348 research outputs found

    Life-cycle management and placement of service function chains in MEC-enabled 5G networks

    Get PDF
    Recent advancements in mobile communication technology have led to the fifth generation of mobile cellular networks (5G), driven by the proliferation in data traffic demand, stringent latency requirements, and the desire for a fully connected world. This transformation calls for novel technology solutions such as Multi-access Edge Computing (MEC) and Network Function Virtualization (NFV) to satisfy service requirements while providing dynamic and instant service deployment. MEC and NFV are two principal and complementary enablers for 5G networks whose co-existence can lead to numerous benefits. Despite the numerous advantages MEC offers, physical resources at the edge are extremely scarce and require efficient utilization. In this doctoral dissertation, we first attempt to optimize resource utilization at the network edge for the scenario of live video streaming. We specifically utilize the real-time Radio Access Network (RAN) information available at the MEC servers to develop a machine learning-based prediction solution and anticipate user requests. Consequently, Integer Linear Programming (ILP) models are used to prefetch/cache video contents from a centralized video server. Regarding the advantages of NFV technology for the deployment of NFs, the second problem that this dissertation address is the proper association of the users to the gNBs along with efficient placement of SFCs on the substrate network. Our primary purpose is to find a proper embedding of the SFC in a hierarchical 5G network. The problem is formulated as a Mixed Integer Linear Programming (MILP) model, having the objective to minimize service provisioning cost, link utilization, and the effect of VNF migration on users' perceived quality of experience. After rigorously analyzing the proposed SFC placement and considering mobile networks' dynamicity, our next goal is to develop an ILP-based model that minimizes the resource provisioning cost by dynamically embed and scale SFCs so that provisioning cost is minimized while user requirements are met

    Video Caching, Analytics and Delivery at the Wireless Edge: A Survey and Future Directions

    Get PDF
    Future wireless networks will provide high bandwidth, low-latency, and ultra-reliable Internet connectivity to meet the requirements of different applications, ranging from mobile broadband to the Internet of Things. To this aim, mobile edge caching, computing, and communication (edge-C3) have emerged to bring network resources (i.e., bandwidth, storage, and computing) closer to end users. Edge-C3 allows improving the network resource utilization as well as the quality of experience (QoE) of end users. Recently, several video-oriented mobile applications (e.g., live content sharing, gaming, and augmented reality) have leveraged edge-C3 in diverse scenarios involving video streaming in both the downlink and the uplink. Hence, a large number of recent works have studied the implications of video analysis and streaming through edge-C3. This article presents an in-depth survey on video edge-C3 challenges and state-of-the-art solutions in next-generation wireless and mobile networks. Specifically, it includes: a tutorial on video streaming in mobile networks (e.g., video encoding and adaptive bitrate streaming); an overview of mobile network architectures, enabling technologies, and applications for video edge-C3; video edge computing and analytics in uplink scenarios (e.g., architectures, analytics, and applications); and video edge caching, computing and communication methods in downlink scenarios (e.g., collaborative, popularity-based, and context-aware). A new taxonomy for video edge-C3 is proposed and the major contributions of recent studies are first highlighted and then systematically compared. Finally, several open problems and key challenges for future research are outlined

    A Survey on Mobile Edge Computing for Video Streaming : Opportunities and Challenges

    Get PDF
    5G communication brings substantial improvements in the quality of service provided to various applications by achieving higher throughput and lower latency. However, interactive multimedia applications (e.g., ultra high definition video conferencing, 3D and multiview video streaming, crowd-sourced video streaming, cloud gaming, virtual and augmented reality) are becoming more ambitious with high volume and low latency video streams putting strict demands on the already congested networks. Mobile Edge Computing (MEC) is an emerging paradigm that extends cloud computing capabilities to the edge of the network i.e., at the base station level. To meet the latency requirements and avoid the end-to-end communication with remote cloud data centers, MEC allows to store and process video content (e.g., caching, transcoding, pre-processing) at the base stations. Both video on demand and live video streaming can utilize MEC to improve existing services and develop novel use cases, such as video analytics, and targeted advertisements. MEC is expected to reshape the future of video streaming by providing ultra-reliable and low latency streaming (e.g., in augmented reality, virtual reality, and autonomous vehicles), pervasive computing (e.g., in real-time video analytics), and blockchain-enabled architecture for secure live streaming. This paper presents a comprehensive survey of recent developments in MEC-enabled video streaming bringing unprecedented improvement to enable novel use cases. A detailed review of the state-of-the-art is presented covering novel caching schemes, optimal computation offloading, cooperative caching and offloading and the use of artificial intelligence (i.e., machine learning, deep learning, and reinforcement learning) in MEC-assisted video streaming services.publishedVersionPeer reviewe

    Quality-Oriented Mobility Management for Multimedia Content Delivery to Mobile Users

    Get PDF
    The heterogeneous wireless networking environment determined by the latest developments in wireless access technologies promises a high level of communication resources for mobile computational devices. Although the communication resources provided, especially referring to bandwidth, enable multimedia streaming to mobile users, maintaining a high user perceived quality is still a challenging task. The main factors which affect quality in multimedia streaming over wireless networks are mainly the error-prone nature of the wireless channels and the user mobility. These factors determine a high level of dynamics of wireless communication resources, namely variations in throughput and packet loss as well as network availability and delays in delivering the data packets. Under these conditions maintaining a high level of quality, as perceived by the user, requires a quality oriented mobility management scheme. Consequently we propose the Smooth Adaptive Soft-Handover Algorithm, a novel quality oriented handover management scheme which unlike other similar solutions, smoothly transfer the data traffic from one network to another using multiple simultaneous connections. To estimate the capacity of each connection the novel Quality of Multimedia Streaming (QMS) metric is proposed. The QMS metric aims at offering maximum flexibility and efficiency allowing the applications to fine tune the behavior of the handover algorithm. The current simulation-based performance evaluation clearly shows the better performance of the proposed Smooth Adaptive Soft-Handover Algorithm as compared with other handover solutions. The evaluation was performed in various scenarios including multiple mobile hosts performing handover simultaneously, wireless networks with variable overlapping areas, and various network congestion levels

    Quality of experience-centric management of adaptive video streaming services : status and challenges

    Get PDF
    Video streaming applications currently dominate Internet traffic. Particularly, HTTP Adaptive Streaming ( HAS) has emerged as the dominant standard for streaming videos over the best-effort Internet, thanks to its capability of matching the video quality to the available network resources. In HAS, the video client is equipped with a heuristic that dynamically decides the most suitable quality to stream the content, based on information such as the perceived network bandwidth or the video player buffer status. The goal of this heuristic is to optimize the quality as perceived by the user, the so-called Quality of Experience (QoE). Despite the many advantages brought by the adaptive streaming principle, optimizing users' QoE is far from trivial. Current heuristics are still suboptimal when sudden bandwidth drops occur, especially in wireless environments, thus leading to freezes in the video playout, the main factor influencing users' QoE. This issue is aggravated in case of live events, where the player buffer has to be kept as small as possible in order to reduce the playout delay between the user and the live signal. In light of the above, in recent years, several works have been proposed with the aim of extending the classical purely client-based structure of adaptive video streaming, in order to fully optimize users' QoE. In this article, a survey is presented of research works on this topic together with a classification based on where the optimization takes place. This classification goes beyond client-based heuristics to investigate the usage of server-and network-assisted architectures and of new application and transport layer protocols. In addition, we outline the major challenges currently arising in the field of multimedia delivery, which are going to be of extreme relevance in future years
    corecore