 4.14 illustrates how to combine these two.
We assume that for compression we use both logical and physical compression. In Section 4.1.3,
we discussed that multiple passes over the input data may be necessary for a complete compression
algorithm. For the following, we assume that such sub-steps are comprised in a single logical com-
pression step. On a high level, combining lightweight compression and hardening is a two-pass
approach, meaning we must iterate at least twice over the uncompressed data.

In the first pass, we have to determine the bit width of the data which would result after applying
the chosen logical compression technique(s). As we discussed in Section 4.1.3, such preprocessing
may be necessary anyways. Based on that bit width, we choose the appropriate A for the data
after all logical techniques, e.g. from Tables A.1 to A.4. When a logical compression scheme
divides the original input data into multiple blocks of potentially different compression ratios (e.g.
SIMD-BP128 [104]), then for each of these blocks a different A might be chosen. This then again
depends on the logically compressed data bit width per block. In total, the first pass serves to
determine the required parameters for compression and hardening.

In the second pass, the actual compression takes place using the parameters determined in the first
pass. While there are four individual steps shown in Figure 4.14, implementation-wise these might
of course be combined into a single one, depending on the chosen compression techniques. The
considerations for multiple passes from Section 4.1.3 apply respectively. This means, it might be
required to materialize intermediate data after logical compression or hardening. For RLE-, FOR-,
and DELTA-like techniques this results in materializing hardened value-length-pairs, hardened
reference values and hardened derived values, respectively. It may also be required to harden
metadata for the logical compression schemes, for which differentAs than for the compressed data
might be chosen, again e.g. from Tables 3.6 and A.1 to A.4. For RLE, the metadata comprises
the run length of each value, while for FOR-like techniques the reference value is the metadata.
In contrast, DELTA does not use any metadata. For DICT-like compression, the IDs or offsets
are hardened, which must also be respected by the dictionary implementation. Afterwards, the
hardened, logically compressed data is materialized using a physical compression technique and
data layout, where we are again free to choose from those presented before in Section 4.1.3. This
takes place in the form of null suppression, where the techniques must consider the now larger
hardened data size. Finally, since the null suppression techniques typically need some metadata

Determine
Bit Width

DICT, RLE,
FOR, DELTA

Determine
Required

A

E.g. Lookup
in Tables

A.1 to A.4

Log.
Compr.

DICT, RLE,
FOR, DELTA

Harden

AN

Phy.
Compr.

NS

Harden NS
Meta Data

AN

Pass 1 Pass 2

Figure 4.14: The combined process of hardening and lightweight compression. Decompression
works in reverse order.

120 Chapter 4 Bit Flip Detecting Storage

1 compress_AN_NS (in elements[], out buffer[], in AValues, in AMask) {
2 for (i = 0; i < |elements|; i = i + 4) {
3 n1 = elements[i] · AValues;
4 z1 = count_leading_zero_bytes(n1);
5 ...
6 n4 = elements[i+3] · AValues;
7 z4 = count_leading_zero_bytes(n4);
8 mask = (z4 << 6) | (z3 << 4) | (z2 << 2) | z1;
9 buffer ← mask · AMask;

10 buffer ← n1;
11 ...
12 buffer ← n4;
13 }
14 }

Listing 4.1: Pseudo code for AN encoded NS compression. elements is the (logically compressed)
input array while buffer is the output array. |elements| denotes the array’s number of elements.

again for later decoding, that metadata must also be hardened in the last step. Since this is comprised
of integers again, we assume to use AN coding also.

In order to decompress and decode hardened, lightweight compressed data, the previously described
process is reversed. It starts with decoding the null suppression metadata, then follows the physical
decompression, then decoding of the hardened, logically compressed data and metadata, and finally
the logical decompression.

To give a concrete example for 4-wise byte null suppression by Schlegel et al. [162], consider
the pseudo codes given in Listings 4.1 and 4.2 for hardened compression and decompression,
respectively. We can assume, w.l.o.g, that the input data may be logically compressed already.
Furthermore, we assume that this is only the second pass, i.e. that the required parameter A was
already determined for both values (AValues) and masks (AMask). Encoded compression for NS
works the following. There are input and output arrays to function compress_AN_NS, where elements
stores original data and buffer receives the compressed and encoded data. Four data items are
processed in each loop iteration (line 3). First, each item is multiplied by A (lines 5-7) and
afterwards the leading zero bytes are counted (lines 8-10). This can be done by counting the
leading zero bits using compiler intrinsics (__builtin_clz() for GCC) and then dividing by 8. The
bit compression mask contains the number of leading zeros. It is computed by ORing the lower
2 bits of the zero byte counts together (line 11). Finally, the mask and the compressed encoded
words are stored in the output buffer (lines 12-15). Assuming a little endian system, the leading
zero bytes of a compressed value are inherently overwritten by the next appended data item, by
advancing the write pointer by the number of non-zero bytes of the item just written. Schlegel et
al. note in their evaluation that loop-unrolling is very beneficial to avoid data dependencies. In
their setup, an unroll factor of four was the best one. The algorithm in Listing 4.1 can be adapted
easily to four-wise loop unrolling as follows: First, compute elements n5, ... , n16 after n4. Then,
compute z5, ... , z16 after z4. Afterwards, compute and store the three additional masks after mask
and, finally, write elements n5, ... , n16 after n4.

Decompression is also straight forward, as shown in Listing 4.2. A loop iterates over the input
buffer which was generated by the compress_AN_NS function (line 3). First, the compression mask is
loaded (line 5). Then, the number of non-zero bytes – denoted by the mask’s lowest 2 bits – of the
first data item is stored (line 7) and the according bytes are stored into item (lines 8 and 9). The
restored item is checked using the inverse A−1 and errors may be handled appropriately, e.g. we
here call a function error() (line 9). We leave the concrete implementation of such a function to
the actual DMS. Then, the decoded data item is stored in the output array (line 10) and the read

4.2 Hardened Data Storage 121

1 decompress_AN_NS (in buffer[], out elements[], in A−1
Values, in dmin, in dmax, in A−1

Mask)
2 {
3 for (i = 0; i < |buffer|;) {

4 mask = buffer[i] · A−1
Mask;

5 if (mask > 255) error();
6 i = i + 1;
7 for (k = 0; k < 4; ++k) {
8 leading_zero_bytes = mask & 0x3;
9 item = buffer[i] & (0xFFFFFFFF >> (non_zero_bytes * 8));

10 dec = item · A−1
Values;

11 if (dec < dmin || dec > dmax) error();
12 elements ← dec;
13 i += 4 - leading_zero_bytes;
14 mask >>= 2;
15 }
16 }
17 }

Listing 4.2: Pseudo code for AN encoded NS decompression on unsigned data. buffer is the
hardened compressed input array while elements is the output array containing the uncompressed
(or logically compressed), decoded items. |buffer| denotes the array’s number of bytes.

position of the input buffer is advanced by the number of non-zero bytes (line 11). Finally, the
mask is shifted right (line 13), so that the same steps (lines 7 to 13) can be repeated for the next
3 items, since always 4 items are represented by a single-byte compression mask. The four-wise
loop unrolling optimization can be applied as for function compress_AN_NS.

As we showed above, AN coding can be well combined with integer lightweight compression. The
crucial point is that AN coding must be applied in between the logical and physical compression
steps. Furthermore, AN coding can also be used to harden all the metadata needed for compression
and decompression. Our example Listings 4.1 and 4.2 show that this integration is a straight
forward process and that a tight coupling is possible to avoid intermittent materialization.

4.2.3 Hardened Data Layout

Having compressed the hardened data, we need to choose a physical data layout. Here, we basically
have the same choices as in Figure 4.10 and the three hardened variants are shown in Figure 4.15.
It is very hard to use BitWeaving (Figure 4.15b) or ByteSlice (Figure 4.15c) for hardened data,
because the problem here is that to decide whether a code word is valid or not, the whole code word
must be read. This is no problem for the horizontal layout (Figure 4.15a), because the code words
are stored as one unit. In contrast, the vertical layouts tear apart all the individual bits or bytes.
Since we encode each value individually, a vertical layout would require to re-construct each value
for error detection. One possibility to mitigate this overhead would be to encode not each value,
but each byte or bit group (c.f. Figure 4.10b or in [108, Figure 9]). Then, each bit group can be
quickly decoded and the original processing take place. This leads to reduced scan performance,
because the effective bit groups are smaller due to the hardening. We could also encode the bit
groups such that the encoded bit groups store half as many bits. Then, we can decode and error
check two encoded bit groups and combine them to a single bit group of the original size. Then,
however, the memory footprint is increased by a factor of two. These are just the two extremes
and by shifting the decoded bit groups around, we can also use intermediate configurations where
parts of multiple decoded bit groups are combined to result in a bit group of original size. For
the hybrid ByteSlice layout, the same considerations apply. There, we could encode a set of bytes
such that it fits into a machine word, again. We leave more detailed investigation for future work,
while for the following, we assume only a horizontal physical data layout.

122 Chapter 4 Bit Flip Detecting Storage

Storage

byte 0 byte 1 byte 2 byte 3

Bit-Packed

Byte-Packed

Word-Packed

data bits
hardening bits
spare bits

(a) Packed.

Value a b c d e f g h

data byte 1 ad1 bd1 cd1 dd1 ed1 fd1 gd1 hd1

...

code byte 1 ac1 bc1 cc1 dc1 ec1 fc1 gc1 hc1
...

bit bit group

(b) Vertical bit-parallel.

value vi v1 v2 v3 v4 v5 v6 v7 v8

data
word 1 d1 d2 d3 d4 d5 d6 d7 d8

...

code
word 1

c1 c2 c3 c4 c5 c6 c7 c8

...

byte

· · ·

· · ·

byte

spare bits

Value

(c) ByteSlice.

Figure 4.15: Physical data layouts for hardened data.

4.2.4 UDI Operations

Up to now, we discussed how data is placed inside the internal layer of a DMS (cf. Figure 4.1).
Now, users or other DMS components want to be able to actually work with that data, which needs
to be added to, updated in, and retrieved or deleted from a database. In the internal layer, we
are mainly interested in Insert, Delete, and Update – the UDI operations. Modification can be
modeled as a sequence of delete and insert, known as main-delta- or insert-only-architecture [140],
which in turn is the standard for main memory-centric column stores. We here discuss in how
far hardening affects these UDI operations. For that, we need not know how a user or database
component actually formulates a request for performing a UDI operation. On a high level, we
can assume that they modify databases in terms of modifying tuples. Through the abstractions
in a DMS (e.g. external and conceptual layer), the details are hidden from users and partly also
from other internal components of a DMS. In the end, this ultimately boils down to modifying
bits and bytes, depending on the actual physical data representations which are managed by the
internal layer. This happens based on all the aspects described above: data structure (e.g. column

4.2 Hardened Data Storage 123

or index), physical data types, compression, data layout, and hardening technique. As should have
become clear in the above discussions, the hardening techniques seamlessly integrate with the UDI
operations. This means, they are orthogonal to UDI operations and do not affect them. Especially
regarding the main-delta-architecture, any modifications are done in a separate delta structure and
eventually merged into the main part, where modified parts are rebuilt anyways.

4.2.5 Summary and Conclusions

In this section, we presented our hardened storage layer. As we discussed, we only need to adapt
the lowest internal layer, so that the conceptual and external layers can still provide the abstraction
towards client applications, without being changed. Regarding the physical data types, since we
only deal with integers in the base columns, we harden all integers using AN coding. We then
discussed the problems of variable-width, limb-based representations of, e.g., decimal and string
values. The limbs can be seen as individual integers again, so that we have several choices here:
encode such a variable-width value as a whole, or harden each individual limb, both using AN
coding, or use XOR checksums over the whole value. We argued that the first choice, hardening
such large numbers with AN coding, is currently infeasible, since on the one hand we did not
yet obtain golden As for data widths over 32 bits. On the other hand, each such value might
be of different size, which could potentially require to use a different A for each value and this
information needs to be stored somewhere, again, and can be corrupted. Hardening each limb
individually requires to adapt the algorithms for working with the data. For decimal numbers,
we argued that hardening each limb individually, instead of the number as a whole, using AN
coding needs to be used as a technical limitation today. When golden As for larger data widths
are computed, the first approach can be tested for feasibility, which we leave to future work. For
string values, we showed that limb-encoding is also possible and compared this against the third
method of using XOR checksums. This latter method stores one checksum per string value, which
is not necessarily the same size as the limb size. We could show that the XOR method is faster for
the string comparison operation than AN coding, and argued in favor of Requirement R2 to use
the XOR method for strings. When effectiveness is of greater concern, then AN coding might be
the better choice, due to it providing minimal detectable bit flip weight guarantees. Regarding the
physical layout of hardened data, we discussed that the vertical and hybrid layouts are problematic
due to high tuple reconstruction costs, since they distribute the bits or bytes of a value across many
machine words. Consequently, we only use the horizontal data layout.

4.3 HARDENED TREE INDEX STRUCTURES

In contrast to simple arrays, tree index structures are special in the sense that in addition to data
they also exhibit structure, which only the application knows about. This means, that, in addition
to the data, we also have to detect bit flips which change or destroy this specific structure. First,
we will present related work which deals with detection of errors in index structures and in B-Tree
variants in particular. Afterwards, we will discuss why these techniques do not suffice for our
thesis error model (cf. Definition 4). Finally, we will then describe our online bit flip detection
approach for B-Trees. This work was published in [88] and a live demonstration was given on the
BTW 2015 conference [89].

124 Chapter 4 Bit Flip Detecting Storage

4.3.1 B-Tree Verification Techniques

In 1984, Küspert described methods to detect errors in the structure of B-Trees during normal
operation, where he introduced pointer sanity checks and key validation techniques [92]. Before
interpreting the actual page contents, page header information is used to determine whether this
page belongs to the same B-Tree through a table identifier, and whether it is actually a level below
the parent. Through the use of forward and backwards pointers, the links between parent and child
nodes and also between sibling nodes can be checked. For instance, when traversing upwards, the
parent node must actually contain the link to the child node. When traversing downwards, the child
node must point back to the originating node as its parent. The sibling links in a child node are
verified against the neighbor links in the parent node. The left- and right-most nodes of each inner
level must not have a link to a left or right neighbor, respectively. Additionally, he proposed key
validation in the inner nodes, but not in leaf nodes. Keys in inner nodes are redundant, because
they are derived from the lower layers and only work as key range separators. This fact can be used
to compare the key ranges against the parent node’s separator keys or against sibling nodes’ key
ranges. In the leaf nodes, he describes, at most validation of the sort order is possible. From that
it is easy to see that in trees where only unique keys are allowed, this uniqueness property can also
be verified. In his work, Küspert assumes disk-based database systems, where partial writes occur
or where nodes’ pages are not updated at all. However, these techniques were deemed lightweight
enough to be carried out in each tree traversal as local tree verification.

In the 1990s, Mohan discussed how B-Tree pages, and database pages in general, can be corrupted
due to partial writes which stem from performance optimizations in the SCSI standard [119]. He
developed error prevention techniques through special page modification and verification after any
page read, logging, log analysis and other operations.

Graefe and Stonecipher introduced B-Tree verification mechanisms which are more heavyweight
than those in [92]. They argue that complete verification of the whole tree is required and
they assume that a tree that is to be verified is exclusively locked so that there are no concurrent
transactions using that index. By that, tree verification is done in a separate maintenance operation,
i.e. offline and not online. Another assumption is that there are typically multiple B-Tree indexes
per relational table and that these multiple indexes can be verified first on their own and then against
each other. Their first technique, called “in-page verification”, uses one or several checksums to
detect partial reads or writes. Since usually the database page size (8 KiB in [64]) differs from
the disk sector size (e.g. 512 Bytes), a checksum over only a single value per sector is assumed
to be sufficient. Next, they propose different techniques for complete verification of the remaining
consistency properties of an index. This covers the verification of links between parent and
child nodes, as well as between siblings, and key orderings and validity of key ranges. The first
technique is the naive index navigation, similar to those from [92]. There, the index is navigated
in breadth-first or depth-first fashion. The second approach is called “aggregation of facts” and
is particularly useful to support terabyte databases. There, the same facts as before are collected,
but they are not immediately verified. The basic idea is that for one found fact, there must always
be exactly one “counter fact”. For instance, in a parent node, the facts “this (parent) node points
to that (child) node” are gathered. Later, when the child nodes are visited, the according counter
facts are assembled, like “this (child) node points back to that (parent) node”. At the end of the
verification step, there must be no fact left, otherwise there are inconsistencies in the index. Graefe
and Stonecipher argue that the most important benefit of this approach is, that each node or page
is read only once. One problem there is the validation of key ranges between cousin nodes, which
are neighbor nodes on the same level with different parent nodes. Fence keys can be used as a
solution, which in practice are the parent node’s left and right separator keys and which can replace

4.3 Hardened Tree Index Structures 125

the sibling pointers. Graefe and Stonecipher argue that an additional advantage of their techniques
is, that they share lots of code with other tree operations, which is beneficial with regard to source
code maintenance, but this does not play a role here. The next verification technique employs bit
vector filtering and is actually an optimization of the gathering of facts. There, for each node and
child pointer, the combination of index identifier, page identifier, index level, and low and high
fence keys is hashed to produce the position in a bit vector. Upon encountering a fact, that bit
position is computed and that bit is inverted. After the verification, the bit map should be in its
original all-zero state, otherwise errors were detected. In contrast to the other techniques, this one
can not pinpoint the error location and a second pass is required upon detection of a corruption.
Their final technique is to use the standard query processing facilities and to formulate queries to
find corruptions. The advantage is that complex expression can be evaluated, that views can be
compared against base tables, when columns are derived using arithmetic and functions, or when
dealing with user-defined types.

Graefe et al. further extend B-Trees to include information in each node which allows to repair
itself. In essence, each such self-repairing B-Tree stores backup pointers to the previous version
of its respective page or node, as well as log sequence numbers which point into the recovery log.
This idea is taken from previous work on the newly introduced single-page failure class [62], where
a database keeps a global page recovery index with the same auxiliary information which is now
put into B-Trees themselves.

4.3.2 Justification For Further Techniques

In contrast to the above approaches, we do not assume partial reads from or writes to main memory
as the error model, but bit flips which occur as an arbitrary effect. Furthermore, offline verification
as in [64] contradicts with our Requirement R4 by which we require bit flip detection to occur
in an online fashion. Another big difference is the assumption of whether the index is memory
resident or not – some techniques are discarded in the related work, because they require additional
disk I/O, which is very costly. Also, while B-Trees in disk-based systems are optimized towards
the I/O characteristics of disks, like a certain page size of several disk sectors, in-memory indexes
are tailored to the characteristics of the memory and cache subsystems. Other optimizations for
detecting tree corruptions, like the bit vector filtering [64] or auxiliary information for self-healing
databases [62] and indexes [63], assume that main memory is reliable and that, consequently, the
auxiliary information for error correction is also reliable. However, in the view of transient bit flips
in main memory, this assumption simply does not hold any longer. In particular, for self-healing
data structures the pointers to backup pages and the log sequence number can become corrupt as
well and such errors must be detected, too. Therefore, we introduce a different online hardening
approach which is embedded in the tree traversal and other operations on such a tree index. In
the following, we concentrate on the still widely used B-Tree and develop a variant which we call
Error Detecting B-Tree (EDB-Tree).

4.3.3 The Error Detecting B-Tree

We will now describe the node layout of our baseline B-Tree, which we extend with error detection
capabilities afterwards. Its physical layout is shown in Figure 4.16, which shows 3 inter-linked
nodes whereas black and red arrows denote links from a node to its children or from a node to
its parent, respectively. Each node is structured the following. At first, there is a pointer P to the
node’s parent node which is null in the case of the root node. Then, there follows a 2-Byte unsigned

126 Chapter 4 Bit Flip Detecting Storage

Metadata
ppar L F k1|v1 . . . kf |vf . . . p0 p1 . . . pf . . .

Metadata
ppar L F k1|v1 . . . kf |vf . . . p0 . . . pf . . .

Metadata
ppar L F k1|v1 . . . kf |vf . . . p0 . . . pf . . .

Figure 4.16: EDB-Tree node layout.

integer L denoting the node’s level inside the tree, which is 0 at the leaf level and increases by
one at each higher level towards the root. Afterwards, another 2-Byte signed integer F (fill level)
represents the number of key-value pairs currently contained in the node. On the one hand, using
signed integers “sacrifices” one bit, but on the other hand, it allows to check for some memory
error as is explained below. At next, there are the key-value pairs {(K1, V1), (K2, V2), ... } where
each key is 4 or 8 bytes wide as well as each value, which e.g. can be inline data, a RID (record
identifier), or a pointer to the actual data. Inside a node, keys are kept in ascending order. Finally,
there follow pointers to child nodes {P1, P2, ... }, which are always 8 bytes long. Finally, a padding
– not shown in the figure for conciseness – allows to align the node to a desired boundary – usually
the system’s memory page size of 4 KiB. Note also that the compiler (GCC) aligns L and F so
that they together consume a total of 8 Bytes for better alignment of the subsequent node members.
As is common for B-Trees (and its derivatives) parameter K delimits the number of key-value
pairs and pointers in nodes: except for the root, in a node there must be present K ... 2K keys
and accordingly up to 2K + 1 child pointers. For 4 byte keys and values K is 127 (254 keys and
254 values per node), while for 8 byte keys and values K is 84 (168 each per node). Accordingly,
there are up to 255 or 169 children for a node, respectively. For mixed data widths of 8 byte keys
and 4 byte values or vice versa K is 101. Table 4.10 summarizes the values for K according to
the data width of keys and values for our B-Trees. For the baseline B-Tree, only each node’s fill
level is checked to be at least zero and at most 2K, as this is the only variable messing up node
scans. Otherwise, this baseline employs no error detection at all. Corrupt pointers to unallocated
memory result in segmentation faults, while corrupted keys and pointers to the wrong child may
result in false positives or false negatives – keys which were never added to the tree are found and
the other way around, respectively. All variants presented hereafter inherit the fill level check and
for all tree variants methods for building the trees and doing point queries are fully implemented.
W.l.o.g, we store values inside all inner and leaf nodes, instead of only in the leafs. All our error
detection techniques also apply to those B-Tree variants which have other properties like storing
values only in the leaf nodes.

Key width [Bytes] 4 8 4 8
Value width [Bytes] 4 4 8 8

K (B-Tree, EDB-Tree, EDB-TreePB) 127 101 84
K (EDB-TreeCS, EDB-TreePBCS) 126 101 84

Table 4.10: K for different key and value sizes for baseline B-Tree and the EDB-Tree variants.

4.3 Hardened Tree Index Structures 127

In order to cope with an increase in transient error rates in future hardware, our idea is to extend
the existing online verification methods towards detecting bit flips during tree traversal and node
scans. Assuming that the whole index is memory resident, other checks can be included. Since
we propose to make B-Trees detect main memory errors, we call these variants Error detecting B-
Trees (EDB-Trees). Furthermore, our premise for the following is that main memory may become
corrupt, whereas CPUs – cores and on-chip caches – are reliable components not introducing
further errors to data or during computations (cf. Definition 4).

As a first step, we introduce additional pointer sanity checks. For instance, additional pointer
checks include checking the alignment of a pointer, i.e. whether it directs to the start of a tree
node, which can be done even before following the pointer. Furthermore, assuming an in-memory
DMS, we exploit virtual memory management:

1. the virtual address space is much larger than typically employed amounts of main memory,

2. hardware supports less than 64 bits for addressing, since today usually 46–48 memory address
lanes are fused on motherboards, and

3. operating systems also have practical limits on the available addressable amount of main
memory. For Linux, up to kernel 4.14, 48 bits (256 TiB) were used for virtual addresses and
46 bits (64 TiB) for physical ones11. Since kernel 4.14, 5-level paging is supported, which
uses 56 bits (128 PiB) for virtual addresses and 52 bits (4 PiB) for physical ones.

For utilizing the much larger virtual address space, EDB-Trees allocate nodes at successive virtual
addresses. Consequently, from the process’s perspective, the tree consists of a single contiguous
memory area. This can be done, e.g. in Linux-based systems, through the use of the mmap function,
where the DMS can force memory allocation in a specified part of its virtual address space.
Nowadays, in pointers the upper bits which would be zero anyways are used for further status
information, but with regard to arbitrary bit flips in main memory this information again must be
guarded against corruption and specially handled. Consequently, we decide against using those bits
in pointers for other purposes. This memory allocation allows to detect corrupt pointers pointing
out of this area into unallocated virtual memory space, since we know starting address and length
of the contiguous memory area. This is closely related to the table identifier verification proposed
in [92], but exploits the virtual memory mechanism.

During tree traversal, three different pointer sanity checks are employed with minimal computa-
tional overhead: alignment, memory region and parent-child-relation. Since the node size is fixed,
pointers must be aligned accordingly, i.e. for 4 KiB nodes, the first 12 bits must be zero. Knowing
the memory area’s offset and size, the pointer is then range-checked, i.e. it must point into the
allocated region. For handling pointers to the wrong child, the child’s parent pointer is compared
against the node’s address from which we descended. If any of those three checks fails, we can
be sure some bit flip(s) occurred. While the alignment- and region-checks suggest an error in
the checked pointer, the parent-child relation only indicates one of the two has changed. These
sanity checks imply no additional memory footprint. However, they can detect only some errors in
pointers where the position of the flipped bit – starting from 1 at the least significant bit – is greater
or equal than ld(node size) and smaller or equal to ld(allocated memory). For instance, such an
EDB-Tree using 4 KiB nodes and having allocated 4 GiB of memory can not detect bit flips in
pointers between bit positions 13 and 32, inclusive. Consequently, about 69% of bit flip patterns
could be detected in 64-bit pointers by those sanity checks.

11See https://kernelnewbies.org/Linux_4.14#Bigger_memory_limits and https://lwn.net/
Articles/717293/, visited 27 March 2018.

128 Chapter 4 Bit Flip Detecting Storage

https://kernelnewbies.org/Linux_4.14#Bigger_memory_limits
https://lwn.net/Articles/717293/
https://lwn.net/Articles/717293/

Metadata Checksums
ppar L F CSM CSK CSV CSP k1|v1 . . . p0 p1 . . .

Metadata Checksums
ppar L F CSM CSK CSV CSP k1|v1 . . . p0 . . .

Metadata Checksums
ppar L F CSM CSK CSV CSP k1|v1 . . . p0 . . .

Figure 4.17: EDB-TreeCS node layout.

The following variants all inherit the pointer sanity checks. Since main memory bit flips may occur
at any position, any information added to nodes as some kind of redundancy for error correction
must be guarded against main memory bit flips, too. Therefore, the following techniques only add
little to no redundancy – as e.g. in contrast to [92].

EDB-Tree With Parity Bits

For a given data word, a parity bit guarantees that there is always either an even or odd number of
ones. By that, any odd number of bit flips can be detected, while even numbers of bits flips cancel
each other out. We call this EDB-Tree variant EDB-TreePB. Parities can be either even or odd and
in principal there is no difference in employing either. Parity bits are single-bit XOR checksums,
as discussed in Section 3.1.2 and the appropriate SDC considerations from Section 3.2.2 apply.
Compared to e.g. 64 bits, a single bit causes a memory footprint of 1.6%, while for 32 bits it is
3.1%. Computing a parity bit on modern processors can be done with native instructions in a few
cycles12. Consequently, parity bits provide limited bit flip detection with very little memory and
performance impact. In this EDB-Tree variant, for each node member (cf. Figure 4.16), a parity bit
is computed and set as its most significant bit (MSB). Thus, for computing the parity bit, only all
but the MSB are regarded and the according member’s domain is reduced by one bit. For pointers,
this is no limitation since the virtual address space is much larger anyways, as we argued earlier.
The parity bit is set for a key and a value, whenever a new key/value-pair is added, or when a value
is updated. It is set for a node’s fill level whenever that changes, and on pointers when these change
in the course of split, merge and delete operations. For each tree traversal, node members are first
validated against the parity bit before their first use.

EDB-Tree With XORWord Checksums

For detecting more bit flips we employ word XOR checksums to groups of node members. An
advantage of using XOR checksums is that they allow to correct a single data element, when there
is only one corrupted element and when it is known exactly which element is the corrupt one. To
improve this rate for a single node keys, values and pointers can be partitioned and one checksum
for each partition can be added to the node, which however further increases the memory overhead

12Counting bits in a 64-bit word typically has a latency of 3 cycles and a throughput of 1 cycle, meaning that a single
count takes 3 cycles and every other cycle, another count can be produced through pipelining [74].

4.3 Hardened Tree Index Structures 129

leading to a smaller fan-out. Checksums introduce a greater performance penalty than parity bits
since all according data elements used to compute the checksum must be accessed to verify the
checksum again. We add four checksums to each node: one for the metadata, i.e. parent node
pointer, tree level and fill level (CSM), one for all keys (CSK), one for all values (CSV) and one
for all pointers (CSP), as can be seen in Figure 4.17. This has a rather small impact on parameter
K, as is depicted in Table 4.10: for 4-byte keys/values there remain 252 keys/values, instead of
254, the memory overhead is 24 bytes, and the fan-out decreases by 0.8%. For 8-byte keys and
values, there are still 168 pairs (K=84), with an additional 32 bytes which fit into previously unused
memory. All of the checksums must be updated whenever a respective node member is added,
removed, or updated. During tree traversal, first CSM is validated, whereas CSK is validated
while scanning through a node. Therefore, while comparing the node’s keys with the searched one,
they are XOR-ed to generate the validation checksum in parallel. Before descending or when the
key is found all remaining keys are XOR-ed and the computed checksum is compared against the
stored one. Also, only when the key is actually found in the node is the values checksum validated.
Additionally, before descending, CSP is validated by XOR-ing all child pointers.

EDB-Tree With Parity Bits and Checksums

We can also combine the previous two techniques of parity bits per key and value and checksums.
By that, we potentially increase the bit flip detection capabilities, since a bit flip now only stays
undetected when both codes fail. The node layout is then still the same as for the EDB-TreeCS and
the parity bit is set again in the MSB, as for the EDB-TreePB. We call this variant EDB-TreePBCS.

EDB-Tree With AN Coding

For the EDB-Tree, we only considered XOR checksums so far in the form of checksum words and
parity bits. Of course, the combination with AN coding is in principle possible, but in this thesis
we only considered XOR checksums. We leave the detailed investigation, which should be straight
forward, and performance evaluation of AN coded EDB-Trees to future work.

Triple Modular Redundant B-Tree

As a second baseline for the throughput measurements following later in Section 6.4, we use a
TMR variant of the baseline B-Tree. It incorporates three sub-B-Trees and delegates all function
calls to the three internally managed B-Tree instances. Likewise, for querying operations like key
lookup, all three sub-trees are queried and afterwards, the majority is voted. When at least two out
of the three results are the same, then this is assumed to be the correct result.

4.4 SUMMARY

In this chapter, we investigated the hardening of the storage layer of modern main memory-centric
column stores using our two selected coding schemes AN coding and XOR checksums. Therefore,
we first revised individual parts of that storage layer and, in more detail, the internal layer containing
the physical schemas. These schemas deal with various aspects. First, they define the storage model

130 Chapter 4 Bit Flip Detecting Storage

which can in principal be row-based (NSM) or column-based (DSM), where column stores use
the DSM-based layout. Considerations apply to mixed layouts like PAX respectively. Second,
the data representation dictates the mapping from the various logical data types to some physical
implementation data types, on the one hand, where for the sake of correctness, floating-point
numbers are avoided in favor of fixed-point decimal arithmetic. On the other hand, aspects like
lightweight integer compression are also considered. There are logical techniques, e.g. DICT,
RLE, FOR, and DELTA, and the physical one NS. Actual lightweight compression algorithms
are compositions of these techniques. Third, the data layout of the actual bits and bytes can be
horizontal, vertical, or also a mixture like ByteSlice. Fourth and finally, next to the base data
there are index structures as secondary access paths to speed up data lookup. Here, the B-Tree and
various variants are also used in main memory-centric column stores.

As we showed, to harden the storage layer we only need to adapt that lowest internal layer, while
the conceptual and external layers stay unchanged. Since we only deal with integers in the base
columns, we harden them all using AN coding. We then discussed the problems of variable-width,
limb-based representations of, e.g., decimal and string values. For decimal numbers each limb must
be hardened individually, as a technical limitation today, because we did not yet obatin golden As
for data widths over 32 bits. When goldenAs for larger data widths are computed, the first approach
can be tested for feasibility, which we leave to future work. For string values, we showed that limb-
encoding is also possible and compared this against using XOR checksums. XOR is faster than
AN coding for string comparison and can be used in favor of efficiency (R2). When effectiveness
is of greater concern, then AN coding is the better choice. Next, we discussed the combination
of hardening and lightweight integer compression. While it is quite natural to combine both, we
now first must determine the data bit width which results from the logical compression to select
an appropriate golden A. This will result in a 2-pass algorithm for hardened compression and we
gave a concrete example for hardened 4-wise byte null suppression. Regarding the physical layout
of hardened data, we discussed that the vertical and hybrid (ByteSlice) layouts are problematic due
to high tuple reconstruction costs, since they distribute the bits or bytes of a value across many
machine words. Consequently, we only use the horizontal data layout. Furthermore, we explained
that UDI operations are orthogonal to the low-level data layout techniques.

Finally, we showed how to harden the B-Tree index structure against bit flips, as it is still one of the
widely used secondary access paths. This resulted in the new EDB-Tree index data structure. We
exploit virtual memory management to logically place all nodes in a distinct area in virtual memory
space, which allows more pointer sanity checks than there were in literature. Furthermore, we
investigated the use of parity bits and checksums, to harden meta data, keys, values, and pointers.
Bit flip detection is done in each and every tree traversal, for each and every node.

The methods presented in this chapter provide a principal toolbox for building a storage layer,
which is hardened against bit flips, for main memory-centric column stores. As we can see,
detailed knowledge about our system leads to the use of different hardening techniques, depending
on which kind of data must be protected. This is in accordance with RequirementR5 – separation
of concerns. Being equipped with a hardened storage layer, we still need to figure out two aspects.
First, we need to investigate how this affects query processing, which is what we will show in
the following. Second, we must also investigate the runtime implications in detail, which we will
provide after query processing.

4.4 Summary 131

132 Chapter 4 Bit Flip Detecting Storage

5
BIT FLIP DETECTING QUERY PROCESSING

5.1 Column Store Query Pro-
cessing

5.2 Bit Flip Detection Opportu-
nities

5.3 Hardened Intermediate Re-
sults

5.4 Summary

Now that we are equipped with a hardened storage layer, we will adapt the query processing
part. Two questions arise: Firstly, when to actually do bit flip detection and, secondly, in how far
database operators must be adapted for this task. This is a crucial point, because this will impact the
performances of a DMS in terms of availability, reliability, query throughput, and query latency.
There are basically two possibilities: online and offline error detection. The former employs error
detection during query processing, i.e. it is part of a query itself, while the latter does error
detection as a completely separate operation. Based on our thesis error model (Definition 4) and
Requirements R1 and R4, respectively effectiveness and availability, in this thesis we consider
online error detection. Then, values can be checked for bit flips as soon as they are fetched from
CPU cache or main memory, and this guarantees better availability since it is no separate process.
We leave the consideration of offline detection to future work. Based on that, detecting bit flips
too infrequently may allow them to stay silent and corrupt query results, and when error detection
requires too much time or too many resources, it might influence the throughput or latency of
queries too much. We will solve these issues with the help of the following main contributions:

1. We introduce and discuss several opportunities for employing online error detection during
query processing. This results in holistic, continuous bit flip detection, which was published
in [87].

2. We show how to tightly integrate error detection primitives into physical query operators,
also published in [87].

3. As a consequence of the very close integration, we show that this does not affect other parts
of the query processing life cycle, except the physical operators’ implementation.

4. We investigate the hardening of query intermediate results, in particular hardening bitmaps
and the materialization of results.

To the best of our knowledge, we are the first to introduce arbitrary bit flip detection into query
processing. This chapter is structured the following. First, we shortly revise query processing in
column stores in Section 5.1. We need this to afterwards describe our hardened query processing
approach in Section 5.2. This one, in turn, does error detection during query processing in an
online fashion. Then, we also discuss the format and the handling of hardened intermediate results
in Section 5.3. Section 5.4 summarizes and concludes this chapter.

5.1 COLUMN STORE QUERY PROCESSING

The reliable storage is only one part of data management, the other being the reliable query
processing. In this section, we will first very briefly revise the basic steps of actually querying data
from a DMS. We will then compare this to modern systems tailored for in-memory processing,
i.e. concepts which are specific to in-memory column stores. This provides an overview of the
concepts we need afterwards, whereas the query life cycle is discussed in great detail by many
standard text books, like [159], and research papers, e.g. [21]. Based on this overview, in the
following section we explore opportunities for integrating bit flip detection into query processing.

Each DMS offers some way to work on the managed data through queries in a specific language,
which for relational databases is typically some SQL dialect. The way to get data out of (or into) the
database is comprised of a whole query life cycle, which is depicted in a general way in Figure 5.1a.

134 Chapter 5 Bit Flip Detecting Query Processing

SQL
Query

SQL
Parser IR

Log.
Opt.

Phy.
Opt.QEPPlan

Exec.
Result
Table

DMS

(a) Old-fashioned query life cycle, after [159].

SQL
Query

SQL
Frontend

+ Strategic
Optimizer

MAL
Plan

MAL
Interpreter
+ Tactical
Optimizer

Result
Table

DMS

(b) MonetDB-style query life cycle, after [21].

Figure 5.1: The coarse query life cycle.

The abstract concepts are represented in rectangles and circles. First, a user formulates a query
in, e.g., SQL. Systems have also been developed to provide multiple language front-ends, e.g.
MonetDB additionally provides an object-oriented front-end [21]. A (SQL) parser translates this
query into a DMS-specific internal representation (IR). In Figure 5.1, (by-) products like a query
are drawn as circles, while components, such as the parser, which take inputs and produce outputs
are drawn as rectangles. Conceptually, the IR is a tree of logical operators representing the basic
algorithms and their order for operations on the managed data. In the relational algebra, these
operators are among others selection (σ), projection (π), join (◃▹), and grouping (γ). The first
one, σ, selects tuples from a relation according to a (simple or complex) predicate. The projection
π is used to select from a table only a subset of the attributes (columns). The join operator, ◃▹,
builds (a subset of) the Cartesian product of two tables according to a join attribute [117]. The
operator γ is used to group attributes with reference to one other attribute, which is often used in
conjunction with aggregating the non-grouped attributes, e.g. computing the minimum, maximum,
sum, average, and the like. An example query tree is shown in Figure 5.2a, which we will cover
in detail later. The internal representation is then given to two optimizers, which try to reduce the
total query costs. First, the logical optimizer does optimizations on the algebraic level, which for
instance includes reordering the operators. In particular, the ordering of join operators is a very
important optimization problem [117], but also selection-push down is a well-known optimization
and there are many others [159]. Afterwards, the physical optimizer maps the logical operators
to physical operators, where it may typically choose from a set of available implementations.
This depends on data characteristics like sorting and selectivities. For instance, a concrete join
implementation on completely unsorted data may be based on nested loops or hashing, while when
one or both join inputs are sorted, a sort-merge join might be preferred [117, 159]. The selection
(σ) can, for instance, be realized through full column scans, or index scans. It is important to
note, here, that physical optimization is typically done before query execution, based on estimated
cardinalities. The result of the physical optimization is a query execution plan (QEP), which is
the final “recipe” which is then executed. In Volcano-style database systems [61], the query plan
consists of tree-like connected operators, where upper physical operators call the lower physical
operators in the execution plan to fetch individual tuples for processing. This is known as tuple
at a time execution. At the leafs there are typically the tables from which the business data is
fetched. After the execution of the query plan, the result is returned to the user, which in the case
of relational database systems is a result table.

We call the above the “old-fashioned” style, because in the recent past some aspects of this life cycle

5.1 Column Store Query Processing 135

were shown to be suboptimal in the context of in-memory DMSs. For instance, MonetDB [21]
uses a different approach, shown in Figure 5.1b. On a first glance, it seems like less steps are
involved, but that stems from the fact that parsing, IR, and optimization steps are merged into
the SQL frontend. Furthermore, there are no logical and physical optimizations, but strategic
and tactical optimizations, which are not synonyms. The former combines logical and parts of
physical optimization. Instead of a tree-like query representation, a sequential MonetDB assembly
language (MAL) plan is generated, where the order of the operators is fixed, but not the choice of
physical implementations. That choice is made during the latter tactical optimization at run-time,
by the MAL interpreter. This can alleviate the problem of making decisions based on wrong
estimates [75]. For each logical operator, there are specializations depending on, e.g., the input
data types, sorting denseness etc. of the inputs. A detailed description of MAL is out of scope of
this thesis and is described in full length in [21]. We will give a small example just below.

Another major difference is the execution model: in contrast to the pull-based tuple at a time
execution, where complete tuples are passed between operators, MonetDB and virtually any in-
memory column store use an operator (or column) at a time execution model. Here, DSM comes
into play (cf. Section 4.1.2) where each column is stored separately. By that, the MAL plans
can be sequential recipes and each operator processes a whole column. MAL also allows parallel
sections to work on partitions of columns in separate threads. The required partitioning is done
dynamically at run-time by calculating the array bounds which each thread should process on
its own, which is known as vector at a time execution model. The benefit is that it allows easy
partitioning at run-time into chunks (vectors) and straight-forward parallelization. In MonetDB,
the actual data model uses so-called binary association tables (BATs), which actually consist of
two columns, as pointed out in Section 4.1.2 in Figure 4.3c. While we used the term “column” so
far, in MonetDB we use the notion of BATs, however the expressiveness is the very same. For the
current high level view it suffices to think of BATs as single columns1. The tactical optimization
now chooses physical operators based on the input BATs’ data types, data characteristics, sorting,
available secondary access paths (indexes) and more [21]. Like before, the result of a query is a
relational table for relational SQL queries.

In the following, we want to first describe in more detail some peculiarities of MAL plans and then
present our adaptations for hardening query processing. For that, we use the following example
query, which is based on the SSB schema [131]:

1 SELECT p_name, SUM(lo_revenue) FROM lineorder JOIN part ON lo_partkey = p_partkey
WHERE p_color = ’goldenrod’ and lo_orderdate = 19971010 group by p_name;

Listing 5.1: Concrete example query.

In a nutshell, this query selects the name of parts with color “goldenrod”, which were sold on
October 10, 1997. In addition, for each part the total revenue is summed up. To make the
upcoming graphics more concise, we will use the following abstract form of the above query:

1 SELECT R.b, SUM(S.c) FROM R JOIN S ON R.a = S.a WHERE R.r ◦ xr AND S.s ◦ xs GROUP BY
R.b

Listing 5.2: Abstract example query.

This translates into a relational query plan, shown in Figure 5.2a. There are two tables t1 and t2
from which we query one column each, R and S, respectively. The projection operator π, which
selects the two columns from the tables, is omitted here and typically not needed anyways due to the

1MonetDB already uses a so-called headless mode, which means it physically really only single columns are passed
between operators [14].

136 Chapter 5 Bit Flip Detecting Query Processing

γR.b, S.c

◃▹R.a=S.a

σR.r ◦ xr σS.s ◦ xs

R S

(a) Relational Query plan.

1 L_O :bat[int] := sql.bind ("ssb", "lineorder", "lo_orderdate");
2 L_OID :bat[oid] := sql.tid ("ssb", "lineorder");
3 SEL_LO :bat[oid] := algebra.thetaselect (L_O, L_ID, 19971010, "==");
4 L_P :bat[int] := sql.bind ("ssb", "lineorder", "lo_partkey");
5 PROJ_LP :bat[int] := algebra.projection (SEL_LO, L_P);
6 P_C :bat[str] := sql.bind ("ssb", "part", "p_color");
7 P_OID :bat[oid] := sql.tid ("ssb", "part");
8 SEL_PC :bat[oid] := algebra.thetaselect (P_C, P_ID, "goldenrod", "==");
9 P_P :bat[int] := sql.bind ("ssb", "part", "p_partkey");

10 PROJ_PP :bat[int] := algebra.projection (SEL_PC, P_P);
11 (JOIN_L :bat[oid], JOIN_P :bat[oid]) := algebra.join (SEL_LP, P_ID);
12 L_R :bat[int] := sql.bind ("ssb", "lineorder", "lo_revenue");
13 PROJ_LR :bat[int] := algebra.projectionpath (JOIN_L, SEL_LO, L_R);
14 P_N :bat[str] := sql.bind ("ssb", "part", "p_name", 0);
15 PROJ_PN :bat[str] := algebra.projectionpath (JOIN_P, SEL_PC, P_N);
16 (PN_GRP :bat[oid], GRP_PN :bat[oid]) := group.groupdone (SEL_PN);
17 RES_PN :bat[str] := algebra.projection (GRP_PN, PROJ_PN);
18 RES_LR :bat[hge] := aggr.subsum (PROJ_LR, PN_GRP, GRP_PN);

(b) MAL plan.

Figure 5.2: Unprotected processing.

nature of column stores. The base tables are indicated as cylinders and they are filtered on equality
predicates R.r = xr and S.s = xs with some arbitrary arguments xr and xs, from columns R.r
and S.s, respectively. Afterwards, both tables are joined on columnsR.a and S.a. The single lines
between the base columns, the filters σ and the join operator indicate that the intermediate results
are again just columns with single payload. The join produces an intermediate column which
contains pairs (r, s), which is indicated by the double line. Finally, the group operator (γ) groups
this intermediate on attribute r and we assume that it also produces the sums over the groups of
values s. In a real DMS, this might result in two or more actual operators, but for conciseness
we use a single operator. We will later describe the integration of error detection primitives in
a few physical operators. Therefore, we now describe two examples for the unencoded case,
namely the filter (selection, σ) and join (◃▹) as examples for single-input and multi-input operators,
respectively. We assume that the plan shown in Figure 5.2a is an executable query plan, where
the physical optimizer already selected some concrete operator implementations. For instance, the
selection operators might be full column scans, while the join could be a nested loop join and the
grouping operator could be hash-based.

In contrast to the relational plan, Figure 5.2b shows a MAL plan, which we pruned for better
readability. That plan represents the first query variant with concrete schema, table, and column
names. A graphical representation of that plan is provided in Figure 5.3. In the MAL plan, each
line represents a single operator, which may return a single BAT, or even multiple ones put in
between parentheses (e.g. on lines 11 and 16). Keywords are denoted in bold font, while strings

5.1 Column Store Query Processing 137

algebra
thetaselect

SEL_LO

algebra
projection

PROJ_LP

algebra
thetaselect

SEL_PC

algebra
projection

PROJ_PP

algebra
join

JOIN_L JOIN_P

algebra
projectionpath

PROJ_LR

algebra
projectionpath

PROJ_PN

group
groupdone

PN_GRP GRP_PN

algebra
projection

RES_PN

aggr
subsum

RES_LR

L_O L_OID

L_P

P_C P_OID

P_P

L_R P_N

Figure 5.3: MAL plan graph

138 Chapter 5 Bit Flip Detecting Query Processing

are shown slanted. The operator result is assigned to one ore more BATs, denoted by :=. Further,
MAL is a typed language and for each BAT the type is explicitly given as :bat[<type>], where <type>
in this case is e.g. int for integers, oid for OIDs or VOIDs, and str for strings. As a side note, the
operators are grouped into several modules, e.g. sql, algebra, or bat. In the MAL plan, an operator
call is preceded by its module and has the form <module>.<operator>. In Figure 5.3, the operators are
shown in colored boxes with the module on the first line of each label and the operator name on the
second line. According to the query, first columns lo_orderdate and p_color are filtered (lines 1–3
and 6–8, respectively). The BATs are here given more descriptive abbreviations to resemble the
respective table and column, or additionally the operator which produced them. For instance, L_O
is base column Lineorder.lo_Orderdate (line 1), while SEL_LO is the result from the selection on the
lo_orderdate column using predicate lo_orderdate == 19971010+ (line 3). Additionally, a few BATs
are explicitly used to denote the OIDs of the base columns, e.g. L_OID (line 2). While these must
be given to the thetaselect operators explicitly, this allows to do cascaded selections on multiple
columns of the same table, using e.g. a select-project-select pattern. A projection operator in a
MAL plan takes two input BATs, one column BAT and one OID BAT and fetches from the column
those values which correspond to the given OIDs. Consequently, a projection operator is not a
projection in the classical sense. The projections before the MAL join (lines 4–5 and 9–10) are
required, because the initial selections are done on columns different from those which are joined.
The thetaselects return OID BATs which only contain the column positions of the matching values.
The projections then fetch only those values from the to-be-joined columns which correspond to the
tuples previously selected (having the same OID). Consequently, the join only operates on these
“projections” (line 11). The join operator returns two BATs, where each BAT contains the OIDs
pointing into the respective input BATs. Since the final result contains columns which are even
different from the selection and join columns, two more projections are necessary (lines 12–15).
Then, the grouping is performed (line 16), where two important BATs are returned: The first one
PN_GRP is a mapping from the input positions to the groups, denoted as OIDs which point into the
second BAT GRP_PN. That second one contains as many OIDs as there are distinct groups and its
OIDs point to the first occurrence (position) in the input BAT, so that the actual value denoting
that group can later be retrieved through a projection again (line 17). Consequently, the same
methodology as for the thetaselect is used here. Finally, the sums over the revenues with respect
to the p_color groups are computed (line 18). The BATs which are finally printed as the result are
RES_PN and RES_LR, which contain the grouped part names and revenue sums per part, respectively.

The relational plan from Figure 5.2a and the MAL plan from Figures 5.2b and 5.3 can be loosely
matched, which shows that both relational query plan and MAL plan are still closely related.
The two selection operators from Figure 5.2a are represented in Figure 5.3 by a combination
of algebra.thetaselect followed by a algebra.projection, each. The intermediate results from the
thetaselects are reused later for projecting the revenue and name columns, L_R→PROJ_LR and
P_NPROJ_PN, respectively. The join is given in both plans. Finally, the grouping and sum opera-
tor from Figure 5.2a are represented in the MAL graph by two projectionpaths, a groupdone, a subsum,
and a projection. Figures 5.2b and 5.3 show that the MAL plan as well as its graphical counterpart
are rather complex. Consequently, as we showed that both can still be matched to relational query
plans (and its graphical counterpart), we will later only use the much more concise relational query
graphs to introduce some new concepts. Before we do so, however, we will show for two concrete
operators how they work, so that we can later also show on the operator level how to integrate bit
flip detection.

Algorithm 5.1 lists a filter operator, which takes as input a BATBin, a comparison operator (which
is typically hard-coded), and the filter predicate pred. When a range predicate is filtered, two
predicates are provided for the lower and upper bound, but otherwise the concept is the same.
The filter operator simply iterates over all head and tail value pairs (h, t) (Line 1), evaluates the

5.1 Column Store Query Processing 139

Algorithm 5.1 Filter scan for an unencoded query.
Input: Bin ◃ input BAT
Input: ◦ ∈ {<,≤,=, ̸=,≥, >} ◃ comparison operator
Input: pred ◃ filter predicate
Output: Bout ◃ result BAT

1: for each (h, t) ∈ Bin do
2: if t ◦ pred then
3: append (h, t) to Bout
4: end if
5: end for

Algorithm 5.2 Nested loop join for an unencoded query.
Input: Bin,1, Bin,2 ◃ input BATs
Output: Bout ◃ result BAT

1: for each (h1, t1) ∈ Bin,1 do
2: for each (h2, t2) ∈ Bin,2 do
3: if t1 = h2 then
4: append (h1, t2) to Bout
5: end if
6: end for
7: end for

predicate for the tail payload (Line 2) and, when it matches, appends the pair to the output column
Bout (Line 3). Especially filter operators can be vectorized [195] and, in particular, for the SSE
and AVX ISAs all required comparison operators exist as vector instructions. In this case, the
basic algorithm stays the same, except that the predicate is distributed into a vector and then whole
vectors are compared.

Algorithm 5.2 lists a join operator using a nested loop algorithm, where an outer loop iterates of
the first input Bin,1 (Line 1) and for each of its pairs (h1, t1) iterates over the second input Bin,2 in
an inner loop (Line 2). For each pair of pairs the inner loop compares the tail of the first column t1
with the head of the second column h2 (Line 3) and when they match the first head h1 and second
tail t2 are written to the output column Bout (Line 4).

To summarize this section, we briefly presented the important parts of the query processing
life cycle. What is important for our case is that a query is parsed by some language-specific
front end and the resulting internal representation is then optimized in two (or more) stages.
While contemporary systems use logical and physical optimizations, in-memory column stores
like MonetDB use strategic and tactical optimization. The actual query evaluation is done using
a QEP. Modern systems like MonetDB generate a recipe which is then interpreted and operators
are called on whole columns, resulting in the column at a time execution model. MAL is used as
an internal representation in MonetDB and it also allows vector at a time execution by splitting
up the columns through online range partitioning. In MAL, all columns, both base columns and
intermediates, are realized in the form of BATs. We discussed for a concrete query its respective
relational query plan and MAL plan. We furthermore showed that we can match the operators
from the relational plan to (sets of) operators in the MAL plan. Due to that, we will only use
the more concise relational representation in the following. Furthermore, there is a multitude of
database operators and we described two physical operators in more detail. We will use these in

140 Chapter 5 Bit Flip Detecting Query Processing

the following to describe how to integrate bit flip detection primitives into operators.

5.2 BIT FLIP DETECTION OPPORTUNITIES

In this thesis we deal with the detection of bit flips in business data, which means the base columns,
intermediate columns, and index structures. We will now discuss which parts of the query execution
we need to adapt for hardened data in order to achieve holistic online bit flip detection. Basically,
the query life cycle stays the same as before. The parser and the optimizers stay oblivious to the
actual data hardening, so that we do not interfere with generating an optimal query plan. This
greatly simplifies the integration of data hardening into query processing. We can use the optimized
QEP as is and slightly adapt it to our needs. We assume that all base columns contain integers
hardened with AN codes, only. Based on that, there are several detection opportunities, which
exhibit various advantages and disadvantages that we will explain in the following. Since we only
deal with bit flip detection in this thesis, we leave the concrete error handling to future work.

5.2.1 Early Onetime Detection

We call our first variant Early Onetime Detection, which is a very unintrusive way of combining
data hardening and query processing. The idea is to introduce a new physical database operator
∆ with the sole purpose of performing a decode-and-detect run on a single column. Based on the
query plan from the optimizers (Figure 5.2), we insert the ∆ operator before any other operator,
even before column scans (σ). This does not interfere with the original query plan as the data
characteristics are not changed. The new operator is shown in Figure 5.4, where the encoded data
is visualized using blue dotted lines. ColumnsR and S are both encoded using the same parameter
A, however they could also be encoded with different As. The ∆ operator simply performs a
single scan over hardened data and performs appropriate bit flip detection and writes as output the
decoded values, as is indicated by solid black lines, again. The greatest advantage of this approach
is, that for all of the existing physical operators we need not care about the actually employed error
control code. Only the ∆ operators need to take care of that. Consequently, no operators need to be
adapted, which makes the integration of bit flip detection quite easy. We only insert the ∆ operator
after the query optimizer returns the optimal plan. There are, however, some disadvantages. First,
there is only a single point of error detection when data is read the first time from a base column.
Second, complete base columns are re-materialized in unencoded form. On the one hand, this can
lead to a huge memory demand per query, as all required base data is stored a second time. On the
other hand, by that the remaining, original part of the query works on unencoded data and bit flips
cannot be detected any longer.

As we leave error correction to future work, here the ∆ operator only collects hardened array
positions of the input columns. These positions represent those values at which a bit flip was
detected and are stored in another intermediate array. This abstraction allows to plug in concrete
error handling techniques in future work. Consequently, next to the unencoded base data, ∆ also
returns this array of hardened positions to corrupt values. If no other error handling is conducted,
the latter can simply be tested to be empty and otherwise be ignored. By that, this does not interfere
with the remaining processing.

5.2 Bit Flip Detection Opportunities 141

γR.b, S.c

◃▹R.a=S.a

σR.r ◦ xr σS.s ◦ xs

∆A ∆A

RA SA

Figure 5.4: Query plan for
Early Onetime Detection.

∆A

γR.b, S.c

◃▹R.a=S.a

σR.r ◦ xr·A σS.s ◦ xs·A

RA SA

(a) Same As.

γR.b, S.c

◃▹R.a=S.a

∆AR ∆AS

σR.r ◦ xr·AR
σS.s ◦ xs·AS

RAR SAS

(b) Different As.

Figure 5.5: Query plan for Late Onetime Detection.

5.2.2 Late Onetime Detection

The next variant is Late Onetime Detection, which inherits the detect-and-decode ∆ operator from
before. However, we now exploit the fact that we use AN coding in all our base columns and that it
is an arithmetic code which allows to directly work on hardened data. Figure 5.5a shows how this
allows to move the ∆ operator to the top of the query and the blue dotted lines run from bottom
to top. This means, we need not decode the data during the part of the original query. Using this
approach, we must take care of some of the operators’ parameters. For scan operators, we then
need to encode the predicates, as well, so that both values and predicates are encoded with the
same A. This is shown in Figure 5.5a for the σ operators, where both filter predicates are encoded
as xr · A and xs · A. For multi-input operators like column join, we must distinguish two cases.
First, when all inputs are encoded with the exact same A, then no action is required. For instance,
a join on 2 input columns (or intermediates) C1 and C2 can leverage the fact that

c1 = c2 ⇔ (d1 ·A) = (d2 ·A)⇔ d1 = d2 ,with c1 ∈ C1, c2 ∈ C2.

This is the case actually shown in Figure 5.5a. Second, when inputs are encoded with differentAs,
then the ∆ operator must precede any multi-input operators with differently encoded inputs. This
is required, because such operators would generate only false positives, since

(d1 ·A1) = (d2 ·A2)
A1 ̸=A2→ d1 ̸= d2

for two input columnsC1 andC2 which are encoded with different parametersA1 ̸= A2. This case
is shown in Figure 5.5b, where both columnsR andS are encoded with different parametersAR and
AS , respectively. The predicates for the filter operators are encoded, again, appropriately to match
their input column code parameter. Afterwards, ∆ hands over unencoded intermediates to the
join operator and the rest of the query works on unencoded data. One advantage of Late Onetime
Detection is, that, it is still a very unintrusive approach which, like Early Onetime Detection, only
requires the additional ∆ operator. Since this allows us to move the ∆ operator to the end of
the query, we perform error detection on potentially less hardened values than for Early Onetime
Detection. Of course, when the ∆ operator is located after join operators which generate more join
pairs than input values, then it can also be the other way around. However, as for Early Onetime, a
disadvantage is still the single point of error detection for each hardened value. Also, errors prior to
the invocation of the ∆ operator are not detected, in contrast to Early Onetime. Then, determining
whether intermediate results are corrupted, or even base date, requires additional action in the form

142 Chapter 5 Bit Flip Detecting Query Processing

γAR, AS

R.b, S.c

◃▹AR, AS
R.a=S.a

σAR
R.r ◦ xr·AR

σAS
S.s ◦ xs·AS

RAR SAS

Figure 5.6: Query plan for
Continuous Detection.

γA5→A7, A6→A8

R.b, S.c

◃▹A3→A5, A4→A6

R.a=S.a

σA1→A3
R.r ◦ xr·A1

σA2→A4
S,s ◦ xs·A2

RA1 SA2

Figure 5.7: Query plan for
Continuous Detection and re-
coding in each operator.

of running an error detection sweep on both. Arithmetic operations must be handled as indicated
in Equations (3.14) and (3.16) to (3.21). For instance, addition and subtraction must be done either
on unencoded data or on data hardened with the same parameter. The multiplication requires one
of the operators to be unencoded, and the division must first divide two encoded operands and
then encode again. Consequently, for division and multiplication, either these operators must be
adapted to take care of the hardened data, or the ∆ operator must be put before them in the query
plan. This affects also σ filter operators, which evaluate predicates containing such arithmetic
operations.

5.2.3 Continuous Detection

The effective detection of bit flips is the major goal of this thesis and the previous two methods,
Early and Late Onetime Detection, tackle this issue only to a limited degree. To reach our goal,
we need a holistic approach, which we call Continuous Detection. In contrast to the previous
approaches, it requires to adapt all physical query processing operators. The idea is to perform
error detection in each and every operator, on each and every hardened value which is read, both
from main memory and from the CPU caches. This approach does not require the ∆ operator
and does not inherit its limitations from decoding data. This also alleviates us from the task of
choosing positions for ∆ operators. As a side effect, we are even indifferent to the fact whether
a hardened value was corrupted already in main memory, during data transmission between main
memory and CPU, or even in one of the CPU caches. The disadvantage of this approach is the
engineering effort for adapting all physical query operators to contain error detection primitives.
However, in contrast to the previous approaches, integrating error detection primitives into the
physical operators also allows recoding of hardened data on the fly. Again, this is possible for each
and every value. Therefore, we use Equation (3.63), which is a constant factor that needs to be
computed only once in an operator.

Figure 5.6 shows the query plan when employing the Continuous Detection approach. The ∆
operator is not needed any longer and, as in Figure 5.5b, we can basically assume that all columns
are potentially hardened with differentAs. The superscripts at the operators highlight that they are
AN coding-aware and contain detection primitives. We will also call them “hardened operators”
in the following. Also, the filter predicates are encoded using the appropriate columns’ As. As
we can also see in Figure 5.6, even the join operator emits the intermediate results with differently

5.2 Bit Flip Detection Opportunities 143

hardened values, depending on the input columns.

A query containing data recoding is shown in Figure 5.7, where each operator recodes data on
the fly, indicated by different colors. The operators denote by a superscript the recoding from a
source parameter Asrc to a destination parameter Adst as Asrc → Adst. The constant factor for this
transformation is computed as in Equation (3.63). Hardening or softening during query processing
can be used to influence the memory size of intermediate results. For instance, let us for now
assume that we are given an error model, where for an intermediate result it suffices to detect less bit
flips than for the base data, due to the much shorter temporal residence in main memory. Then, we
might pick a smaller A from Table 3.6 or Tables A.1 to A.4 for the intermediate results and recode
the operators’ outputs accordingly as in Figure 5.7. Another use case could be special queries to
recode base data. In this case, we assume that there is some system component or service, which
can predict the required detectable bit flip weight for the base data. This would be required to adapt
to hardware aging effects. Then, a special query could increase the data hardening in an online
fashion and following queries would use that reinforced data. The driving idea behind such an
approach is to satisfy RequirementR4, availability, to not stall queries on the to be recoded data.

We will now discuss how to adapt physical query operators. Algorithm 5.3 lists the AN coding-
aware variant of a filter scan, for which we presented the unencoded one in Algorithm 5.1. Here,
we see first that there are several more arguments which the filter operator takes, where all encoded
columns and values are marked by ∗. In contrast to Algorithm 5.1, the input column B∗in and
the predicate pred∗ are AN encoded and the operator needs to know the head’s and tail’s AN
code parameters Ah, A

−1
h , At, A

−1
t , Apos, dh,min, dh,max, dt,min, dt,max. The encoded filter operator

returns not only an output column containing hardened valuesB∗out, but also position vectors vh, vt
which contain the (hardened) positions of corrupt values in the head and tail, respectively. This
is the same behavior as for the ∆ operator and, as before, we use this model because we do not
consider error correction in this thesis. However, this provides an interface for future work, where
error handling strategies can be plugged in. The positions are themselves AN hardened using the
givenApos. If recoding is desired, then parametersA′h andA′t must be provided, too. Algorithm 5.3
lists the operator variant which also recodes its input. In the operator, first the variable to keep
track of the position is initialized to zero (Line 1) and storage for the encoded position vectors is
allocated (Lines 2 and 3). Then, the constant recoding factors are computed on Lines 4 and 5.
When recoding is not desired, the appropriate operations can simply be left out. The loop on
Line 6 iterates over the hardened input column and we use a temporary variable valid to track
whether both head and tail values are valid (Line 7), which we initialize to the Boolean true value
⊤. We then first test the head for detectable bit flips on Lines 8 and 9 using Equation (3.68) and
Equation (3.67) and if a corruption was detected, the encoded position is appended to the head
position vector (Line 10) and valid is set to Boolean false ⊥ (Line 11). For unsigned integers, we
only need the latter comparison. The same goes for the tail on Lines 13 to 16. If both values are
valid, the filter predicate is evaluated (Line 18) and the recoded values are appended to the output
column (Line 19). By that, we also make sure to always check both head and tail for errors. When
the head is of type VOID, the respective checks can be omitted, since this type represents purely
virtual data. Finally, the position tracking variable pos is incremented on Line 21. We assume that
the variables pos and valid are register or stack variables, which for the runtime of the operator are
not corrupted.

Algorithm 5.4 shows the encoded counterpart of the join operator from Algorithm 5.2. The
additions are essentially the same as in Algorithm 5.3, with additional parameters for all inputs and
we now have two sets of position vectors. These are initialized on Lines 1 and 2. The recode factors
are now computed for the first input’s head and second input’s tail on Lines 4 and 5, respectively.
Furthermore, all inputs must be checked for bit flips, first in the outer loop (Lines 6 to 16) and

144 Chapter 5 Bit Flip Detecting Query Processing

Algorithm 5.3 Filter scan for Continuous Detection, having head and tail hardened with different
As and recoding its output. ∗ denotes hardened values and columns. Subscript h and t denote head
and tail, respectively.
Input: B∗in ◃ Encoded input column
Input: Ah, A

−1
h , At, A

−1
t , Apos ◃ AN coding parameters

Input: Apos ◃ Position vector code parameter
Input: A′h, A′t ◃ Recoding parameters
Input: dh,min, dh,max, dt,min, dt,max ◃ Domain range for B∗in
Input: ◦ ∈ {<,≤,=, ̸=,≥, >} ◃ Comparison operator
Input: pred∗ ◃ Predicate encoded with At

Output: B∗out ◃ Result BAT (same A as B∗in)
Output: v∗h, v∗t ◃ Position vectors for head and tail

1: pos← 0
2: v∗h.allocate()
3: v∗t .allocate()
4: const Ah,recode ← A−1h ·A

′
h

5: const At,recode ← A−1t ·A′t
6: for each (head∗, tail∗) ∈ B∗in do
7: valid← ⊤
8: h← head∗ ·A−1h

9: if h < dh,min or h > dh,max then
10: v∗h.append(Apos · pos)
11: valid← ⊥
12: end if
13: t← tail∗ ·A−1t

14: if t < dt,min or t > dt,max then
15: v∗t .append(Apos · pos)
16: valid← ⊥
17: end if
18: if valid = ⊤ & tail∗ ◦ pred∗ then
19: append (head∗ ·Ah,recode, tail∗ ·At,recode) to B∗out
20: end if
21: pos← pos +1
22: end for

then in the inner loop (Lines 19 to 28). In the inner loop, we need not set the temporary Boolean
variable valid again, because it must be true in order to enter the inner loop, anyways. We see
here that the second input’s values are checked multiple times, so we can stay oblivious to whether
data was evicted from the CPU caches and must be freshly fetched from unreliable main memory.
Finally, only if all values are valid, the first column’s head and second column’s tail are compared
(Line 30) and on a match recoded and appended to the output (Line 31). While we only showed
the nested loop join variant, other join implementations essentially require the same changes.

Algorithms 5.3 and 5.4 list several new parameters to the operators compared to the unencoded
ones from Algorithms 5.1 and 5.2. However, the AN coding parameters and the data domain ranges
for the input columns need not be real inputs. From the coding parameters, only the actualA needs
to be stored in the columns’ meta data. The inverse can be computed on the fly using the extended
euclidean algorithm and the data domain ranges are implicitly given by the column data types.
The parameter Apos for encoding the values in the error position vectors can be statically defined
for all operators, since this is always the same data type. Furthermore, the predicates which need

5.2 Bit Flip Detection Opportunities 145

Algorithm 5.4 Nested loop join for Continuous Detection, having all inputs hardened with different
As and recoding its output. ∗ denotes hardened values and columns. Subscript h and t denote head
and tail, respectively.
Input: B∗in,1, B∗in,2 ◃ Input columns
Input: Ah,1, A

−1
h,1, At,1, A

−1
t,1 ◃ AN coding parameters for B∗in,1

Input: Ah,2, A
−1
h,2, At,2, A

−1
t,2 ◃ AN coding parameters for B∗in,2

Input: Apos ◃ Position vector code parameter
Input: A′h, A′t ◃ Recoding parameters
Input: dh,1,min, dt,1,min, dh,1,max, dt,1,max ◃ Domain range for B∗in,1
Input: dh,2,min, dt,2,min, dh,2,max, dt,2,max ◃ Domain range for B∗in,2
Output: B∗out ◃ Result column
Output: v∗h,1, v∗t,1, (v∗h,2, v∗t,2 ◃ Position vectors

1: for each x ∈ {(h, 1), (t, 1), (h, 2), (t, 2)} do
2: v∗x.allocate()
3: end for
4: const Ah,recode ← A−1h,1 ·A

′
h,1

5: const At,recode ← A−1t,2 ·A
′
t,2

6: for each (h∗1, t
∗
1) ∈ B∗in,1 do

7: valid← ⊤
8: h← h∗1 ·A−1h

9: if h < dh,min or h > dh,max then
10: v∗h,1.append(Apos · pos)
11: valid← ⊥
12: end if
13: t← tail∗ ·A−1t

14: if t < dt,min or t > dt,max then
15: v∗t,1.append(Apos · pos)
16: valid← ⊥
17: end if
18: if valid = ⊤ then
19: for each (h∗2, t

∗
2) ∈ B∗in,2 do

20: h← head∗ ·A−1h

21: if h < dh,min or h > dh,max then
22: v∗h,2.append(Apos · pos)
23: valid← ⊥
24: end if
25: t← tail∗ ·A−1t

26: if t < dt,min or t > dt,max then
27: v∗t,2.append(Apos · pos)
28: valid← ⊥
29: end if
30: if valid = ⊤ & t1 = h2 then
31: append (h∗1 ·Ah,recode, t∗2 ·At,recode) to Bout
32: end if
33: end for
34: end if
35: end for

146 Chapter 5 Bit Flip Detecting Query Processing

to be encoded are also fixed in the executable query plan and can be hardened after the physical
optimizer created it. Only the recoding parameters A′h and A′t must be additionally passed to the
operators. How this is done completely depends on the actual DMS implementation. Furthermore,
the selection of the new A depends on the actual system error model, so we must leave this to
future work.

The choice between either online or offline error detection and between the above three methods
for hardening query processing are merely three extremes in a broader configuration space. In
principal, we could also conduct error detection not in all operators, as in the Continuous Detection
approach, but only in a subset of operators. This could be used to trade throughput performance
against reliability. Also, in practice there are more problems to be considered. For instance,
there may be historical data which is accessed only very infrequently, which is called cold data.
In contrast, data which is accessed very frequently is called hot. Employing only Continuous
Detection could leave cold data subject to potentially many more bit flips than hot data, as it
would undergo error detection much less frequently. By that, a ∆-like operator, which does
error detection, would still be needed to frequently perform such actions on cold data, where the
frequency again would be determined by an actual system’s error model. This could be an offline
operation in the sense that a monitoring component in the DMS determines hot and cold data and
periodically, or based on an actual error model, performs background error detection on cold data.
Since actual error models are not available, we leave this aspect to future work.

5.2.4 Miscellaneous Processing Aspects

In addition to the above considerations for detecting transient bit flips in base columns and inter-
mediate results, we now examine some side aspects regarding those opportunities. We will discuss
the following side aspects in the context of query processing:

1. index structures,
2. compression, and
3. error code adaptation.

Hardened Index Structures: In Sections 4.1.5 and 4.3, we discussed (hardened) index structures,
which are of course important for the processing of queries. For instance, indexes are used for index
scans or in dictionaries for fast retrieval of a value’s dictionary index, or fast dictionary lookup
from index to value. In the former case, for scans, the index is used by the physical incarnation of
the σ operator. Operations on hardened indexes are the same as on non-hardened ones and they
provide in principal the same interfaces. For the latter case, dictionaries, the indexes are typically
required before and after the query. Before the query, selection predicate values are replaced
by the dictionary indexes. After the query, for the dictionary coded columns in the result table,
the dictionary indexes in the intermediate results must be replaced by the actual values again for
presenting them to the user. On these occasions, the hardened index structure operations are used.
Consequently, regarding query processing, hardened index structures for bit flip detection can be
used the same as non-hardened ones. Furthermore, since these are typically only secondary access
paths, the primary access path can be used as fallback. For instance, during index scan when there
is data or structural corruption inside an index so that it cannot answer the query, then a normal
column scan could be used. This would accomplish Requirement R4 in the sense that the query
can be answered without interruption. Also, since e.g. the MAL interpreter (cf. Section 5.1)

5.2 Bit Flip Detection Opportunities 147

can choose the concrete operator implementation at run-time, anyways, it can easily pick up the
appropriate alternative when a bit flip was detected.

Hardened Compression: In Sections 4.1.3 and 4.2.2, we discussed lightweight data compression
and the combination with AN coding. Regarding query processing, researchers proposed to keep
data compressed as long as possible and to decode only when it is absolutely necessary [4, 60].
This is much like our Continuous Detection approach, where there is only hardened data, which
is never decoded. Graefe and Shapiro show that for most if not all database operators, data need
not be decompressed [60]. Some researchers even propose to re-compress data on the fly [65,
99]. By that, AN coding and lightweight integer compression can allow for pervasive hardening
and compression at the same time, throughout the whole query life cycle. However, not only the
compression scheme may change, but also the data domain of the logically compressed data. By
that, we may also have to adapt the AN coding parameter appropriately to match this new data
domain, choosing an A e.g. from Table 3.6 or Tables A.1 to A.4. For instance, re-compression
might result in a smaller logically compressed data width, which may in turn lead to a smaller A
giving the same guarantees as before. Consequently, the physically compressed data width can be
reduced twofold.

Hardening Adaptation: We already discussed at a few occasions, that recoding of data can be
necessary. In Section 3.5.2 we showed that recoding AN hardened data boils down to a single
multiplication (cf. Equation (3.63)), which makes it a simple and fast task. One important question
regarding this is, when to actually further harden data, i.e. the temporal aspect. For base data,
we argued about adapting to hardware aging effects. This should at best happen before the bit flip
weights exceed the codes’ guarantees, which can be e.g. the minimal detectable bit flip weight (η,
cf. Equation (3.50)). Regarding query processing, recoding may happen while operators emit new
intermediate results, as we just discussed for compression. The remaining question here is, which
A to actually choose. Throughput the thesis, we argued that concrete error models are not really
available, yet (cf. Section 3.2.3). We discussed how to obtain golden As (cf. Definition 10) and
the process of deriving concrete error models (cf. Section 3.2.4). However, the missing bits are
still the actual hardware error model and the means to derive or measure the actual bit flip weights.
We will cover this aspect again in the future work Section 7.1.

5.2.5 Summary and Conclusions

In this section, we provided the first three main contributions of this chapter. We presented
three opportunities for when to execute error detection during query processing. To the best of
our knowledge, we are the first to include arbitrary bit flip detection in query processing. We
introduced Early Onetime Detection, Late Onetime Detection, and Continuous Detection. The
first two require an additional ∆ operator which does error detection and decoding on a single
column. While Early Onetime places ∆ before any operator which fetches base data, Late Onetime
places ∆ as late in the query as possible. Special cases must be respected, like some arithmetic
operations and multi-input operators with differently hardened data, where ∆ must be placed
before these operators. The third approach, Continuous Detection, does not require the additional
∆ operator. On the one hand, in contrast to the first two approaches, this one requires to adapt
all physical operators to include error detection primitives. On the other hand, Continuous allows
to recode hardened data in each operator. Our second contribution is that we showed for the
two example operators, mentioned earlier, how to adapt them for incorporating error detection

148 Chapter 5 Bit Flip Detecting Query Processing

primitives. Finally, we discussed three important side aspects of hardened query processing. First,
hardened index structures are used as before, while we can simply exchange the non coding-aware
variants with hardened index structures. In the case of detecting corruption in an index structure,
index look-ups can fall back to column scans. Second, data compression is used extensively in
query processing, where decompression is postponed as much as possible. Data can even be
re-compressed to achieve smaller data widths. Fortunately, AN coding allows to easily adapt to
the changing data widths. Third, we discussed the temporal aspect of hardening adaptation. There
are no concrete hardware error models, especially concerning hardware aging effects leading to
varying bit flip rates and weights. Therefore, we leave this to future work. In total, our discussions
show that the query life cycle is not changed. The QEP either does not need any adaptation for
Continuous Detection, or we can easily add the ∆ operator for Early or Late Onetime Detection
after the QEP was created by the optimizers.

5.3 HARDENED INTERMEDIATE RESULTS

We presented a methodology for hardening the physical query operators, where we implicitly
assumed that we materialize all intermediate values. As it turns out, materializing intermediate
data is a nontrivial task on its own, which we will discuss in the first part of this section. Especially
with SIMD execution, a few alternative approaches for materialization exist. As we will see for
our two evaluation systems, the tradeoff between speed and reliability must be made. In the second
part, we will address the fact that contemporary in-memory DMSs also use special intermediate
result formats like bitmaps, to avoid materializing data and the accompanying costs of writing
that data back to main memory [1, 33, 195]. There, we will consider the performance of bitmaps
when we apply our selected error coding techniques. As we will see, on the one hand it is either
quite costly in terms of storage to harden bitmaps using AN coding. On the other hand, the SDC
probability may be too high when hardening with XOR checksums.

5.3.1 Materialization of Hardened Intermediates

The first option is to always materialize hardened values or (V)OIDs, which we cover in more detail
in the following. At certain points, data must be materialized anyways, at least when presenting
results to the user. The scalar case is rather trivial, used e.g. in work from Willhalm et al., who
extract and store hit indexes individually, i.e. they do not use vectorization at this point [189, 190].
In contrast, for vectorized materialization, we have different options. Here, the important problem
is the partial materialization of data, i.e. when not the whole vector contents should be written
to memory. This is also called selective store and is used especially when filtering data, which
already obtained some attention [143, 144, 195]. The challenge with selective store is that some
data elements are discarded and to save space, the intermediate result is compacted to only contain
the positively filtered data elements.

There are vector shuffling operations which compact the matching values into a consecutive list,
with the remaining upper vector elements set to zero. This is shown in Figure 5.8, where the data
flow is from middle to top (first part) and from middle to bottom (second part). The flow is also
indicated as dashed line on the right half of the Figure. Lookup tables need to be precomputed
for each data type and the selection mask from the vector comparison operation (= in this case)
is used as table index to select a shuffle mask. This is then used to shuffle the elements from the
original data vector and the outcome thereof is the result vector. The lookup tables store shuffle

5.3 Hardened Intermediate Results 149

Selection
Mask

0 1 0 1 0 0 0 1

Operand
Vector

3 3 3 3 3 3 3 3

Vector
Comparison

= = = = = = = =

Data
Vector

5 3 6 3 8 7 4 3

Result
Vector

0 0 0 0 0 3 3 3

Vector Shuffle

...

...

...

...

...
...
...
...
...

Lo
ok

up
Ta

bl
e

Shuffle
Mask

•
Fl

ow

Figure 5.8: Lookup-table materialization of a vector filter result. The shuffle vector method is
special in that it can set data elements to zero.

150 Chapter 5 Bit Flip Detecting Query Processing

|D|
Vector width |V|

128 256 512
N S N S N S

8 2 16 1 MiB 2 32 128 GiB 2 64 1 ZiB(a)

16 2 8 4 KiB 2 16 2 MiB 2 32 256 GiB
32 2 4 256 B 2 8 8 KiB 2 16 4 MiB
64 2 2 64 B 2 4 512 B 2 8 16 KiB

Table 5.1: Numbers of entries and total sizes of straightforward lookup tables for vectorized
materialization. (a): 1 Zettabyte (ZiB) = 270 bytes. N

N≡ (TV,D). S
S≡ (TV,D).

masks that are as wide as the vector type V, i.e. of size |V| bits, for any possible combination of
filtered elements. We denote TV,D as the lookup table for a vector type and data element type. For
each lookup table there are

N(TV,D) = 2
|V|/|D| (5.1)

entries per lookup table, which results in a size of

S(TV,D) = N(TV,D) ·
|V| [bits]
8 [bits/Byte]

(5.2)

= 2
|V|
|D|−3+log2 |V| [Bytes]. (5.3)

For some instances of lookup table TV,D, Table 5.1 lists concrete values for currently available
vector widths and data element types. Here, it becomes apparent that for some combinations this
approach is infeasible. For 8-bit data, the tables would be 1 MiB, 128 GiB and 1 ZiB (Zettabyte)
large, for 128-, 256-, and 512-bit vector widths, respectively. While the first is not necessarily an
issue for server-grade systems, the latter two are simply way too large. The same goes for 16-bit
data elements in 512-bit vector widths. Although CPU cache sizes are also increasing permanently,
the combinations 8/128, 16/256, and 32/512 could be too large, as well, especially when multi-
threading is taken into account and when some cache levels may be shared between multiple
cores. Polychroniou et al. only consider AVX2 with 32-bit data elements, where the permutation
lookup table size is reasonable with 28 elements and 8 KiB memory footprint [143]. They obtain a
permutation mask to move all matching (32-bit) data members to the leading positions. Then, they
use the _mm256_maskstore_epi32 instruction, which simply skips those elements in the output
vector which are not set in the given mask. As we discussed already in Section 4.1.3, assuming
only 32-bit integers is not a valid option, since many more different physical data widths are used.
To this regard, we see that not all SIMD ISAs support shuffling for any data width across the whole
vector width. For some ISAs there are multiple lanes per vector across which the data elements
cannot be easily shuffled. For instance, AVX implementations use 2 128-bit lanes, across which
no byte-wise shuffling operations exist, but only inside each lane the bytes can be shuffled. Such
a byte-wise shuffle across lanes must be emulated using multiple instructions. This makes it very
difficult to find optimal selective store for all the data widths which a database may support and the
CPU’s available SIMD ISAs. Furthermore, for filtering data, the various SIMD ISAs may offer
vectorized comparison operators with different return types. For instance, SSE and AVX return

5.3 Hardened Intermediate Results 151

Selection Mask

. . .

...
. . . Lo

ok
up

Su
b-

Ta
bl

e
4 . . .

...
. . . Lo

ok
up

Su
b-

Ta
bl

e
3 . . .

...
. . . Lo

ok
up

Su
b-

Ta
bl

e
2 . . .

...
. . . Lo

ok
up

Su
b-

Ta
bl

e
1

Shuffle

Figure 5.9: Creation of an AVX 256-bit shuffle mask from four lookup sub-tables for 8-bit data.

only whole vectors where the data units’ elements are set to all-ones or all-zeros depending on the
comparison. In contrast, the AVX-512 comparisons always return a mask with a single bit per
data element. This results in differently complex materialization algorithms. For SSE and AVX,
the vector selection masks must be translated into a lookup table index, while for AVX-512 the
selection mask can be directly used as lookup table index.

We offer two solutions to the problem of lookup table method for arbitrary data widths supported
by the SIMD ISAs. First, we only use a subset of the lookup tables, to reduce them to a viable
size. Second, we map all shuffles to smaller vector widths. For our first solution, we split up the
huge shuffle entry tables into smaller sub-tables, as depicted in Figure 5.9. The number of these
tables must be a divisor of the number of values per vector, e.g. for AVX2 there are 32 8-bit values
per vector and we create four sub-tables, each storing 256 shuffle sub-entries of size 64 bits. For
this case, each sub-table is 2 KiB large, which results in a total of 8 KiB, in contrast to the 128
GiB for the naive approach. The sub-tables are constructed as follows. A shuffle vector contains
in each position the information, which of the elements (bytes or words) from the original vector
should be put into that position. A feature of the SSE and AVX shuffle instructions is, that when
the MSB is set (to one), then this position is filled with zeros. Now, each sub-table contains all
the possibilities for the appropriate sub-mask how the elements need to be shuffled for selective
store. In our 8-bit case, there are four sub-tables, so each sub-mask contains 8 entries and there
are 28 = 256 possibilities for how the sub-selection mask looks like and therefore 256 entries in
the shuffle lookup sub-table. This is depicted in the upper part of Figure 5.9. Then, to do the
selective store, we construct the complete shuffle vector out of the sub-entries. Therefore, we fetch
the first shuffle sub-mask from the first sub-table. This may contain leading all-one bytes 0xFF,
which indicates that not all values represented by this sub-mask are materialized. In Figure 5.9,
such non-materialization entries are indicated as white rectangles, while the patterned rectangles
are materialization entries for values to be stored. Then, we have to overlap this first shuffle entry
with the next one from the second sub-table. In Figure 5.9, the first shuffle sub-mask from sub-
table 1 contains 6 materialization entries, the second sub-mask contains 3 materialization entries,
while the third sub-mask contains only non-materialization entries, and finally the fourth sub-mask

152 Chapter 5 Bit Flip Detecting Query Processing

Result 5 3 3 3

Selection
Mask

0 1 0 1 0 0 0 1

Operand
Vector

3 3 3 3 3 3 3 3

Vector
Comparison

= = = = = = = =

Data
Vector

5 3 6 3 8 7 4 3

Figure 5.10: Sequential materialization of a vector filter result. All values are materialized but
non-matching ones are overwritten. Since this method unconditionally writes out all values, also
the last (left-most) value which does not match (5 ̸= 3) is materialized.

contains only materialization entries. All these sub-masks must be packed together, to obtain the
complete shuffle mask which is then used to shuffle the original value vector for the selective store,
as indicated in the bottom part of Figure 5.9. On the one hand, this dramatically decreases the
total size of the lookup tables, but, on the other hand, this requires more operations to combine the
multiple shuffle sub-masks to one.

Our second solution to the problem of huge shuffle tables is to use shuffle operations from the
shorter vector sizes and overlap the selective writes accordingly. For instance, for AVX and
AVX-512 we would issue two and four selective store operations on SSE-sized 128-bit vectors,
respectively. The output pointer which marks the start of a vector to be written is incremented only
by the amount of materialized values, which requires unaligned vector store support.

Zhou and Ross propose to sequentially write out the data elements of the vector which match a
given filter [195]. Figure 5.10 depicts the idea of their work (data flow is from top to bottom). To
avoid branching by a conditional test for the state of the filter bit(s), they simply write out all values
consecutively and increment the output data pointer to which they write by adding the filter bit from
the result mask. That bit is either one or zero, whereby the output pointer is not incremented for
non-matching elements, so that these are overwritten. This can further be improved by unrolling
the whole loop at least for a single vector, which is easy because the actual data type and the vector
size are known at compile time.

We will now compare our 2 solutions for the arbitrary shuffle masks against the sequential write
out method from Zhou and Ross. For the lookup table approach, we use our partial lookup method
only for the larger lookup tables. In particular this affects SSE (128-bit masks) for 8-bit data,
where we use two sub-tables, and AVX (256-bit masks) for 8-bit and 16-bit data, where we use
four and two sub-tables, respectively. The other data and vector width combinations use a single
lookup table. Again, we measured throughput numbers for the two systems from Table 3.7 for
materializing 1 Billion values, with the results shown in Figures 5.11 to 5.14. There, we measured
the runtime for writing data from one array into another based on a predefined selectivity. For that,
we generate a small array containing bit masks where over the whole array we set as many random
bits to one to meet the target selectivity. We increase the selectivity in steps of 1%. For SSE,

5.3 Hardened Intermediate Results 153

Lookup Table Sequential SSE Lookup
Ru

nt
im

e
[n

s]
(a) System 1, SSE4.2

0
1× 108
2× 108
3× 108
4× 108
5× 108
6× 108
7× 108
8× 108
9× 108

(b) System 1, AVX2

0
1× 108
2× 108
3× 108
4× 108
5× 108
6× 108
7× 108
8× 108
9× 108

Ru
nt

im
e

[n
s]

0
1× 108
2× 108
3× 108
4× 108
5× 108
6× 108
7× 108
8× 108
9× 108

0 0.2 0.4 0.6 0.8 1
Selectivity

(c) System 2, SSE4.2

0
1× 108
2× 108
3× 108
4× 108
5× 108
6× 108
7× 108
8× 108
9× 108

0 0.2 0.4 0.6 0.8 1
Selectivity

(d) System 2, AVX2

Figure 5.11: Materialization of 8-bit data

Lookup Table Sequential SSE Lookup

Ru
nt

im
e

[n
s]

(a) System 1, SSE4.2

0
2× 108
4× 108
6× 108
8× 108
1× 109

1.2× 109
1.4× 109
1.6× 109
1.8× 109

(b) System 1, AVX2

0
2× 108
4× 108
6× 108
8× 108
1× 109

1.2× 109
1.4× 109
1.6× 109
1.8× 109

Ru
nt

im
e

[n
s]

0
2× 108
4× 108
6× 108
8× 108
1× 109

1.2× 109
1.4× 109
1.6× 109
1.8× 109

0 0.2 0.4 0.6 0.8 1
Selectivity

(c) System 2, SSE4.2

0
2× 108
4× 108
6× 108
8× 108
1× 109

1.2× 109
1.4× 109
1.6× 109
1.8× 109

0 0.2 0.4 0.6 0.8 1
Selectivity

(d) System 2, AVX2

Figure 5.12: Materialization of 16-bit data.

154 Chapter 5 Bit Flip Detecting Query Processing

Lookup Table Sequential SSE Lookup

Ru
nt

im
e

[n
s]

(a) System 1, SSE4.2

0
1× 108
2× 108
3× 108
4× 108
5× 108
6× 108
7× 108
8× 108

(b) System 1, AVX2

0
1× 108
2× 108
3× 108
4× 108
5× 108
6× 108
7× 108
8× 108

Ru
nt

im
e

[n
s]

0
1× 108
2× 108
3× 108
4× 108
5× 108
6× 108
7× 108
8× 108

0 0.2 0.4 0.6 0.8 1
Selectivity

(c) System 2, SSE4.2

0
1× 108
2× 108
3× 108
4× 108
5× 108
6× 108
7× 108
8× 108

0 0.2 0.4 0.6 0.8 1
Selectivity

(d) System 2, AVX2

Figure 5.13: Materialization of 32-bit data.

Lookup Table Sequential SSE Lookup

Ru
nt

im
e

[n
s]

(a) System 1, SSE4.2

0

2× 108

4× 108

6× 108

8× 108

1× 109

(b) System 1, AVX2

0

2× 108

4× 108

6× 108

8× 108

1× 109

Ru
nt

im
e

[n
s]

0

2× 108

4× 108

6× 108

8× 108

1× 109

0 0.2 0.4 0.6 0.8 1
Selectivity

(c) System 2, SSE4.2

0

2× 108

4× 108

6× 108

8× 108

1× 109

0 0.2 0.4 0.6 0.8 1
Selectivity

(d) System 2, AVX2

Figure 5.14: Materialization of 64-bit data.

5.3 Hardened Intermediate Results 155

we only compare the lookup table approach against the sequential one from Zhou and Ross [195],
while for AVX2 we additionally compare the SSE lookup approach, where we essentially only use
the wider load operations. From the results we can draw the following conclusions. For SSE,
the lookup table approach generally wins over the sequential approach, with the only exception
being the 64-bit cases. Otherwise, the lookup method is faster than the sequential one by factors
of ≈ 2 . . . ≈ 4, even when we use two sub-tables in the 8-bit data case. For the 64-bit cases,
on system 1 the lookup technique is only marginally faster, while on system 2 it is even slightly
slower. For the lookup table approach, the additional operations for computing a shuffle mask out
of several smaller ones introduce lots of overhead. We can see this for the AVX2 and 8-bit and
16-bit data, where the lookup table is substantially slower than the SSE variant, although AVX2
operators on double vector widths. AVX is only slightly faster than SSE for the 32-bit and 64-bit
cases on system 1. On system 2, these are still slower than for SSE. Finally, using the SSE lookup
for AVX2 vectors is only slightly faster than just using SSE, so this brings only very little gains,
except for 64-bit data on system 1. Regarding the sequential write out method, using AVX2 does
have nearly no effect, as the runtimes are typically marginally faster compared to SSE.

In total, using just SSE already delivers very high performance and for that the lookup table
approach is mostly the fastest. Splitting up the lookup tables introduces high overheads for larger
vector widths and when the table lookup approach is desired, the SSE lookup should just be
used. However, regarding bit flips, reliability-wise the case is different: Since the lookup table
approach requires many tables (for each value width) which reside in main memory, the problem
of data integrity for these tables arises. For both approaches the code integrity must be maintained
anyways, which is out of the scope of this thesis. The shuffle entries must be verified over and
over again, otherwise simply the wrong data could be materialized, because corrupt shuffle masks
might be used. This, in turn, may lead to false positives, false negatives, or missing data in
the enclosing queries. Consequently, in the remainder of this thesis we will assume the iterative
approach, because although it is mostly worse performance-wise, it offers better reliability from
the database system perspective. We leave the problem of hardening lookup tables to future work
and will give some more detail in Section 7.1.

5.3.2 Hardened Bitmaps

Bitmaps are bit vectors, where each bit corresponds to the value at the same position in the
data (intermediate) column. They are typically used to represent results of filter operations in
a compact format [1, 33, 195]. Then, a bit set to one means the corresponding value satisfies
the filter predicate, while a bit set to zero implies the opposite. Bitmaps can be encoded with
both AN coding or XOR checksums and we first discuss using AN coding. On the one hand, as
we could see for memory consumption (cf. Figure 3.25), AN coding of individual bits is very
space-costly. On the other hand, we can view a bitmap as a vector of numbers (limbs) and encode
each limb individually, where the memory costs are lower. Frequent operations on bitmaps are the
intersection (bit-wise AND) or combination (bit-wise OR) to aggregate multiple filter results on
the same table [1, 33]. Executing these bit-wise operations on AN coded data does not result in
valid code words again. Consequently, each limb needs to be decoded before the bitmap operation
and the result needs to be encoded again, afterwards. In contrast, using XOR checksums is quite
straight forward. Typically, the whole bitmap is read anyways, and an XOR checksum, appended
e.g. after the bitmap, can be computed easily in parallel, during a bitmap operation. This can
happen both for the existing bitmaps for detection and for the resulting bitmap for hardening. To
investigate the impact of using either coding for bitmaps, we measured bitmap intersection on
both measurement systems. We use simple arrays with randomly set bits, since the actual result

156 Chapter 5 Bit Flip Detecting Query Processing

102

103

104

105

106

107

108

109

103 104 105 106 107 108 109
0
50
100
150
200
250
300

Ru
nt

im
e

[n
s]

O
ve

rh
ea

d
[%

]

bitmap size [# bits]

Unprotected
AN

XOR

Figure 5.15: Comparison of bitmap intersection (AND-ing) runtime in [ns] (top) and overhead in
[%] (bottom) between unencoded and AN hardened bit vectors on system 1.

102

103

104

105

106

107

108

109

103 104 105 106 107 108 109
0
50
100
150
200
250
300

Ru
nt

im
e

[n
s]

O
ve

rh
ea

d
[%

]

bitmap size [# bits]

Unprotected
AN

XOR

Figure 5.16: Comparison of bitmap intersection (AND-ing) runtime in [ns] (top) and overhead in
[%] (bottom) between unencoded and AN hardened bit vectors on system 2.

5.3 Hardened Intermediate Results 157

Approach Advantages Disadvantages

Early
• No adaptation of physical operators • Single point of error detection.

• Rematerialization of complete base
columns.

Late
• No adaptation of physical operators
• Potentially less values that undergo

detection than for Early Onetime.

• Single point of error detection.

Continuous
• Holistic approach: no ∆ operator

and no additional data materializa-
tion.

• Can detect bit flips in main mem-
ory, interconnects between RAM
and CPU, and CPU caches.

• Recoding of each value possible,
which allows adaptability at run-
time.

• All physical query operators must be
adapted.

Table 5.2: Advantages and disadvantages of the detection opportunities.

are unimportant for this measurement. We furthermore do not assume any compacted form of
bitmaps. The bitmaps are represented using 64-bit integers, where for the unencoded and XOR
protected bitmaps all 64 bits are effectively used, while for the AN hardened variant we only use
48 effectively and the remaining 16 bits for hardening redundancy. The actual A is irrelevant here.
Figure 5.15 shows the results for system 1. The graph actually consists of two parts: the upper part
shows the runtime on the left y-axis, directly comparing the runtimes of the unencoded and the
AN hardened variants. The lower part shows the overhead of the hardened variants, computed as(

runtime hardened
runtime unprotected

− 1

)
· 100 [%].

We varied the size of the bitmap from 103 bits up to 109 bits. We see for system 1 that the AN
hardened variant has much higher overheads than XOR, where for most of the measured sizes,
the overhead is between 150% and ≈ 200%. The picture is even worse for system 2, shown in
Figure 5.16. There, the AN coded variant has, except for the smallest case, an overhead between
200% and ≈ 250%. In contrast, the XOR hardened bitmap intersection has always an overhead of
around 50%. As we see, the overheads for the AN coded variant are in total much higher than for
the XOR coded variant. When it is desired to use encoded bitmaps, the tradeoff must be chosen
between the flexibility and better detection capabilities of AN coding against the better runtime of
XOR coding.

5.4 SUMMARY

In this chapter, we first shortly revised the most important aspects of the query life cycle. This
includes parsing of a user query, optimizing the query abstract syntax tree (AST), generating and

158 Chapter 5 Bit Flip Detecting Query Processing

executing a QEP, and finally presenting the result to the user. There, we focused on the peculiarities
of in-memory column stores and presented details of MonetDB query processing in more detail,
including MAL plans and an example MAL plan graph.

Then, we introduced three opportunities for integrating hardening into query processing, which
are summarized in Table 5.2. The Early and Late Onetime Detection methods introduce a new
∆ operator which does error detection and decoding on a hardened column. Both methods place
the operator after the optimizers generated the QEP. The Early Onetime method places the ∆
operator right before any access to hardened data, so that the remaining query stays the same and
all existing physical operators can stay oblivious to data hardening. The Late Onetime method
exploits the fact that AN coding, being an arithmetic code, allows operations on code words which
lead to valid code words again. This allows to place the ∆ operator at the very end of the query,
when all data is hardened with the same AN parameter. When this is not the case, we must
place ∆ before multi-input operators with differently hardened data, or before some other special
cases like some arithmetic operators, or σ operators which evaluate predicates containing certain
arithmetic operations. We argued that, ∆ may incur lots of overhead since lots of data might be
materialized a second time. We then presented a more holistic approach, which goes even further
than the previous two methods, called Continuous Detection. Here, we require to adapt all physical
operators to include error detection primitives. The ∆ operator is not needed any longer for query
processing, but when considering cold and hot data, we argued that a ∆-like operator for pure error
detection might still be used to detect errors in cold data. Furthermore, intermediate results can
be easily reencoded on the fly between operators. Hardened index structures can simply replace
the coding-unaware counterparts, assuming that all base data is encoded anyways. We showed for
two example operators how to include error detection primitives. Since we only deal with error
detection in this thesis, we assume that operators for now return an error position vector, which
stores the hardened positions at which errors were found. Future work can plug in at this point to
run error correction primitives.

Finally, we discussed how hardening affects intermediate results and in particular selective stores,
where only a subset of the input data is given to the next operator. Bitmaps can be used as a
compact form to represent such filter results and to postpone materialization of intermediate data
as long as possible. Our measurements showed that hardening bitmaps is very costly in terms
of runtime overhead when employing AN coding, but this provides very good error detection
capabilities, in turn. The memory consumption depends, again, on the limb size and the required
detection capabilities. XOR checksums can be used to provide better runtimes, but have worse
error detection performance and offer less adaptability than AN coding. This means that the actual
choice of the used technique must be based on an actual system’s error model. Next to using
bitmap representations, selective stores can also fully materialize intermediate data. This is, from a
hardening perspective, more efficient, since for the same minimal detectable bit flip weight, larger
data requires less overhead in terms of additional bits (cf. Tables 3.6 and A.1 to A.4). Especially
for vectorized code, there are multiple possibilities for materializing data, where the related work
uses only a small subset of the possible combinations of data widths and vector widths. However,
here the problem is that the lookup tables themselves typically reside in main memory, which
means that they must also be hardened against bit flips.

The introduction of the Continuous Detection approach fulfills Requirement R4 – availability.
This is, because error detection is performed in an online fashion in each and every physical
database operator, on each and every value which is read. This also holds for the hardened index
structures we presented in Section 4.3, where error detection is performed during each and every
tree traversal. Furthermore, Continuous Detection also fulfills Requirement R3 – adaptability –
since it allows to reencode outgoing data on the fly in each operator. To the best of our knowledge,

5.4 Summary 159

we are the first to accomplish hardening query processing against arbitrary bit flips in main memory,
even in an online and adaptable fashion.

160 Chapter 5 Bit Flip Detecting Query Processing

6
END-TO-END EVALUATION

6.1 Prototype Implementation

6.2 Performance of Individual
Operators

6.3 Star Schema Benchmark
Queries

6.4 Error Detecting B-Tree

6.5 Summary

In this chapter we conduct an end-to-end evaluation in order to prove the feasibility of our methods
for hardening the storage and processing layers of in-memory DMSs. We will first present our
prototypical implementation of an in-memory column store in Section 6.1. Building such an
evaluation system is challenging, because a huge variety of hardened and non-hardened physical
operators must be supported, as we want to directly compare them using the same data and queries.
Then, we will compare individual hardened operators against their unprotected counterparts in
Section 6.2. Afterwards, we use all queries from the star schema benchmark (SSB) [131] to
provide a holistic runtime comparison. The main contributions of this chapter can be summarized
as follows:

1. We present a method for implementing a research prototype of an in-memory column store for
comparing a huge variety of physical operators, which can be varied along several dimensions
including physical data types, coding schemes, and sub-operations.

2. We conduct detailed measurements on individual physical operators as well as whole SSB
queries. This shows how the improved AN coding performs in in-memory database operators
and in actual queries when performing bit flip detection on each and every single value in
both base columns and intermediate results. The results of the SSB evaluation for whole
queries on system 1 were published in [87].

6.1 PROTOTYPE IMPLEMENTATION

To conduct the detailed operator and query evaluation, we chose a greenfield approach, by im-
plementing a prototype of an in-memory column store, which mostly only deals with the aspects
that we changed in the previous chapters. We call our prototype AHEAD, enabling adaptable data
hardening for on-the-fly hardware error detection during database query processing [87].

6.1.1 AHEAD Architecture

We now describe the architecture of our prototype, which must support a multitude of physical
database operator implementations. We need this to investigate the impact of data hardening on
the individual operators, and on queries as a whole. We start with an overview of how queries are
executed, depicted in Figure 6.1. Each query is a separate executable binary, where the QEP is
hard-coded. First, AHEAD loads header files for the tables to be loaded, where information about
each table’s column names and types is stored. Then, it tries to load the necessary database files,

Unencoded Encoded
Logical Physical Logical Physical

tinyint (u)int8_t AN_tiny (u)int16_t
shortint (u)int16_t AN_short (u)int32_t

int (u)int32_t AN_int (u)int64_t
bigint (u)int64_t AN_big (u)int64_t
string (u)char_t

Table 6.1: AHEAD’s mapping between logical and physical data types.

162 Chapter 6 End-to-End Evaluation

where it first checks whether proprietary .ahead files are present in the database path. Each column
is stored in a separate file, which is named after the table and column name. When the AHEAD
files are not present for all tables and columns, the necessary data files are loaded as generated by
the SSB tool dbgen1. These files contain the data in pipe-delimited text format. The data is parsed
and transformed into the physical data representation as denoted by the table header files. Here,
we support both unencoded and hardened data. For the AN hardened integer types, we predefine
for each type a golden A which is used to initially encode the data. In our prototype, we do not
use special lightweight compression except using the smallest available register width needed to
represent the logical data type. The mappings between logical data types and unprotected and
hardened physical data types are shown in Table 6.1. There, we see that the hardened data types
use the next larger register width, except for the bigint type, where we still use 64-bit data, since this
is the largest scalar data type currently available. Therefore, the data domain is reduced in this case
by the amount of bits which theA requires. Note also, that since we did not yet compute goldenAs
for that data width, we simply use those goldenAs from 32-bit data. This is not a problem, because
we are now only interested in the runtime behavior, and not the actual bit flip detection capabilities.
After all data is loaded, the proprietary .ahead files are written to disk to speed up any next loading
of the database files. When the AHEAD data files are already present, then the table header files
are parsed and just the necessary .ahead files loaded for the needed columns. We assume that all
columns are stored in a single, contiguous array. After all data is loaded to memory, the actual
query is run in a loop to measure several runs. For each physical operator, statistics like runtime
and hardware performance counters are collected and printed on the console for later evaluation.

The AHEAD prototype uses the BAT model known from MonetDB, because this model is easy
to be implemented. In a nutshell, this mostly means that for each column the array containing
the values and a column containing the respective (V)OIDs are referenced through a single data
structure. Some operators, like the join, produce an output BAT where the head and tail of the
inputs are intermixed, but the individual values can nevertheless be attributed to their respective
(V)OIDs afterwards again. Although MonetDB currently implements a headless mode, where
actually the BAT model is abandoned and each input and output is directly seen as column, we still
stick to the BAT model. This is only a cosmetic change and does not change the expressiveness of
the system. However, we chose to materialize all data, anyways (cf. Section 5.3), and by that we
always create pairs of columns, containing both OIDs and the actual payloads. This is to identify
any value at any point in time during the query. We distinguish between two types of BATs,
ColumnBATs, which contain column base data, and TempBATs, which are intermediate results produced
by the operators.

6.1.2 Diversity of Physical Operators

A big problem is that our prototype must support a huge amount of operator variants. This stems
from the following facts. First, we want to compare unprotected operators without error detection
primitives against hardened operators which do include them. Second, each operator must be
tailored to the individual physical data types. Third, we implement both scalar and vectorized SSE
variants of some operators. Table 6.2 lists a subset of the operators which we implemented in
our prototype to support the whole range of SSB queries [131]. Our prototype in total supports
eleven data types: four integer types (tinyint, shortint, int, and bigint), OID and VOID, strings,
as well as the four AN coded integer counterparts and AN encoded OID. The type system of our
prototype is designed such that it can be extended by more types. For the AN coded data types, we
define a fixed set of possible parameters – the golden As from Tables A.1 to A.4. This number of

1See e.g. https://github.com/lemire/StarSchemaBenchmark.

6.1 Prototype Implementation 163

https://github.com/lemire/StarSchemaBenchmark

Start

Load and parse
header files.

All .ahead files
present?

Load and parse
data files.

Write .ahead
files to disk.

Load .ahead
column files.

Start query.
Init counters.

Execute next
operator

Query
complete?

Print
statistics

Repetition
count reached?

Stop

no

yes

no

yes

no

yes

Figure 6.1: Query execution in the AHEAD prototype.

Input # Type # Predicate
Variant Signature BATs variants variants

Scalar
only

copy (BAT<H, T>) 1 112

matchjoin (BAT<H1, J>, BAT<J, T2>) 2 113

fetchjoin (BAT<void, oid>, BAT<void, T2>) 2 111

hashjoin (BAT<H1, J>, BAT<J, T2>) 2 113

groupby (BAT<H, T>) 1 112

groupby (BAT<H, T>, BAT<void, oid>) 2 112

sum_grouped (BAT<H, T>, BAT<void, oid>) 2 112

Theoretical upper bound: 3157

Scalar /
SSE

check_and_decode_AN (BAT<H, T>)
† 1 112

select (BAT<void, T>, pred) 1 111 6
select (BAT<void, T>, pred1, pred2) 1 111 36
arithmetic (BAT<H1, T>, BAT<H2, T>) 2 113 4
sum (BAT<H, T>) 1 112

mul_sum (BAT<H1, T>, BAT<H2, T>) 2 113

Theoretical upper bound: 2 · 7359

Sum (Unprotected + AN hardened + Recoding)†: 3 · (3157 + 2 · 7238) + 2 · 112 = 53 141†

Table 6.2: Theoretical number of implementations per physical operator for the supported number
of data types. †: Operator check_and_decode is counted only once with all type variants in the final
sum, since it has neither an unprotected nor a recoding counterpart.

164 Chapter 6 End-to-End Evaluation

supported data types is reflected in the “# type variants” column, where the number is multiplied
depending on the possibilities of the input BATs’ types. As Table 6.2 depicts, all operators take
one or two BATs with a diverse number of type variants. Some operators have restrictions like
the join operators, where some data types are fixed and the join types must be the same, indicated
by type name J. The other type names are either given as VOID or OID, or as placeholders, where
H and T denote the type for the head and tail, respectively. Subscripts also indicate the number
of the BAT to which the type corresponds. The detect_and_decode operator realizes the ∆ operator
which we introduced for the Early and Late Onetime Detection approaches in Section 5.2.1 and
Section 5.2.2, respectively. Our selection operator select has two variants, for a single predicate and
for two predicates. The former supports any of the comparisons <,≤,=, ̸=,≥, >, while the latter
supports any combination of these six comparison, whereas in a real system some combinations
might not make sense and be left out. The arithmetic operator, in turn, supports the four basic
operations +,−, ·,÷. Furthermore, the upper half of the listed operators is only implemented as a
scalar variant, while the lower half is implemented as both scalar and SSE variants. Table 6.2 also
lists the total numbers of possible operator variants, which is in total ≈ 53 141. This is the total
sum of the theoretical upper bounds for our set of operators, meaning that this would have been
the total amount of physical operators if we had wanted to allow any type in any placeholder. This
number includes the full set of scalar and vectorized operators for unprotected, AN hardened and
AN recoding variants. Since the ∆ operator check_and_decode_AN is only used for the AN hardened
operators (not for recoding), it is only included once in the total sum.

To illustrate how we deal with this excessive amount of operator implementations, consider Fig-
ure 6.2, where there is a schematic figure of the selection operator. There, we visualized the
compile-time configuration possibilities, which allow to generate many operator instantiations
through a few operator templates. The selection operator is depicted as the gray box with some
template places (triangle and semi-circle recesses) where the actual types (top) and comparison
operations (bottom) can be set. From each type, we can in general choose any two to fit the head
and tail type. For the head and tail types, the full range of data types is supported, and we will see
shortly how we support such different types like integers and strings. As can be seen on the very
left and right sides, the operator takes one input BAT and generates one output BAT. Furthermore,
three variants exist for unprotected, hardening-aware, and hardening-aware-and-recoding selec-
tion, indicated as the switch in the right half of the operator rectangle. By that, we can also run
unprotected operators on hardened data, as is required for the late onetime detection scheme (cf
Section 5.2.2). The two hardened variants, in turn, are realized using the same code template and
a template Boolean parameter which actually switches between the two behaviors. Furthermore,
the encoded variant requires the head’s and tail’sA as input parameters, while the recoding variant
additionally requires the respective Anews, shown on the left. Both are displayed dashed since
they are optional and only used for these cases. Figure 6.2 shows two comparisons to be specified
at the bottom, where the second is also optional. The actual use depends on whether one or two
predicates are desired.

As we have just seen, supporting a certain range of data types and physical operators which come
in many variants leads to a huge amount of implementations. To cope with this excessive amount,
we use several techniques. First, we make extensive use of the C++ template mechanism. Each
operator is implemented only once and then instantiated for all desired data type and potentially
operation combinations. In the sources, this is done via explicit template instantiation2. This
offloads lots of work to the compiler, which then also can apply optimizations, e.g. for the specific
data types. We exploit the fact that modern compilers do quite intelligent inlining and optimize
much of the template code away. Second, instead of supporting any possibly used data width,

2See e.g. http://en.cppreference.com/w/cpp/language/template_specialization.

6.1 Prototype Implementation 165

http://en.cppreference.com/w/cpp/language/template_specialization

Selection
Operator

Head

Tail

op1 op2
•

• Unprotected
• Encoded

• Recoding

BATInput

A

Anew

BATResult

t
i
n
y
i
n
t

s
h
o
r
t
i
n
t

i
n
t

b
i
g
i
n
t

s
t
r
i
n
g

A
N
_
t
i
n
y

A
N
_
s
h
o
r
t

A
N
_
i
n
t

A
N
_
b
i
g

< ≤ = ̸= ≥ >

Figure 6.2: Schema of the compile-time configurability of the selection operator.

in our current implementation we use only the native implementation data types provided by
C++. This implies that we implicitly do byte- and word-aligned integer compression. For the
columns we then statically assign the smallest integer type which is needed to represent all values.
In order to support the various hardened data types, we use a secondary type system, based on
structs. This is needed, because native types and all their aliases (typedefs and the like) are during
template type resolution reduced to their base type. To circumvent this, we use an additional struct
for each supported data type which is then used to instantiate all the operators for compilation.
Third and finally, we implemented a SIMD abstraction layer, which in principal allows to define
operators through a skeleton of template code which then calls all the respective operations for
the desired SIMD ISA, e.g. SSE. This abstraction layer was also used for our microbenchmarks
in Section 3.4.2. Regarding the total amount of instantiated operators, we also apply several
restrictions. For instance, we assume that the selection operators are only fed with base columns,
where the head type is VOID. Using the template specialization technique, we also do not allocate
any memory storage for the head or tail when it is of type VOID. The BAT structure is defined
such that it contains a special container member for all data types except for the VOID type.

6.1.3 One Concrete Operator Realization

To provide one concrete example, consider Listing 6.1, where we depict the unprotected variant of
the select operator for a single predicate. The actual function is embedded in a struct, to support
partial specialization of a subset of the template parameters, which we will describe below. On
Line 1, we see that it takes several template type parameters. First, there is a template<typename>
class Op, which is an abstraction from the actual operation, where our implementation supports the
six comparisons <,≤,=, ̸=,≥, >. Template parameter Tail is the input BAT’s tail type. On Line
3, the struct is partially specialized on the input BAT’s head type to be of type is VOID (v2_void_t on
Line 2). This shows the implementation way of basically restricting the selection on base columns
and this can be easily extended by either avoiding the partial specialization at this point, or by
adding partial specializations for more head types. Lines 4–7 introduce type aliases (typedef) to
shorten the code thereafter. For better readability, the type names are indented. Our type system
defines for each data type a respective selection data type, which is used whenever an operator may
return only a subset of the original values. This is required in this case, because we materialize

166 Chapter 6 End-to-End Evaluation

1 template <template <typename > class Op, typename Tail>
2 struct Selection1 <Op, v2_void_t , Tail> {

4 typedef typename Tail::type_t tail_t;
5 typedef typename v2_void_t::v2_select_t head_select_t;
6 typedef typename Tail::v2_select_t tail_select_t;
7 typedef BAT<head_select_t , tail_select_t > bat_t;

9 static bat_t*
10 filter(
11 BAT<v2_void_t , Tail>* arg,
12 tail_t th) {
13 auto result = skeleton <head_select_t , tail_select_t >(arg);
14 result->reserve_head(arg->size());
15 auto iter = arg->begin();
16 Op<typename Tail::v2_compare_t::type_t> op;
17 for (; iter->hasNext(); ++*iter) {
18 auto t = iter->tail();
19 if (op(t, th)) {
20 result->append_head(iter->head());
21 }
22 }
23 delete iter;
24 return result;
25 }
26 };

Listing 6.1: The abstract unprotected selection operator implementation

1 template <template <typename > class Op>
2 struct Selection1 <Op, v2_void_t , v2_str_t> {

4 typedef typename v2_void_t::v2_select_t v2_head_select_t;
5 typedef typename v2_str_t::v2_select_t v2_tail_select_t;
6 typedef BAT<v2_head_select_t , v2_tail_select_t > result_t;

8 static result_t* filter(
9 BAT<v2_void_t , v2_str_t >* arg,

10 str_t threshold) {
11 auto result = skeleton <v2_head_select_t , v2_tail_select_t >(arg);
12 result->reserve_head(arg->size());
13 auto iter = arg->begin();
14 Op<int> op;
15 for (; iter->hasNext(); ++*iter) {
16 auto t = iter->tail();
17 if (op(strcmp(t, threshold), 0)) {
18 result->append_head(iter->head());
19 }
20 }
21 delete iter;
22 return result;
23 }
24 };

Listing 6.2: String specialization of the unprotected selection operator

6.1 Prototype Implementation 167

all intermediate results and for the head type we need to convert the data type from VOID to OID.
Then follows the actual operator implementation on Lines 9–25. The operator returns a bat_t,
(Line 9) which was previously defined to be a BAT containing the respective selection types of the
input BAT (Lines 5–7). The operator’s arguments are the input BAT (Line 11) and the threshold
(Line 12), which must be of the BAT’s tail type. Then, first the result BAT is allocated on Line
13, and space is reserved (Line 14), whereas for now we allocate enough space to accommodate
all values. In practice, selectivity estimations from the query optimizers would be used to allocate
as little memory as necessary. Afterwards, the operator iterates over the bat using a special BAT
iterators (Line 15). In the sources, an operator object is created on Line 16, but in reality, since
this only contains a simple comparison evaluation function, this object is never really instantiated.
The iteration loop is started on Line 17, then the value is retrieved from the iterator on Line 18 and
the predicate evaluated on Line 19. If it matches, only the head value is stored in the result BAT
instead of both head and tail. We employ this small optimization, because in queries, especially
those from SSB, typically not all attributes for which a selection is done are also needed for the
end result. By that, we need the respective OIDs of the selected attributes only, anyways. At the
end of the operator, we need to deallocate the heap-allocated iterator (Line 23) and, finally, return
the result (Line 24). As can be seen from the code snippets, we did not employ any loop unrolling
for the AHEAD operators.

Listing 6.2 shows the selection operator for strings, where one more template type is specialized,
namely the tail type. By that, the compiler will automatically use this implementation whenever
it encounters the selection operator and an input BAT with string as tail type. In principle, the
operator is the same as before, except that the template definition on Line 1 lacks the tail type,
that the struct definition defines the string type, and that the predicate evaluation on Line 17
calls the strcmp function, which returns an integer denoting the first difference between the two
given strings, or zero when both are equal. This can be elegantly used in combination with the
template comparison operator, which now compares the output from strcmp against zero, which is
syntactically exactly the desired comparison.

The hardened operator variants are implemented as separate operators, derived from the unprotected
operators by adding error detection primitives and error position vectors as indicated in Section 5.2.
Using these techniques, we can instantiate all useful combinations of operators from Table 6.2 with
just 49 operator code templates. In our prototype, we only employ AN hardening for integer data
types, but the way we designed AHEAD, it can be easily extended by more error coding techniques.

6.1.4 Summary and Conclusions

In this section, we presented details of our prototypical AHEAD in-memory column store. We
used a greenfield approach so that we could concentrate on those parts of the physical layer
which we had to adapt for data and operator hardening. It supports several integer types, both
unprotected and AN hardened, as well as unprotected strings. To evaluate integration of hardening
we implemented all of the SSB queries and collect detailed statistics for each operator. W.l.o.g,
we use the BAT model known from MonetDB as one possible main memory-centric column store
implementation. One big challenge is the great diversity of operators, as we must support both
unprotected as well as hardened operators, while for several of them we offered both scalar and
vectorized implementations. To support all operators for SSB including all data type variants
etc., we would have had to implement more than 50 000 physical operators. To handle this huge
diversity, we showed how to elegantly employ modern C++ template language features, by which
the number of actual templates, including some specializations, is reduced to just 49. We illustrated

168 Chapter 6 End-to-End Evaluation

this abstractly for the selection operator and discussed the actual generic implementation, as well as
the string specialization. The error detection primitives are added just as depicted in Section 5.2.
In total, this shows how to handle a huge variety of physical data types, coding schemes, and
operations.

6.2 PERFORMANCE OF INDIVIDUAL OPERATORS

We will now investigate the influence of including the AN error detection primitives in several
operators. Therefore, we take measurements for individual operators from some of the SSB
queries. Each operator is executed 10× for each of the SSB scale factors 1 . . . 10, i.e. 100× in
total. For reference, Table 6.3 lists the number of tuples per table and scale factor. For table
“Customer”, the tuple count increases by a factor 30 000 per scale factor, while for table “Date”
the number of tuples stays the same with 2556 entries. It contains for a period of seven years one
tuple per day, including one leap year. The size of table “Lineorder” is approximately 6 000 000
× the scale factor. Table “Part” scales with a ratio of about 200 000 · (1 + ⌊log2 scale factor⌋),
while table “Supplier” scales linearly with a factor of 2000 per scale factor. The SSB consists of
a small star schema database layout, where table “Lineorder” is the fact table and the other tables
are the dimension tables. In fact, it is a simplified variant of the TPC-H3 benchmark. For all
operators, we will show six graphs in total, three per measurement system (Table 3.7), showing
four different metrics which are arranged below each other, and for each metric the graphs for the
two systems are next to each other. The four metrics are from top to bottom: (1) the absolute
operator runtimes in milliseconds in the first graphs, (2) the runtime overheads of AN coding in
percent in the in the middle graphs, (3) the instruction overhead in terms of additionally retired
instructions, and (4) the average instructions per cycle (IPC) per operator lower graphs. We chose
these metrics to show several aspects. The runtime graphs show whether the operators scale
linearly or not, which is an important property with increasing amounts of data. In addition, the
runtime overhead graph shows the actual AN coding overhead per operator, which is not really
visible from the absolute runtimes. This also shows how error detection scales with increasing
column size lengths. The instruction overhead provides the amount of additional work in terms
of additionally retired instructions. These are instructions which were completely executed and
emitted from the execution pipeline and represent the actual amount of work done for the real
control flow and does not count instructions done by speculative execution. The IPC is used as an
indicator how the CPU schedules the additional instructions which are added by the error detection
primitives. Also, we measure both normal AN error detection, as depicted in the continuous error
detection opportunity from the previous chapter, as well as AN error detection including recoding
of all materialized values. We denote the systems by their CPUs’ code names Skylake (system
1) and Xeon Phi (system 2). As we will see, the simpler core architecture of the Xeon Phi and
the lower core frequencies lead to quite different measurements than for the Skylake system. In
the following, we will present the measurements first for selection operators with one and two
predicates, then those of three different join implementations, and finally those of grouping and
aggregation operators. The ∆ operator does not have an unencoded counterpart and is in fact only
used by Early and Late Detection. Therefore, we will in the end show the benefits of vectorization
for the ∆ operator.

3See http://www.tpc.org/tpch/.

6.2 Performance of Individual Operators 169

http://www.tpc.org/tpch/

Scale Table Cardinalities
Factor Customer Date Lineorder Part Supplier

1 30 000 2556 6 001 215 200 000 2000
2 60 000 2556 11 997 996 400 000 4000
3 90 000 2556 17 996 609 400 000 6000
4 120 000 2556 23 996 604 600 000 8000
5 150 000 2556 29 999 795 600 000 10 000
6 180 000 2556 36 000 148 600 000 12 000
7 210 000 2556 41 995 307 600 000 14 000
8 240 000 2556 47 989 007 800 000 16 000
9 270 000 2556 53 986 608 800 000 18 000
10 300 000 2556 59 986 052 800 000 20 000

Table 6.3: Tested scale factors and table cardinalities for the Star Schema Benchmark.

6.2.1 Selection on One Predicate

We start with our comparison of the selection of one column using one predicate. All SSB queries
include such selections and we take measurements from query 1.1. For the selection operator we
implemented both scalar and SSE variants. We will first discuss the measurements for the scalar
variant and then those for the SSE variant. It should be noted here that the “Quantity” column is
stored using the 8-bit data type tinyint for the unencoded case and as 16-bit AN_tiny for the
hardened case.

Scalar Execution

The absolute runtimes for scalar execution are shown in Figures 6.3a and 6.3b, which show a linear
increase in runtime for both Skylake and Xeon Phi systems and for all three operator variants.
The runtimes already indicate that the unprotected operator is slightly faster than the hardened
ones. The values differ dramatically between Skylake and Xeon Phi, where the former is more
than 3× faster than the latter. However, the runtime overhead, shown in Figures 6.3c and 6.3d
reveals that both systems have nearly the same relative overhead of around 8.2% for Skylake and
13.1% for Xeon Phi on average, which is a difference of only 5%. The graphs also show that
with varying scale factor, the overhead is quite stable. The instruction overhead, presented in
Figures 6.3e and 6.3f, shows 21% for Skylake and 16.4% for the Phi on average additional work
for the hardened variants, compared to the unprotected ones. Especially for Skylake, even though
we have 21% and more instructions, we only have a runtime overhead of 8.2%. This means that
the CPU can efficiently schedule the additional error detection instructions. Figures 6.3g and 6.3h
shows that the hardened variants have a slightly higher IPC than the unprotected operator. This
supports our previous statement, meaning that with a higher IPC, more instructions are executed in
parallel. This in turn supports our assumptions from Section 3.5.4, that the improved AN coding
using the inverse leads to multiple, independent execution paths (cf. Figure 3.36). Albeit the IPC
is not substantially higher, it suffices to compensate for the additional instructions. Of course, the
additional instructions have varying numbers of cycles until they finish and this must be accounted
for, as well. Furthermore, while we see that the runtime and instruction overheads are quite similar
for the Skylake and Xeon Phi systems, the absolute runtimes and the IPC differ quite much. The
Skylake system has an IPC of 1.17 for the unprotected operator and of 1.30 for the hardened and

170 Chapter 6 End-to-End Evaluation

recoding variants, on average. In contrast, the Xeon Phi system only shows IPCs of 0.57 and 0.60
on average for the unprotected and the hardened operator variants, respectively.

Vectorized Execution

Now, we consider the vectorized execution, for which we implemented SSE variants of the re-
spective operator. The measurements are shown in Figure 6.4. Here, we can first see that the
vectorization for the column filter scan is much faster than the scalar variant from Figures 6.3a
and 6.3b. For Skylake, the unprotected vectorized scan on one predicate is more than 12× faster
than the scalar one. The hardened operators also speed up a lot, but these are only slightly more than
8× faster than their scalar counterparts. This makes sense when we consider the data types again.
The unprotected operator works on 8-bit tinyint data, where it can process 16 values per vector
instruction using on SSE. In contrast, the hardened operator uses the 16-bit wide corresponding An
tiny data type and, consequently, each vector operation can only work on half as many values as
for tinyint. This in turn leads to a higher difference between the vectorized operators than for the
scalar ones. Now, on the Skylake system, the runtimes between unprotected and hardened operator
differ by as much as 51.9 . . . 54.5%, with a deviation for scale factor 1, where the overheads are
around 114%, as shown in Figure 6.4c. On the Xeon Phi system, the overhead is smaller with 35%
on average for both hardened variants. However, the total runtime is again much higher than that
from the Skylake system. The amount of retired instructions is much higher on the Skylake system
than on the Xeon Phi system, which may also contribute to the higher runtime overhead, on the
one hand. On the other hand, the IPC value is much higher for Skylake compared to Xeon Phi, so
that again many more instructions are executed per CPU cycle. It is about 5× as high, with values
of 1.95 and 0.39 on average for Skylake and Xeon Phi, respectively.

6.2.2 Selection on Two Predicates

Next, we present the measurements for a filter column scan using two predicates. This introduces
more work to do per value and we are interested in how far this affects the runtime overhead of the
hardened operators. The scalar execution variants shown in Figure 6.5 are in essence the same as
for the single-predicate variant. One difference is, that the runtimes are slightly lower than before.
The more interesting part is the vectorized one, shown in Figure 6.6. Again, the runtimes are
slightly lower than for the single-predicate variant, but now for the Skylake system, the runtime
overhead decreases down to 44% on average. The IPC increases on average, with 2.6 instead of
2.3 for the unprotected operator, and with 2.4 instead of 2 for both AN hardened ones, for Skylake.
In contrast, the averages for the Xeon Phi stay virtually the same with an increase of 0.01 for the
unprotected and 0.03 for both hardened variants. To summarize, the more powerful Skylake system
can mitigate the coding overhead when more work is done per value.

6.2 Performance of Individual Operators 171

0
100
200
300
400
500
600
700
800
900

1 2 3 4 5 6 7 8 9 10

Ru
nt

im
e

[m
s]

Scale Factor

(a) Skylake

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10

Ru
nt

im
e

[m
s]

Scale Factor

(b) Xeon Phi

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

Ru
nt

im
e

O
ve

rh
ea

d
[%

]

Scale Factor

(c) Skylake

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

Ru
nt

im
e

O
ve

rh
ea

d
[%

]

Scale Factor

(d) Xeon Phi

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

In
st

ru
ct

io
n

O
ve

rh
ea

d
[%

]

Scale Factor

(e) Skylake

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

In
st

ru
ct

io
n

O
ve

rh
ea

d
[%

]

Scale Factor

(f) Xeon Phi

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6 7 8 9 10

IP
C

Scale Factor

(g) Skylake

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6 7 8 9 10

IP
C

Scale Factor

(h) Xeon Phi
Unprotected Continuous Recoding

Figure 6.3: Measurements for scalar selection operator on table “Lineorder” with single predicate
quantity < 25.

172 Chapter 6 End-to-End Evaluation

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

Ru
nt

im
e

[m
s]

Scale Factor

(a) Skylake

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10

Ru
nt

im
e

[m
s]

Scale Factor

(b) Xeon Phi

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

114.7 / 114.4

Ru
nt

im
e

O
ve

rh
ea

d
[%

]

Scale Factor

(c) Skylake

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

Ru
nt

im
e

O
ve

rh
ea

d
[%

]

Scale Factor

(d) Xeon Phi

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

In
st

ru
ct

io
n

O
ve

rh
ea

d
[%

]

Scale Factor

(e) Skylake

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

In
st

ru
ct

io
n

O
ve

rh
ea

d
[%

]

Scale Factor

(f) Xeon Phi

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6 7 8 9 10

IP
C

Scale Factor

(g) Skylake

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6 7 8 9 10

IP
C

Scale Factor

(h) Xeon Phi
Unprotected Continuous Recoding

Figure 6.4: Measurements for vectorized selection operator on table “Lineorder” with single
predicate quantity < 25.

6.2 Performance of Individual Operators 173

0
100
200
300
400
500
600
700
800

1 2 3 4 5 6 7 8 9 10

Ru
nt

im
e

[m
s]

Scale Factor

(a) Skylake

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10

Ru
nt

im
e

[m
s]

Scale Factor

(b) Xeon Phi

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

Ru
nt

im
e

O
ve

rh
ea

d
[%

]

Scale Factor

(c) Skylake

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

Ru
nt

im
e

O
ve

rh
ea

d
[%

]

Scale Factor

(d) Xeon Phi

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

In
st

ru
ct

io
n

O
ve

rh
ea

d
[%

]

Scale Factor

(e) Skylake

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

In
st

ru
ct

io
n

O
ve

rh
ea

d
[%

]

Scale Factor

(f) Xeon Phi

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6 7 8 9 10

IP
C

Scale Factor

(g) Skylake

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6 7 8 9 10

IP
C

Scale Factor

(h) Xeon Phi
Unprotected Continuous Recoding

Figure 6.5: Measurements for scalar selection operator on table “Lineorder” with two predicates
1≤discount≤3.

174 Chapter 6 End-to-End Evaluation

0
10
20
30
40
50
60
70
80
90

1 2 3 4 5 6 7 8 9 10

Ru
nt

im
e

[m
s]

Scale Factor

(a) Skylake

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10

Ru
nt

im
e

[m
s]

Scale Factor

(b) Xeon Phi

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

Ru
nt

im
e

O
ve

rh
ea

d
[%

]

Scale Factor

(c) Skylake

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

Ru
nt

im
e

O
ve

rh
ea

d
[%

]

Scale Factor

(d) Xeon Phi

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

In
st

ru
ct

io
n

O
ve

rh
ea

d
[%

]

Scale Factor

(e) Skylake

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

In
st

ru
ct

io
n

O
ve

rh
ea

d
[%

]

Scale Factor

(f) Xeon Phi

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6 7 8 9 10

IP
C

Scale Factor

(g) Skylake

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6 7 8 9 10

IP
C

Scale Factor

(h) Xeon Phi
Unprotected Continuous Recoding

Figure 6.6: Measurements for vectorized selection operator on table “Lineorder” with two pred-
icates 1≤discount≤3.

6.2 Performance of Individual Operators 175

Scale Selected
Factor OIDs

1 784 921
2 1 571 172
3 2 354 834
4 3 139 626
5 3 925 940
6 4 711 992
7 5 497 021
8 6 281 413
9 7 069 395
10 7 855 092

Table 6.4: Number of join
partners for one sort-merge
join on the “Lineorder” table
in SSB query 1.1.

Scale Lineorder DateFactor

1 784 921 365
2 1 571 172 365
3 2 354 834 365
4 3 139 626 365
5 3 925 940 365
6 4 711 992 365
7 5 497 021 365
8 6 281 413 365
9 7 069 395 365
10 7 855 092 365

Table 6.5: Number of join
partners for the hashjoin in
SSB query 1.1.

Scale LineorderFactor

1 44 532
2 97 358
3 148 684
4 195 048
5 242 314
6 291 252
7 339 171
8 390 719
9 441 427
10 490 740

Table 6.6: Number of val-
ues to fetch from column “Li-
neorder”.“Revenue” for the
fetchjoin.

6.2.3 Join Operators

Next, we consider a few join operators. In contrast to the filters, these are only implemented in a
scalar code fashion. We will first investigate the performance of a sort-merge join for sorted inputs,
then that of our fetchjoin for random access to BAT values, and finally a hash join implementation.

Sort-Merge Join

First, we look at a sort-merge join implementation, which we call matchjoin in our AHEAD
prototype. This join is designed to take as input two sorted columns with. For base columns,
this is given anyways, because their head type is VOID. Here, we use two iterators, one per input
column, at the same time. Only one iterator is incremented at a time until the value at its position
is greater or equal to the value at the other iterator’s position. When the items match, the head of
the first BAT and the tail of the second BAT are materialized as output and both iterators’ positions
are incremented. When instead an iterator’s value is larger than the other’s, that second iterator is
incremented until its value in turn is greater or equal to the first iterator. For the SSB queries, we
only need this operator when we selected OIDs from one column, using the σ operator, and then
want to fetch only the matching values from another column of the same table. For instance, in SSB
query 1.1, we select the values from “Lineorder” attribute “Discount” which satisfy the predicate
1 ≤ discount ≤ 3. The selection operator only returns the respective (sorted) OIDs and because
we need the discount later in the query again, we must also retrieve the actual values from the
“Discount” column, which is achieved with the matchjoin operator. As we mentioned, it is in fact
a sorted-merge join operator which can principally take any BAT variants. For our measurements
from Figure 6.7, the number of OIDs to retrieve from the “Lineorder” table are listed in Table 6.4,
again for scale factors 1 to 10. The picture here is like for the scalar selection operators, although
in these measurements there seems to be clutter starting with scale factor 6. It makes sense that it
behaves like the selection operator, because (1) it is like a selection over two columns in parallel,
whereas not predicates are compared, but the values from the two columns, and (2) both have
sequential access patterns. In contrast to the scalar selection, however, the Skylake IPC is much

176 Chapter 6 End-to-End Evaluation

higher. This shows that it can efficiently issue the more operations required to increase the two
column iterators used for the sort-merge behavior. In total, this operator leads to ≈ 10 . . . 30%
runtime overhead for both measurement systems. The instruction overhead is around 20% and by
that comparable to that from the scalar selection operator.

Hashjoin

The second join implementation which we investigate is a hash-based one. The hash join operator
first builds a hash table for one input column and then probes the other columns against this hash
table. The hash table is built using the first BAT’s tail and then probes the second BAT’s head, or
the other way around, depending on the desired join order. As hash table implementation we use
the Google implementation “sparsehash”4. Despite its name, the project offers implementations
for both sparse and dense hash tables, whereas we only use the dense hash table variant. Figure 6.8
shows our measurements for the hash-based join of tables “Lineorder” and “Date” over attributes
“orderdate” and “datekey”, respectively. The hash table is built over the “Date” input column, since
it is the much smaller dimension table. In contrast to the other operators, the hash join has many
more random memory accesses. We see the difference especially for the Skylake system. The
instruction overhead (Figure 6.8e) is 14.7% for continuous and 15.9% for recoding, on average.
This is slightly lower than for the other scalar operators. The runtime overhead is 8.8% for the
recoding variant and 11.1% for the normal hardened variant. Although both operate on the same
physical data width, the recoding variant uses a smallerA and by that the actively used data domain
is smaller. This may in total lead to the faster behavior of the hash table for the recoding hardened
operator.

Fetchjoin

The final join is what we call fetchjoin, which realizes random access to a target BAT. As can be seen
in Table 6.2, the fetchjoin takes a first BAT with a VOID/OID mapping, which denotes the OIDs of
the values to fetch from the second BAT. Furthermore, we restricted for that join the second BAT
to have a head sub-column of type VOID. This is to enforce at source code level that the second
BAT is sorted and is used in the SSB queries to fetch values from base columns. The results in
Figure 6.9 are taken from SSB query 2.1, where values are fetched from column “Revenue” of table
“Lineorder”. The numbers of values per scale factor, which the fetchjoin retrieves from column
“Lineorder”.“Revenue” are shown in Table 6.6. For each scale factor, the ratio of the retrieved
values from the “Lineorder” table is ≈ 8‰. As the graphs from Figures 6.9a to 6.9d show, the
runtime overhead of≈ 12.5% is again on the same level as the previous scalar operators. However,
the instruction overhead in terms of additionally retired instructions (Figures 6.9e and 6.9f) is
considerably lower than for the other scalar operators, with averages of 11.5% for continuous and
13.5% for recoding, for the Skylake system. On the Xeon Phi system, this overhead is on average
5.2% and 5.6% for continuous and recoding, respectively. Additionally, the IPC is much lower,
with 0.5 and 0.3 for Skylake and Xeon Phi, respectively.

4See https://github.com/sparsehash/sparsehash

6.2 Performance of Individual Operators 177

https://github.com/sparsehash/sparsehash

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

Ru
nt

im
e

[m
s]

Scale Factor

(a) Skylake

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10

Ru
nt

im
e

[m
s]

Scale Factor

(b) Xeon Phi

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

Ru
nt

im
e

O
ve

rh
ea

d
[%

]

Scale Factor

(c) Skylake

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

Ru
nt

im
e

O
ve

rh
ea

d
[%

]

Scale Factor

(d) Xeon Phi

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

In
st

ru
ct

io
n

O
ve

rh
ea

d
[%

]

Scale Factor

(e) Skylake

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

In
st

ru
ct

io
n

O
ve

rh
ea

d
[%

]

Scale Factor

(f) Xeon Phi

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6 7 8 9 10

IP
C

Scale Factor

(g) Skylake

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6 7 8 9 10

IP
C

Scale Factor

(h) Xeon Phi
Unprotected Continuous Recoding

Figure 6.7: Measurements for scalar sort-merge join operator retrieving values for column
“Discount” from table “Lineorder”.

178 Chapter 6 End-to-End Evaluation

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10

Ru
nt

im
e

[m
s]

Scale Factor

(a) Skylake

0
100
200
300
400
500
600
700
800

1 2 3 4 5 6 7 8 9 10

Ru
nt

im
e

[m
s]

Scale Factor

(b) Xeon Phi

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

Ru
nt

im
e

O
ve

rh
ea

d
[%

]

Scale Factor

(c) Skylake

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

Ru
nt

im
e

O
ve

rh
ea

d
[%

]

Scale Factor

(d) Xeon Phi

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

In
st

ru
ct

io
n

O
ve

rh
ea

d
[%

]

Scale Factor

(e) Skylake

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

In
st

ru
ct

io
n

O
ve

rh
ea

d
[%

]

Scale Factor

(f) Xeon Phi

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6 7 8 9 10

IP
C

Scale Factor

(g) Skylake

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6 7 8 9 10

IP
C

Scale Factor

(h) Xeon Phi
Unprotected Continuous Recoding

Figure 6.8: Measurements for scalar hashjoin operator joining tables “Lineorder” and “Date”.

6.2 Performance of Individual Operators 179

0
2
4
6
8

10
12
14
16
18
20

1 2 3 4 5 6 7 8 9 10

Ru
nt

im
e

[m
s]

Scale Factor

(a) Skylake

0
5

10
15
20
25
30
35
40
45
50

1 2 3 4 5 6 7 8 9 10

Ru
nt

im
e

[m
s]

Scale Factor

(b) Xeon Phi

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

Ru
nt

im
e

O
ve

rh
ea

d
[%

]

Scale Factor

(c) Skylake

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

Ru
nt

im
e

O
ve

rh
ea

d
[%

]

Scale Factor

(d) Xeon Phi

−20

−10

0

10

20

30

1 2 3 4 5 6 7 8 9 10

In
st

ru
ct

io
n

O
ve

rh
ea

d
[%

]

Scale Factor

(e) Skylake

−20

−10

0

10

20

30

1 2 3 4 5 6 7 8 9 10

In
st

ru
ct

io
n

O
ve

rh
ea

d
[%

]

Scale Factor

(f) Xeon Phi

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6 7 8 9 10

IP
C

Scale Factor

(g) Skylake

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6 7 8 9 10

IP
C

Scale Factor

(h) Xeon Phi
Unprotected Continuous Recoding

Figure 6.9: Measurements for scalar fetchjoin operator retrieving values from column “Revenue”
of table “Lineorder”.

180 Chapter 6 End-to-End Evaluation

Scale Column # Groups
Factor Cardinality Unary Binary

1 44 532 7 280
2 97 358 7 280
3 148 684 7 280
4 195 048 7 280
5 242 314 7 280
6 291 252 7 280
7 339 171 7 280
8 390 719 7 280
9 441 427 7 280
10 490 740 7 280

Table 6.7: Cardinality of the columns for group-
ing in SSB query 2.1.

Scale CardinalityFactor

1 118 598
2 238 451
3 357 647
4 477 200
5 596 361
6 716 148
7 835 037
8 953 544
9 1 072 992
10 1 193 001

Table 6.8: Cardinality of
the columns for multiply-
and-sum aggregation in SSB
query 1.1

6.2.4 Grouping and Aggregation

Next, we consider grouping and aggregation operators. First, we measure a unary group-by
operator, where intermediate results of SSB query 2.1 are grouped by the “Year” attribute from
table “Date”. This one uses a single hash table to test whether a value was already present, where
we again use Google’s sparsehash project implementation. The group by operators actually return
two BATs, where the first is a VOID-to-OID mapping from the original BAT’s entries into the
second BAT which stores the groups in a VOID-to-value mapping. Table 6.7 lists the cardinalities
for the input BAT, as well as the number of groups it generates in the third column. As we can
see, there are seven distinct values, i.e. groups, for all scale factors. Figure 6.10 shows the results,
where we again see a low runtime overhead of around 12% on average for both hardened variants,
compared to the unencoded operator, as seen in Figures 6.10a to 6.10d. The runtime overhead
is approximately 12% on average for both measurement systems. Also, the instruction overhead
itself is quite low with 10% on average for the Skylake system (Figure 6.10e) and with virtually no
overhead for the Xeon Phi (Figure 6.10f). Regarding the IPC neither of the encoded or unencoded
variants has an advantage for this operator (Figures 6.10g and 6.10h).

Next, we consider a binary group-by operator, which takes as an additional parameter an existing
group mapping, e.g. from the unary group-by operator, or another binary group-by. By that,
multiple group-by operations can be chained such that we only need these two group-by operators.
An extra constraint is that the input BAT must have the same cardinality as the existing group
mapping. In Table 6.7, the fourth column lists the number of generated groups, where we again see
that for all scale factors, 280 groups are generated. The additional mapping that his operator takes
comes from the previously described unary group-by. The measurements are shown in Figure 6.11,
which belong to the binary group-by operator which is executed right after the unary in SSB query
2.1, i.e. after the one we previously discussed. We first see, that the runtimes, albeit on the same
cardinality input, are several times higher than those from the unary group by. This can attributed
to the added access to the existing grouping. Here both the runtime overheads (Figures 6.10c
and 6.10d) as well as the instruction overheads (Figures 6.10e and 6.10f) are marginal for both
systems and also the IPC is virtually the same between all three operator variants.

6.2 Performance of Individual Operators 181

Next, we show measurements for a sum aggregation operator in Figure 6.12. This operator is
also taken from SSB query 2.1, where it computes a sum per grouped elements in a column. In
particular, it is executed after the previously discussed binary group-by operator, respecting its
computed groups. As it works on the groupings, we only implemented a scalar variant, like the
group-by operators themselves. We see for the Skylake system in Figures 6.12a and 6.12c, that the
runtimes of the hardened operators are only marginally slower than for the unprotected aggregation
operator, with 3.5% and 4.3% on average for continuous and recoding, respectively. The Xeon Phi
system, in contrast, shows runtime overheads of respectively 16.1% and 15.6% on average. The
instruction overhead is 17.7% for Skylake for both encoded variants, and for the Xeon Phi 4.5%
and 3.9% on average for continuous and recoding, respectively. The IPC levels are also again very
different between the two systems. For the Skylake system the averages are 1.744, 1.996, and 1.98
for Unprotected, Continuous, and Recoding, respectively. For the Xeon Phi, they are much lower
with 0.290, 0.301, and 0.301, respectively.

Finally, we present runtimes for one last aggregation operator, which is used in SSB query 1.1,
where it iterates over two input columns and computes the product of the value (tail) from each
column and in parallel sums up all the products. In particular, the operator takes filtered columns
“Extendedprice” and “Discount” from table “Lineorder”, where the cardinalities of both inputs are
listed in Table 6.8 for the ten scale factors, which constitute ≈ 2% of the base table’s total number
of tuples. We use this as a shorthand, instead of implementing two separate operators, for which we
provide both a scalar and a vectorized variant. The measurements for the scalar variant are shown
in Figure 6.13. Here, the runtime overhead for Continuous and Recoding is again quite moderate,
with averages of 4.2% and 4.0% for Skylake, respectively, and 11% and 10.4% for Xeon Phi,
respectively (Figures 6.13c and 6.13d). The instruction overhead is again higher for Skylake, with
15.3% and 15.6% on average, respectively, whereas this is only 6.5% and 6.6% for the Xeon Phi on
average (Figures 6.13e and 6.13f). Again, the Skylake can much better handle the additional work
for error detection, which becomes evident by the higher IPC of the hardened operators running on
Skylake, which are 2.34 in contrast to 2.10 for Unencoded (Figure 6.13g). The measurements for
the SSE variant are shown in Figure 6.14 and shed a very different light on the hardened operator
performance. The runtimes differ extremely for both systems, with averages around 400% and
1000% for Skylake (Figure 6.14c) and Xeon Phi (Figure 6.14d), respectively. Interestingly, the
instruction overhead is only much higher for the Skylake system, with 211% on average for both
hardened operators (Figure 6.14e), whereas on the Xeon Phi system the instruction overhead is only
25% on average. The IPC numbers look again more like the other operators, whereas for Skylake
the encoded operators can again mostly retire more instructions than their Unprotected counterpart.
The extreme runtime difference can be attributed to the simplicity of the operator. The operator
does only produce a single result (the sum) and, therefore, the CPUs can much better schedule
the actual operations. In contrast to the column filter operators from Figures 6.4 and 6.6, here no
intermediate materialization is required. Additionally, the Unprotected operator only has the loop
condition to test which iterates over the column values, which means there are no branches in the
inner loop. In contrast, the hardened operators introduce an additional multiplication, comparison
and branch (test for corrupt values) for each input column. Depending on the CPU’s ability of
branch prediction, the additional branch greatly affects the hardened operators’ runtimes. On top
of that, the hardened operators can again only process half as many values per vector instruction
as the Unprotected variant. However, considering the absolute runtimes, this aggregation operator
is one of the shortest running ones, compared to any of the other presented operators.

182 Chapter 6 End-to-End Evaluation

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10

Ru
nt

im
e

[m
s]

Scale Factor

(a) Skylake

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10

Ru
nt

im
e

[m
s]

Scale Factor

(b) Xeon Phi

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

Ru
nt

im
e

O
ve

rh
ea

d
[%

]

Scale Factor

(c) Skylake

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

Ru
nt

im
e

O
ve

rh
ea

d
[%

]

Scale Factor

(d) Xeon Phi

−20

−10

0

10

20

30

1 2 3 4 5 6 7 8 9 10

In
st

ru
ct

io
n

O
ve

rh
ea

d
[%

]

Scale Factor

(e) Skylake

−20

−10

0

10

20

30

1 2 3 4 5 6 7 8 9 10

In
st

ru
ct

io
n

O
ve

rh
ea

d
[%

]

Scale Factor

(f) Xeon Phi

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6 7 8 9 10

IP
C

Scale Factor

(g) Skylake

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6 7 8 9 10

IP
C

Scale Factor

(h) Xeon Phi
Unprotected Continuous Recoding

Figure 6.10: Measurements for scalar unary group-by operator on a single column.

6.2 Performance of Individual Operators 183

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10

Ru
nt

im
e

[m
s]

Scale Factor

(a) Skylake

0
20
40
60
80

100
120
140
160

1 2 3 4 5 6 7 8 9 10

Ru
nt

im
e

[m
s]

Scale Factor

(b) Xeon Phi

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

Ru
nt

im
e

O
ve

rh
ea

d
[%

]

Scale Factor

(c) Skylake

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

Ru
nt

im
e

O
ve

rh
ea

d
[%

]

Scale Factor

(d) Xeon Phi

−20

−10

0

10

20

30

1 2 3 4 5 6 7 8 9 10

In
st

ru
ct

io
n

O
ve

rh
ea

d
[%

]

Scale Factor

(e) Skylake

−20

−10

0

10

20

30

1 2 3 4 5 6 7 8 9 10

In
st

ru
ct

io
n

O
ve

rh
ea

d
[%

]

Scale Factor

(f) Xeon Phi

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6 7 8 9 10

IP
C

Scale Factor

(g) Skylake

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6 7 8 9 10

IP
C

Scale Factor

(h) Xeon Phi
Unprotected Continuous Recoding

Figure 6.11: Measurements for a scalar binary group-by operator on a column with an additional,
existing grouping.

184 Chapter 6 End-to-End Evaluation

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

1 2 3 4 5 6 7 8 9 10

Ru
nt

im
e

[m
s]

Scale Factor

(a) Skylake

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

Ru
nt

im
e

[m
s]

Scale Factor

(b) Xeon Phi

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

Ru
nt

im
e

O
ve

rh
ea

d
[%

]

Scale Factor

(c) Skylake

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

Ru
nt

im
e

O
ve

rh
ea

d
[%

]

Scale Factor

(d) Xeon Phi

−20

−10

0

10

20

30

1 2 3 4 5 6 7 8 9 10

In
st

ru
ct

io
n

O
ve

rh
ea

d
[%

]

Scale Factor

(e) Skylake

−20

−10

0

10

20

30

1 2 3 4 5 6 7 8 9 10

In
st

ru
ct

io
n

O
ve

rh
ea

d
[%

]

Scale Factor

(f) Xeon Phi

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6 7 8 9 10

IP
C

Scale Factor

(g) Skylake

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6 7 8 9 10

IP
C

Scale Factor

(h) Xeon Phi
Unprotected Continuous Recoding

Figure 6.12: Measurements for scalar sum aggregation operator on a grouped column.

6.2 Performance of Individual Operators 185

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10

Ru
nt

im
e

[m
s]

Scale Factor

(a) Skylake

0
10
20
30
40
50
60
70
80

1 2 3 4 5 6 7 8 9 10

Ru
nt

im
e

[m
s]

Scale Factor

(b) Xeon Phi

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

Ru
nt

im
e

O
ve

rh
ea

d
[%

]

Scale Factor

(c) Skylake

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

Ru
nt

im
e

O
ve

rh
ea

d
[%

]

Scale Factor

(d) Xeon Phi

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

In
st

ru
ct

io
n

O
ve

rh
ea

d
[%

]

Scale Factor

(e) Skylake

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

In
st

ru
ct

io
n

O
ve

rh
ea

d
[%

]

Scale Factor

(f) Xeon Phi

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6 7 8 9 10

IP
C

Scale Factor

(g) Skylake

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6 7 8 9 10

IP
C

Scale Factor

(h) Xeon Phi
Unprotected Continuous Recoding

Figure 6.13: Measurements for a scalar aggregation operator, which multiplies 2 columns and
computes the sum of the products.

186 Chapter 6 End-to-End Evaluation

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

1 2 3 4 5 6 7 8 9 10

Ru
nt

im
e

[m
s]

Scale Factor

(a) Skylake

0
5

10
15
20
25
30
35
40

1 2 3 4 5 6 7 8 9 10

Ru
nt

im
e

[m
s]

Scale Factor

(b) Xeon Phi

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10

Ru
nt

im
e

O
ve

rh
ea

d
[%

]

Scale Factor

(c) Skylake

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10

Ru
nt

im
e

O
ve

rh
ea

d
[%

]

Scale Factor

(d) Xeon Phi

0

200

400

600

800

1000

1 2 3 4 5 6 7 8 9 10

In
st

ru
ct

io
n

O
ve

rh
ea

d
[%

]

Scale Factor

(e) Skylake

0

200

400

600

800

1000

1 2 3 4 5 6 7 8 9 10

In
st

ru
ct

io
n

O
ve

rh
ea

d
[%

]

Scale Factor

(f) Xeon Phi

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6 7 8 9 10

IP
C

Scale Factor

(g) Skylake

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6 7 8 9 10

IP
C

Scale Factor

(h) Xeon Phi
Unprotected Continuous Recoding

Figure 6.14: Measurements for a vectorized aggregation operator, which multiplies 2 columns
and computes the sum of the products.

6.2 Performance of Individual Operators 187

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

Ru
nt

im
e

[m
s]

Sc
al

ar
to

SS
E

R
at

io
[×

]

Scale Factor

(a) Skylake

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

Ru
nt

im
e

[m
s]

Sc
al

ar
to

SS
E

R
at

io
[×

]

Scale Factor

(b) Xeon Phi

Scalar SSE Ratio

Figure 6.15: ∆ operator on encoded AN_tiny (16-bit)

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

Ru
nt

im
e

[m
s]

Sc
al

ar
to

SS
E

R
at

io
[×

]

Scale Factor

(a) Skylake

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

Ru
nt

im
e

[m
s]

Sc
al

ar
to

SS
E

R
at

io
[×

]

Scale Factor

(b) Xeon Phi

Scalar SSE Ratio

Figure 6.16: ∆ operator on encoded AN_int (64-bit)

6.2.5 Delta Operator

The final operator we discuss in detail is the ∆ operator, which is only used by the Early and Late
Detection opportunities. A crucial difference to the Since it has no unencoded counterpart, we will
only show in how far it benefits from vectorization. We consider small (16-bit AN_tiny) and large
(64-bit AN_int) encoded data (cf. Table 6.1). From SSB query 1.1, we present the measurements
for columns “discount” (AN_tiny) in Figure 6.15 and “orderdate” (AN_int) in Figure 6.16. The left
y-axis shows the absolute runtimes for scalar and SSE execution, while the right y-axis depicts
the ratio of scalar to SSE runtime runtime scalar/runtime SSE. In Figure 6.15 we see that for very small
encoded data, the vectorization ratio is mostly above 22× (Figure 6.15a) and 14× (Figure 6.15b).
This is even greater than the ratio of 16-bit data elements per SSE4.2 register, which is 8. A
similar behavior can be seen for the larger AN_int case in Figure 6.16, where the ratio is above 3.5×
(Figure 6.16a) and around 2.9× (Figure 6.16b). This is again greater than the ratio of 64-bit data
elements per SSE4.2 register, which is 2. This in total shows that the ∆ operator benefits greatly
from vectorization and this is another proof for the benefits of our coding improvements presented
in Section 3.5.

188 Chapter 6 End-to-End Evaluation

6.2.6 Summary and Conclusions

In this section, we presented the runtime behaviors of a wide range of physical operators, which were
taken from actual SSB queries. The choice of operators included selection operators on one and two
predicates, three different joins, as well as two grouping and two aggregation operators. We showed
detailed measurements for absolute runtimes, runtime overheads, overheads of retired instructions,
as well as instructions per cycle (IPC). For all of the scalar operator variants, the runtime overheads
of Continuous and Recoding were in the range between 3.5 . . . 14.9% for the Skylake system and
between 1.9 . . . 24.7% for the Xeon Phi system. The retired instruction overheads were between
2.6 . . . 21.9% for both systems, which is more or less in the same range. However, we saw that the
more powerful Skylake cores could typically better schedule the additional instructions for error
detection, resulting mostly in lower runtime overheads than for the Xeon Phi. This means, for the
Skylake system, the instruction overhead was typically larger than the actual runtime overhead. On
the Xeon Phi system, it was mostly the other way around – the runtime overhead was mostly higher
than the instruction overhead. Since the instruction overhead is also typically smaller than for the
Skylake system, the code generated for the Xeon Phi system requires more instructions in general.
Regarding vectorized performance, the runtime overheads increase for the selection operators to
44 . . . 53% for Skylake and to 33 . . . 35% for Xeon Phi. For the last aggregation operator, the
runtime overheads even to around 400% and 1000% for Skylake and Phi, respectively. One issue
is that the hardened variants can only process half as many values per vector instruction due to
the larger data widths. This last operator, however, is purely memory read and compute intensive,
where there are little to no stalling cycles where the CPU can hide the error detection instructions
in between. By that, the proportion of the instruction overhead is much higher, too, even 210%
for Skylake. Therefore, when there is more work to do in general, even for the selection operators,
where more data is written back to memory, error detection has less impact on the operator runtime.
Furthermore, we can see that recoding does introduce virtually no additional overhead to error
detection. Finally, we investigated the performance of the ∆ operator, which is used for the Early
and Late Detection opportunities. As we showed, it gains extremely well from vectorization and
the scalar to SSE runtime ratio was even larger than the data elements per vector register ratio.

6.3 STAR SCHEMA BENCHMARK QUERIES

In the previous section, we dissected the overheads of individual operators, where we compared the
unprotected variants against hardened and recoding ones. In this section, we will consider whole
queries, namely those from the star schema benchmark [131]. It consists of 13 queries in total,
with a mixture of selections on one or two predicates, some table joins, as well aggregations and
groupings. For a detailed description of the benchmark suite, we would like to direct the reader
to [131]. We measured runtimes for scale factors one to ten, for which the cardinalities of the
tables are shown in Table 6.3. Also, all measurements were taken for single-threaded execution.
In the following, we will present measurements for the query runtimes, then we discuss the impact
of vectorization on whole query runtimes, and finally we examine the storage overhead. In the
following, we will first present the runtimes for the complete queries, divided into scalar and SSE
exeuction on their own. Then, secondly, we will discuss the improvements by vectorization, first
for only the vectorizable operators and then for the whole queries. This goes further than in the
last section, where we investigated the operators individually. Third and finally, we will discuss
the storage overhead for base data and intermediate results.

6.3 Star Schema Benchmark Queries 189

6.3.1 Query Runtimes

We measured runtimes for both systems and both scalar and vectorized execution. We compare six
variants, namely the original, unprotected variant, a double modular redundancy (DMR) variant,
Early and Late Onetime Detection, as well as Continuous Detection and its Recoding variant. DMR
stores all data twice, then executes a query two times successively, and afterwards compares the
results of both queries, to test whether some error occurred. We compare against a DMR approach,
because this is state of the art for so many other generic transient error detection approaches, from
which we introduced many in Chapter 2. It is the smallest variant for n-modular redundancy and
here we execute the two parts of the query sequentially. While this could be done in parallel as
well, it would then cost 2× computing resources. However, for a better visualization of the impact
of DMR we chose sequential execution. After we previously discussed the individual operator
runtimes of unprotected and AN hardened variants individually, we now see in how far these impact
the whole query runtimes.

Figure 6.17 shows the query runtimes for the Skylake system and Table 6.9 lists the actual numbers,
as well as minimum, maximum, and average values. All values are relative to the Unprotected case
and averages over scale factors 1 . . . 10 and for each scale factor we executed 10 runs. In total, this
accumulates to 100 runs per value. For the SSB measurements in our AHEAD prototype, we do not
use unrolling. As we have seen in the microbenchmarks in Sections 3.4.2 and 3.5.4, loop unrolling
can gain some benefit, but is yet another optimization dimension which we do not consider now.

We will first consider the scalar execution for the Skylake system. DMR approximately shows the
2× query runtime which we would expect. For Early Onetime, we see now the impact of the early
materialization, because the detect-and-decode operator is the only addition to the unprotected case
here. Early is between 59% . . . 178% slower than the Unprotected baseline for scalar execution.
With an average overhead of 108%, Early Onetime is even slower than DMR. For each of the
queries 3.2, 3.3, and 3.4 the proportion of all ∆ operators accumulates to more than 64% of the
total query runtime, which is why these queries have exceptionally high runtime overheads for
Early Onetime. In contrast, for Late Onetime we insert ∆ just before the last query operator. This
is always a group-by or aggregation operator, so we run error detection on more values than just
at the very end of each query. Here, the impact is almost negligible, with a runtime overhead of
just 1%, on average. For the Continuous and Recoding variants, the overheads are quite low and
range between 6 . . . 23%, with averages of 14% and 15%, respectively. Interestingly, the picture
is almost the same for the vectorized execution, except for Early Onetime. As we just showed
above, the ∆ operator at the very beginning gains so much from vectorization that the overhead
drops to 14%, 51%, and 33% for minimum, maximum, and on average, respectively. We can
very well see the effect for the already mentioned queries 3.2 to 3.4, where the runtime overheads
drop to 42% . . . 51%. For Continuous and Recoding, we had seen for the operators from the last
section that the runtime overhead in general increased for the vectorized operators (column scan,
and aggregate). However, the runtime proportion of these operators in comparison to that of the
non-vectorized operators is only marginal. By that, the total runtimes of Continuous and Recoding
do not suffer as much as the operator measurements suggested. Now, they show average runtime
overheads of 17% and 18%, which is an increase of 3% for both.

Figure 6.18 shows the runtimes for the Xeon Phi system and the actual numbers are listed in
Table 6.10. Here again the relations are much like for the Skylake system. The DMR variant as
about the 2× overhead for both scalar and SSE execution. Early Onetime is again slower than
DMR for the scalar case and catches up quite a lot when using vectorization. As we saw in the
microbenchmarks before, the Xeon Phi system is much slower than the Skylake system regarding

190 Chapter 6 End-to-End Evaluation

single thread performance and is built from much older cores in principle than Skylake. By that,
the vectorization gains are not as high as for the Skylake system and for the former we still have
47% overhead on average, while the latter average went down to 33%. The overheads of Late
Onetime are also almost negligible and as for Early Onetime they are slightly higher on average
than on the Skylake system. In contrast, Continuous and Recoding have even slightly less overhead
compared to the Skylake system in the respective execution modes, with 11% for the scalar case
and 12% when running with SSE. On the one hand, this is a bit surprising as Early and Late were
slower in comparison. On the other hand, the absolute runtimes are larger than on the Skylake
system, e.g., for query 1.1 the runtimes for system 2 are on average 4.4× and 5.6× slower than
system 1 across all scale factors.

6.3 Star Schema Benchmark Queries 191

Unencoded
DMR

Early
Late

Continuous
Recoding

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

Q1.1 Q1.2 Q1.3 Q2.1 Q2.2 Q2.3 Q3.1 Q3.2 Q3.3 Q3.4 Q4.1 Q4.2 Q4.3

R
e
la

ti
v
e
 R

u
n
ti

m
e

(a) Scalar

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

Q1.1 Q1.2 Q1.3 Q2.1 Q2.2 Q2.3 Q3.1 Q3.2 Q3.3 Q3.4 Q4.1 Q4.2 Q4.3

R
e
la

ti
v
e
 R

u
n
ti

m
e

(b) SSE

Figure 6.17: Runtimes of SSB queries on the Skylake system.

Query Scalar SSE
DMR Early Late Cont. Recod. DMR Early Late Cont. Recod.

Q1.1 1.94 1.80 1.01 1.11 1.12 1.94 1.26 0.99 1.20 1.23
Q1.2 1.92 1.98 0.99 1.09 1.10 1.94 1.50 1.04 1.24 1.27
Q1.3 1.92 2.01 0.99 1.09 1.10 1.94 1.51 1.03 1.23 1.26
Q2.1 1.94 1.90 1.05 1.21 1.21 1.93 1.25 1.04 1.22 1.21
Q2.2 1.97 1.96 1.06 1.20 1.23 1.98 1.26 1.06 1.21 1.22
Q2.3 1.92 1.99 1.05 1.20 1.21 1.92 1.25 1.05 1.20 1.21
Q3.1 1.93 1.72 1.01 1.20 1.20 1.93 1.20 1.00 1.19 1.20
Q3.2 1.94 2.50 0.98 1.11 1.12 1.94 1.42 0.98 1.10 1.12
Q3.3 1.94 2.78 0.97 1.06 1.06 1.94 1.50 0.95 1.04 1.07
Q3.4 1.94 2.78 0.97 1.07 1.07 1.94 1.51 0.97 1.07 1.06
Q4.1 1.93 1.59 1.00 1.22 1.23 1.93 1.14 1.00 1.22 1.23
Q4.2 1.94 1.59 1.03 1.22 1.23 1.93 1.14 1.03 1.21 1.22
Q4.3 1.94 2.48 1.06 1.10 1.10 1.95 1.41 1.06 1.10 1.10

Minimum 1.92 1.59 0.97 1.06 1.06 1.92 1.14 0.95 1.04 1.06
Maximum 1.97 2.78 1.06 1.22 1.23 1.98 1.51 1.06 1.24 1.27
Average 1.94 2.08 1.01 1.14 1.15 1.94 1.33 1.01 1.17 1.18

Table 6.9: Runtime numbers of SSB queries on the Skylake system compared to the Unprotected
baseline.

192 Chapter 6 End-to-End Evaluation

Unencoded
DMR

Early
Late

Continuous
Recoding

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

Q1.1 Q1.2 Q1.3 Q2.1 Q2.2 Q2.3 Q3.1 Q3.2 Q3.3 Q3.4 Q4.1 Q4.2 Q4.3

R
e
la

ti
v
e
 R

u
n
ti

m
e

(a) Scalar

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

Q1.1 Q1.2 Q1.3 Q2.1 Q2.2 Q2.3 Q3.1 Q3.2 Q3.3 Q3.4 Q4.1 Q4.2 Q4.3

R
e
la

ti
v
e
 R

u
n
ti

m
e

(b) SSE

Figure 6.18: Runtimes of SSB queries on the Xeon Phi system.

Query Scalar SSE
DMR Early Late Cont. Recod. DMR Early Late Cont. Recod.

Q1.1 1.93 2.04 1.03 1.11 1.11 1.93 1.41 1.05 1.16 1.16
Q1.2 1.83 2.17 0.99 1.03 1.03 1.94 1.61 1.09 1.15 1.15
Q1.3 2.23 2.27 1.04 1.09 1.09 1.93 1.60 1.08 1.14 1.14
Q2.1 1.93 2.00 1.06 1.13 1.13 1.94 1.41 1.07 1.13 1.13
Q2.2 1.93 2.16 1.06 1.15 1.14 1.93 1.47 1.06 1.14 1.14
Q2.3 1.94 2.21 1.07 1.14 1.14 1.94 1.49 1.07 1.14 1.13
Q3.1 1.98 1.77 1.02 1.11 1.11 1.93 1.30 1.01 1.11 1.11
Q3.2 1.93 2.36 1.02 1.08 1.09 1.93 1.54 1.02 1.08 1.08
Q3.3 1.93 2.50 1.02 1.07 1.07 1.94 1.61 1.02 1.07 1.08
Q3.4 1.93 2.50 1.02 1.07 1.07 1.93 1.60 1.02 1.07 1.07
Q4.1 1.92 1.74 0.99 1.17 1.17 1.91 1.29 0.99 1.17 1.17
Q4.2 1.93 1.69 1.03 1.17 1.16 1.92 1.27 1.01 1.17 1.16
Q4.3 1.94 2.20 1.04 1.09 1.09 1.92 1.46 1.04 1.08 1.08

Minimum 1.83 1.69 0.99 1.03 1.03 1.91 1.27 0.99 1.07 1.07
Maximum 2.23 2.50 1.07 1.17 1.17 1.94 1.61 1.09 1.17 1.17
Average 1.95 2.12 1.03 1.11 1.11 1.93 1.47 1.04 1.12 1.12

Table 6.10: Runtime numbers of SSB queries on the Xeon Phi system compared to the Unprotected
baseline.

6.3 Star Schema Benchmark Queries 193

System Type Unprotected DMR Early Late Continuous Recoding

Skylake

Scalar Proportion 0.56 0.56 0.76 0.58 0.54 0.53
SSE Proportion 0.10 0.10 0.30 0.11 0.12 0.12

Difference 0.46 0.46 0.46 0.47 0.42 0.41

Ratio scalar/SSE 12.0 11.9 7.6 11.4 8.6 8.6

Xeon Phi

Scalar Proportion 0.53 0.52 0.79 0.54 0.50 0.50
SSE Proportion 0.18 0.18 0.42 0.21 0.20 0.20

Difference 0.35 0.34 0.37 0.33 0.30 0.30

Ratio scalar/SSE 5.0 5.0 5.0 4.3 4.1 4.1

Table 6.11: Average runtime proportion and ratio of the vectorizable operators for SSB query 1.1.

6.3.2 Improvements Through Vectorization

We will now examine the impact of vectorization on the query runtimes and compare the benefits
between the measured execution variants. From the 13 SSB queries, it turns out that only queries
1.1 to 1.3 considerably benefit from vectorization. This is, because the queries are dominated by
the selection (scan) operators and also the ∆ operators in case of Early and Late Detection. As
we showed in Table 6.2, we vectorized the ∆, select, arithmetic and summation operators. We
give an example for SSB query 1.1, where there are three selection operators and one aggregation
operator which computes the sum of the products of two columns. In addition, Early requires
six ∆ operators to decode the respective six base columns and Late requires two ∆ operators
to decode the two intermediate columns which are the input columns for the final aggregation
operator. The proportion of those vectorizable operators with regard to the total query runtime is
shown in Table 6.11. There, we see that in the scalar cases they amount to at least 50% of the total
query runtime for both systems. Using SSE 4.2 vectorization, except for Early the proportion drops
to 10% . . . 12% for the Skylake system, and to 18% . . . 21% for the Xeon Phi system. For Early
Detection, the proportions are reduced from 76% to 30% on the Skylake system and from 79% down
to 42% for the Xeon Phi system. This means that the proportion is reduced by 41% . . . 47% for
Skylake and by 30% . . . 37% for Xeon Phi, for query 1.1. The individual operators’ improvements
through vectorization were discussed in detail above, in Section 6.2.

Next to the proportion of the total query runtime, Table 6.11 also lists the ratio between the scalar
and SSE runtime of those vectorizable operators we just discussed, for SSB query 1.1. This is the
average ratio of scalar runtimes divided by SSE runtimes, arithmetically averaged over all scale
factors. The Unprotected and DMR variants benefit the most with ratios of 12 (Skylake) and 5
(Phi). The Continuous and Recoding variants benefit slightly less with ratios of 8.6 (Skylake) and
4.1 (Phi). This shows that, while the AN coded operator variants do scale very well, they still
scale slightly worse than the baseline operator variants without error coding. Furthermore, we see
that for the (weaker) Xeon Phi system, the differences between unencoded and AN coded operator
variants are much smaller than for the (stronger) Skylake system.

The impact on the total runtime of query 1.1 is visualized in Figure 6.19, again with averages over
all scale factors from 1 to 10. There, for each variant are shown two bars, which represent the
scalar and vectorized (SSE) runtimes, all relative to the fastest one (vectorized Unprotected). The
scalar runtimes of DMR and Early are pretty large so we capped the bars and the relative numbers
are given above each respective bar. The arrows between each scalar and vectorized bar and the
accompanying numbers denote the vectorization improvement for variant itself. This is again the
ratio scalar runtime divided by SSE runtime. For the Skylake system, the total query runtimes

194 Chapter 6 End-to-End Evaluation

0

0.5

1

1.5

2

2.5

3

Unprotected DMR Early Late Continuous Recoding

4.0 3.7

2.0
2.0 2.9

2.1 1.9 1.8
Re

la
tiv

e
Ru

nt
im

e

Scalar Vectorized

(a) System 1 (Skylake)

0

0.5

1

1.5

2

2.5

3

Unprotected DMR Early Late Continuous Recoding

3.1 3.2

1.7
1.8 2.4

1.6 1.6 1.6

Re
la

tiv
e

Ru
nt

im
e

Scalar Vectorized

(b) System 2 (Xeon Phi)

Figure 6.19: Total query runtime improvements through vectorization for SSB query 1.1. Runtimes
are given relative to Unprotected SSE execution. Arrows denote the respective improvement per
detection variant as the ratio between scalar and vectorized runtime.

improve by almost the same factors between 1.8 . . . 2.1, except for Early, where the ∆ operator
improvements have an even greater impact leading to a ratio of 2.9. The picture of the Xeon Phi
system in terms of improvements is pretty close with a small offset. The variants improve by
factors between 1.6 . . . 1.8 wheras Early has again a higher ratio of now 2.4.

6.3.3 Storage Overhead

Next to runtime, memory consumption is another important factor regarding efficiency. In Sec-
tions 3.2.3 and 3.4.2 we discussed in detail how the choice of AN coding parameterA influences the
storage overhead. In particular, with Table 3.6 we provided an easy way to determine the smallest
A which provides a guaranteed minimal detectable bit flip weight (η) for a given data width. In the
following, we will first show the storage requirements per data type based on η. Afterwards, we
will measure the impact of η on storage regarding SSB data, in particular that of integer base data
and query intermediate results.

Data Unencoded AHEAD AN Bit-Packed
Type η ∈ {1, 2, 3} η = 4 η = 1 η = 2 η = 3 η = 4

tiny 8 16 32 10 13 16 19
short 16 32 32 18 22 25 29
int 32 64 64 34 39 42 47

Table 6.12: Storage consumption per data type in bits.

6.3 Star Schema Benchmark Queries 195

Table 6.12 summarizes the storage consumption for the individual integer data types, in bits, used
for the Star schema benchmark for the Unprotected case and the AHEAD implementation. We
consider η ∈ {1, . . . , 4}, because 4 bit flips were measured in the RowHammer experiments [125].
Our AHEAD prototype supports only very limited integer compression, where we only use the
smallest possible native register width for integer data, as described in Section 6.1.1. Therefore,
AHEAD uses twice as many bits than the Unprotected baseline. η = 4 is a special case, because the
encoded data type AN_tiny is mapped to the 16 bit uint16_t implementation type. This would only
allow η ≤ 3, because only 8 additional bits could be used for coding, but for η = 4 we would 11
additional bits (cf. Table 3.6). To enable this, we mapped AN_tiny to the next larger implementation
type uint32_t which requires 4× as many bits than the unencoded data type.

In Section 4.2.2 we discussed in detail how to combine AN coding and lightweight integer com-
pression. Therefore, we consider in Table 6.12 also the case if we had enabled bit-packing for our
AHEAD prototype. To calculate these numbers, for each data type we took the smallest respective
A from Table 3.6 for each η ∈ {1, . . . , 4} and only added the actual bit width of each A. This
is shown in the last four columns of Table 6.12. As we can see from the numbers, the storage
overhead would be considerably lower per data type when storing data bit-packed.

We now consider the actual storage requirements for SSB. For the following, we assume scale factor
1 and those numbers can be scaled up for other SSB scale factors according to the cardinalities given
in [131]. Figure 6.20 depicts the measured storage consumptions for base data (a) and SSB query
1.1 intermediate results (b). For the intermediate results, we added all sizes together. Furthermore,
we now only consider the consumption for the Unprotected baseline and the Continuous Detection
variant. The storage consumption is given relative to the unencoded case. Due to the AHEAD
implementation, Continous storage consumption relative to the Unprotected case is currently 2 for
η ∈ {1, 2, 3}. This is the same for both integer base data and query intermediate results. Since we
had to increase the bit width of AN_tiny for η = 4, the storage overhead increases in that particular
case from 100% to 118% for base data and to 126% for intermediate results. Figure 6.20 also
shows the case if we had included bit-packing. In contrast to the fixed register widths, the storage
consumption grows with increasing η. By that, instead of a constant 2× storage consumption,
it increases from 1.08× gradually to 1.57× for the base data, and from 1.43× to 1.61× for the
intermediate data. The differences result from the different proportions of the integer types. As we
could see in Figure 3.25, for smaller data types the relative coding overhead is much higher than
for larger data types. For query 1.1 in particular, most of the intermediate result values are of the
smaller data types. Therefore, the proportion of “expensive” coding overhead is much higher than
for the base data.

6.3.4 Summary and Conclusions

In this section, we discussed the impact of AN coding on runtime and storage for SSB queries.
The whole SSB suite consists of 13 queries in total, with a mixture of selections on one or two
predicates, joins, aggregations, and groupings. We presented measurements for the query runtimes,
then we discussed the impact of vectorization, and finally we examined the storage overhead.

For the individual query runtimes, we compared the two Unprotected and DMR baselines against
the four error detection variants Early and Late Onetime Detection, and Continuous Detection and
its Recoding variant. Compared to Unprotected, DMR always showed about the expected double
runtime, for both scalar and vectorized execution. For scalar execution, Early Onetime was on
average even slower than DMR, because all base columns had to be decoded first by the additional∆

196 Chapter 6 End-to-End Evaluation

0

0.5

1

1.5

2

2.5

1 2 3 4∗

Re
la

tiv
e

C
on

su
m

pt
io

n

Minimal Detectable Bit Flip Weight

1.08
1.26 1.39

1.57

2.18

(a) Integer base data.

0

0.5

1

1.5

2

2.5

1 2 3 4∗

Re
la

tiv
e

C
on

su
m

pt
io

n

Minimal Detectable Bit Flip Weight

1.43 1.49 1.55 1.61

2.26

(b) Intermediate results of SSB query 1.1.
Unprotected Continuous AN

Figure 6.20: Memory overhead of the implemented AN coding and a projection for bit-packing.
∗: hardened data type AN_tiny mapped to 32-bit integer to enable large enough codewords.

operators. However, for vectorized execution, Early Onetime performed much faster with average
runtime overheads of 33% for Skylake and 47% for Xeon Phi. In contrast, Late Onetime adds
only a few ∆ operators before the final aggregation or grouping operators. Additionally, these
intermediate results are much smaller than the base columns, so that the runtime overheads of
Late Onetime are only marginal, with 1% to 4% on average for both systems and both execution
variants. Finally, the Continuous and Recoding Detection variants performed bit flip detection
on each value. Continuous showed average runtime overheads of 14% and 17% on the Skylake
system for Scalar and SSE execution, respectively. Recoding of each value only incurred one
additional percent of runtime overhead. On the Xeon Phi system, both Continuous and Recoding
had overheads of 11% in the scalar case and 12% for SSE. In total, Continuous and Recoding are
not only in between Early and Late from the runtime overhead perspective, but they perform error
detection on each and every column value.

While we before only considered runtimes relative to the Unprotected baseline, we then investigated
the actual improvements on query runtimes through vectorization for SSB query 1.1. We could
show that the proportion of the total query runtime for the vectorizable operators was reduced
dramatically by 30% to 46% for both systems and all detection variants. Employing SSE could
reduce the overall query runtimes by factors of 1.8× for Recoding up to 2.9× for Early on the
Skylake system. For the Xeon Phi system, total runtimes of query 1.1 could be reduced by factors
between 1.6× for Late, Continuous and Recoding, and 2.4× for Early. The Late Onetime variant
could benefit most, because the ∆ gained so much more through vectorization and because they
made up a great amount of the total query runtime.

Finally, we discussed the storage overheads, again by the example of SSB query 1.1. Due to the
AHEAD implementation of using full register widths, the storage overhead is always 2, except
when enabling larger minimal detectable bit flip weights of e.g. η = 4. Then, the encoded AN_tiny
data type had to be mapped to larger implementation types due to the larger parameterA. Then, the
storage overhead increased to 118% for the base columns and to 126% for the intermediate results.
Then, we considered the case when bit-packing was enabled for hardened data. This projection
showed that the storage overhead was much smaller, starting at only 8% for the integer base data
and at 43% for query 1.1 intermediates. It gradually grew for η = 4 to 57% and 61% for base
data and intermediates, respectively. This showed that for AN coding the storage overhead can be
scaled with the required detection capabilities.

6.3 Star Schema Benchmark Queries 197

6.4 ERROR DETECTING B-TREE

In Section 4.3 we introduced the Error Detecting B-Tree (EDB-Tree), derivatives of the ubiquitous
B-Tree index structure. In the following, we will capture impact of the error detection primitives
added in the various EDB-Tree variants. For the comparisons we use two baselines: first, the basic
B-Tree and, second, its TMR variant. The impact on throughput will me measured for the two
basic operations lookup of individual keys, and insertion of key-value-pairs.

6.4.1 Single Key Lookup

In the following, we will show the impact of error detection using our presented EDB-Tree variants
on single key lookup throughput. For the measurements, we first inserted varying numbers of
keys, starting at 1000 and exponentially increasing by a factor of 10 up to 10 000 000. We set the
payload to the key itself and we query the tree with the same random number seed5 which is used
for the insertions. This allows to insert random numbers and to minimize the overhead during the
lookup phase of re-generating the inserted keys. Our two baselines are the above presented B-Tree
and its TMR variant. Since the latter performs all operations effectively thrice and must vote for a
majority, a throughput of at most 1/3 can be expected. For all tree variants, we implement the key
lookup inside a node using a binary search. The checksum variants of the EDB-Tree, however, first
recompute the necessary checksums and compare against the stored ones and then run the binary
search afterwards.

Figure 6.21 shows the lookup performance on system 1 (Skylake), where the upper two graphs
show the absolute throughput numbers and the lower two graphs represent the throughput relative
to the B-Tree baseline. Measurements for 32-bit keys and values are shown on the left (Fig-
ures 6.21a and 6.21c), while measurements for 64-bit keys and values are shown in the right graphs
(Figures 6.21b and 6.21d). All index variants scale quite good, with lookup throughput degrading
35% on average with 10× increase of inserted keys. The decrease can be attributed to greater tree
depth or higher fill levels in the nodes. In the former case, lookup traverses more nodes which
leads to more random memory accesses. In the latter case, more keys are compared on each tree
level and each node potentially has a higher fill level. From the relative throughput numbers we can
derive that with increasingly more inserted keys, the overhead of the EDB-Tree variants is more
and more reduced. The pure EDB-Tree and the parity bit variant (EDB-PB) get very close to the
B-Tree baseline performance. In contrast, the checksum variants lead to much greater overheads.
For both 32-bit and 64-bit, the lookup throughput increases from about 40% to 70%. As expected,
the TMR B-Tree lookup performance is below one third of the original B-Tree, ranging from 30%
to 32%.

Figure 6.22 shows the measurements for system 2 (Phi), with the same graph arrangement as before
in Figure 6.22. While the absolute throughput numbers are around 4× lower than for the Skylake
system, the most notable change is, that the checksum EDB-Tree variants are even slower than the
TMR B-Tree for the smaller trees. However, for all EDB-Tree variants the overhead also decreases
with larger tree sizes.

5We use an Xorshift random number generator, see e.g. https://en.wikipedia.org/wiki/Xorshift

198 Chapter 6 End-to-End Evaluation

https://en.wikipedia.org/wiki/Xorshift

32-bit 64-bit
(a) Absolute.

0
2e+06
4e+06
6e+06
8e+06
1e+07

1.2e+07
1.4e+07
1.6e+07

Th
ro

ug
hp

ut
[Q

ue
rie

sP
er

Se
co

nd
] B-Tree

EDB-Tree
EDB-PB
EDB-CS

EDB-PBCS
TMR B-Tree

(b) Absolute.

0
2e+06
4e+06
6e+06
8e+06
1e+07

1.2e+07
1.4e+07
1.6e+07
1.8e+07

Th
ro

ug
hp

ut
[Q

ue
rie

sP
er

Se
co

nd
]

0
0.2
0.4
0.6
0.8

1
1.2

1×
10 3

1×
10 4

1×
10 5

1×
10 6

1×
10 7

Re
la

tiv
e

Th
ro

ug
hp

ut

Tree size [# keys]

(c) Relative.

0
0.2
0.4
0.6
0.8

1
1.2

1×
10 3

1×
10 4

1×
10 5

1×
10 6

1×
10 7

Re
la

tiv
e

Th
ro

ug
hp

ut

Tree size [# keys]

(d) Relative.

Figure 6.21: Lookup throughput for B-Tree and EDB-Tree variants on system 1.

32-bit 64-bit
(a) Absolute.

0
1e+06
2e+06
3e+06
4e+06
5e+06
6e+06
7e+06

Th
ro

ug
hp

ut
[Q

ue
rie

sP
er

Se
co

nd
] B-Tree

EDB-Tree
EDB-PB
EDB-CS

EDB-PBCS
TMR B-Tree

(b) Absolute.

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

Th
ro

ug
hp

ut
[Q

ue
rie

sP
er

Se
co

nd
]

0
0.2
0.4
0.6
0.8

1
1.2

1×
10 3

1×
10 4

1×
10 5

1×
10 6

1×
10 7

Re
la

tiv
e

Th
ro

ug
hp

ut

Tree size [# keys]

(c) 32-bit keys and values.

0
0.2
0.4
0.6
0.8

1
1.2

1×
10 3

1×
10 4

1×
10 5

1×
10 6

1×
10 7

Re
la

tiv
e

Th
ro

ug
hp

ut

Tree size [# keys]

(d) 64-bit keys and values.

Figure 6.22: Lookup throughput for B-Tree and EDB-Tree variants on system 2.

6.4 Error Detecting B-Tree 199

32-bit 64-bit
(a) Absolute.

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

Th
ro

ug
hp

ut
[Q

ue
rie

sP
er

Se
co

nd
] B-Tree

EDB-Tree
EDB-PB
EDB-CS

EDB-PBCS
TMR B-Tree

(b) Absolute.

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

Th
ro

ug
hp

ut
[Q

ue
rie

sP
er

Se
co

nd
]

0
0.2
0.4
0.6
0.8

1
1.2

1×
10 3

1×
10 4

1×
10 5

1×
10 6

1×
10 7

Re
la

tiv
e

Th
ro

ug
hp

ut

Tree size [# keys]

(c) Relative.

0
0.2
0.4
0.6
0.8

1
1.2

1×
10 3

1×
10 4

1×
10 5

1×
10 6

1×
10 7

Re
la

tiv
e

Th
ro

ug
hp

ut

Tree size [# keys]

(d) Relative.

Figure 6.23: Insert throughput for B-Tree and EDB-Tree variants on system 1.

32-bit 64-bit
(a) Absolute.

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

Th
ro

ug
hp

ut
[Q

ue
rie

sP
er

Se
co

nd
] B-Tree

EDB-Tree
EDB-PB
EDB-CS

EDB-PBCS
TMR B-Tree

(b) Absolute.

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

Th
ro

ug
hp

ut
[Q

ue
rie

sP
er

Se
co

nd
]

0
0.2
0.4
0.6
0.8

1
1.2

1×
10 3

1×
10 4

1×
10 5

1×
10 6

1×
10 7

Re
la

tiv
e

Th
ro

ug
hp

ut

Tree size [# keys]

(c) 32-bit keys and values.

0
0.2
0.4
0.6
0.8

1
1.2

1×
10 3

1×
10 4

1×
10 5

1×
10 6

1×
10 7

Re
la

tiv
e

Th
ro

ug
hp

ut

Tree size [# keys]

(d) 64-bit keys and values.

Figure 6.24: Insert throughput for B-Tree and EDB-Tree variants on system 2.

200 Chapter 6 End-to-End Evaluation

6.4.2 Key Value-Pair Insertion

Next, we measured runtimes for single key value-pair insertions. This operation basically includes
the previous lookup to find the respective tree node where to insert the new key value-pair. Then,
however, more work needs to be done to insert key and value in the sorted array inside the node.
Furthermore, isnertions may include node splits where a new node must be allocated and keys,
values, and pointers need to be moved to the new node. Additionally, for the EDB-Tree variants,
child nodes’ parent pointers need to be adjusted in such cases. By that, the single pair insertion
should be lower on average than the pure lookup. This is confirmed by Figures 6.23 and 6.24,
where the absolute throughput numbers are lower than those for the lookup (cf. Figures 6.21
and 6.22). Regarding the relative throughput, however, the picture is slightly different than for the
lookup. Here, the EDB-Tree variant, which only employs pointer sanity checks, and the baseline
are on par and the EDB-Tree is for very small trees even slightly faster. In contrast, the parity bit
variant EDB-TreePB has slower relative throughput than before for all tree sizes. The checksums
variants EDB-TreeCS and EDB-TreePBCS have slightly higher relative throughput for the smaller
tree sizes and are virtually the same as before for the largest measured tree sizes. The TMR B-Tree
throughput is again around one third of the B-Tree, as would be expected.

6.5 SUMMARY

In this chapter, we conducted an end-to-end evaluation of our error detection opportunities and the
improved AN coding. We therefore built an in-memory prototype AHEAD for running all of the
SSB queries and to also take detailed runtime and performance counter measurements of individual
physical operators. We chose a greenfield approach, so that we could concentrate on those parts
of the physical storage layer which we had to adapt for data and operator hardening. AHEAD
provides a variety of physical data types, summarized in Table 6.1, as well as a several physical
database operators, summarized in Table 6.2. We have shown that for comparing different physical
data types, physical operators, and bit flip detection variants, including our detection opportunities,
would require a huge amount of implementations, indicated in Table 6.2 and Figure 6.2. We
reduced the complexity and effort by using modern C++ template constructs which allows to let the
compiler generate the code of potentially more than 50 000 physical operator variants with just 49
code templates. This approach can be extended to more physical data types, sub-operations, and
error control codes. We provided two concrete operator implementations in Listings 6.1 and 6.2
to illustrate the ease of data type adoption, where error detection primitives can be added just as it
was previously outlined in Algorithms 5.3 and 5.4.

We provided detailed analysis of the runtimes of several individual physical operators, for both of
our measurement systems from Section 3.3.1. The choice of operators included selection operators
on one and two predicates, three different joins, as well as two grouping and two aggregation
operators. For all of the scalar operator variants, the runtime overheads of Continuous Detection
with and without recoding were in the range between 3.5% . . . 14.9% for the Skylake system and
between 1.9% . . . 24.7% for the Xeon Phi system. Regarding vectorized performance, the coded
operators’ runtime overheads increased for the selection operators to 44% . . . 53% for Skylake
and to 33% . . . 35% for Xeon Phi. For the last aggregation operator, the runtime overheads even
increased to around 400% and 1000% for Skylake and Phi, respectively. This last operator, however,
is purely memory read and compute intensive, where there are little to no stalling cycles where the
CPU can hide the error detection instructions in between. The increase in runtime overhead means
that the non-hardened operators scale better using vectorization than the AN coded ones. However,

6.5 Summary 201

when there is more work to do in general in an operator, error detection has less impact on the
operator runtime. This is also the case for the selection operators, where more data is written back
to memory. Furthermore, we can see that recoding introduces virtually no additional overhead to
error detection. Then, we compared the impact of vectorization on the ∆ operator, since it has
no unencoded counterpart. As we showed, it benefits exceptionally well, since the ratio between
scalar and SSE runtimes were even greater than the ratio of data elements per vector register.

We conducted runtime measurements for all of the SSB queries. Next to the Unprotected baseline
and our detection opportunities, we also considered a DMR variant which stores all data twice
and executes each query twice, as well, followed by a voting on both query results. Throughout
all tests and both systems, the DMR variants always showed the expected relative runtime of
≈ 2×. For Early Onetime detection, the scalar execution showed huge runtime overheads for
the additional ∆ operator for each column. This could be mitigated partly through vectorization,
mostly because the ∆ operator improved so much through vectorization. Late Onetime detection
shows only very little runtime overheads, as was expected, since it performs error detection and
decoding only before the last aggregation or grouping operator. The Continuous and Recoding
variants showed small average overheads for both measurement systems and all queries of between
11% to 18%. This is an outstanding performance, because as we have seen in the very beginning
in Section 2.5, most of the general-purpose techniques for bit flip detection showed much higher
runtime or resource usage. This shows that our AN coding improvements, shown in Section 3.5,
combined with the tight integration of error control codes into the physical storage layer, is a much
more efficient way of detecting arbitrary bit flips in both business data and intermediate results.
Using vectorization (SSE), the total query runtimes improved by 1.8 × . . . 2.9× on the Skylake
system and by 1.6× . . . 2.4× on the Xeon Phi system. The total runtime improvements are lower
than the ratios of data elements per vector register, because not all operators are vectorized.

We also analyzed the storage consumption for base data and intermediate results for SSB query
1.1. As we showed, the limitations of the current AHEAD implementation lead to 100% storage
overhead, which goes up when we increase the detection capabilities. Putting these limitations
aside, assuming bit-packing, we showed that the storage overhead increases gradually with the
detection capabilities. In particular, increasing η = 1 to η = 4, the storage overhead increased
from 8% to 57% for base data and from 43% to 61% for intermediate data.

Finally, for the EDB-Tree variants we measured the throughput for single key lookup and single key
value-pair insertion. The measurements revealed that the EDB-Tree, which only introduces pointer
sanity checks, exhibits little to no throughput overhead. For lookups, on both systems, adding parity
bit checks led to 20% less throughput for very small trees, but for very large trees the overhead was
nullified. For insertions, the throughput reduction ranged from≈ 30% to≈ 20% on both systems.
Introducing checksums even further degraded both lookup and insertion throughput, while the
TMR B-Tree variant always showed the expected 1/3 throughput compared to the B-Tree baseline.
Overall, for all EDB-Tree variants we saw that increasing tree sizes led to reduced throughput
penalties compared to the baseline B-Tree. AN coding could also be used in EDB-Trees, but we
leave the straight-forward investigation and performance evaluation to future work.

We dare to state that in this chapter we proved that our approach fulfills Requirement R2 –
efficiency – not only for coding operations, but also for query processing as a whole. Compared
to the general purpose techqniques presented in Chapter 2, both runtime and storage overheads
are greatly reduced. Furthermore, we showed that recoding of intermediates leads to virtually no
additional runtime penalty, which underlines the fulfillment of Requirement R3 – adaptability.
This also proves that online bit flip detection during query processing is feasible and this fulfills
RequirementR4 – availabilty.

202 Chapter 6 End-to-End Evaluation

7
SUMMARY AND CONCLUSIONS

7.1 Future Work

The key objective of database systems is to reliably manage data, while high query throughput and
low query latency are core requirements. To satisfy these requirements, database systems constantly
adapt to novel hardware features, such as vectorized computation using SIMD instructions. These
hardware improvements are enabled in part by the constant decrease of transistor feature sizes.
The downside of this miniaturization is proven by many studies: hardware produced with such
tiny feature sizes becomes increasingly unreliable. Most if not all database research activity has
been concentrating on the speed requirements (throughput and latency) and neglected the rising
problem of transient hardware errors, called bit flips. It was shown that memory cells are much
more error prone than logic gates. This is especially harmful for in-memory data management
systems, where all business data is primarily stored and processed in fast main memory and where
bit flips lead to corrupt query results in the form of e.g. false positives, false negatives, and wrong
aggregates. While operating system and hardware could capture many of those errors, more and
more field studies show that the error detection and correction capabilities are not sufficient any
longer. An emerging and acknowledged trend in other research communities is to complement
OS and hardware by detecting and correcting transient bit flips also in higher software layers. In
this thesis, we investigated how transient hardware errors can be detected in an in-memory data
management system, and try to smooth the way for a new database research domain.

At first, in Chapter 2 we defined Requirements R1 to R5 for a software-based solution of bit flip
detection, respectively regarding effectiveness, efficiency, adaptability, availability, and separation
of concerns. From these, effectiveness is the most important one, which means to provide the
guarantee for a desired minimal detectable bit flip weight. The second most important requirement
is efficiency and throughput the whole thesis, we provide throughput and speed measurements.
Then, we compared contemporary techniques from several software domains and concluded that
these do not completely satisfy our requirements. Since most if not all of the available software-
based approaches utilize some sort of n-modular redundancy, we chose to use data encoding.
Runtime measurements throughout this thesis verify that we chose extremely fast coding schemes.

We compared in Chapter 3 the following three code families regarding their effectiveness, efficiency,
and adaptability: Hamming codes, XOR checksums, and arithmetic AN codes. As it turned out,
software Hamming coding exhibits high probabilities of silent data corruption and very high coding
operation runtimes, while the latter codes exhibit much better detection capabilities. However, AN
coding also showed dreadful coding runtimes. To the best of our knowledge, in more than 60 years
since the first mentioning of AN codes that we found, we are the first to use an elegant mathematical
solution – the modular multiplicative inverse. This greatly simplifies error detection and decoding,
while it also enables complete vectorization of the coding operations. This is especially important
for main memory-centric DMSs and we measured that it can greatly improve coding runtimes by up
to more than 18×1. Based on the different characteristics of the two code families, we concluded
that both can be used at different places in DMSs and that both potentially satisfy the remaining
Requirements R1 to R4. Both are effective regarding their error detection capabilities, as well
as efficient regarding memory consumption and coding latencies. Finally, while XOR checksums
are adaptable only to a limited degree, AN codes can be tailored to any data bit widths as well as
desired minimal detectable bit flip weights.

Using the two code families, we introduced our bit flip detecting storage in Chapter 4, which is
an adaptation of only the lowest physical storage layer. As a consequence, the conceptual and
external layers can still provide the abstraction towards client applications, without being changed.
We showed how the two coding schemes neatly integrate with many different aspects of that layer.

1The benchmarks suite we used for these measurements is open source available under https://github.
com/brics-db/coding_benchmark/. Descriptions can be found at https://brics-db.github.io/coding_
benchmark/

204 Chapter 7 Summary and Conclusions

https://github.com/brics-db/coding_benchmark/
https://github.com/brics-db/coding_benchmark/
https://brics-db.github.io/coding_benchmark/
https://brics-db.github.io/coding_benchmark/

In-memory column stores store only integers in their base columns and these can be protected
using AN coding. For variable-width data like strings, they employ dictionary coding to keep only
integers in the base columns, while lightweight integer compression reduces the required memory
footprint of base data. As we discussed, AN coding can be well combined with integer lightweight
compression techniques. Strings can be protected using XOR checksums when higher speed is
desired, or each character could be AN coded when better error detection is desired. Furthermore,
we hardened the ubiquitous B-Tree index structure against bit flips. The important difference to
column data is, that index structures have structure which can be exploited to detect bit flips. For
instance, pointer sanity checks are one simple method, and XOR checksums can be used to protect
keys and payload separately.

Based on the hardened storage layer, we introduced bit flip detecting query processing in Chapter 5,
where we concentrated on the peculiarities of in-memory column stores. We discussed several
detection opportunities, where inside a query bit flips can be deteted. We started with Early and
Late Onetime detection, which introduce a new ∆ operator doing error detection and decoding
on base columns. While this requires comparatively little integrtation effort, bit flips are detected
only in the base data or very late during a query and wrong join partners, wrong aggregates
and more are still possible. Continuous Detection leverages the improved AN coding and does
error detection in each and every operator, on each and every data unit. On the one hand, this
requires more engineering effort than for Early and Late, because all physical operators must be
adapted to include error detection primitives, but on the other hand this allows very fine-grained
error detection. The hardening of intermediate results is another important topic we discussed.
Using bitmaps to postpone materialization of intermediates, the compromise between speed, in
favor of checksums, and detection capability, in favor of AN coding, must be made. Instead,
full materialization can be used where selective stores should be favored instead of table lookup
approaches, because for the latter, large lookup tables must be kept in unreliable main memory.

To prove that our approaches are indeed feasible in the sense that they can actually be employed
in an online fashion during query execution, we presented an end-to-end evaluation in Chapter 6.
Therefore, we implemented the open source2 AHEAD prototype. We demonstrated that the
engineering effort to integrate Continuous Detection can be mitigated elegantly through C++
template programming. In theory we could have instantiated 53 141 physical operators with
merely 49 operator code templates. We discussed a few of these templates, as well as the additions
for AN coding aware operators. We then discussed runtime measurements for individual operators
based on SSB queries. One principal insight was that powerful systems such as the Skylake test
system can nicely schedule the additional coding instructions. This can hide the coding overhead
to a great degree, which results in less runtime overhead than for weaker systems such as the
Xeon Phi test system. A further insight is that, the more complex the operators, the smaller the
impact of additional coding operations. Also, for the individual operators, recoding had little to
no impact on the measured runtimes. Then, we measured the total runtimes for all SSB queries
on both test systems. The Continuous and Recoding variants showed small average overheads for
both measurement systems and all queries of between 11% to 18%. These are excellent results,
because as we have seen in Section 2.5, most of the general-purpose techniques for bit flip detection
showed much higher runtime or resource overheads. This shows that our AN coding improvements,
combined with the tight integration in the storage layer and operators, is a much more efficient way
of detecting arbitrary bit flips in both business data and intermediate results. As we furthermore
discussed, the storage overhead of the AHEAD prototype is currently 100% and above, depending
on the desired minimal detectable bit flip weight. Using bit packing techniques, this overhead
can be greatly reduced. In particular, for SSB query 1.1, the storage overhead ranges from 8% to

2The whole project https://brics-db.github.io

205

https://brics-db.github.io

57% for base data and from 43% to 61% for intermediate data. Finally, for the EDB-Tree variants
we also measured the throughput for single key lookup and single key value-pair insertion. The
measurements revealed that the pointer sanity checks introduce little to no throughput overhead.
For the more expensive variants parity bits and XOR checksums, the overheads were much greater
for smaller trees. For all EDB-Tree variants we saw that increasing tree sizes led to reduced
throughput penalties compared to the baseline B-Tree.

In total, our presented bit flip detecting storage and Continuous Detection approaches fulfill all
our Requirements R1 to R5. Regarding effectiveness (R1), we use AN coding, for which a
parameter A can be chosen to cover e.g. desired minimal detectable bit flip weights, while XOR
checksums can be used for large or arbitrary length blocks of data. Regarding efficiency (R2), both
code families are extremely fast software-based coding schemes, especially AN coding with our
performance improvements. Furthermore, for both codes all operations can be vectorized using
SIMD instruction sets. Regarding adaptability (R3), AN coding allows to adapt the code strength
at runtime, even during query processing for intermediate results. Recoding is extremely fast due
to our use of the modular multiplicative inverse. Regarding availability (R4), we use an online
approach, which does error detection at runtime for each and every data element from base columns
and intermediate results. Also, our hardened EDB-Tree does bit flip detection in an online fashion
during each tree traversal. Regarding separation of concerns (R5), we care only about that part
which we know best – our managed data and data structures.

With this work, we hope to pave the way for future research, which may build upon, extend, or
complement the approaches presented in this thesis. Most of the source code fragments used
to obtain the results in this thesis are open source and can be found through the project page
https://brics-db.github.io or directly on GitHub at https://github.com/brics-db/.

7.1 FUTURE WORK

We believe that data management system must take care of transient hardware errors like bit flips,
as one part of the whole hardware / software stack. Our error code analysis and AN coding
improvements, as well as the hardened storage and query processing layers are one major step
towards bit flip detecting and correcting DMSs. In the following, we discuss further research
directions which we believe are very promising and important.

Hardware Error Models

One important question, which we can not answer in this thesis, is that for concrete hardware
error models. While we based our discussions on a fairly abstract error model, concrete ones may
loosen or even tighten the requirements on the employed error codes. The ones we discussed in
Section 3.2.4 are not derived from actual hardware and were merely used to demonstrate how the
conditional probabilities of the error codes can be transformed into unconditional ones. Actual
hardware error models may dictate that some error patterns are more likely than others, in contrast
to those assumptions in Section 3.2.4. Furthermore, new optimality criteria could be expressed,
which are different from those we presented in Section 3.2.3. For instance, if large burst errors
were actually more likely than individual bit flips, then other golden As than in Table 3.6 might
be required. To take this one step further, consider the problem of aging, which implies that the
hardware error model changes over time. Here, the interesting question is, when the objective

206 Chapter 7 Summary and Conclusions

https://brics-db.github.io
https://github.com/brics-db/

functions, which describe the optimality criterion, are provided. For instance, they could be
provided at software design or compile time by the hardware vendors. This would be a static
approach. In contrast, the hardware itself or some software monitoring service could measure the
state of the hardware (or the system as a whole) and deliver characteristics to the DMS. This one,
in turn, might then choose the code parameters from a different set of golden As, in the case of
AN coding. This opens a whole new area of question, like how a running system’s error model
can be measured, when and how new coding parameters are chosen, or whether such models can
be forecasted.

Coding Tradeoffs

Concerning the effectiveness and efficiency of coding schemes, both are often contradicting goals.
The AN coding speed may even more be increased, e.g. through the use of so-called accumu-
lators [13, 93, 154]. The idea is to accumulate multiple code words before doing the actual
error detection. This works, due to the distributivity of the arithmetic code operations. Using
an accumulator, less error detection operations must be executed. It would be crucial to know
about the error propagation and how the SDC probabilities change when employing accumulators.
Furthermore, the size of the accumulator is of importance: when too many values are added up,
then an overflow may happen, which very likely results in a non-codeword. Using accumulators
with a larger data width might require a different A and recoding. Another interesting topic to this
regard is the use of coded operators when queries are just-in-time compiled [128]. Here, whole
pipelines of operators are put together and it should be investigated whether and, if so, how often
intermediates in this pipeline must be checked for bit flips. Furthermore, it would be interesting
to see the query runtime overhead when compiling several operators together. Since more work is
done per single data element, the coding overhead should be further reduced.

Bit Flip Detecting Storage

We are currently at the brink of new, emerging memory technologies with different performance
characteristics than current DRAM technology. For instance, non-volatile main memory will
reach the markets in the near future, where read and write latencies greatly differ. It would be very
interesting to investigate the impact of such future main memory technologies on bit flip handling
DMSs. Another important point is the adaptation of EDB-Trees with AN coding. Regarding the
pointers, since not all 64 bits of pointers are used for addresses, we can use these spare bits for
coding. However, there are two issues. First, since now up to 56 bits can be used for virtual
addresses, there are only 8 bits remaining, which leaves only very little room for adapting to
increasing bit flip weights. Second, since it is very hard to compute the SDC probabilities for such
large data widths, we have not yet computed any golden or super As. Consequently, we need to
reduce the data size of the pointers. Employing AN coding to protect the keys and payloads may
be more trivial.

Bit Flip Detecting Processing

In this thesis, we only considered the actual query execution, but the whole query life cycle are
composed of so many more parts, not to speak of a whole DMS. For instance, as soon as a query
reaches the DMS (typically in form of a string), all state may have to be protected against bit flips.

7.1 Future Work 207

For instance, it must be ensured, that the correct string is parsed and transformed to a valid internal
query representation. Next, this internal representation must be protected as well, so that e.g. the
correct operators are called. Finally, the results must be protected and reliably sent back to the
original user.

Bit Flip Correction

This thesis only dealt with the detection of bit flips in data and data structures. Going from this, the
correction of these errors is the next logical step. The error codes used in this thesis are detection-
only codes, so that bit flips can not be corrected naively. Furthermore, as we have seen with the
Hamming codes, using the same code for detection and correction leads to much worse bit flip
detection capabilities. Therefore, we advocate to use error codes for error detection and different
techniques for error correction. One possibility is to explore the use of inherent redundancy in
DMSs. For instance, there is the database log for taking care of the contemporary failure classes, as
well as materialized indexes and views. This means that the DMS stores its data probably several
times at different locations, anyways. This could be used to not introduce even more redundancy,
but to reproduce corrupted data from other, already existing locations. Another promising idea
we thought about is to use linear combinations known from network coding and RAID systems.
However, in contrast to these, instead of XOR-ing values together, we can exploit the properties
of AN coding, namely add together two columns or parts of a single column. This would result
in valid codewords, again, where recoding might be needed, and these could again be checked for
bit flips. Furthermore, for the individual data structures of a DMS, different bit flip correction
techniques might be necessary.

Hardened Processing in Memory

An interesting research direction is near-memory processing, or processing-in-memory (PIM) [5,
29]. Today, DRAM devices are already comprised of chip stacks with multiple layers of storage
fabric. The basic idea of PIM is to integrate a logic layer into the bottom of the DRAM chip
stack. This allows to offload simple tasks like data filtering to that logic layer and has several
benefits. Firstly, this safes costly cycles in the CPU, so that the CPU can deal with more important
or complicated tasks. Leveraging the improved AN coding, error detection could be done already
at the device level, to reduce the load of the CPU. As we have seen in the AHEAD prototype
description in Section 6.1.2, the huge diversity of physical operators due to the many possible data
widths might pose an important challenge. Furthermore, the real benefits and tradeoffs of this
combination are not yet clear. For instance, having checked the data at the device level, must the
transferred values be checked at the CPU again? And if so, does this only benefit if whole operators
can be offloaded to the DRAM device? These are only a few questions and many more seem to
loom on the horizon.

208 Chapter 7 Summary and Conclusions

A
APPENDIX

A.1 List of Golden As

A.2 More on Hamming Coding

A.1 LIST OF GOLDEN AS

We provide the full list of golden As for all k ∈ {1, . . . , 32} and |A| ∈ {1, . . . , 16} in Tables A.1
to A.4. There, only bold numbers are prime and in contrast to previous suggestions [161], many
super As are not prime. The minimum detection weight is denoted in parenthesis and all numbers
marked with an asterisk (*) are grid approximated with M = 1001. What may be surprising
is the fact that for a given width of A (|A|) and for increasing k = |D|, the As are not strictly
monotonically increasing. For instance, for k ∈ {3, 4, 5} and |A| = 7, the superAs are 89, 117, 115
and for |A| = 9 and k ∈ {4, 5, 6, the super As are 467, 443, 471.

|A| k
1 2 3 4 5 6 7 8

2 3 (1) 3 (1) 3 (1) 3 (1) 3 (1) 3 (1) 3 (1) 3 (1)
3 7 (2) 7 (1) 7 (1) 7 (1) 7 (1) 7 (1) 7 (1) 7 (1)
4 15 (3) 13 (2) 13 (1) 13 (1) 13 (1) 13 (1) 13 (1) 13 (1)
5 31 (4) 29 (2) 29 (2) 27 (2) 29 (2) 29 (2) 29 (2) 29 (2)
6 63 (5) 53 (3) 45 (3) 45 (2) 45 (2) 45 (2) 59 (2) 59 (2)
7 127 (6) 117 (3) 117 (3) 89 (3) 117 (3) 115 (2) 115 (2) 115 (2)
8 255 (7) 213 (4) 229 (3) 229 (3) 233 (3) 233 (3) 217 (3) 233 (3)
9 511 (8) 469 (4) 467 (4) 467 (3) 443 (3) 471 (3) 471 (3) 487 (3)
10 1023 (9) 853 (5) 917 (4) 933 (4) 933 (4) 809 (3) 933 (3) 857 (3)
11 2047 (10) 1877 (5) 1837 (5) 1867 (4) 1909 (4) 1899 (4) 1803 (4) 1939 (4)
12 4095 (11) 3285 (6) 3673 (5) 3737 (4) 3787 (4) 3813 (4) 3813 (4) 3813 (4)
13 8191 (12) 6613 (6) 7349 (6) 6777 (5) 7085 (5) 7837 (5) 7637 (4) 7463 (4)
14 16383 (13) 13141 (7) 13779 (6) 14937 (5) 15221 (5) 14159 (5) 13963 (5) 13963 (5)
15 32767 (14) 26453 (7) 23733 (7) 31385 (6) 31373 (6) 31373 (5) 27247 (5) 27247 (5)
16 65535 (15) 52565 (8) 56501 (7) 47729 (6) 59973 (6) 62739 (6) 55831 (6) 55831 (6)

Table A.1: Golden As for k ∈ {1, . . . , 8}, |A| ∈ {1, . . . , 16} with minimal detection weight in
parentheses, after Ψη(k, h) – Equation (3.52). Bold numbers are prime.

|A| k
9 10 11 12 13 14 15 16

2 3 (1) 3 (1) 3 (1) 3 (1) 3 (1) 3 (1) 3 (1) 3 (1)
3 7 (1) 7 (1) 7 (1) 7 (1) 7 (1) 7 (1) 7 (1) 7 (1)
4 13 (1) 13 (1) 13 (1) 13 (1) 13 (1) 13 (1) 13 (1) 13 (1)
5 29 (2) 29 (1) 29 (1) 29 (1) 29 (1) 29 (1) 29 (1) 29 (1)
6 61 (2) 61 (2) 61 (2) 61 (2) 61 (2) 61 (2) 61 (2) 61 (2)
7 123 (2) 123 (2) 123 (2) 123 (2) 123 (2) 119 (2) 119 (2) 119 (2)
8 185 (3) 185 (3) 233 (2) 215 (2) 215 (2) 233 (2) 233 (2) 233 (2)
9 487 (3) 451 (3) 451 (3) 463 (3) 463 (3) 463 (3) 463 (3) 463 (3)
10 857 (3) 857 (3) 857 (3) 857 (3) 947 (3) 947 (3) 947 (3) 947 (3)
11 1939 (4) 1939 (3) 1939 (3) 1939 (3) 1939 (3) 1939 (3) 1939 (3) 1939 (3)
12 3621 (4) 3739 (4) 3739 (4) 3737 (4) 3349 (4) 3349 (3) 3349 (3) 3349 (3)
13 5729 (4) 6717 (4) 6717 (4) 6717 (4) 7413 (4) 6717 (4) 7785 (4) 7785 (4)
14 15717 (5) 15469 (4) 14139 (4) 14139 (4) 14139 (4) 14139 (4) 14139 (4) 14781 (4)
15 27425 (5) 27425 (5) 27425 (5) 29925 (5) 27825 (5) 28619 (4) 28183 (4) 28183 (4)
16 55831 (6) 59965 (5) 58901 (5) 62749 (5) 62749 (5) 63877 (5) 63877 (5) 63877 (5)

Table A.2: Golden As for k ∈ {9, . . . , 16}, |A| ∈ {1, . . . , 16} with minimal detection weight in
parentheses, after Ψη(k, h) – Equation (3.52). Bold numbers are prime.

210 Appendix A Appendix

|A| k
17 18 19 20 21 22 23 24

2 3 (1) 3 (1) 3 (1) 3 (1) 3 (1) 3 (1) 3 (1) 3 (1)
3 7 (1) 7 (1) 7 (1) 7 (1) 7 (1) 7 (1) 7 (1) 7 (1)
4 13 (1) 13 (1) 13 (1) 13 (1) 13 (1) 13 (1) 13 (1) 13 (1)
5 29 (1) 29 (1) 29 (1) 29 (1) 29 (1) 29 (1) 29 (1) 29 (1)
6 61 (2) 61 (2) 61 (2) 61 (2) 61 (2) 61 (2) 61 (2) 61 (2)
7 119 (2) 111 (2) 111 (2) 111 (2) 111 (2) 111 (2) 111 (2) 111 (2)
8 233 (2) 233 (2) 233 (2) 233 (2) 233 (2) 237 (2) 237 (2) 237 (2)
9 393 (3) 393 (2) 393 (2) 393 (2) 423 (2) 423 (2) 423 (2) 423 (2)
10 947 (3) 947 (3) 947 (3) 985 (3) 985 (3) 985 (3) 985 (3) 981 (3)
11 1909 (3) 1909 (3) 1939 (3) 1939 (3) 1909 (3) 1939 (3) 1939 (3) 1939 (3)
12 3349 (3) 3349 (3) 3349 (3) 3091 (3) 3091 (3) 3091 (3) 3091 (3) 3829 (3)
13 7785 (4) 7785 (4) 7985 (4) 7985 (4) 6311 (3) 6311 (3) 6311 (3) 6311 (3)
14 14781 (4) 15207 (4) 16089 (4) 16089 (4) 15507 (4) 15993 (4) 15993 (4) 15993 (4)
15 32343 (4) 32343 (4) 32343 (4) 32343 (4) 30987 (4) 30987 (4) 30987 (4) 29675 (4)
16 63859 (5) 63859 (5) 58659 (4) 58659 (4) 58659 (4) 58659 (4) 58659 (4) 64311 (4)

Table A.3: Golden As for k ∈ {17, . . . , 24}, |A| ∈ {1, . . . , 16} with minimal detection weight in
parentheses, after Ψη(k, h) – Equation (3.52). Bold numbers are prime.

|A| k
25 26 27 28 29 30 31 32

2 3 (1) 3 (1) 3 (1) 3 (1) 3 (1) 3 (1) 3 (1) 3 (1)
3 7 (1) 7 (1) 7 (1) 7 (1) 7 (1) 7 (1) 7 (1) 7 (1)
4 13 (1) 13 (1) 13 (1) 13 (1) 13 (1) 13 (1) 13 (1) 13 (1)
5 29 (1) 29 (1) 29 (1) 29 (1) 29 (1) 29 (1) 29 (1) 29 (1)
6 61 (1) 61 (1) 61 (1) 61 (1) 61 (1) 61 (1) 61 (1) 61 (1)
7 111 (2) 111 (2) 111 (2) 111 (2) 111 (2) 125 (2) 125 (2) 125 (2)
8 225 (2) 225 (2) 225 (2) 225 (2) 225 (2) 225 (2) 225 (2) 225 (2)
9 423 (2) 423 (2) 423 (2) 423 (2) 423 (2) 445 (2) 445 (2) 445 (2)
10 981 (3) 981 (3) 951 (3) 951 (3) 835 (3) 835 (3) 881 (3) 881 (3)
11 1939 (3) 1939 (3) 1939 (3) 1939 (3) 1939 (3) 1939 (3) 2029 (3) 2029 (3)*
12 3829 (3) 3829 (3) 3829 (3) 3829 (3) 3829 (3) 3829 (3) 3973 (3)* 3973 (3)*
13 6311 (3) 7841 (3) 7841 (3) 7841 (3) 7841 (3) 7841 (3)* 7841 (3)* 7841 (3)*
14 15685 (4) 15203 (4) 15203 (4) 15203 (3) 15203 (3)* 15203 (3)* 15823 (3)* 16089 (3)*
15 29685 (4) 29685 (4) 29685 (4) 29685 (4)* 29685 (4)* 31693 (4)* 32211 (4)* 32417 (4)*
16 64311 (4) 64311 (4) 64311 (4)* 64311 (4)* 64311 (4)* 64311 (4)* 64665 (4)* 65117 (4)*

Table A.4: Golden As for k ∈ {25, . . . , 32}, |A| ∈ {1, . . . , 16} with minimal detection weight in
parentheses, after Ψη(k, h) – Equation (3.52). Bold numbers are prime. Those marked with an
asterisk (*) are obtained through grid approximation.

A.1 List of Golden As 211

A.2 MORE ON HAMMING CODING

A.2.1 Code examples

Table A.5 lists some code examples and the appropriate Hamming weights, which exemplifies
shortening of the Extended Hamming codes. In particular, the standard (7, 4) Hamming code is
shown in Table A.5a in combination with its (8, 4) extended counterpart with the additional overall
parity bit (p∗0) and the other code word weights (w(8,4)

H). For comparison, the shortened extended
codes (7, 3) and (6, 2) are shown in Tables A.5b and A.5c, respectively.

position: 7 6 5 3 4 2 1 0∗ w
(7,4)
H w

(8,4)
H

element: d4d3d2d1 p3p2p1p
∗
0

0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 1 1 3 4
0 0 1 0 1 0 1 1 3 4
0 0 1 1 1 1 0 0 4 4
0 1 0 0 1 1 0 1 3 4
0 1 0 1 1 0 1 1 4 4
0 1 1 0 0 1 1 0 4 4
0 1 1 1 0 0 0 1 3 4
1 0 0 0 1 1 1 0 4 4
1 0 0 1 1 0 0 1 3 4
1 0 1 0 0 1 0 1 3 4
1 0 1 1 0 0 1 0 4 4
1 1 0 0 0 0 1 1 3 4
1 1 0 1 0 1 0 0 4 4
1 1 1 0 1 0 0 0 4 4
1 1 1 1 1 1 1 1 7 8

(a) Code words of (7,4) and (8,4)-Extended Hamming codes.

position: 6 5 3 4 2 1 0∗

element: d3d2d1 p3p2p1p
∗
0

0 0 0 0 0 0 0
0 0 1 0 1 1 1
0 1 0 1 0 1 1
0 1 1 1 1 0 0
1 0 0 1 1 0 1
1 0 1 1 0 1 1
1 1 0 0 1 1 0
1 1 1 0 0 0 1

(b) Code words of (7,3) shortened Extended Ham-
ming codes.

position: 5 3 4 2 1 0∗

element: d2d1 p3p2p1p
∗
0

0 0 0 0 0 0
0 1 0 1 1 1
1 0 1 0 1 1
1 1 1 1 0 0

(c) Code words of (6,2) shortened Extended Ham-
ming Code.

Table A.5: Code words and weights of the (7,4) Hamming code, its (8,4) Extended variant ((a)), and
the (7,3) and (6,2) shortened variants of the Extended Hamming code ((b) and (c), respectively).
For the latter two, all code words have weight 4 – this property is not lost by shortening.

A.2.2 Vectorization

Now, we provide more details on the implementation of the techniques presented in Section 3.3.2.
First, we will give more details on the population count implementation and afterwards discuss the

212 Appendix A Appendix

actual hardening operation.

Population Count

In Section 3.3.2 we gave a brief introduction of the idea of vectorized population counting, which
is the most crucial, since mostly used, instruction for computing the individual parity bits of
the Hamming codes. There, we discussed two different SIMD ISAs, namely SSE4.2 and AVX2
and here we also present detailed numbers for both. Figure A.1 exercises the example given in
Figure 3.18a, where 4 bits are set, with all intermediate steps and concrete values, while the data
value is actually the same.

Operation Value (binary)

data 0110 1100
temp = data » 1 0011 0110

pattern1 0101 0101
temp = temp & pattern1 0001 0100

-temp 1110 1100
temp = data + (-temp) 0101 1000

pattern2 0011 0011
temp2 = temp & pattern2 0001 0000

temp = temp » 2 0001 0110
temp = temp & pattern2 0001 0010
temp = temp + temp2 0010 0010

pattern3 0001 0001
temp = temp * pattern3 0100 0010

result = temp » 4 0000 0100

Figure A.1: Reduced example for 8-bit population count after Figure 3.18a. Bits are again grouped
into 4 bits for better readability.

Listing A.1 gives a concrete vectorized implementation for 8-bit (single byte) values using SSE4.2.
The same can be translated to AVX2 / AVX512 / . . . instructions. On some hardware platforms,
Intel® Knights Mill in particular, a vectorized population count may be available through the
vpopcnt instruction, which can make the binary adder partly obsolete. For Knights Mill the
instruction is supposed to only support vectors of 16 32-bit or 8 64-bit data words, so that for
smaller data words we have to fall back to the binary adder variant.

Function _mm_popcount_epi8 uses several optimizations to reduce the total number of instruc-
tions (from [182]). In the first iteration the shifted, masked temporary (named shifted) is
subtracted from the original data, which avoids ANDing the original data with the first pattern
(Lines 7 and 8). The other two iteration adhere to the original algorithm (Lines 9 to 12). For
single bytes, the multiplication bears no simplification, because the multiplication and the required
shifting are more expensive than the addition and the masking.

Population count implementations for SSE4.2 on vectors of 16-bit and 32-bit data are shown in
Listing A.2. There, a uint64_t (uint32_t) is a 64-bit (32-bit) wide unsigned integer that is
returned from the function (Lines 1 and 11). We use a single temporary (Lines 2 and 12) and
a single pattern for the multiplication (Lines 3 and 13), whereas the highest order bytes contain
the actual population count (cf. Figure 3.18e). For up to 128-bit data elements we can use single
bytes to store the population counts, so after the actual counting we can compact the result to
save memory space. For that, we use a single shuffle mask (Lines 4 and 14). We first obtain the
individual byte counts (Lines 5 and 15), then multiply to add them up (Lines 6 and 16) and shuffle

A.2 More on Hamming Coding 213

1 __m128i _mm_popcount_epi8(__m128i data) {
2 __m128i temp;
3 __m128i shifted;
4 __m128i pattern1 = _mm_set1_epi8(0x55);
5 __m128i pattern2 = _mm_set1_epi8(0x33);
6 __m128i pattern3 = _mm_set1_epi8(0x0F);
7 shifted = _mm_and_si128(_mm_srli_epi16(data, 1), pattern1);
8 temp = _mm_sub_epi8(data, shifted);
9 shifted = _mm_and_si128(_mm_srli_epi16(temp, 2), pattern2);

10 temp = _mm_add_epi8(_mm_and_si128(temp, pattern2), shifted);
11 shifted = _mm_and_si128(_mm_srli_epi16(temp, 4), pattern3);
12 temp = _mm_add_epi8(_mm_and_si128(temp, pattern3), shifted);
13 return temp;
14 }

Listing A.1: Vectorized SSE4.2 population count for 8-bit data, after [182, Section 5.1, p. 82].
The function name corresponds to the typical SSE4.2 naming pattern.

1 uint64_t _mm_popcount_epi16(__m128i data) {
2 __m128i temp;
3 __m128i pattern = _mm_set1_epi16(0x0101);
4 __m128i shuffle = _mm_set_epi64x(0xFFFFFFFFFFFFFFFF , 0x0F0D0B0907050301);
5 temp = _mm_popcount_epi8(data);
6 temp = _mm_mullo_epi16(temp, pattern);
7 temp = _mm_shuffle_epi8(temp, shuffle);
8 return _mm_extract_epi64(temp, 0);
9 }

11 uint32_t _mm_popcount_epi32(__m128i data) {
12 __m128i temp;
13 __m128i pattern = _mm_set1_epi16(0x0101);
14 __m128i shuffle = _mm_set_epi32(0xFFFFFFFF , 0xFFFFFFFF , 0xFFFFFFFF , 0x0F0B0703);
15 temp = _mm_popcount_epi8(data);
16 temp = _mm_mullo_epi32(temp, pattern);
17 temp = _mm_shuffle_epi8(temp, shuffle);
18 return _mm_extract_epi32(temp, 0);
19 }

Listing A.2: Vectorized SSE4.2 population count for 16-bit and 32-bit data, after [182, Section
5.1, p. 82]. The function names correspond to the typical SSE4.2 naming pattern. Variants for
AVX2 / AVX512 / ... are constructed likewise.

them for compaction (Lines 7 and 17). Since there fit 8 16-bit integers and 4 32-bit integers into
a single 128-bit vector, the functions return accordingly large results (64-bit and 32-bit integer,
respectively).

Hardening

Listing A.3 shows an SSE4.2 implementation for parallel Hamming coding on 8 16-bit data words.
The code words are organized so that first the 128 bits of data are stored consecutively followed by
the overall 64 code bits, also consecutively. We store 64 code bits since we store each data unit’s
code bits in its own byte. All Hamming code bits are computed in parallel for all 8 data units of the
vector. The function naming again follows the SSE conventions (Line 1). First, the Hamming bit
set patterns are defined in Lines 2 to 6 (cf. Figure 3.3). Lines 8 to 10 initialize the hamming code
bits and temporaries to zero. Then, we consecutively mask each of the data patterns (Lines 10,
12, 15, 18 and 21) and store the corresponding code bit, i.e. we create even parity by selecting
the LSB from the population count of each subcount (Lines 11, 14, 17, 20 and 23). Meanwhile,

214 Appendix A Appendix

1 uint64_t _mm_hamming_epi16(__m128i data) {
2 __m128i pattern1 = _mm_set1_epi16(0xAD5B);
3 __m128i pattern2 = _mm_set1_epi16(0x366D);
4 __m128i pattern3 = _mm_set1_epi16(0xC78E);
5 __m128i pattern4 = _mm_set1_epi16(0x07F0);
6 __m128i pattern5 = _mm_set1_epi16(0xF800);

8 uint64_t hamming = 0;
9 uint64_t tmp1(0), tmp2(0);

10 tmp2 = _mm_popcount_epi16(_mm_and_si128(data, pattern1)) & 0x0101010101010101;
11 hamming |= tmp2 << 1;
12 tmp1 = _mm_popcount_epi16(_mm_and_si128(data, pattern2)) & 0x0101010101010101;
13 tmp2 ^= tmp1;
14 hamming |= tmp1 << 2;
15 tmp1 = _mm_popcount_epi16(_mm_and_si128(data, pattern3)) & 0x0101010101010101;
16 tmp2 ^= tmp1;
17 hamming |= tmp1 << 3;
18 tmp1 = _mm_popcount_epi16(_mm_and_si128(data, pattern4)) & 0x0101010101010101;
19 tmp2 ^= tmp1;
20 hamming |= tmp1 << 4;
21 tmp1 = _mm_popcount_epi16(_mm_and_si128(data, pattern5)) & 0x0101010101010101;
22 tmp2 ^= tmp1;
23 hamming |= tmp1 << 5;
24 hamming |= (_mm_popcount_epi16(data) + tmp2) & 0x0101010101010101;
25 return hamming;
26 }

Listing A.3: Vectorized SSE4.2 Hamming code computation for 16-bit data. Each byte in the
result stores the hamming code bits of the input vector’s appropriate 16-bit element

8 16
SIMD
ISA |V| data units

per vector
code bits
per data

code bits
per vectora

data units
per vector

code bits
per data

code bits
per vectora

SSE4.2 128 16 5 128 8 6 64
AVX2 256 32 5 256 16 6 128
AVX512 512 64 5 512 32 6 256

32 64
SIMD
ISA |V| data units

per vector
code bits
per data

code bits
per vectora

data units
per vector

code bits
per data

code bits
per vectora

SSE4.2 128 4 7 32 2 8 16
AVX2 256 8 7 64 4 8 32
AVX512 512 16 7 128 8 8 64

Table A.6: Total Hamming code bits per vector size and data element type. a: Total code bits
aligned to full byte boundaries.

A.2 More on Hamming Coding 215

we use the second temporary to generate the additional overall parity (across all data and code
bits). We XOR the code bits since the popcounts returned by _mm_popcount_epi16 are packed
into a single 64-bit data unit and XOR does parallel parity computation (Lines 13, 16, 19 and 22)
– we could use addition and masking but we are interested in the parity and thus XOR suffices.
Finally, we store the overall parity bit by XORing against the overall data popcount (Line 24). The
Hamming computation can be adopted the same way for the other SIMD instruction sets (AVX2,
AVX512, . . .) and other data widths. Table A.6 summarizes the amount of actual code bits for the
Extended Hamming code with SECDED capability. For data element types up to 64-bit a single
byte suffices for storing the extended Hamming code’s code bits.

216 Appendix A Appendix

BIBLIOGRAPHY

[1] D. J. Abadi, S. Madden, and M. Ferreira, “Integrating compression and execution in
column-oriented database systems”, in SIGMOD, 2006, pp. 671–682.

[2] D. Abadi, R. Agrawal, A. Ailamaki, M. Balazinska, P. A. Bernstein, M. J. Carey, S.
Chaudhuri, J. Dean, A. Doan, M. J. Franklin, J. Gehrke, L. M. Haas, A. Y. Halevy, J. M.
Hellerstein, Y. E. Ioannidis, H. V. Jagadish, D. Kossmann, S. Madden, S. Mehrotra, T. Milo,
J. F. Naughton, R. Ramakrishnan, V. Markl, C. Olston, B. C. Ooi, C. Ré, D. Suciu, M.
Stonebraker, and T. Walter, “The beckman report on database research”, Commun. ACM,
vol. 59, no. 2, pp. 92–99, 2016.

[3] D. Abadi, P. A. Boncz, S. Harizopoulos, S. Idreos, and S. Madden, “The design and
implementation of modern column-oriented database systems”, Foundations and Trends in
Databases, vol. 5, no. 3, pp. 197–280, 2013.

[4] D. Abadi, S. Madden, and M. Ferreira, “Integrating compression and execution in column-
oriented database systems”, in Proceedings of the 2006 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’06, New York, NY, USA: ACM, 2006,
pp. 671–682, isbn: 1-59593-434-0. doi: 10.1145/1142473.1142548.

[5] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “Pim-enabled instructions: A low-overhead, locality-
aware processing-in-memory architecture”, in Proceedings of the 42Nd Annual Interna-
tional Symposium on Computer Architecture, ser. ISCA ’15, Portland, Oregon: ACM, 2015,
pp. 336–348, isbn: 978-1-4503-3402-0. doi: 10.1145/2749469.2750385. [Online].
Available: http://doi.acm.org/10.1145/2749469.2750385.

[6] A. Ailamaki, D. J. DeWitt, and M. D. Hill, “Data page layouts for relational databases on
deep memory hierarchies”, The VLDB Journal, vol. 11, no. 3, pp. 198–215, 2002.

[7] A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis, “Weaving relations for cache
performance.”, vol. 1, pp. 169–180, 2001.

[8] AnandTech. (Jan. 11, 2018). Memblaze launches pblaze5 ssds: Enterprise 3d tlc, up to 6
gb/s, 1m iops, 11 tb, [Online]. Available: http://www.anandtech.com/show/11572.

[9] Arm Ltd. (Jul. 27, 2017). Arm NEON Technology, [Online]. Available: https : / /
developer.arm.com/technologies/neon.

[10] T. Austin, “Diva: A reliable substrate for deep submicron microarchitecture design”, in
MICRO-32. Proceedings of the 32nd Annual ACM/IEEE International Symposium on
Microarchitecture, 1999, pp. 196–207. doi: 10.1109/MICRO.1999.809458.

[11] J. Autran, D. Munteanu, P. Roche, G. Gasiot, S. Martinie, S. Uznanski, S. Sauze, S. Semikh,
E. Yakushev, S. Rozov, P. Loaiza, G. Warot, and M. Zampaolo, “Soft-errors induced by
terrestrial neutrons and natural alpha-particle emitters in advanced memory circuits at
ground level”, Microelectronics Reliability, vol. 50, no. 9–11, pp. 1822–1831, 2010, 21st
European Symposium on the Reliability of Electron Devices, Failure Physics and Analysis,
issn: 0026-2714. doi: http://dx.doi.org/10.1016/j.microrel.2010.07.033.

[12] A. Avižienis, J. C. Laprie, B. Randell, and C. Landwehr, “Basic concepts and taxonomy
of dependable and secure computing”, IEEE Transactions on Dependable and Secure
Computing, vol. 1, no. 1, pp. 11–33, Jan. 2004, issn: 1545-5971. doi: 10.1109/TDSC.
2004.2.

[13] A. Avižienis, “Arithmetic error codes: Cost and effectiveness studies for application in
digital system design”, IEEE Trans. Computers, vol. 20, no. 11, pp. 1322–1331, 1971.

217

https://doi.org/10.1145/1142473.1142548
https://doi.org/10.1145/2749469.2750385
http://doi.acm.org/10.1145/2749469.2750385
http://www.anandtech.com/show/11572
https://developer.arm.com/technologies/neon
https://developer.arm.com/technologies/neon
https://doi.org/10.1109/MICRO.1999.809458
https://doi.org/http://dx.doi.org/10.1016/j.microrel.2010.07.033
https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1109/TDSC.2004.2

[14] M. B.V. (Mar. 2, 2018). Monetdb goes headless, [Online]. Available: https://www.
monetdb.org/blog/monetdb-goes-headless.

[15] D. Barbará, R. Goel, and S. Jajodia, “Using checksums to detect data corruption”, English,
in Advances in Database Technology — EDBT 2000, ser. Lecture Notes in Computer
Science, C. Zaniolo, P. Lockemann, M. Scholl, and T. Grust, Eds., vol. 1777, Springer
Berlin Heidelberg, 2000, pp. 136–149, isbn: 978-3-540-67227-2. doi: 10.1007/3-540-
46439-5_9.

[16] R. Bayer and E. McCreight, “Organization and maintenance of large ordered indices”, in
Proceedings of the 1970 ACM SIGFIDET (Now SIGMOD) Workshop on Data Description,
Access and Control, ser. SIGFIDET ’70, New York, NY, USA: ACM, 1970, pp. 107–141.
doi: 10.1145/1734663.1734671.

[17] R. Bayer and K. Unterauer, “Prefix b-trees”, ACM Trans. Database Syst., vol. 2, no. 1,
pp. 11–26, Mar. 1977, issn: 0362-5915. doi: 10.1145/320521.320530.

[18] C. Binnig, S. Hildenbrand, and F. Färber, “Dictionary-based order-preserving string com-
pression for main memory column stores”, in SIGMOD, 2009, pp. 283–296.

[19] P. Bohannon, R. Rastogi, S. Seshadri, A. Silberschatz, and S. Sudarshan, “Detection and
recovery techniques for database corruption”, Knowledge and Data Engineering, IEEE
Transactions on, vol. 15, no. 5, pp. 1120–1136, Sep. 2003, issn: 1041-4347. doi: 10.
1109/TKDE.2003.1232268.

[20] M. Böhm, W. Lehner, and C. Fetzer, “Resiliency-aware data management”, PVLDB, vol. 4,
no. 12, pp. 1462–1465, 2011. [Online]. Available: http://www.vldb.org/pvldb/
vol4/p1462-boehm.pdf.

[21] P. A. Boncz and M. L. Kersten, “MIL primitives for querying a fragmented world”, The
VLDB Journal, vol. 8, no. 2, pp. 101–119, Oct. 1999, issn: 1066-8888. doi: 10.1007/
s007780050076.

[22] P. A. Boncz, M. L. Kersten, and S. Manegold, “Breaking the memory wall in monetdb”,
Commun. ACM, vol. 51, no. 12, pp. 77–85, 2008.

[23] P. A. Boncz, M. Zukowski, and N. Nes, “Monetdb/x100: Hyper-pipelining query execu-
tion.”, in CIDR, vol. 5, 2005, pp. 225–237.

[24] P. A. Boncz, “Monet; a next-generation dbms kernel for query-intensive applications”,
PhD thesis, University of Amsterdam, 2002.

[25] M. Borda, Fundamentals in information theory and coding. Berlin; Heidelberg: Springer,
2011, isbn: 9783642203473. [Online]. Available: http://slubdd.de/katalog?TN_
libero_mab215497729.

[26] S. Borkar, “Designing reliable systems from unreliable components: The challenges of
transistor variability and degradation”, Micro, IEEE, vol. 25, no. 6, pp. 10–16, Nov. 2005,
issn: 0272-1732. doi: 10.1109/MM.2005.110.

[27] S. Y. Borkar, “Designing reliable systems from unreliable components: The challenges of
transistor variability and degradation”, IEEE Micro, vol. 25, no. 6, pp. 10–16, 2005.

[28] S. Borkar and A. A. Chien, “The future of microprocessors”, Commun. ACM, vol. 54, no. 5,
pp. 67–77, 2011.

[29] A. Boroumand, S. Ghose, M. Patel, H. Hassan, B. Lucia, K. Hsieh, K. T. Malladi, H.
Zheng, and O. Mutlu, “Lazypim: An efficient cache coherence mechanism for processing-
in-memory”, IEEE Computer Architecture Letters, vol. 16, no. 1, pp. 46–50, Jan. 2017,
issn: 1556-6056. doi: 10.1109/LCA.2016.2577557.

218 BIBLIOGRAPHY

https://www.monetdb.org/blog/monetdb-goes-headless
https://www.monetdb.org/blog/monetdb-goes-headless
https://doi.org/10.1007/3-540-46439-5_9
https://doi.org/10.1007/3-540-46439-5_9
https://doi.org/10.1145/1734663.1734671
https://doi.org/10.1145/320521.320530
https://doi.org/10.1109/TKDE.2003.1232268
https://doi.org/10.1109/TKDE.2003.1232268
http://www.vldb.org/pvldb/vol4/p1462-boehm.pdf
http://www.vldb.org/pvldb/vol4/p1462-boehm.pdf
https://doi.org/10.1007/s007780050076
https://doi.org/10.1007/s007780050076
http://slubdd.de/katalog?TN_libero_mab215497729
http://slubdd.de/katalog?TN_libero_mab215497729
https://doi.org/10.1109/MM.2005.110
https://doi.org/10.1109/LCA.2016.2577557

[30] L. Borucki, G. Schindlbeck, and C. Slayman, “Comparison of accelerated dram soft error
rates measured at component and system level”, in Reliability Physics Symposium, 2008.
IRPS 2008. IEEE International, Apr. 2008, pp. 482–487. doi: 10.1109/RELPHY.2008.
4558933.

[31] S. Breß, H. Funke, and J. Teubner, “Robust query processing in co-processor-accelerated
databases”, in SIGMOD, 2016, pp. 1891–1906.

[32] D. T. Brown, “Error detecting and correcting binary codes for arithmetic operations”, IRE
Transactions on Electronic Computers, vol. EC-9, no. 3, pp. 333–337, Sep. 1960, issn:
0367-9950. doi: 10.1109/TEC.1960.5219855.

[33] C.-Y. Chan and Y. E. Ioannidis, “An efficient bitmap encoding scheme for selection
queries”, SIGMOD Rec., vol. 28, no. 2, pp. 215–226, Jun. 1999, issn: 0163-5808. doi:
10.1145/304181.304201.

[34] Z. Chen, J. Gehrke, and F. Korn, “Query optimization in compressed database systems”, in
Proceedings of the 2001 ACM SIGMOD International Conference on Management of Data,
ser. SIGMOD ’01, New York, NY, USA: ACM, 2001, pp. 271–282, isbn: 1-58113-332-4.
doi: 10.1145/375663.375692.

[35] D. Comer, “Ubiquitous b-tree”, ACM Comput. Surv., vol. 11, no. 2, pp. 121–137, Jun.
1979, issn: 0360-0300. doi: 10.1145/356770.356776.

[36] G. P. Copeland and S. N. Khoshafian, “A decomposition storage model”, in Proceedings of
the 1985 ACM SIGMOD International Conference on Management of Data, New York, NY,
USA: ACM, 1985, pp. 268–279, isbn: 0-89791-160-1. doi: 10.1145/318898.318923.

[37] P. Damme, D. Habich, J. Hildebrandt, and W. Lehner, “Lightweight data compression
algorithms: An experimental survey (experiments and analyses)”, in EDBT, 2017, pp. 72–
83.

[38] F. David and R. Campbell, “Building a self-healing operating system”, in Dependable,
Autonomic and Secure Computing, 2007. DASC 2007. Third IEEE International Symposium
on, Sep. 2007, pp. 3–10. doi: 10.1109/DASC.2007.22.

[39] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. R. Stonebraker, and D. A. Wood,
“Implementation techniques for main memory database systems”, in Proceedings of the
1984 ACM SIGMOD International Conference on Management of Data, ser. SIGMOD ’84,
New York, NY, USA: ACM, 1984, pp. 1–8, isbn: 0-89791-128-8. doi: 10.1145/602259.
602261.

[40] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal, R. Stonecipher, N. Verma, and
M. Zwilling, “Hekaton: Sql server’s memory-optimized oltp engine”, in Proceedings of
the 2013 ACM SIGMOD International Conference on Management of Data, ser. SIGMOD
’13, New York, New York, USA: ACM, 2013, pp. 1243–1254, isbn: 978-1-4503-2037-5.
doi: 10.1145/2463676.2463710.

[41] J. M. Diamond, “Checking codes for digital computers”, Proceedings of the IRE, vol. 43,
no. 4, pp. 487–488, Apr. 1955, This letter reports the results of a study of checking codes
made at the Moore School, University of Pennsylvania, in 1950-1951, on contract with
the Burroughs Adding Machine Co., by Morris Plotkin and Joseph M. Diamond., issn:
0096-8390. doi: 10.1109/JRPROC.1955.277858.

[42] J. Do, Y. Kee, J. M. Patel, C. Park, K. Park, and D. J. DeWitt, “Query processing on smart
ssds: Opportunities and challenges”, in SIGMOD, 2013, pp. 1221–1230.

[43] B. Döbel, H. Härtig, and M. Engel, “Operating system support for redundant multithread-
ing”, in EMSOFT, 2012, pp. 83–92.

BIBLIOGRAPHY 219

https://doi.org/10.1109/RELPHY.2008.4558933
https://doi.org/10.1109/RELPHY.2008.4558933
https://doi.org/10.1109/TEC.1960.5219855
https://doi.org/10.1145/304181.304201
https://doi.org/10.1145/375663.375692
https://doi.org/10.1145/356770.356776
https://doi.org/10.1145/318898.318923
https://doi.org/10.1109/DASC.2007.22
https://doi.org/10.1145/602259.602261
https://doi.org/10.1145/602259.602261
https://doi.org/10.1145/2463676.2463710
https://doi.org/10.1109/JRPROC.1955.277858

[44] S. Electronics. (May 2018). Samsung starts mass producing industry’s first 128-gigabyte
ddr4 modules for enterprise servers, [Online]. Available: https://news.samsung.com/
global/samsung-starts-mass-producing-industrys-first-128-gigabyte-
ddr4-modules-for-enterprise-servers.

[45] P. Elias, “Coding for noisy channels”, vol. 3, pp. 37–46, 4.

[46] M. Engel and B. Döbel, “The reliable computing base-a paradigm for software-based
reliability.”, in GI-Jahrestagung, 2012, pp. 480–493.

[47] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd, S. Sigg, and W. Lehner, “Sap hana database:
Data management for modern business applications”, SIGMOD Rec., vol. 40, no. 4, pp. 45–
51, Jan. 2012, issn: 0163-5808. doi: 10.1145/2094114.2094126.

[48] Z. Feng, E. Lo, B. Kao, and W. Xu, “Byteslice: Pushing the envelop of main memory data
processing with a new storage layout”, in SIGMOD, 2015, pp. 31–46.

[49] C. Fetzer, “Building critical applications using microservices”, IEEE Security & Privacy,
vol. 14, no. 6, pp. 86–89, 2016.

[50] A. Fog. (Feb. 2, 2018). Instruction tables, Lists of instruction latencies, throughputs and
micro-operation breakdowns for intel, amd and via cpus, [Online]. Available:Instruction%
20tables.

[51] P. Forin, “Vital coded microprocessor: Principles and application for various transit sys-
tems”, IFAC-GCCT, pp. 79–84, Sep. 1989.

[52] Free Software Foundation. (Nov. 2016). The gnu multiple precision arithmetic library,
[Online]. Available: https://gmplib.org/.

[53] R. A. Frohwerk, “Signature analysis: A new digital field service method”, Hewlett-Packard
Journal, vol. 28, no. 9, pp. 2–8, 1977.

[54] T. Fujiwara, T. Kasami, A. Kitai, and S. Lin, “On the undetected error probability for
shortened hamming codes”, IEEE Transactions on Communications, vol. 33, no. 6, pp. 570–
574, 1985.

[55] M. Ghadhab, M. Kuntz, D. Kuvaiskii, and C. Fetzer, “A controller safety concept based
on software-implemented fault tolerance for fail-operational automotive applications”, in
Formal Techniques for Safety-Critical Systems, C. Artho and P. C. Ölveczky, Eds., Springer
International Publishing, 2016, pp. 189–205, isbn: 978-3-319-29510-7.

[56] B. Gladman, W. Hart, J. Moxham, and et al. (Nov. 2016). MPIR: Multiple Precision Integers
and Rationals, [Online]. Available: http://mpir.org/.

[57] M. J. E. Golay, “Notes on digital coding”, Proceedings of the Institute of Radio Engineers,
vol. 37, no. 6, pp. 657–657, 1949.

[58] J. Goldstein, R. Ramakrishnan, and U. Shaft, “Compressing relations and indexes”, in
Proceedings of the 14th International Conference on Data Engineering, Feb. 1998, pp. 370–
379. doi: 10.1109/ICDE.1998.655800.

[59] S. Gordon, “Database integrity: Security, reliability, and performance considerations”,
Indiana University South Bend, South Bend, IN, vol. 12,

[60] G. Graefe and L. D. Shapiro, “Data compression and database performance”, in [Pro-
ceedings] 1991 Symposium on Applied Computing, Apr. 1991, pp. 22–27. doi: 10.1109/
SOAC.1991.143840.

[61] G. Graefe, “Volcano–an extensible and parallel query evaluation system”, IEEE Transac-
tions on Knowledge and Data Engineering, vol. 6, no. 1, pp. 120–135, 1994.

220 BIBLIOGRAPHY

https://news.samsung.com/global/samsung-starts-mass-producing-industrys-first-128-gigabyte-ddr4-modules-for-enterprise-servers
https://news.samsung.com/global/samsung-starts-mass-producing-industrys-first-128-gigabyte-ddr4-modules-for-enterprise-servers
https://news.samsung.com/global/samsung-starts-mass-producing-industrys-first-128-gigabyte-ddr4-modules-for-enterprise-servers
https://doi.org/10.1145/2094114.2094126
Instruction%20tables
Instruction%20tables
https://gmplib.org/
http://mpir.org/
https://doi.org/10.1109/ICDE.1998.655800
https://doi.org/10.1109/SOAC.1991.143840
https://doi.org/10.1109/SOAC.1991.143840

[62] G. Graefe and H. Kuno, “Definition, detection, and recovery of single-page failures, a fourth
class of database failures”, Proceedings of the VLDB Endowment, vol. 5, no. 7, 2012.

[63] G. Graefe, H. Kuno, and B. Seeger, “Self-diagnosing and self-healing indexes”, in Pro-
ceedings of the Fifth International Workshop on Testing Database Systems, ser. DBTest
’12, New York, NY, USA: ACM, 2012, 8:1–8:8, isbn: 978-1-4503-1429-9. doi: 10.1145/
2304510.2304521.

[64] G. Graefe and R. Stonecipher, “Efficient verification of b-tree integrity”, in BTW, 2009,
pp. 27–46.

[65] G. Guzun and G. Canahuate, “Hybrid query optimization for hard-to-compress bit-vectors”,
The VLDB Journal, vol. 25, no. 3, pp. 339–354, Jun. 2016, issn: 1066-8888. doi: 10.1007/
s00778-015-0419-9.

[66] R. W. Hamming, “Error detecting and error correcting codes”, Bell System Technical
journal, vol. 29, no. 2, pp. 147–160, 1950.

[67] J. Henkel, “Emerging memory technologies”, IEEE Design & Test, vol. 34, no. 3, pp. 4–5,
2017.

[68] J. Henkel, L. Bauer, N. Dutt, P. Gupta, S. R. Nassif, M. Shafique, M. B. Tahoori, and
N. Wehn, “Reliable on-chip systems in the nano-era: Lessons learnt and future trends”, in
DAC, 2013, 99:1–99:10.

[69] M. Hoffmann, P. Ulbrich, C. Dietrich, H. Schirmeier, D. Lohmann, and W. Schröder-
Preikschat, “A Practitioner’s Guide to Software-Based Soft-Error Mitigation Using AN-
Codes”, in Proceedings of the 15th IEEE International Symposium on High Assurance
Systems Engineering (HASE ’14), I. C. Society, Ed., Miami, FL, USA, 2014, pp. 33–40,
isbn: 978-1-4799-3465-2. doi: 10.1109/HASE.2014.14.

[70] R. W. Horst, R. L. Harris, and R. L. Jardine, “Multiple instruction issue in the nonstop
cyclone processor”, ACM SIGARCH Computer Architecture News, vol. 18, no. 2SI, pp. 216–
226, 1990.

[71] M.-Y. Hsiao, “A class of optimal minimum odd-weight-column sec-ded codes”, IBM
Journal of Research and Development, vol. 14, no. 4, pp. 395–401, 1970.

[72] A. A. Hwang, I. A. Stefanovici, and B. Schroeder, “Cosmic Rays Don’t Strike Twice:
Understanding the Nature of DRAM Errors and the Implications for System Design”,
SIGARCH Comput. Archit. News, vol. 40, no. 1, 2012, issn: 0163-5964.

[73] S. Idreos, F. Groffen, N. Nes, S. Manegold, K. S. Mullender, and M. L. Kersten, “Monetdb:
Two decades of research in column-oriented database architectures”, IEEE Data Eng. Bull.,
vol. 35, no. 1, pp. 40–45, 2012.

[74] Intel Corporation. (Nov. 2016). Intel intrinsics guide, [Online]. Available: https://
software.intel.com/sites/landingpage/IntrinsicsGuide/.

[75] Y. E. Ioannidis and S. Christodoulakis, “On the propagation of errors in the size of join
results”, in Proceedings of the 1991 ACM SIGMOD International Conference on Manage-
ment of Data, ser. SIGMOD ’91, Denver, Colorado, USA: ACM, 1991, pp. 268–277, isbn:
0-89791-425-2. doi: 10.1145/115790.115835.

[76] B. R. Iyer and D. Wilhite, “Data compression support in databases”, in VLDB, vol. 94,
1994, pp. 695–704.

[77] L. Jiang, Y. Zhang, and J. Yang, “Mitigating write disturbance in super-dense phase change
memories”, in DSN, 2014, pp. 216–227.

[78] T. Karnagel, D. Habich, and W. Lehner, “Adaptive work placement for query processing
on heterogeneous computing resources”, PVLDB, vol. 10, no. 7, pp. 733–744, 2017.

BIBLIOGRAPHY 221

https://doi.org/10.1145/2304510.2304521
https://doi.org/10.1145/2304510.2304521
https://doi.org/10.1007/s00778-015-0419-9
https://doi.org/10.1007/s00778-015-0419-9
https://doi.org/10.1109/HASE.2014.14
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://doi.org/10.1145/115790.115835

[79] S. M. Khan, D. Lee, and O. Mutlu, “PARBOR: an efficient system-level technique to detect
data-dependent failures in DRAM”, in DSN, 2016, pp. 239–250.

[80] S. Khan, D. Lee, Y. Kim, A. R. Alameldeen, C. Wilkerson, and O. Mutlu, “The efficacy of
error mitigation techniques for dram retention failures: A comparative experimental study”,
SIGMETRICS Perform. Eval. Rev., vol. 42, no. 1, pp. 519–532, Jun. 2014.

[81] J. Kim, N. Hardavellas, K. Mai, B. Falsafi, and J. Hoe, “Multi-bit error tolerant caches using
two-dimensional error coding”, in Proceedings of the 40th Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO 40, Washington, DC, USA: IEEE Computer
Society, 2007, pp. 197–209, isbn: 0-7695-3047-8. doi: 10.1109/MICRO.2007.28.

[82] Y. Kim, R. Daly, J. Kim, C. Fallin, J. Lee, D. Lee, C. Wilkerson, K. Lai, and O. Mutlu,
“Flipping bits in memory without accessing them: An experimental study of DRAM
disturbance errors”, in ISCA, 2014, pp. 361–372.

[83] T. Kissinger, B. Schlegel, D. Habich, and W. Lehner, “Kiss-tree: Smart latch-free in-
memory indexing on modern architectures”, in Proceedings of the Eighth International
Workshop on Data Management on New Hardware, ser. DaMoN ’12, New York, NY, USA:
ACM, 2012, pp. 16–23, isbn: 978-1-4503-1445-9. doi: 10.1145/2236584.2236587.

[84] D. E. Knuth, The Art of Computer Programming, Sorting and Searching. Addison-Wesley,
Reading, MA, 1973, vol. 3.

[85] T. Kolditz, D. Habich, P. Damme, W. Lehner, D. Kuvaiskii, O. Oleksenko, and C. Fetzer,
“Resiliency-aware data compression for in-memory database systems”, in DATA 2015
- Proceedings of 4th International Conference on Data Management Technologies and
Applications, Colmar, Alsace, France, 20-22 July, 2015., 2015, pp. 326–331. doi: 10.
5220/0005557303260331.

[86] T. Kolditz, D. Habich, D. Kuvaiskii, W. Lehner, and C. Fetzer, “Needles in the haystack
— tackling bit flips in lightweight compressed data”, in Data Management Technologies
and Applications: 4th International Conference, DATA 2015, Colmar, France, July 20-22,
2015, Revised Selected Papers, M. Helfert, A. Holzinger, O. Belo, and C. Francalanci,
Eds. Springer International Publishing, 2016, pp. 135–153, isbn: 978-3-319-30162-4. doi:
10.1007/978-3-319-30162-4_9.

[87] T. Kolditz, D. Habich, W. Lehner, M. Werner, and S. T. de Bruijn, “AHEAD: Adaptable data
hardening for on-the-fly hardware error detection during database query processing”, in
SIGMOD/PODS ’18: 2018 International Conference on Management of Data, (Houston,
TX, USA), New York, NY, USA: ACM, Jun. 10–15, 2018. doi: 10.1145/3183713.
3183740.

[88] T. Kolditz, T. Kissinger, B. Schlegel, D. Habich, and W. Lehner, “Online bit flip detection
for in-memory b-trees on unreliable hardware”, in Proceedings of the Tenth International
Workshop on Data Management on New Hardware, ser. DaMoN ’14, Snowbird, Utah,
2014, 5:1–5:9, isbn: 978-1-4503-2971-2. doi: 10.1145/2619228.2619233.

[89] T. Kolditz, B. Schlegel, D. Habich, and W. Lehner, “Online bit flip detection for in-
memory b-trees live!”, in Datenbanksysteme für Business, Technologie und Web (BTW),
16. Fachtagung des GI-Fachbereichs "Datenbanken und Informationssysteme" (DBIS), 4.-
6.3.2015 in Hamburg, Germany. Proceedings, 2015, pp. 675–678, isbn: 978-3-88579-635-
0. [Online]. Available: http://subs.emis.de/LNI/Proceedings/Proceedings241/
article3.html.

[90] P. Koopman, K. Driscoll, and B. Hall, “Selection of cyclic redundancy code and checksum
algorithms to ensure critical data integrity”, 2015.

222 BIBLIOGRAPHY

https://doi.org/10.1109/MICRO.2007.28
https://doi.org/10.1145/2236584.2236587
https://doi.org/10.5220/0005557303260331
https://doi.org/10.5220/0005557303260331
https://doi.org/10.1007/978-3-319-30162-4_9
https://doi.org/10.1145/3183713.3183740
https://doi.org/10.1145/3183713.3183740
https://doi.org/10.1145/2619228.2619233
http://subs.emis.de/LNI/Proceedings/Proceedings241/article3.html
http://subs.emis.de/LNI/Proceedings/Proceedings241/article3.html

[91] E. Kultursay, M. T. Kandemir, A. Sivasubramaniam, and O. Mutlu, “Evaluating STT-RAM
as an energy-efficient main memory alternative”, in ISPASS, 2013, pp. 256–267.

[92] K. Küspert, “Efficient Online Error Detection Techniques for Trees in Database Systems”,
English, in Fehlertolerierende Rechensysteme, ser. Informatik-Fachberichte, vol. 84, 1984,
isbn: 978-3-540-13348-3. doi: 10.1007/978-3-642-69698-5_8.

[93] D. Kuvaiskii and C. Fetzer, “∆-encoding: Practical encoded processing”, in Dependable
Systems and Networks (DSN), 2015 45th Annual IEEE/IFIP International Conference on,
IEEE, 2015, pp. 13–24.

[94] D. Kuvaiskii, O. Oleksenko, P. Bhatotia, P. Felber, and C. Fetzer, “Elzar: Triple modular
redundancy using intel avx (practical experience report)”, in DSN, 2016, pp. 646–653.

[95] T. Lahiri, M.-A. Neimat, and S. Folkman, “Oracle timesten: An in-memory database for
enterprise applications”, IEEE Data Engineering Bulletin, vol. 36, no. 2, p. 6, 2013.

[96] T. Lahiri, M. Neimat, and S. Folkman, “Oracle timesten: An in-memory database for
enterprise applications”, IEEE Data Eng. Bull., vol. 36, no. 2, pp. 6–13, 2013.

[97] C. Lange and A. Ahrens, “On the undetected error probability for shortened hamming
codes on channels with memory”, Cryptography and Coding, pp. 9–19, 2001.

[98] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change memory as a
scalable dram alternative”, in ISCA, 2009, pp. 2–13.

[99] J. Lee, G. K. Attaluri, R. Barber, N. Chainani, O. Draese, F. Ho, S. Idreos, M. Kim, S.
Lightstone, G. M. Lohman, K. Morfonios, K. Murthy, I. Pandis, L. Qiao, V. Raman, V. K.
Samy, R. Sidle, K. Stolze, and L. Zhang, “Joins on encoded and partitioned data”, PVLDB,
vol. 7, no. 13, pp. 1355–1366, 2014. doi: 10.14778/2733004.2733008.

[100] T. J. Lehman and M. J. Carey, “A study of index structures for main memory database
management systems”, in Proceedings of the 12th International Conference on Very Large
Data Bases, ser. VLDB ’86, San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
1986, pp. 294–303, isbn: 0-934613-18-4. [Online]. Available: http://dl.acm.org/
citation.cfm?id=645913.671312.

[101] ——, “Query processing in main memory database management systems”, in Proceedings
of the 1986 ACM SIGMOD International Conference on Management of Data, ser. SIG-
MOD ’86, Washington, D.C., USA: ACM, 1986, pp. 239–250, isbn: 0-89791-191-1. doi:
10.1145/16894.16878.

[102] V. Leis, A. Kemper, and T. Neumann, “The adaptive radix tree: Artful indexing for main-
memory databases”, in 2013 IEEE 29th International Conference on Data Engineering
(ICDE), Apr. 2013, pp. 38–49. doi: 10.1109/ICDE.2013.6544812.

[103] C. Lemieux, “Monte Carlo and Quasi-Monte Carlo Sampling”, in, Springer, Ed. 2009,
isbn: 978-1441926760.

[104] D. Lemire and L. Boytsov, “Decoding billions of integers per second through vectorization”,
Software: Practice and Experience, vol. 45, no. 1, pp. 1–29, 2015, issn: 1097-024X. doi:
10.1002/spe.2203.

[105] D. Lemire and L. Boytsov, “Decoding billions of integers per second through vectorization”,
Softw., Pract. Exper., vol. 45, no. 1, pp. 1–29, 2015.

[106] J. J. Levandoski, D. B. Lomet, and S. Sengupta, “The BW-tree: A b-tree for new hardware
platforms”, in 2013 IEEE 29th International Conference on Data Engineering (ICDE),
Apr. 2013, pp. 302–313. doi: 10.1109/ICDE.2013.6544834.

[107] F. Li, S. Das, M. Syamala, and V. R. Narasayya, “Accelerating relational databases by
leveraging remote memory and RDMA”, in SIGMOD, 2016, pp. 355–370.

BIBLIOGRAPHY 223

https://doi.org/10.1007/978-3-642-69698-5_8
https://doi.org/10.14778/2733004.2733008
http://dl.acm.org/citation.cfm?id=645913.671312
http://dl.acm.org/citation.cfm?id=645913.671312
https://doi.org/10.1145/16894.16878
https://doi.org/10.1109/ICDE.2013.6544812
https://doi.org/10.1002/spe.2203
https://doi.org/10.1109/ICDE.2013.6544834

[108] Y. Li and J. M. Patel, “Bitweaving: Fast scans for main memory data processing”, in
SIGMOD, 2013, pp. 289–300.

[109] J. H. v. Lint, Introduction to coding theory, 3., revised and expanded ed. Berlin; Heidelberg
[u.a.]: Springer, 1999, isbn: 9783540641339. [Online]. Available: http://slubdd.de/
katalog?TN_libero_mab21331769.

[110] J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, and O. Mutlu, “An experimental study of data
retention behavior in modern dram devices: Implications for retention time profiling mech-
anisms”, SIGARCH Comput. Archit. News, vol. 41, no. 3, pp. 60–71, Jun. 2013.

[111] R. E. Lyons and W. Vanderkulk, “The use of triple-modular redundancy to improve com-
puter reliability”, IBM Journal of Research and Development, vol. 6, no. 2, pp. 200–209,
1962.

[112] A. Mahmood and E. J. McCluskey, “Concurrent error detection using watchdog processors-
a survey”, IEEE Transactions on Computers, vol. 37, no. 2, pp. 160–174, Feb. 1988, issn:
0018-9340. doi: 10.1109/12.2145.

[113] J. L. Massey, “Survey of residue coding for arithmetic errors”, International Computation
Center Bulletin, vol. 3, no. 4, pp. 3–17, 1964.

[114] ——, “Deep-space communications and coding: A marriage made in heaven”, in Advanced
Methods for Satellite and Deep Space Communications, Springer, 1992, pp. 1–17.

[115] T. C. Maxino and P. J. Koopman, “The effectiveness of checksums for embedded control
networks”, IEEE Transactions on Dependable and Secure Computing, vol. 6, no. 1, pp. 59–
72, Jan. 2009, issn: 1545-5971. doi: 10.1109/TDSC.2007.70216.

[116] T. Maxino, “The effectiveness of checksums for embedded networks”, Master Thesis,
Carnegie Mellon University, 2006.

[117] P. Mishra and M. H. Eich, “Join processing in relational databases”, ACM Comput. Surv.,
vol. 24, no. 1, pp. 63–113, Mar. 1992, issn: 0360-0300. doi: 10.1145/128762.128764.

[118] S. Mittal, “A survey of soft-error mitigation techniques for non-volatile memories”, Com-
puters, vol. 6, no. 1, p. 8, 2017.

[119] C. Mohan, “Disk read-write optimizations and data integrity in transaction systems using
write-ahead logging”, in Proceedings of the Eleventh International Conference on Data
Engineering, Mar. 1995, pp. 324–331. doi: 10.1109/ICDE.1995.380378.

[120] T. K. Moon, “Error correction coding”, Mathematical Methods and Algorithms. Jhon Wiley
and Son, 2005.

[121] G. E. Moore, “Cramming more components onto integrated circuits”, Readings in computer
architecture, vol. 56, M. D. Hill, N. P. Jouppi, and G. S. Sohi, Eds., 2000.

[122] R. H. Morelos-Zaragoza, The art of error correcting coding, 2. ed. New York: Wiley, 2006,
isbn: 9780470015582. [Online]. Available: http://slubdd.de/katalog?TN_libero_
mab214051433.

[123] W. Muła. (Sep. 2017). Ssse3: Fast popcount. first published in May 2008, revised in January
2017, [Online]. Available: http://0x80.pl/articles/sse-popcount.html.

[124] W. Mula, N. Kurz, and D. Lemire, “Faster population counts using AVX2 instructions”,
CoRR, vol. abs/1611.07612, 2016. [Online]. Available: http://arxiv.org/abs/1611.
07612.

[125] O. Mutlu, “The rowhammer problem and other issues we may face as memory becomes
denser”, in DATE, 2017, pp. 1116–1121.

224 BIBLIOGRAPHY

http://slubdd.de/katalog?TN_libero_mab21331769
http://slubdd.de/katalog?TN_libero_mab21331769
https://doi.org/10.1109/12.2145
https://doi.org/10.1109/TDSC.2007.70216
https://doi.org/10.1145/128762.128764
https://doi.org/10.1109/ICDE.1995.380378
http://slubdd.de/katalog?TN_libero_mab214051433
http://slubdd.de/katalog?TN_libero_mab214051433
http://0x80.pl/articles/sse-popcount.html
http://arxiv.org/abs/1611.07612
http://arxiv.org/abs/1611.07612

[126] R. Naseer and J. Draper, “Dec ecc design to improve memory reliability in sub-100nm
technologies”, in Electronics, Circuits and Systems, 2008. ICECS 2008. 15th IEEE Inter-
national Conference on, IEEE, 2008, pp. 586–589.

[127] S. R. Nassif, “The light at the end of the cmos tunnel”, in ASAP 2010 - 21st IEEE
International Conference on Application-specific Systems, Architectures and Processors,
Jul. 2010, pp. 4–9. doi: 10.1109/ASAP.2010.5540756.

[128] T. Neumann, “Efficiently compiling efficient query plans for modern hardware”, vol. 4,
no. 9, pp. 539–550, Jun. 2011, issn: 2150-8097. doi: 10.14778/2002938.2002940.

[129] ——, (Nov. 2016). The price of correctness, [Online]. Available:http://databasearchitects.
blogspot.de/2015/12/the-price-of-correctness.html.

[130] E. Normand, “Single event upset at ground level”, IEEE transactions on Nuclear Science,
vol. 43, no. 6, pp. 2742–2750, 1996.

[131] P. O’Neil, E. O’Neil, X. Chen, and S. Revilak, “The star schema benchmark and augmented
fact table indexing”, in TPCTC, R. Nambiar and M. Poess, Eds. 2009, pp. 237–252.

[132] N. Oh and E. J. McCluskey, “Low energy error detection technique using procedure call
duplication”, in Proceedings of the 2001 International Symposium on Dependable Systems
and Networks, 2001.

[133] N. Oh, P. P. Shirvani, and E. J. McCluskey, “Control-flow checking by software signatures”,
IEEE Transactions on Reliability, vol. 51, no. 1, pp. 111–122, Mar. 2002, issn: 0018-9529.
doi: 10.1109/24.994926.

[134] ——, “Error detection by duplicated instructions in super-scalar processors”, IEEE Trans-
actions on Reliability, vol. 51, no. 1, pp. 63–75, Mar. 2002, issn: 0018-9529. doi: 10.
1109/24.994913.

[135] I. Oukid, J. Lasperas, A. Nica, T. Willhalm, and W. Lehner, “Fptree: A hybrid SCM-DRAM
persistent and concurrent b-tree for storage class memory”, in SIGMOD, 2016, pp. 371–
386.

[136] D. A. Patterson, G. Gibson, and R. H. Katz, “A case for redundant arrays of inexpensive
disks (raid)”, in Proceedings of the 1988 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’88, Chicago, Illinois, USA: ACM, 1988, pp. 109–
116, isbn: 0-89791-268-3. doi: 10.1145/50202.50214.

[137] W. W. Peterson and D. T. Brown, “Cyclic codes for error detection”, IRE, vol. 49, no. 1,
pp. 228–235, 1961.

[138] F. M. Pittelli and H. Garcia-Molina, Recovery in a triple modular redundant database
system. Princeton University, Department of Computer Science, 1987.

[139] J. Plaisance, N. Kurz, and D. Lemire, “Vectorized vbyte decoding”, CoRR, vol. abs/1503.07387,
2015. eprint: 1503.07387. [Online]. Available: http://arxiv.org/abs/1503.07387.

[140] H. Plattner, “A common database approach for oltp and olap using an in-memory column
database”, in Proceedings of the 2009 ACM SIGMOD International Conference on Man-
agement of Data, ser. SIGMOD ’09, Providence, Rhode Island, USA: ACM, 2009, pp. 1–2,
isbn: 978-1-60558-551-2. doi: 10.1145/1559845.1559846.

[141] M. Poess and D. Potapov, “Data compression in oracle”, in Proceedings of the 29th In-
ternational Conference on Very Large Data Bases - Volume 29, ser. VLDB ’03, Berlin,
Germany: VLDB Endowment, 2003, pp. 937–947, isbn: 0-12-722442-4. [Online]. Avail-
able: https://dl.acm.org/citation.cfm?id=1315451.1315531.

[142] F. J. Pollack, “New microarchitecture challenges in the coming generations of CMOS
process technologies”, in Symposium on Microarchitecture, 1999, p. 2.

BIBLIOGRAPHY 225

https://doi.org/10.1109/ASAP.2010.5540756
https://doi.org/10.14778/2002938.2002940
http://databasearchitects.blogspot.de/2015/12/the-price-of-correctness.html
http://databasearchitects.blogspot.de/2015/12/the-price-of-correctness.html
https://doi.org/10.1109/24.994926
https://doi.org/10.1109/24.994913
https://doi.org/10.1109/24.994913
https://doi.org/10.1145/50202.50214
1503.07387
http://arxiv.org/abs/1503.07387
https://doi.org/10.1145/1559845.1559846
https://dl.acm.org/citation.cfm?id=1315451.1315531

[143] O. Polychroniou, A. Raghavan, and K. A. Ross, “Rethinking simd vectorization for in-
memory databases”, in Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, ser. SIGMOD ’15, New York, NY, USA: ACM, 2015, pp. 1493–
1508, isbn: 978-1-4503-2758-9. doi: 10.1145/2723372.2747645.

[144] O. Polychroniou and K. A. Ross, “Vectorized bloom filters for advanced simd processors”, in
Proceedings of the Tenth International Workshop on Data Management on New Hardware,
ser. DaMoN ’14, New York, NY, USA: ACM, 2014, 6:1–6:6, isbn: 978-1-4503-2971-2.
doi: 10.1145/2619228.2619234.

[145] ——, “Efficient lightweight compression alongside fast scans”, in Proceedings of the 11th
International Workshop on Data Management on New Hardware, ser. DaMoN’15, New
York, NY, USA: ACM, 2015, 9:1–9:6, isbn: 978-1-4503-3638-3. doi: 10.1145/2771937.
2771943.

[146] I. Qualcomm Technologies. (Mar. 2018). Qualcomm continues gigabit LTE leadership
with world’s first announced 2 gbps LTE modem, [Online]. Available: https://www.
qualcomm.com/news/releases/2018/02/14/qualcomm-continues-gigabit-
lte-leadership-worlds-first-announced-2-gbps-lte.

[147] V. Raman, G. Attaluri, R. Barber, N. Chainani, D. Kalmuk, V. KulandaiSamy, J. Leenstra,
S. Lightstone, S. Liu, G. M. Lohman, T. Malkemus, R. Mueller, I. Pandis, B. Schiefer,
D. Sharpe, R. Sidle, A. Storm, and L. Zhang, “Db2 with blu acceleration: So much more
than just a column store”, Proc. VLDB Endow., vol. 6, no. 11, pp. 1080–1091, Aug. 2013,
issn: 2150-8097. doi: 10.14778/2536222.2536233.

[148] J. Rao and K. A. Ross, “Making b+-trees cache conscious in main memory”, SIGMOD Rec.,
vol. 29, no. 2, pp. 475–486, May 2000, issn: 0163-5808. doi: 10.1145/335191.335449.

[149] M. Rebaudengo, M. S. Reorda, M. Violante, and M. Torchiano, “A source-to-source com-
piler for generating dependable software”, in Source Code Analysis and Manipulation,
2001. Proceedings. First IEEE International Workshop on, IEEE, 2001, pp. 33–42.

[150] S. Rehman, M. Shafique, and J. Henkel, Reliable Software for Unreliable Hardware - A
Cross Layer Perspective. Springer, 2016.

[151] S. K. Reinhardt and S. S. Mukherjee, Transient fault detection via simultaneous multi-
threading, 2. ACM, 2000, vol. 28.

[152] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August, “SWIFT: software
implemented fault tolerance”, in CGO, 2005, pp. 243–254.

[153] M. C. Ring. (Nov. 2016). MAPM, A Portable Arbitrary Precision Math Library in C,
[Online]. Available: http://www.tc.umn.edu/~ringx004/mapm-main.html.

[154] N. A. Rink and J. Castrillon, “Trading fault tolerance for performance in an encoding”,
in Proceedings of the Computing Frontiers Conference, ser. CF’17, New York, NY, USA:
ACM, 2017, pp. 183–190, isbn: 978-1-4503-4487-6. doi: 10.1145/3075564.3075565.

[155] N. A. Rink and J. Castrillon, “Improving code generation for software-based error detec-
tion”, Proc. of REES, vol. 15, 2015.

[156] R. L. Rivest. (Nov. 2016). The md5 message-digest algorithm, [Online]. Available: https:
//tools.ietf.org/html/rfc1321.

[157] E. Rotenberg, “Ar-smt: A microarchitectural approach to fault tolerance in microproces-
sors”, in Fault-Tolerant Computing, 1999. Digest of Papers. Twenty-Ninth Annual Interna-
tional Symposium on, IEEE, 1999, pp. 84–91.

[158] M. A. Roth and S. J. Van Horn, “Database compression”, SIGMOD Rec., vol. 22, no. 3,
pp. 31–39, Sep. 1993, issn: 0163-5808. doi: 10.1145/163090.163096.

226 BIBLIOGRAPHY

https://doi.org/10.1145/2723372.2747645
https://doi.org/10.1145/2619228.2619234
https://doi.org/10.1145/2771937.2771943
https://doi.org/10.1145/2771937.2771943
https://www.qualcomm.com/news/releases/2018/02/14/qualcomm-continues-gigabit-lte-leadership-worlds-first-announced-2-gbps-lte
https://www.qualcomm.com/news/releases/2018/02/14/qualcomm-continues-gigabit-lte-leadership-worlds-first-announced-2-gbps-lte
https://www.qualcomm.com/news/releases/2018/02/14/qualcomm-continues-gigabit-lte-leadership-worlds-first-announced-2-gbps-lte
https://doi.org/10.14778/2536222.2536233
https://doi.org/10.1145/335191.335449
http://www.tc.umn.edu/~ringx004/mapm-main.html
https://doi.org/10.1145/3075564.3075565
https://tools.ietf.org/html/rfc1321
https://tools.ietf.org/html/rfc1321
https://doi.org/10.1145/163090.163096

[159] G. Saake, K.-U. Sattler, and A. Heuer, Datenbanken : Konzepte und Sprachen, 3., aktual-
isierte u. erw. Aufl. Heidelberg: Mitp-Verl., 2008, isbn: 3826616642. [Online]. Available:
%7Bhttp://slubdd.de/katalog?TN_libero_mab21685903%7D.

[160] N. R. Saxena and E. J. McCluskey, “Dependable adaptive computing systems-the roar
project”, in Systems, Man, and Cybernetics, 1998. 1998 IEEE International Conference
on, IEEE, vol. 3, 1998, pp. 2172–2177.

[161] U. Schiffel, “Hardware error detection using AN-codes”, PhD thesis, Technische Universität
Dresden, 2011.

[162] B. Schlegel, R. Gemulla, and W. Lehner, “Fast integer compression using simd instruc-
tions”, in Proceedings of the Sixth International Workshop on Data Management on New
Hardware, ser. DaMoN ’10, New York, NY, USA: ACM, 2010, pp. 34–40, isbn: 978-1-
4503-0189-3. doi: 10.1145/1869389.1869394.

[163] D. K. Schroder, “Negative bias temperature instability: What do we understand?”, Mi-
croelectronics Reliability, vol. 47, no. 6, pp. 841–852, 2007, Modelling the Negative
Bias Temperature Instability, issn: 0026-2714. doi: https://doi.org/10.1016/j.
microrel.2006.10.006.

[164] B. Schroeder and G. Gibson, “A large-scale study of failures in high-performance com-
puting systems”, IEEE Transactions on Dependable and Secure Computing, vol. 7, no. 4,
pp. 337–350, 2010.

[165] B. Schroeder, E. Pinheiro, and W.-D. Weber, “Dram errors in the wild: A large-scale field
study”, in Proceedings of the Eleventh International Joint Conference on Measurement and
Modeling of Computer Systems, ser. SIGMETRICS, New York, NY, USA: ACM, 2009,
pp. 193–204, isbn: 978-1-60558-511-6. doi: 10.1145/1555349.1555372.

[166] M. Shafique, P. Axer, C. Borchert, J.-J. Chen, K.-H. Chen, B. Döbel, R. Ernst, H. Härtig,
A. Heinig, R. Kapitza, F. Kriebel, D. Lohmann, P. Marwedel, R. Semeen, F. Schmoll, and
O. Spinczyk, “Multi-layer software reliability for unreliable hardware”, it - Information
Technology, vol. 57, no. 3, pp. 170–180, 2015. doi: 10.1515/itit-2014-1081.

[167] C. E. Shannon, “A mathematical theory of communication”, Bell Systems Technology
Journal, vol. 27, 379–423 and 623–656, 1948.

[168] P. P. Shirvani, N. R. Saxena, and E. J. McCluskey, “Software-implemented edac protection
against seus”, IEEE Transactions on reliability, vol. 49, no. 3, pp. 273–284, 2000.

[169] E. Shmueli, R. Vaisenberg, Y. Elovici, and C. Glezer, “Database encryption: An overview
of contemporary challenges and design considerations”, SIGMOD Record, vol. 38, no. 3,
pp. 29–34, 2009.

[170] G. Sivathanu, C. P. Wright, and E. Zadok, “Ensuring data integrity in storage: Techniques
and applications”, in Proceedings of the 2005 ACM Workshop on Storage Security and
Survivability, ser. StorageSS ’05, New York, NY, USA: ACM, 2005, pp. 26–36, isbn:
1-59593-233-X. doi: 10.1145/1103780.1103784.

[171] T. J. Slegel, R. M. Averill, M. A. Check, B. C. Giamei, B. W. Krumm, C. A. Krygowski,
W. H. Li, J. S. Liptay, J. D. MacDougall, T. J. McPherson, et al., “Ibm’s s/390 g5 micro-
processor design”, IEEE micro, vol. 19, no. 2, pp. 12–23, 1999.

[172] M. Spica and T. M. Mak, “Do we need anything more than single bit error correction
(ecc)?”, in MTDT, 2004, pp. 111–116.

[173] V. Sridharan, N. DeBardeleben, S. Blanchard, K. B. Ferreira, J. Stearley, J. Shalf, and S.
Gurumurthi, “Memory errors in modern systems: The good, the bad, and the ugly”, ACM
SIGARCH Computer Architecture News, vol. 43, no. 1, pp. 297–310, 2015.

BIBLIOGRAPHY 227

%7Bhttp://slubdd.de/katalog?TN_libero_mab21685903%7D
https://doi.org/10.1145/1869389.1869394
https://doi.org/https://doi.org/10.1016/j.microrel.2006.10.006
https://doi.org/https://doi.org/10.1016/j.microrel.2006.10.006
https://doi.org/10.1145/1555349.1555372
https://doi.org/10.1515/itit-2014-1081
https://doi.org/10.1145/1103780.1103784

[174] V. Sridharan, J. Stearley, N. DeBardeleben, S. Blanchard, and S. Gurumurthi, “Feng shui
of supercomputer memory: Positional effects in dram and sram faults”, in Proceedings of
the International Conference on High Performance Computing, Networking, Storage and
Analysis, ser. SC ’13, Denver, Colorado: ACM, 2013, pp. 1–11, isbn: 978-1-4503-2378-9.
doi: 10.1145/2503210.2503257.

[175] A. A. Stepanov, A. R. Gangolli, D. E. Rose, R. J. Ernst, and P. S. Oberoi, “Simd-based
decoding of posting lists”, in Proceedings of the 20th ACM International Conference on
Information and Knowledge Management, ser. CIKM ’11, New York, NY, USA: ACM,
2011, pp. 317–326, isbn: 978-1-4503-0717-8. doi: 10.1145/2063576.2063627.

[176] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E. Lau, A.
Lin, S. Madden, E. J. O’Neil, P. E. O’Neil, A. Rasin, N. Tran, and S. B. Zdonik, “C-Store:
A column-oriented DBMS”, in Proceedings of the 31st International Conference on Very
Large Data Bases, ser. VLDB ’05, Trondheim, Norway: VLDB Endowment, 2005, pp. 553–
564, isbn: 1-59593-154-6. [Online]. Available: http://dl.acm.org/citation.cfm?
id=1083592.1083658.

[177] M. Sullivan and M. Stonebraker, “Using write protected data structures to improve software
fault tolerance in highly available database management systems”, in VLDB, 1991, pp. 171–
180.

[178] P. Ulbrich, M. Hoffmann, R. Kapitza, D. Lohmann, W. Schroder-Preikschat, and R. Schmid,
“Eliminating single points of failure in software-based redundancy”, in Proceedings of 2012
Ninth European Dependable Computing Conference (EDCC), IEEE, 2012, pp. 49–60.

[179] T. Vijaykumar, I. Pomeranz, and K. Cheng, “Transient-fault recovery using simultaneous
multithreading”, in ACM SIGARCH Computer Architecture News, IEEE Computer Society,
vol. 30, 2002, pp. 87–98.

[180] A. J. Viterbi, “Error bounds for convolutional codes and an asymtotically optimum decoding
algorithm”, vol. IT-13, pp. 260–269, 1967.

[181] J. F. Wakerly, Error detecting codes, self-checking circuits and applications. North Holland,
1978, vol. 3.

[182] H. S. Warren, Hacker’s delight. Pearson Education, 2013.

[183] M. Welschenbach, Cryptography in C and C++, 2nd Edition. Apress, 2005, isbn: 1590595025.
[Online]. Available: http://katalogbeta.slub-dresden.de/id/0003598277/.

[184] M. Werner, T. Kolditz, T. Karnagel, D. Habich, and W. Lehner, “Multi-gpu approximation
methods for silent data corruption of an codes”, in IWSBP, 2016.

[185] M. Werner, T. Kolditz, T. Karnagel, D. Habich, and W. Lehner, “Multi-GPU Approxima-
tion for Silent Data Corruption of AN Codes”, in Further Improvements in the Boolean
Domain, B. Steinbach, Ed. Cambridge Scholars Publishing, Jan. 1, 2018, isbn: 978-1-
5275-0371-7. [Online]. Available: http://www.cambridgescholars.com/further-
improvements-in-the-boolean-domain.

[186] T. Westmann, D. Kossmann, S. Helmer, and G. Moerkotte, “The implementation and
performance of compressed databases”, ACM SIGMOD Record, vol. 29, no. 3, pp. 55–67,
Sep. 2000, issn: 0163-5808. doi: 10.1145/362084.362137.

[187] G. S. White, “Coded decimal number systems for digital computers”, Proceedings of the
IRE, vol. 41, no. 10, pp. 1450–1452, Oct. 1953, issn: 0096-8390. doi: 10.1109/JRPROC.
1953.274330.

[188] M. V. Wilkes, D. J. Wheeler, S. Gill, and F. Corbató, “The preparation of programs for an
electronic digital computer”, Physics Today, vol. 11, p. 28, 1958.

228 BIBLIOGRAPHY

https://doi.org/10.1145/2503210.2503257
https://doi.org/10.1145/2063576.2063627
http://dl.acm.org/citation.cfm?id=1083592.1083658
http://dl.acm.org/citation.cfm?id=1083592.1083658
http://katalogbeta.slub-dresden.de/id/0003598277/
http://www.cambridgescholars.com/further-improvements-in-the-boolean-domain
http://www.cambridgescholars.com/further-improvements-in-the-boolean-domain
https://doi.org/10.1145/362084.362137
https://doi.org/10.1109/JRPROC.1953.274330
https://doi.org/10.1109/JRPROC.1953.274330

[189] T. Willhalm, I. Oukid, I. Müller, and F. Faerber, “Vectorizing database column scans with
complex predicates”, in ADMS, 2013, pp. 1–12.

[190] T. Willhalm, N. Popovici, Y. Boshmaf, H. Plattner, A. Zeier, and J. Schaffner, “Simd-
scan: Ultra fast in-memory table scan using on-chip vector processing units”, Proc. VLDB
Endow., vol. 2, no. 1, pp. 385–394, Aug. 2009, issn: 2150-8097. doi: 10.14778/1687627.
1687671.

[191] H. P. Wong, H. Lee, S. Yu, Y. Chen, Y. Wu, P. Chen, B. Lee, F. T. Chen, and M. Tsai,
“Metal-oxide RRAM”, Proceedings of the IEEE, vol. 100, no. 6, pp. 1951–1970, 2012.

[192] Y. C. Yeh, “Triple-triple redundant 777 primary flight computer”, in Aerospace Applica-
tions Conference, 1996. Proceedings., 1996 IEEE, IEEE, vol. 1, 1996, pp. 293–307.

[193] ——, “Design considerations in boeing 777 fly-by-wire computers”, in High-Assurance
Systems Engineering Symposium, 1998. Proceedings. Third IEEE International, IEEE,
1998, pp. 64–72.

[194] W. X. Zhao, X. Zhang, D. Lemire, D. Shan, J.-Y. Nie, H. Yan, and J.-R. Wen, “A gen-
eral simd-based approach to accelerating compression algorithms”, ACM Trans. Inf. Syst.,
vol. 33, no. 3, pp. 1–28, Mar. 2015, issn: 1046-8188. doi: 10.1145/2735629.

[195] J. Zhou and K. A. Ross, “Implementing database operations using simd instructions”, in
Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data,
ser. SIGMOD ’02, New York, NY, USA: ACM, 2002, pp. 145–156, isbn: 1-58113-497-5.
doi: 10.1145/564691.564709.

[196] D. Zhu, R. Melhem, and D. Mosse, “The effects of energy management on reliability
in real-time embedded systems”, in IEEE/ACM International Conference on Computer
Aided Design, 2004. ICCAD-2004., Nov. 2004, pp. 35–40. doi: 10.1109/ICCAD.2004.
1382539.

[197] J. F. Ziegler and W. A. Lanford, “Effect of cosmic rays on computer memories”, Science,
vol. 206, no. 4420, pp. 776–788, 1979, issn: 0036-8075. doi: 10.1126/science.206.
4420.776. eprint: http://science.sciencemag.org/content/206/4420/776.
full.pdf.

[198] J. A. Zoutendyk, H. R. Schwartz, R. K. Watson, Z. Hasnain, and L. R. Nevill, “Single-
event upset (seu) in a dram with on-chip error correction”, IEEE Transactions on Nuclear
Science, vol. 34, no. 6, pp. 1310–1315, Dec. 1987, issn: 0018-9499. doi: 10.1109/TNS.
1987.4337471.

[199] M. Zukowski, S. Héman, N. Nes, and P. A. Boncz, “Super-scalar RAM-CPU cache com-
pression”, in ICDE, 2006, p. 59.

[200] M. Zukowski, M. van de Wiel, and P. A. Boncz, “Vectorwise: A vectorized analytical
DBMS”, in IEEE 28th International Conference on Data Engineering, Apr. 2012, pp. 1349–
1350. doi: 10.1109/ICDE.2012.148.

BIBLIOGRAPHY 229

https://doi.org/10.14778/1687627.1687671
https://doi.org/10.14778/1687627.1687671
https://doi.org/10.1145/2735629
https://doi.org/10.1145/564691.564709
https://doi.org/10.1109/ICCAD.2004.1382539
https://doi.org/10.1109/ICCAD.2004.1382539
https://doi.org/10.1126/science.206.4420.776
https://doi.org/10.1126/science.206.4420.776
http://science.sciencemag.org/content/206/4420/776.full.pdf
http://science.sciencemag.org/content/206/4420/776.full.pdf
https://doi.org/10.1109/TNS.1987.4337471
https://doi.org/10.1109/TNS.1987.4337471
https://doi.org/10.1109/ICDE.2012.148

230 BIBLIOGRAPHY

LIST OF FIGURES

1.1 Soft-error failure-in-time of a chip, from [26] . 2

1.2 Structure of the thesis. 5

2.1 The contemporary RCB (a) and more detailed view of the hardware components
(b). In essence, all components except the mass storage devices are assumed reliable. 9

2.2 Contemporary data management failure classes. 10

2.3 Historical development of transistor feature size, number of transistors, transistor
density, and main memory module capacity. 11

2.4 The future RCB (a) and the reliability of its components (b). 13

2.5 The distinction between faults, errors, an failures and how it depends on the point
of view. 15

2.6 Extended data management failure classes including the new failure class. 18

3.1 Basic graph representation of error coding. 27

3.2 The standard 7/4 Hamming code example. 31

3.3 13/8 Hamming Code Pattern . 32

3.4 72/64 Hamming Code Pattern . 32

3.5 XOR generator matrix examples. 33

3.6 Concepts regarding the decoding error probability. 38

3.7 Conditional SDC probabilities for shortened Extended Hamming codes 44

3.8 Conditional SDC probabilities for 1- to 6-bit XOR checksums. 49

3.9 Extrapolation of the runtimes from Table 3.4 . 52

3.10 Convergence of maximum relative error ∆ and runtime t according to the number
of iterations M . 53

3.11 How parameter A influences the conditional silent data corruption probability for
k = 8 and k = 16. 55

3.12 How parameter A influences the conditional silent data corruption probability for
k = 24. 55

3.13 Visual comparison of the runtimes from Table 3.5 56

231

3.14 Unconditional and conditional SDC probabilities under the equal probabilities error
model for Hamming . 60

3.15 The binary symmetric channel (BSC) error model. 60

3.16 Concrete SDC probabilities for Hamming and AN codes. 62

3.17 Width of Scalar data and SIMD vectors in bits. 63

3.18 Scalar and vectorized population counting . 67

3.19 Comparison of the different population count variants for system 1. 69

3.20 Comparison of the different population count variants for system 2. Best variants
per SIMD variant and bit case are highlighted in gray 70

3.21 Schema of vectorized Hamming coding . 71

3.22 Comparison of Hamming coding with different population count implementations. 72

3.23 Comparison of unconditional SDC probabilities for Hamming an AN. 76

3.24 Replacing comparison by access to a Boolean array. 77

3.25 Memory overhead for (shortened) Extended Hamming and AN codes. 79

3.26 Hardening runtimes. 80

3.27 Error detection runtimes. 81

3.28 Pure decoding runtimes. 81

3.29 Decoding runtimes including error detection. 82

3.30 Pure addition runtimes. 83

3.31 Pure division runtimes. 84

3.32 Addition runtimes including error detection. 85

3.33 Division runtimes including error detection. 85

3.34 Runtimes for computing the sum of all values. 86

3.35 Runtimes for computing the sum of all values, including error detection. 87

3.36 Parallelism in AN coding operations using the multiplicative inverse. 91

3.37 Error detection runtimes for original and improved AN. 93

3.38 Decoding runtimes of original and improved AN. 93

3.39 Detect-and-decode for original and improved AN. 93

232 LIST OF FIGURES

3.40 Detect-and-add for original and improved AN. 93

3.41 Detect-and-sum of original and improved AN. 93

4.1 ANSI/SPARC three level architecture of DMSs 101

4.2 The correlation between the logical and physical schemas and the concepts they
specify. 102

4.3 Row-wise NSM and column-wise DSM layouts. 104

4.4 Limb domain abundance for limb-based representation of decimal numbers (lower
is better). 105

4.5 Example of DICT . 108

4.6 Example of RLE . 108

4.7 Example of FOR . 108

4.8 Example of DELTA . 108

4.9 Examples of NS . 108

4.10 Physical data layouts. 111

4.11 Basic B-Tree structure. 113

4.12 Relative runtimes for string comparison on system 1. 118

4.13 Relative runtimes for string comparison on system 2. 118

4.14 The combined process of hardening and lightweight compression. Decompression
works in reverse order. 120

4.15 Physical data layouts for hardened data. 123

4.16 EDB-Tree node layout. 127

4.17 EDB-TreeCS node layout. 129

5.1 The coarse query life cycle. 135

5.2 Unprotected processing. 137

5.3 MAL plan graph . 138

5.4 Query plan for Early Onetime Detection. 142

5.5 Query plan for Late Onetime Detection. 142

5.6 Query plan for Continuous Detection. 143

LIST OF FIGURES 233

5.7 Query plan for Continuous Detection and recoding in each operator. 143

5.8 Lookup-table materialization of a vector filter result 150

5.9 Creation of an AVX 256-bit shuffle mask from four lookup sub-tables for 8-bit data. 152

5.10 Sequential materialization of a vector filter result 153

5.11 Materialization of 8-bit data . 154

5.12 Materialization of 16-bit data. 154

5.13 Materialization of 32-bit data. 155

5.14 Materialization of 64-bit data. 155

5.15 Comparison of bitmap intersection on system 1. 157

5.16 Comparison of bitmap intersection on system 2. 157

6.1 Query execution in the AHEAD prototype. 164

6.2 Schema of the compile-time configurability of the selection operator. 166

6.3 Measurements for scalar selection operator on table “Lineorder” attribute “quantity”
with a single predicate. 172

6.4 Measurements for vectorized selection operator on table “Lineorder” attribute
“quantity” with a single predicate. 173

6.5 Measurements for scalar selection operator on table “Lineorder” attribute “discount”
with two predicates. 174

6.6 Measurements for vectorized selection operator on table “Lineorder” attribute “dis-
count” with two predicates. 175

6.7 Measurements for scalar sort-merge join operator retrieving values for column
“Discount” from table “Lineorder”. 178

6.8 Measurements for scalar hashjoin operator joining tables “Lineorder” and “Date”. 179

6.9 Measurements for scalar fetchjoin operator retrieving values from column “Rev-
enue” of table “Lineorder”. 180

6.10 Measurements for scalar unary group-by operator on a single column. 183

6.11 Measurements for a scalar binary group-by operator on a column with an additional,
existing grouping. 184

6.12 Measurements for scalar aggregation operator on a grouped column. 185

6.13 Measurements for a scalar aggregation operator, which multiplies 2 columns and
computes the sum of the products. 186

234 LIST OF FIGURES

6.14 Measurements for a vectorized aggregation operator, which multiplies 2 columns
and computes the sum of the products. 187

6.15 Delta operator on encoded AN_tiny (16-bit) . 188

6.16 Delta operator on encoded AN_int (64-bit) . 188

6.17 Runtimes of SSB queries on the Skylake system. 192

6.18 Runtimes of SSB queries on the Xeon Phi system. 193

6.19 Total query runtime improvements through vectorization for SSB query 1.1. . . . 195

6.20 Memory overhead of the implemented AN coding and a projection for bit-packing. 197

6.21 Lookup throughput for B-Tree and EDB-Tree variants on system 1. 199

6.22 Lookup throughput for B-Tree and EDB-Tree variants on system 2. 199

6.23 Insert throughput for B-Tree and EDB-Tree variants on system 1. 200

6.24 Insert throughput for B-Tree and EDB-Tree variants on system 2. 200

A.1 Reduced example for 8-bit population count after Figure 3.18a 213

LIST OF FIGURES 235

236 LIST OF FIGURES

LIST OF TABLES

3.1 Weight distributions and patterns for 1-bit XOR checksums. 46

3.2 Weight distribution triangle for 2-bit checksums 47

3.3 Concrete numbers for the relative increase after Equation (3.48). 52

3.4 Runtimes for computing the distance distributions of AN codes forA = 61. Average
values after 5 runs on the Bull HPC-Cluster Taurus at TU Dresden. CPU: 2×E5-
2680 v3 Haswell 12-core 2.50GHz, gcc5.3, OpenMP 4.0. GPU: NVIDIA Tesla
K80, CUDA 7.5 . 52

3.5 Runtimes for exact and grid approximation methods 56

3.6 Golden As per minimal detectable bit flip weight. 58

3.7 Basic Specification of the 2 measurement systems 65

3.8 Best population count throughputs and unroll factors for system 1. 69

3.9 Best population count throughputs and unroll factors for system 2. 70

3.10 XOR specific instructions and compiler intrinsics 73

3.11 Multiplication specific instructions and compiler intrinsics 74

3.12 Unroll factors and block sizes with fastest hardening runtimes. 80

3.13 Unroll factors and block sizes with fastest error detection runtimes. 81

3.14 Unroll factors and block sizes with fastest decoding runtimes. 81

3.15 Unroll factors and block sizes with fastest decode-and-detect runtimes. 82

3.16 Unroll factors and block sizes with fastest addition runtimes. 83

3.17 Unroll factors and block sizes with fastest division runtimes. 84

3.18 Unroll factors and block sizes with fastest add-and-detect runtimes. 85

3.19 Unroll factors and block sizes with fastest divide-and-detect runtimes. 85

3.20 Unroll factors and block sizes with fastest summation runtimes. 86

3.21 Unroll factors and block sizes with fastest sum-and-detect runtimes. 87

3.22 Summary of properties of the error detection techniques 97

4.1 Logical Data Types in a Column Store . 102

237

4.2 Selection of numerical values for the limb domain abundance (LDA) from Figure 4.4.105

4.3 A possible physical data representation. 110

4.4 A possible mapping between logical and physical data types. 110

4.5 Hardened integer columns. 116

4.6 Dictionary with AN hardened IDs and XOR hardened string values. 116

4.7 Overheads for different minimal detectable bit flip weights η and data layouts for
our running example from Table 4.5 using the appropriate As from Table 3.6. . . . 116

4.8 Numbers for Figure 4.12. 118

4.9 Numbers for Figure 4.13. 118

4.10 K for different key and value sizes for baseline B-Tree and the EDB-Tree variants. 127

5.1 Numbers of entries and total sizes of straightforward lookup tables for vectorized
materialization. 151

5.2 Advantages and disadvantages of the detection opportunities. 158

6.1 AHEAD’s mapping between logical and physical data types. 162

6.2 Theoretical number of implementations per physical operator for the supported
number of data types. 164

6.3 Tested scale factors and table cardinalities for the Star Schema Benchmark. 170

6.4 Number of join partners for one sort-merge join in SSB query 1.1. 176

6.5 Number of join partners for the hashjoin in SSB query 1.1. 176

6.6 Number of values to fetch from column “Lineorder”.“Revenue” for the fetchjoin. . 176

6.7 Cardinality of the columns for grouping in SSB query 2.1. 181

6.8 Cardinality of the columns for multiply-and-sum aggregation in SSB query 1.1. . . 181

6.9 Runtime numbers of SSB queries on the Skylake system compared to the Unpro-
tected baseline. 192

6.10 Runtime numbers of SSB queries on the Xeon Phi system compared to the Unpro-
tected baseline. 193

6.11 Average runtime proportion and ratio of the vectorizable operators for SSB query 1.1.194

6.12 Storage consumption per data type in bits. 195

A.1 Golden As for k ∈ {1, . . . , 8}, |A| ∈ {1, . . . , 16} 210

238 LIST OF TABLES

A.2 Golden As for k ∈ {9, . . . , 16}, |A| ∈ {1, . . . , 16} 210

A.3 Golden As for k ∈ {17, . . . , 24}, |A| ∈ {1, . . . , 16} 211

A.4 Golden As for k ∈ {1, . . . , 8}, |A| ∈ {25, . . . , 32} 211

A.5 Code words and weights of the (7,4) Hamming code, its (8,4) Extended variant, and
the (7,3) and (6,2) shortened variants of the Extended Hamming code. 212

A.6 Total Hamming code bits per vector size and data element type. 215

LIST OF TABLES 239

240 LIST OF TABLES

LIST OF LISTINGS

4.1 Pseudo code for AN encoded NS compression. 121

4.2 Pseudo code for AN encoded NS decompression on unsigned data. 122

5.1 Concrete example query. 136

5.2 Abstract example query. 136

6.1 The abstract unprotected selection operator implementation 167

6.2 String specialization of the unprotected selection operator 167

A.1 Vectorized SSE4.2 population count for 8-bit data 214

A.2 Vectorized SSE4.2 population count for 16-bit and 32-bit data 214

A.3 Vectorized SSE4.2 22/16 Hamming Code Computation 215

241

242 List of Listings

LIST OF ACRONYMS

Notation Description Page
List

ALU Arithmetic Logic Unit 20
AND bit-wise AND 34
ANSI American National Standards Institute 100,

101,
115

AST abstract syntax tree 158
AVX Advanced Vector Extensions 64

BAT binary association table 136
BFW bit flip weight b, the number of bits flipped in a

data unit, e.g. a data or code word
14, 75

BSC binary symmetric channel 4, 40

CFCSS controlf̄low checking by software signatures 20
COTS commercialōfft̄hes̄helf 19
CPU central processing unit 2

DDR4 double data rate-4 2
DEC double error correction 15
DELTA delta encoding 107
DICT dictionary encoding 107
DMR double modular redundancy 19
DMS data management system 2
DRAM dynamic random access memory 2
DSM decomposition storage model 103

ECC error correcting code 3
EDAC error detection and correction 21
EDB-Tree Error detecting B-Tree 128
EDDI error detection by duplicated instructions 20

FOR frame of reference 107

GPU graphics processing unit 50

HDD hard disk drive 3

ILP instruction-level parallelism 20
IPC instructions per cycle 169
IR internal representation 135
ISA instruction set architecture 11

LRCID longitudinal range check 29
LSB least significant bit 32

243

Notation Description Page
List

MAL MonetDB assembly language 136
MIPS million integers per second 68
MSB most significant bit 83

NS null suppression 107
NSM n-ary storage model 103

OID object identifier 103
OR bit-wise OR 34
OS operating system 3

PAX Partition Attribute Across 103

QEP query execution plan 135

RAID Redundant Array of Independent (sometimes
also Inexpensive) Disks

10

RCB Reliable Computing Base, see Definition 1 8
RCR residue class ring 88
RID record identifier 113
RLE run length encoding 107
RMT simultaneous redundant multit̄hreading 16

SDC silent data corruption 2
SECDED single error correction, double error detection 3
SIMD Single Instruction Multiple Data 26, 29
SMT simultaneous multit̄hreading 16
SPARC Standards Planning and Requirements Commit-

tee, part of the American National Standards
Institute (ANSI)

100,
101,
115

SQL structured query language 101
SRAM static random access memory 2
SSB star schema benchmark 5
SSD solid state disk 3
SSE Streaming SIMD Extensions 64
SWIFT software-implemented fault tolerance 20

TMR triple modular redundancy 19

VOID virtual object identifier 103

w.l.o.g without loss of generality 103

XOR bit-wise exclusive OR 4

244 List of Acronyms

LIST OF SYMBOLS

Notation Description Page
List

|S| the largest effective bit width of all elements in
set S, see also Definition 7

30

JxK The population count of x, see Definition 8 30

A AN code parameter 34
A The set of all possible values for AN coding

parameter A, with A ⊆ N+
34

Aσ
h,k Super A for given h = |A| and k = |D| with

largest possible dH,min for this combination
56

Aσ
h,k Set of super As for given h = |A| and k = |D| 56

AΨ
h,k Optimal A for given h = |A| and k = |D| and

an optimality criterion Ψ
56

Aϕ The area under the conditional SDC probability
distribution curve for an error code C

57

b Bit flip weight, i.e. number of bits set to one in
an error pattern

14

βCb The upper bound of the distance distribution
elements of weight b, for a given code C

39

C Set of code words 34
c Code word 34
CA
DΘ

The set of AN code words for data type D and
parameter A

34

cε A corrupt code word 34

d Data word 34
dH Hamming distance, the number of bits in which

two given data or code words differ
26

dH,min Minimal Hamming distance of a code C 38
D Set of data words 34
DΘ The set of data words of a type Θ 34

η The minimal bit flip weight detectable by some
error code

57

KC The distance distribution of a code C 39
κCb The elements or counts of weight b for distance

distribution KC
39

P (SDC|b)C The conditional SDC probability of code C, see
also ϕC

b

40

ϕC
b Shortcut for the conditional SDC probability

P (SDC|b)C
40

245

Notation Description Page
List

Ψ Optimality criterion for error codes 56
ψ Objective function to satisfy an optimality cri-

terion Ψ
57

Θ Placeholder for data types 34

Z The set of integers 34

246 List of Symbols

LIST OF DEFINITIONS

1 Reliable Computing Base . 8

2 Bit Flip . 14

3 Bit Flip Weight . 14

R1 Effectiveness . 17

R2 Efficiency . 17

R3 Adaptability . 17

R4 Availability . 17

R5 Separation of Concerns . 18

4 Thesis Error Model . 18

5 Data Hardening . 27

6 Data Softening . 27

7 Bit Width . 30

8 Population Count . 30

9 Super As . 56

10 Golden A . 56

11 Data Hardening, Revised . 92

12 Data Softening, Revised . 92

247

248 List of Definitions

CONFIRMATION

I confirm that I independently prepared the thesis and that I used only the references and auxiliary
means indicated in the thesis.

Dresden, 30th October 2018 Till Kolditz

249

	Contents
	1 Introduction
	1.1 Contributions of this Thesis
	1.2 Outline

	2 Problem Description and Related Work
	2.1 Reliable Data Management on Reliable Hardware
	2.2 The Shift Towards Unreliable Hardware
	2.3 Hardware-Based Mitigation of Bit Flips
	2.4 Data Management System Requirements
	2.5 Software-Based Techniques For Handling Bit Flips
	2.5.1 Operating System-Level Techniques
	2.5.2 Compiler-Level Techniques
	2.5.3 Application-Level Techniques

	2.6 Summary and Conclusions

	3 Analysis of Coding Techniques
	3.1 Selection of Error Codes
	3.1.1 Hamming Coding
	3.1.2 XOR Checksums
	3.1.3 AN Coding
	3.1.4 Summary and Conclusions

	3.2 Probabilities of Silent Data Corruption
	3.2.1 Probabilities of Hamming Codes
	3.2.2 Probabilities of XOR Checksums
	3.2.3 Probabilities of AN Codes
	3.2.4 Concrete Error Models
	3.2.5 Summary and Conclusions

	3.3 Throughput Considerations
	3.3.1 Test Systems Descriptions
	3.3.2 Vectorizing Hamming Coding
	3.3.3 Vectorizing XOR Checksums
	3.3.4 Vectorizing AN Coding
	3.3.5 Summary and Conclusions

	3.4 Comparison of Error Codes
	3.4.1 Effectiveness
	3.4.2 Efficiency
	3.4.3 Runtime Adaptability

	3.5 Performance Optimizations for AN Coding
	3.5.1 The Modular Multiplicative Inverse
	3.5.2 Faster Softening
	3.5.3 Faster Error Detection
	3.5.4 Comparison to Original AN Coding
	3.5.5 The Multiplicative Inverse Anomaly

	3.6 Summary

	4 Bit Flip Detecting Storage
	4.1 Column Store Architecture
	4.1.1 Logical Data Types
	4.1.2 Storage Model
	4.1.3 Data Representation
	4.1.4 Data Layout
	4.1.5 Tree Index Structures
	4.1.6 Summary

	4.2 Hardened Data Storage
	4.2.1 Hardened Physical Data Types
	4.2.2 Hardened Lightweight Compression
	4.2.3 Hardened Data Layout
	4.2.4 UDI Operations
	4.2.5 Summary and Conclusions

	4.3 Hardened Tree Index Structures
	4.3.1 B-Tree Verification Techniques
	4.3.2 Justification For Further Techniques
	4.3.3 The Error Detecting B-Tree

	4.4 Summary

	5 Bit Flip Detecting Query Processing
	5.1 Column Store Query Processing
	5.2 Bit Flip Detection Opportunities
	5.2.1 Early Onetime Detection
	5.2.2 Late Onetime Detection
	5.2.3 Continuous Detection
	5.2.4 Miscellaneous Processing Aspects
	5.2.5 Summary and Conclusions

	5.3 Hardened Intermediate Results
	5.3.1 Materialization of Hardened Intermediates
	5.3.2 Hardened Bitmaps

	5.4 Summary

	6 End-to-End Evaluation
	6.1 Prototype Implementation
	6.1.1 AHEAD Architecture
	6.1.2 Diversity of Physical Operators
	6.1.3 One Concrete Operator Realization
	6.1.4 Summary and Conclusions

	6.2 Performance of Individual Operators
	6.2.1 Selection on One Predicate
	6.2.2 Selection on Two Predicates
	6.2.3 Join Operators
	6.2.4 Grouping and Aggregation
	6.2.5 Delta Operator
	6.2.6 Summary and Conclusions

	6.3 Star Schema Benchmark Queries
	6.3.1 Query Runtimes
	6.3.2 Improvements Through Vectorization
	6.3.3 Storage Overhead
	6.3.4 Summary and Conclusions

	6.4 Error Detecting B-Tree
	6.4.1 Single Key Lookup
	6.4.2 Key Value-Pair Insertion

	6.5 Summary

	7 Summary and Conclusions
	7.1 Future Work

	A Appendix
	A.1 List of Golden As
	A.2 More on Hamming Coding
	A.2.1 Code examples
	A.2.2 Vectorization

	Bibliography
	List of Figures
	List of Tables
	List of Listings
	List of Acronyms
	List of Symbols
	List of Definitions

