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ABSTRACT 5G communication brings substantial improvements in the quality of service provided to
various applications by achieving higher throughput and lower latency. However, interactive multimedia
applications (e.g., ultra high definition video conferencing, 3D and multiview video streaming, crowd-
sourced video streaming, cloud gaming, virtual and augmented reality) are becoming more ambitious with
high volume and low latency video streams putting strict demands on the already congested networks.
Mobile Edge Computing (MEC) is an emerging paradigm that extends cloud computing capabilities to the
edge of the network i.e., at the base station level. To meet the latency requirements and avoid the end-to-
end communication with remote cloud data centers, MEC allows to store and process video content (e.g.,
caching, transcoding, pre-processing) at the base stations. Both video on demand and live video streaming
can utilize MEC to improve existing services and develop novel use cases, such as video analytics, and
targeted advertisements. MEC is expected to reshape the future of video streaming by providing ultra-reliable
and low latency streaming (e.g., in augmented reality, virtual reality, and autonomous vehicles), pervasive
computing (e.g., in real-time video analytics), and blockchain-enabled architecture for secure live streaming.
This paper presents a comprehensive survey of recent developments in MEC-enabled video streaming
bringing unprecedented improvement to enable novel use cases. A detailed review of the state-of-the-art
is presented covering novel caching schemes, optimal computation offloading, cooperative caching and
offloading and the use of artificial intelligence (i.e., machine learning, deep learning, and reinforcement
learning) in MEC-assisted video streaming services.

INDEX TERMS Live streaming, machine learning, mobile edge computing, VoD, video Streaming.

I. INTRODUCTION
The emergence of 5G brings substantial improvements in

challenges. In the context of video streaming, the improved
cellular bandwidth has enabled novel use cases of video

quality of service by achieving higher throughput and lower
latency. These advantages enable network providers to tailor
the quality of experiences for new use cases across different
vertical markets. However, these new capabilities on one
side are promising to transform industries, but on the other
side, the massive wave of new devices and bandwidth inten-
sive multimedia applications supported by 5G, trigger new
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streaming e.g. ultra HD (e.g. 4K and 8K) videos, 3D videos,
360° videos, virtual and augmented reality and interactive
video streaming. These new classes of video streaming put
forward new demands in terms of reliable computation and
reduced delay to match the desired quality of experience.
These services traditionally rely on cloud computing in which
the data storage and computational resources reside at the
cloud servers. However, as the network scales, the increasing
number of users requests can lead to significant increase in
latency. Several factors add to the end-to-end latency i.e.,
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delay caused by offloading the computation to the cloud,
delay of processing and queuing at the cloud server and
network communication delay to transmit the requested video
back to the user. Furthermore, as the number of requests
grows, meeting the delay requirement of latency-sensitive
applications becomes challenging.

While latency is the key factor in the context of video
streaming, there are a number of other benefits that can be
achieved using MEC as compared to the traditional cloud
computing paradigm. For instance, popular video streaming
services such as Netflix [1], Hulu [2], and Amazon Prime [3]
create a heavy load on network. MEC can be used to cache
popular content closer to the end users for a smoother expe-
rience. In cloud-based video streaming, the content is stored
relatively far from the user geographical locations leading to
a poor user’s experience when there is a congestion along the
end to end route. Cloud-based streaming services also suffers
from quality of service (QoS) degradation when the users
requesting similar video content grows abruptly.

To alleviate the issues of traditional cloud service models,
mobile edge computing is emerging as a promising solu-
tion. The primary benefit of edge computing is to bring the
storage and computing capabilities closer to the end users
i.e., at the edge of the network. In MEC assisted 5G net-
works, the storage and computing services can be deployed
at the network edge (i.e., within the RAN) to enable network
providers better handle latency-sensitive services. MEC can
bring a range of benefits to users as well as network providers.
By providing storage and computing resources at the edge of
the network (i.e. RAN), communication latency is reduced.
Content providers can use edge storage capability to cache
the content locally which reduces the bandwidth resources
on the backhaul links. Distributed computing and storage
resources improve resiliency and availability using collabo-
ration among edge servers. Users can access content at lower
costs available locally. Edge computing can also enhance
security and greater improve scalability due to the fact that
any attack on an edge server will affect the users connected
to that server and not the whole network. These benefits are
of MEC are further detailed in Section III.

MEC is still an emerging area and a huge amount of
research work on mobile edge computing is in progress.
MEC can help revolutionize several sectors including but not
limited to, enterprises, smart buildings, healthcare, vehicles-
to-infrastructure (V2I) services, Internet of Things, video
streaming and virtual and augmented reality. Several sur-
vey papers exist to summarize the ongoing research efforts
on mobile edge computing. A large number of these sur-
veys provide a high-level broader view of the research area
covering different aspects e.g. architectural development,
functional overview, data caching, computational offloading,
potential use cases, opportunities and challenges [4], [5],
(61, [71, (81, [91, [101, [11], [12], [13], [14], [15], [16], [17].
Some of these works cover specific aspects e.g. computation
offloading [5], [18], [19], [20], communication [21] and secu-
rity [22], [23], [24], [25], [26], [27]. There are few studies
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covering edge computing research in particular applications
such as IoT [28], [29], [30], whereas some of these aim to
cover the state-of-the-art scientific contributions of integrat-
ing edge computing with sophisticated machine learning and
deep learning [6], [31], [32], [33], [34]. A summary of these
surveys is presented in Table 1.

Although most of the aforementioned survey papers (sum-
marised in Table 1) provide a detailed review of research
efforts on mobile edge computing, we realise it is worthy that
the huge amount of research works on MEC-assisted video
streaming services shall be reviewed and summarized. In this
survey, we provide a comprehensive review of the state-of-
the-art in mobile edge computing for video streaming use
cases. The paper describes different types of video streaming
services and the associated challenges, and explains how
these applications can benefit from using edge computing.
Although we aim at focusing on video streaming, neverthe-
less we included reference works which are not explicitly
proposed for video streaming use cases, but these have good
correlation and are readily applicable in the relevant use-
cases. We dedicate separate sections for novel research con-
tributions in the area of cooperative device-to-device (D2D)
communication and machine learning and their respective
benefits and applications in MEC-assisted video streaming.

The organization of the paper is illustrated in Figure 1.
Section II presents an overview of video streaming services
outlining different types of video streaming services, list-
ing streaming protocols and video streaming challenges in
terms of the quality of experience. Section III provides a
brief overview of mobile edge computing, explaining the
architecture, functional overview, fundamental definitions
and related concepts. Section IV explains how MEC can
improve video streaming services in different streaming use
cases. A detailed review of the state-of-the-art on mobile edge
computing for video streaming is presented in Section V,
with separate subsections dedicated for research contribu-
tions in edge caching and computational offloading. Sec-
tions VI and VII summarise the most recent developments
on edge computing techniques using cooperative networking
and machine learning respectively. The abbreviations and
acronyms used in this paper are listed in Table 2.

Il. VIDEO STREAMING - TYPES, PROTOCOLS AND
CHALLENGES

Video streaming is the method of viewing videos without
downloading the media files.

A. TYPES OF VIDEO STREAMING

Video streaming is not only at the forefront of entertainment
industry but also is transforming several other sectors such
as enterprises, education, retail, tourism, transportation and
healthcare. The unprecedented use cases of video streaming
are reshaping the Internet, while at the same time, network
and content providers are doing huge investments in improv-
ing user experience in video streaming services. Generally,

120515



IEEE Access

M. A. Khan et al.: Survey on Mobile Edge Computing for Video Streaming: Opportunities and Challenges

TABLE 1. Comparative study of this paper with existing surveys on edge computing. The symbol v indicates a publication is in the scope of a domain; x
marks papers that do not directly cover that area, but from which readers may retrieve some related insights; (] indicates the topic is covered but in less

depth.
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Ref

One-sentence summary

Scope of the Publication

Offloading

Wang et al. [31]

Deep learning in edge computing

Deng et al. [32]

Artificial Intelligence (Al) in edge computing

Carvalho et al. [33]

Using Al for computation offloading in edge computing for

Cao et al. [4]

Overview of edge computing research

Lin et al. [5]

A survey of computation offloading techniques in edge computing

Shakarami et al. [6]

A survey of computation offloading techniques in edge and cloud computing

Xiao et al. [22]

A survey on security challenges in edge computing

Yang et al. [23]

A survey on integration of bloackchains and edge computing

Liu et al. [24]

A survey on secured edge-based data analytics

Jiang et al. [19]

A survey of computation offloading in edge computing

Lin et al. [20]

A survey of computation offloading in edge computing

Donno et al. [7]

A tutorial on modern computing paradigms

Khan et al. [8]

A survey on edge computing applications

Hassan et al. [9]

A review of edge computing in 5G networks

Chen et al. [34]

A review of deep learning applications in edge computing

Zhang et al. [25]

A survey on security and privacy in edge computing and

Marjanovic et al. [28]

A tutorial on edge computing for crowdsensing

Porambage et al. [29]

A survey on application of edge computing in Internet of Things (IoT)

Abbas et al. [10]

A tutorial and survey on mobile edge computing

Wang et al. [11]

A survey on edge computing services

Baktir et al. [12]

A survey on software-defined networking in edge computing

Ahmed et al. [13]

A survey of the state-of-the-art in mobile edge computing

Taleb et al. [14]

A survey of edge computing in 5G networks

Mao et al. [15]

A review of the state-of-the-art in mobile edge computing

Mao et al. [21]

A survey of communication techniques in mobile edge computing

Shirazi et al. [27]

A tutorial on security in mobile edge and fog computing

Yu et al. [30]

A survey and tutorial on edge computing in IoT

Ahmed et al. [16]

A survey of mobile edge computing systems

Shi et al. [17]

A futuristic overview of mobile edge computing

Jiang et al. [35]

MEC in Video Streaming

Kanai et al. [36]

MEC for multimedia applications

Zhang et al. [37]

MEC for video analytics in public safety

O x| ] < & <] & x| & & x| «]«] & & & &f x| x| «] ] «] ] <] &] s« s x| x| Architecture

| O O %| X| X| X| %| %| & & X[&] x| X| X| X| X| X[ X[ X[ X[ X[ x| X%| X%| %| %| %| %| %| | Caching

S| O] & & x| ] x| x| & & x| x| x| x| x| x| «] & & x| & & x| x| %] &« &f x| & %] %

X x| X[ X| X| X[ X| | X[ X| X XX X| X X| | | x| x| X| x| x| x| X%| X X| K| x| | | N| ML/DL

O | S| X[ X | X X| X| X[ X| X[X| X| X| X[ X| X[ X| X| X[ X[ X| X[ X%| X| x| X%| | X| X%| X Video streaming

This survey

A survey of MEC in video streaming covering the MEC architecture, video
streaming applications and novel services, and traditional and state-of-the-art
techniques for edge-based caching and processing. It also covers the use of ML
and pervasive computing including D2D for the next generation intelligent edge
services.
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TABLE 2. Summary of acronyms.

Acronym | Definition

3D Three Dimensional

3GPP Third Generation Partnership Project
4K Horizontal video resolution of 4000 pixels
5G Fifth-Generation

ABR Adaprive Bit Rate

Al Artificial Intelligence Internet

AR Augmented Reality

BS Base Station

CC Cloud Computing

CDN Content Delivery Network

CMAF Common Media Application Format
CNN Convolutional Neural Network Recurrent
D2D Device to Device

DL Deep Learning

DNN Deep Neural Network

DOS Denial Of Service

DQN Deep Q-learning Network

DRL Deep Reinforcement Learning

EC Edge Computing

ETSI European Telecommunication Standards Institute
FIFO First In First Out

FOV Field of View

HD High Definition

HDS HTTP Dynamic Streaming

HLS HTTP Live Streaming

HTTP Hypertext Transfer Protocol

ILP Integer Linear Programming

INLP Integer Non-Linear Programming
IoT Internet of Things

ISG Industry Specification Group

ISG Industry Specific Groups

LFU Least Frequently Used

LLR Least Likely Requested

LRU Least Recently Used

LRFU Least Recently Frequency Used
LSTM Long-short Term Memory model
MDP Markov Decision Problem

MEC Mobile Edge Computing

MEC Mobile (or Multi-Access) Edge Computing
MILP Mixed Integer Linear Programming
ML Machine Learning

MLR Most Likely Requested

DASH Dynamic Adaptive Streaming over HTTP
MPV Most Popular Videos

MPEG Motion Picture Expert Group

MSS Microsoft Smooth Streaming

NFV Network Function Virtualization
PcP Proactive Cache Policy

P-UPP Proactive User Preference Profile
PoP Point of Presence

QoE Quality of Experience

QoS Quality of Service

R-UPP Reactive User Preference Profile
RAN Radio Access Network

RFC Request For Comments

RL Reinforcement Learning

RNN Recurrent Neural Network

RTMP Real-Time Messaging Protocol

RTP Real-Time Transport Protocol

RTSP Real-Time Streaming Protocol

SIP Session Initiation Protocol

SRT Secure Reliable Transport

TDMA Time Devision Multiple Access

UA User Attrition

UAV Unmanned Aerial Vehicle

UPP User Preference Profile

URRLC Ultra-reliable Low-latency Communications
V2I Vehicle to Infrastructure

VoD Video On Demand

VR Virtual Reality

WebRTC Web Real-Time Communications
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1. Introduction

II. Video Streaming
Types, Protocols and Challenges

III. Mobile Edge Computing
Overview, Applications and Resource Allocation

IV. Mobile Edge Computing
Applications in Video Streaming

V. State-of-the-art in MEC-based Video Streaming

VI. D2D Cooperation in MEC Systems
D2D in caching and offloading

VII. Machine Learning in Edge Computing
Proactive caching & offloading, adaptive streaming, analytics, AR/VR

VIII. Future Research Directions
MEC in 5G/6G, Resource migration, Video analytics for drones, AR/VR/MR
and 360 videos,

IX. Conclusions

FIGURE 1. Paper organization: illustration of various topics covered in
each section.

video streaming applications can be broadly categorized as
Video on Demand (VoD) and Live video streaming.

1) VoD STREAMING

VoD streaming allows users to watch stored videos from
any Internet-connected devices at any suitable time. In VoD
streaming, content can be prefetched, stored and edited before
it is distributed. Popular applications of VoD streaming are
Netflix [1], Apple iTunes Store [38], and YouTube. There
are three popular models of VoD streaming in today’s video
streaming world.

2) LIVE STREAMING

Unlike VoD streaming, in live video streaming the video
is distributed in real-time directly from the origin device
to the destination, without first storing it on a server. Live
videos are more sensitive to network delays as compared to
VoD streaming. The use of live video streaming is increasing
over time [39] due to multiple reasons such as the avail-
ability of high quality cameras in the modern smartphones
that enable users to shoot high quality videos, and the high
data rates of 5G, enabling the users to share videos over
the internet in real time. Live video streaming has many
attractive applications such as E-Sports and Game Stream-
ing [40], [41], [42], [43], [44], virtual reality and augmented
reality, user-generated live streaming (e.g. Periscope [45],
Youtube Live [46], Twitch [47], Facebook Live [48], Insta-
gram Live [49], Twitter Live [50] and Ustream [51]) and
online learning (e.g. Dacast [52], IBM Cloud Video [51],
Kaltura [53], Vimeo Live [54] and Panopto [55]). In the
following, we categorize the live streaming by application
scenarios:
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o Conventional live streaming videos: This type of appli-
cations, including Twitch, YouTube live, Facebook live,
allows random users to capture live videos using their
handheld devices. In such applications, the live system
needs to handle a huge volume of videos from broadcast-
ers to thousands of viewers located all over the world in a
very short end-to-end latency (e.g., 100 ms [56]). More-
over, to provide the required formats to viewers based on
their preferences, the capability of their devices, and the
quality of the network, the videos should be transcoded.
This transcoding task needs to be done in real-time and
adapts on the fly to the available computing resources to
match the spontaneous broadcasts.

o Streaming 360° (or panoramic) videos: This type of
streaming is more challenging than conventional videos
as it requires higher bandwidth availability due to the
volume of the content. Moreover, such live stream allows
a flexible interaction, i.e., the user can potentially move
and expects to see different views of the panorama.
Therefore, the latency and delay variance are even
stricter in order to update the display without any motion
sickness. This delay is called motion-to-photon latency
and should not exceed few milliseconds, in order to
provide a smooth experience [57].

o VR/AR live streaming: The Virtual Reality (VR) is a
simulated experience that can be fictional or similar to
the real world. Multiple features characterize the VR
systems, which are the imagination, interaction, and
immersion, in addition to the integration of the VR user
in the virtual environment. The VR experience requires
a device with a screen, computing components and sen-
sors that track the user’s motions. The VR live streaming
has the same requirements as conventional and 360° live
videos, including those related to network parameters
(e.g., bandwidth, latency, stalling, buffering time, and
bitrate switching) and the application parameters (e.g.,
video quality, frame rate, and resolution) with higher
constraints on the delay variance and image freezing
to avoid motion sickness. Besides these requirements,
the VR system depends also on physical environment
factors (e.g., sounds, objects locations, and lighting) and
user’s profile (e.g., gender and length), which highly
influence the quality of the experience [58]. The Aug-
mented Reality (AR) is also a real-world interactive
experience, where real or fictive objects are enhanced
and integrated into the user’s experience. In terms of
system requirements, combining the real world environ-
ment with the augmented objects is very critical, as the
AR algorithm has to superimpose these objects into the
coordinates of the user’s location with a high accuracy.
Even though the AR and VR technologies brought
new opportunities in various industries and applica-
tions (e.g., medicine, maintenance, sports, teaching,
tourism and architecture.), they also added new chal-
lenges related to image display, delivery and content
storage.
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Figure 2 illustrates a generic functional architecture of VoD
streaming and live streaming. In VoD streaming (black lines),
the videos are recorded first, then transcoded to one or more
bit rates versions, and then stored on a cloud server. The
viewers can request and access these stored videos anytime
using different protocols such as HLS. In most of the video
deployments, there are also geographically distributed servers
(also known as point of presence (POP)) that cache the videos
from the remote cloud and serve them to the user when
requested. In the case of live streaming (red lines), videos
are transmitted to the end user without storing them first on
the cloud. However, videos are still being transcoded in live
video streaming, as different users can request different bit
rate versions of the video based on the quality of the wireless
channel.

Both VoD and Live video streaming are likely to co-exist
as both have different applications and use cases. VoD gives
users the opportunity to watch videos anytime, anywhere and
from any device using the Internet. On the other hand, live
streaming provides great convenience to users to share videos
in real time without first recording them.

B. VIDEO STREAMING PROTOCOLS

Video streaming protocols can be broadly categorized
as (1) Push-based (non-HTTP) and (2) Pull-based (HTTP-
based) protocols. Push-based protocols are traditional stream-
ing protocols in which the server and client first establish
a connection before transmitting data. These include RTMP
(Real-Time Messaging Protocol) [59] and RTSP (Real-
Time Streaming Protocol) [60], and SIP (Session Initiation
Protocol).

Since 2010, pull-based protocols have been introduced e.g.
HLS (HTTP Live Streaming) [61], Low Latency HLS [62],
MPEG-DASH (Moving Picture Expert Group -Dynamic
Adaptive Streaming over HTTP) [63], CMAF (Common
Media Application Format) for DASH [64], MSS (Microsoft
Smooth Streaming) [65], Adobe HDS (HTTP Dynamic
Streaming) [66], SRT (Secure Reliable Transport) [67] and
WebRTC (Web Real-Time Communications) [68].

HLS is the most widely used pull-based streaming proto-
col [69] supported by many media players, web browsers,
devices, and streaming media servers. Low-Latency HLS [62]
is an improved version of HLS which provide low latency
(up to 2 seconds). The Adobe HDS was the first adaptive
bitrate (ABR) protocol. Subsequently, Microsoft developed
its own adaptive bitrate protocol for video streaming i.e., MSS
in 2008 to deliver on-demand video of the 2008 Summer
Olympics. MPEG-DASH is an open standard adaptive bitrate
streaming protocol, whereas CMAF was developed by joint
collaboration of Microsoft, Apple and MPEG to simplify
the streaming services. The most recent addition to this list
is the open standard WebRTC framework. Today HLS is
the standard platform for Apple whereas MPEG-DASH is
the international standard [63] for video streaming. Table 3
presents a summary of various video streaming protocols.
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FIGURE 2. Video on Demand (VoD) versus live streaming.
TABLE 3. Video streaming protocols. are several challenges in live video streaming The three major
Protocol Developer ‘ Year ‘ Tatency() ‘ ABR ‘ challenges associated with video streaming services are:
RTMP Macromedia | 2012 Low v o Limited Bandwidth: Modern 5G networks offer higher
RTSP/RTP IETF 1998 | Ultra low X data rates over cellular links but the growing use
HLS Apple 20091 Reduced v of video content with a much higher resolution than
LL-HLS Apple 2009 Low v vide rent wi uch fugher uti
MPEG-DASH MPEG 2011 High v before is making the bandwidth limitations more preva-
CI\1>[/ISASF MMPEGf 38(1)2 R]:iowd j lent. In particular, the modern 4K (3840 x 2160),
1crosoft educe: ° .
HDS v3 Adobe 2013 | Reduced v 8K (7§80 >< 4320), and 360° videos are t?and-
SRT Haivision 2013 Low v width intensive [71]. On average, the 4K videos
SIP/RTP IETF 1999 | Reduced v requires bit rate of 20-50 Mbps, whereas 8K videos
WebRTC IETF 2011 Ultra low v

requires 50-200 Mbps [72]. To understand the band-
VS width requirement of these videos, a 60-frame 4K

HLS D'XLTT“"“d — Web-RTC video consumes 1GB to 10GB of traffic per minute,
MPEG-DASH ShigUne RTSP/RTP

t5e s RTMP RIMegTuned and a 20 min 4K video requires almost 100 GB of
traffic [72]. The use of these high resolution videos

_ 18s is also continuously increasing. It is estimated that
‘g by 2023, 66% of connected flat-panel TV sets will
g 5 be 4K. [73] The 360° videos are even more band-
1s ! width intensive as in these, pixels are transmitted to

0s users from every direction. The efficient transmission
S?r':r"""fn’; SG;:;: foway of such huge volumes of bandwidth intensive videos is

streaming  conferencing a challenge yet to continue. As also indicated in [74],
5G systems fall short of providing a full immersive
extended reality (XR) experience due to lack of sup-
port for ultra-low latency and higher data rates in such

FIGURE 3. Video streaming protocols - delay comparison.

A comparison of streaming delay (i.e. media transfer delay) applications.
of these protocols is illustrated in Figure 3. e Latency: Video streaming in general and live streaming
Video streaming protocols can be generally categorized in particular are sensitive to latency. Higher latency
(based on latency) as (i) High Latency (>18 seconds), leads to poor user experience in many applications, such
(ii) reduced latency (10-18 seconds), (iii) low latency as real-time online video gaming, virtual reality, and
(4-10 seconds) and (iv) Ultra low latency (1-4 seconds) [70]. live streaming of high resolution videos such as 4K
and 8K. With the existing content distribution archi-
C. VIDEO STREAMING CHALLENGES tecture that relies on cloud computing, latency guar-
Video streaming applications are gaining popularity due to antees is a critical challenge [21]. Similarly, in the
the inherited convenience for sharing content. However, there next generation Industrial IoT (IIoT) and applications
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such as autonomous vehicles, augmented reality and
medical imaging for remote surgeries, 5G cannot meet
the sub-millisecond latency [75].

In VoD streaming, videos are stored in remote cloud
servers. The larger propagation distance between the
cloud servers and the end users encounter delay dete-
riorate the user experience. To cope with this, content
delivery network (CDN) servers are usually deployed to
cache content from remote cloud servers to relatively
closer servers located in different geographical areas.
However, the CDN servers are deployed in relatively
few locations and often not located in densely populated
areas where viewers may reside. The transmission of
video streams from these centralized cloud servers to
viewers that are far apart, requires extensive bandwidth
and can often create bottlenecks as the number of view-
ers grows. This results in inconsistent and higher startup
delays, video quality degradation, and sometimes the
inability to join popular live streams.

In contrast to VoD streaming live video streaming is
more sensitive to network delays due to the fact that live
videos are not cached and are directly transmitted from
origin to the viewer. Live videos hold users’ attention
10 — 20x longer than VoD videos [76]. In Facebook,
live videos appear at the top of news feed. Also, users in
a page receive notifications about a new live video post,
thus the number of viewers increases rapidly. Further-
more, live streaming has random viewing patterns with
very high peaks. The high number of simultaneous user
requests can cause a problem known as “Thundering
Herd problem™ [77]. A fine example of such sudden
increase in demand of live video is the popular online
trivia craze [78], where the demand for online streams
grew from zero to over one million viewers in just a
matter of minutes. Another example is a 45 minutes
video of two people exploding a watermelon with rubber
bands, which reached a peak of over 800,000 simultane-
ous viewers [79]. Thus, the rapidly increasing viewing
patterns of live videos can cause network congestion that
results in higher end to end delay.

o Jitter: Jitter or delay variation is the undesired deviation
from true periodicity of an assumed periodic signal.
Jitters can be caused by fluctuations in queuing and
scheduling delays [80]. Packets transmitted on the net-
works encounter different delays due to two reasons:
First, packets route through the network independently,
Second, network devices receives packets in queue and
thus encounter different queuing delay. Thus, packets
transmitted even at almost same time (consecutive pack-
ets) experience large variations in end to end delay.
Jitter is a considerable issue in video streaming and
can degrade QoS [81], [82]. Jitter requirements vary
as per application ranging from 10ms~ 50ms e.g., VoD
streaming (<50ms) [83], videoconferencing and inter-
active video streaming (<30ms) [84].
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Ill. MOBILE EDGE COMPUTING

In this section, we elaborate the concept of mobile edge
computing (MEC) and its key advantages to improve video
streaming. First, a brief overview of MEC architecture and
its benefits to the network operators and end users are pre-
sented. Then, we discuss some relevant works to understand
the state-of-the-art in MEC for novel emerging services (not
specifically video streaming). The state-of-the-art in MEC for
novel video streaming services is detailed in Section V.

A. OVERVIEW AND DEFINITIONS

The term Mobile Edge Computing (MEC) was first
introduced by the European Telecommunications Standards
Institute (ETSI) in 2014 as, ““it provides information tech-
nology (IT) and cloud computing capabilities at the edge
of the mobile network, within the Radio Access Network
(RAN) in close proximity to mobile subscribers” [85]. MEC
aims to deploy storage and computational services closer to
the end users. It also enables third party applications and
services at the edge of mobile networks. Recently, ETSI
renamed its associated Industry Specification Group (ISG) as
Multi-access Edge Computing (MEC).

Other closely related concept to MEC include cloudlets
[86], [87] and fog computing [88]. However, typically
cloudlet is referred to as the architecture in which the com-
putational servers are located closed to the user premise (not
at the RAN). In fog computing, the computational capability
is integrated inside the IoT gateway which connects IoT
devices. The concept of edge, cloudlet and fog computing are
overlapping and these terms are frequently used interchange-
ably [21]. However, in the context of this paper, we will be
referring to the MEC architecture in which the edge servers
are located at the RAN, unless stated otherwise. Figure 4
illustrates the architecture of mobile edge computing. MEC
allows storage and computational capabilities at the RAN
level to provide several enhanced services to the end users.

MEC offers several potential advantages in live video
streaming services.

o Efficiency: Using computational offloading, user
devices can offload high computational tasks to edge
servers for remote processing.

o Ultra low latency: By storing content closer to the users,
delay associated with fetching content can be signifi-
cantly reduced.

e Available computation: MEC can be used to augment
capabilities of other devices, thus reducing the cost of
transport.

Figure 5 illustrates the various benefits of MEC for end
users as well as network operators in details. As depicted
in the figure, these benefits are generally categorized into
two categories: benefits to network providers and benefits to
end users. Network providers can improve services reliability.
As edge servers are distributed at RAN level, thus if one edge
server is down or congested, users connected to other edge
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FIGURE 4. Mobile Edge Computing (MEC) architecture: storage and computational servers deployed at the RAN that
enables a range of services to the network users.
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FIGURE 5. Benefits of mobile edge computing for network operators and end users.

servers are not affected. This is in contrast to cloud computing also helps to alleviate network congestion at the backhaul

which has computing resources at one or fewer locations. links, by caching and processing locally at the edge servers
Similarly, denial of service (DOS) attacks on MEC servers whereas, in MCC the data has to be fetched from remote cloud
can affect users only the users at the effected servers, making servers. When the data is stored locally, more economical
edge-based applications more robust to DOS attacks. MEC content can be provided to the users, providing more business
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opportunities to network and content providers. As compared
to cloud-based centralized services, edge-based services are
more reliable and secure, hence scalability comes as an inher-
ited benefit provided by MEC.

In addition to the aforementioned benefits to network
providers, MEC also bring a range of benefits to the end
users. Users can offload their computation-intensive tasks
to the edge server. By offloading computation and fetching
locally cached content, the end-to-end latency experienced
by end users can be significantly reduced. As mobile users
are battery powered devices, mobile users can also exploit
edge-based processing to save their energy consumption.
When content is cached locally at the RAN (i.e. available
at lower propagation distance or even at single-hop), video
packets can be delivered with minimum delay and relatively
less variations in packet delays, thus improving connectivity
and reducing jitters. With the power of edge computing,
mobile users can be enabled to run novel applications such
as computationally intensive Al applications.

Mobile Edge Computing offers two major services i.e.,
providing (i) storage facility and (ii) computation resources,
in the user proximity primarily to reduce latency with a range
of associated benefits as illustrated in Figure 5. Using MEC,
users can access locally stored content with low latency, and
offload their computational tasks to the edge server for fast
processing. In the following, the two concepts are explained
in details. Furthermore, a brief review of recent research
works in these areas is presented. (Note: The review of
the state-of-the-art of MEC in video streaming services is
presented in Section V).

B. EDGE-BASED CACHING

Traditional cloud-based architectures store millions of videos
inrelatively large-sized servers in few geographical locations.
Edge caching is the process of fetching content from these
remote cloud servers and storing at the local edge servers.
Edge caching reduces data traffic transported over backhaul
links and reduces the content delivery time. Edge caching
techniques can be categorized in different ways e.g. proac-
tive versus reactive caching, independent versus collaborative
caching.

Proactive caching refers to fetching content before arrival
of the request usually based on the video popularity or proba-
bility of the request, whereas reactive caching is post-request
content fetching. Independent caching refers to the capacity
of an edge server to solely decide content fetching based
on local or central information, whereas in collaborative
caching (also referred to as coordinated caching), multiple
edge servers can provide their cached content to each other.

Any caching algorithm has two parts, i.e., content fetch-
ing and cache replacement. Content fetching refers to the
process of bringing content from the remote server (origin
or cloud storage) and storing it into the local/edge server.
Cache replacement refers to the process of selecting content
that need to be removed from the local/edge server if there
is limited storage size available to store the newly fetched
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content. Content caching in traditional networks such as con-
tent centric networks have been extensively investigated in
several studies [89], [90]. In edge computing, the caching
problem is typically studied as a joint problem with the
offloading decision [91], [92]. A detailed review of caching
schemes in video streaming context is provided in Section I'V.

C. EDGE-BASED COMPUTATION

Computation at edge nodes can be implemented in sev-
eral ways depending on the design objective. Common
design objectives for implementing edge-based computation
and optimization include energy consumption, computation
latency or bandwidth utilization. In this section, we present
a brief overview of different computation offloading models
in mobile edge computing and a summary of some repre-
sentative works of each category. As illustrated in Figure 6,
the computation models are categorized into three classes.
A similar classification of computation offloading in MEC
networks can be found in [21].

1) SINGLE USER SYSTEMS

This is the simplest computation offloading model that con-
sists of a single edge server and a single user. Although
real networks always have multiple users, the purpose of the
model is to simplify the computation offloading decision by
considering the task of every single user independently. The
model decides whether a particular task of a user should be
computed locally at the device or offloaded to the edge server.
The model can be sub-classified as (i) binary offloading and
(i) partial offloading.

If the whole task is computed locally or offloaded wholly
to the edge, this is referred as “binary offloading”. In con-
trast, when a user device computes a part of the task locally
whereas offload the remaining part to the edge, the model is
referred as partial offloading. Examples of binary offloading
include [93], [94], [95]. In [93], authors investigate the simple
case of single user to analyze computation offloading while
minimizing the energy consumption at the mobile device
under a computational rate constraint. The model considers
various parameters including device’s and server computa-
tional power and the communication bandwidth to take the
offloading decision. A task is offloaded to server if the energy
consumption by the user device for offloading the task is less
than the energy needed for local computation. The energy
consumption is studied as a function of distance between the
device and edge server. The results show improved energy
performance at shorter distance which increases when the
distance increases. The delay in this work is considered as a
hard constraint. In [94], authors propose an alternate method
to solve the binary offloading decision to run mobile applica-
tion locally or at cloud server. The objective is similar to [93]
i.e., to minimize the device’s energy consumption, while
considering soft delay deadlines. The energy consumption in
this work is modeled as a function of CPU frequency:

£(f) = kf? (1)
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where, k is the switched capacitance (set to 10~!!) depending
on the processor chip architecture. To minimize the energy
in local computing mode, the CPU frequency is adjusted,
whereas in remote computing mode, the data transmission
rate is adjusted. A limitation of this work is that in local
mode, the energy consumption is reduced by reducing CPU
cycle frequency which means the application will run slowly,
which make it unsuitable for heavily intensive applications
with delay constraint. In [95], binary task offloading is
proposed to maximize the revenue of the service provider.
This paper does not focus on the QoS requirement of the
user/application. Other works on binary offloading can be
found in [96] and [97].

Partial offloading schemes in MEC systems have been
investigated in [98], [99], and [100]. In [98], authors proposed
a partial task offloading model in which a single task is
divided into sub-tasks and then each sub-tasks is either com-
puted locally or offloaded to the edge. The task offloading
depends upon the local computation resource available, the
communication channel capacity and the queue size in the
edge server. The offloading decision is optimized using a
greedy algorithm (called as Select Maximum Saved Energy
First (SMSEF) algorithm) to maximize the energy saving at
the mobile devices. However, this scheme does not minimize
the task completion delay, but only ensures that the delay
deadline is met. In [99], authors proposed a partial compu-
tation offloading scheme by jointly optimizing the compu-
tational speed, transmit power and the offloading ratio. The
study aims at minimizing both the energy consumption and
the computation time. The energy consumption is modeled
similar to Eq. 1. In [100], authors proposed a heuristic that
makes an online offloading decision on sequential tasks.
The algorithm aims to minimize the completion time of the
application. The task completion time for local and remote
execution is modeled as:

Execution time = “L”' Local

cention e = i+2%+%’j Remote
where, s; is the task size (as number of instruction), u,, and
e are the CPU capacity of mobile device and the edge server
respectively, and R is the data rate of the wireless channel.
Other works on partial offloading can be found in [101],
[102], [103], and [104].

Binary offloading is preferred for problems involving sim-
ilar tasks and in which user device has strong channel condi-
tions to the base station for fast computation. The benefits
are to reduce the overall latency reduction of the system
and energy saving at the user device. On the other hand,
partial offloading is a preferred model for problems involving
heterogeneous tasks, thus offloading computational intensive
portion of the task to the edge whereas perform the remaining
tasks locally. Similarly users can decide to offload tasks of
small transmission payload to the edge to reduce data loss.

The aforementioned two single user MEC models are
used when the task arrival process is deterministic. However,
in some cases, the task arrival is random i.e., tasks arrive
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at the processor queue at a random rate. In such a case,
the offloading decision is also dynamic and is referred to as
stochastic offloading. Stochastic offloading becomes a nec-
essary requirement in some problems e.g. if the random task
arrival rate is leading to buffer overflow, dynamic offload-
ing can help to avoid this by randomly offloading tasks to
the edge when the task arrival rate increases. Another use
case is to exploit the randomness of the wireless channel
to design channel-aware offloading schemes in which tasks
are offloaded only when the channel supports the required
communication delay. Example works on stochastic offload-
ing can be found in [105] and [106]. As compared to deter-
ministic task arrival rates, stochastic tasks arrival requires
more robust techniques to optimize the offloading decisions.
Authors in [105] use Q-learning to perform the offloading
such that the tasks are completed within the delay deadlines,
thus achieving the end-to-end reliability. Similarly, authors
in [106] studied the resource allocation problem in dynamic
scenarios. The objective is to reduce the unnecessary resource
allocation, maximize the QoE and minimize the network cost
to the content provider in a multi-edge servers environment.
The authors used several machine learning (ML) algorithms
(Long Short Term Memory (LSTM), Gated Recurrent Unit
(GRU), Convolutional Neural Network (CNN), MultiLayer
Perceptron (MLP) and XGboost) on synthetic datasets to
evaluate the effectiveness of each model. The use of ML
based techniques achieves better performance due to their
capability to accurately estimate the stochastic parameters in
real-world applications.

2) MULTI USER SYSTEMS

Multi users system refers to the computation model in which
multiple user devices share a single edge server. In such sys-
tems, computation offloading can be implemented in various
ways. For instance, the tasks offloaded by multiple users can
have different priorities, hence the server must schedule the
tasks computation according to the priorities of the tasks.
Similarly, different users have usually different channel con-
ditions and consequently support different data rates, hence a
“joint resource allocation” model which jointly optimizes the
offloading and radio resources is desired to improve system-
wide performance. Examples of joint optimization of radio
and offloading in multi users MEC systems are studied in
[107] and [108]. In such kind of problem, one of the parame-
ter is taken as a hard constraint, while optimizing over the
others. For instance, in [107] the mobile energy consump-
tion is minimized under average latency constraint, whereas
in [108] the weighted-sum of latency is minimized while
considering/satisfying the mobile devices’ energy consump-
tion requirements. The joint optimization over two parame-
ters does not preclude to consider other parameters such as
computational and storage resources.

As the edge server also provides caching facility to store
content, the joint optimization of caching and processing can
provide several benefits such as service provider revenue or
content retrieval latency and storage utilization. Joint caching
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and processing systems are studied in [91] and [92]. In joint
caching and processing, the objective is to find the optimal
location (i.e., edge/cloud servers) for storing and processing
the content. For instance in [91], authors consider jointly the
storage and processing resources to minimize the backhaul
network cost of serving all requests. This is done by jointly
determining the cache placement and processing scheduling
using Integer Linear Programming (ILP).

In multi user systems, when users offload tasks to the edge
server, the tasks may have different priorities. To meet the
QoS of such applications, the edge server may schedule these
tasks based on the latency requirements. Hence, latency sen-
sitive tasks are computed first, followed by latency-tolerant
tasks. Examples of server scheduling include [109], [110],
[111]. Authors in [109] proposed task scheduling based on
the energy saving opportunity. Thus, a device offloads the
task to the server when the offloading can achieve more
energy saving than local computing. However, the offloading
method in this work is binary and task splitting was not
investigated. In [110], authors propose the task scheduling
under strict delay requirement. The work proposes to use
dynamic voltage and frequency scaling (DVFS) technique for
local computing whereas adjusting transmission power for
remote computing (edge/cloud) to reduce energy consump-
tion in both modes. In [111], authors further investigated the
scheduling problem by jointly considering server scheduling
and video bitrate selection to improve the overall QoE and
fairness in resources allocation.

Unlike the cloud computing paradigm, in edge computing,
the edge servers have limited computation power. Further-
more, serving heterogeneous users requests becomes more
challenging when the server has limited resources. To over-
come the resource limitations, recently, MEC operations
have been investigated with device-to-device cooperation.
D2D-assisted MEC systems have been recently proposed in
[112],[113],[114], and [115]. In D2D-assisted MEC systems
improve system’s overall capacity in two ways. First, users
can exploit D2D cooperation to offload tasks to its neigh-
boring devices, instead of offloading to the resource limited
server. Secondly, MEC servers can itself offload computation
tasks to user devices.

3) MULTI SERVER SYSTEMS

Multi Server systems refer to the MEC systems consisting
of multiple and typically heterogeneous MEC servers. Multi
server systems offer several challenges. The first challenge in
multi-server system is the selection of server for offloading
computation. Different selection criteria can be considered
e.g. selecting closest server, selecting least loaded server,
selecting between cloud or edge server. For example, in [116],
authors proposed a scheme to select the closest server to min-
imize the resource allocation cost and maximize QoE. The
work used the FaceBook 2018 live video dataset to predict the
viewing patterns and automatically select the edge server to
minimize the startup delay. The work employs ML techniques
such as Multilayer-perceptron (MLP), Decision trees (DT)
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and Random Forest (RF). Similarly, in [117], authors propose
a load balancing and task allocation scheme using Particle
Swarm Optimization (PSO). The users select the edge server
based on multiple criteria i.e., current server load and distance
to the edge server.

Multi-server systems can benefit from the cooperation
among the servers. Servers can collaborate with each other
in several ways. For example, servers in a small geographical
area connected by single hop cooperate by offloading compu-
tation to each other. Similarly, edge servers can collaborate
with cloud servers, to compute delay-sensitive tasks locally
(at the edge server), whereas offload delay-tolerant tasks to
the cloud servers. Examples of edge-cloud cooperation are
[108], [118], and [119]. In [108], cloud-edge cooperation is
used to split tasks among edge and cloud to minimize the
latency. On the other hand, [118] proposes to schedule tasks
such that delay-sensitive tasks are processed at the nearest
resource-constraint edge server whereas delay-tolerant tasks
are offloaded to the remote resource abundant cloud servers.
Similarly, in [119], authors propose the cooperation among
multiple edge servers to share contents via backhaul links
when requested.

In multi server systems, a mobile user may move away
from one server and get closer to another MEC server. Con-
sequently, the network controller can optimize computation
in two ways: (i) by offloading computation to the new server
or (ii) performing computation on the origin server and then
forwarding the computation results to the new server. Exam-
ple works on computation migration are available in [120],
[121], and [122]. In [120], authors used Markov Decision
Problem (MDP) to formulate the computation migration in
multi-server environment. The migration decision is taken
considering the distance between the users to each server and
using two thresholds. The work is extended in [121] by jointly
considering the computation scheduling and computation
migration to minimize the average transmission energy and
reconfiguration cost. In [122], authors proposed to compute
the tasks locally or migrate computation to remote cloud
server such that the total energy consumption and latency is
minimized.

Table 4 provides a brief summary of representative
works on resource allocation schemes in edge computing.
In Section V, we provided a details review of the state-of-the-
art on resource management in video streaming applications.
A more exhaustive list of research contributions on resources
management in MEC in generic applications is provided
in [15] and [123].

D. LESSONS LEARNED AND CHALLENGES

Edge computing provides storage and computation resources
closer to the mobile devices i.e., at the base station. In the
caching process, content is pre-fetched and stored at the
edge server. As edge storage capacity is limited, older con-
tent need to be replaced when it is reaching the available
storage capacity. Content caching can be implemented in
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FIGURE 6. Computational offloading in mobile edge computing.

non-cooperative method such as in [124] and [125] or coop-
erative method [126], [127]. Cooperative caching methods
are more popular due to their system-wide performance
gains. The computation power of edge server is also lim-
ited and hence efficient resource allocation strategies are
required. In the simplest case (single user system), a mobile
device connected to an edge server can offload computa-
tionally intensive tasks to the edge whereas perform simpler
tasks locally. Alternatively, mobile devices can also offload
sub-tasks to the edge (i.e., partial offloading). In the case
of multi user systems, edge server can schedule offloaded
tasks according to the latency requirements of the user’s
applications.

Due to the high number of decision factors and the sys-
tem uncertainties, the resource allocation problem in mobile
edge networks becomes highly complex. More specifically,
to optimize the MEC resource utilization, multiple decisions
should be considered, including the caching, computing and
networking variables. The main metric related to the caching
is the hit ratio, whereas the metrics related to the computing
are the latency, the throughput, and the energy consumption.
On the other hand, the transmission latency, the data rate and
the QoE, should be taken into account while scheduling trans-
mission decisions. Resource allocation problems are typi-
cally addressed by formulating an optimization problem with
one or multiple objective functions using different system
constraints. The traditional techniques to solve such prob-
lems are included mainly under the umbrella of stochastic
and convex optimizations and game theory. However, these
approaches are very complex and time consuming and are
not adequate for online implementation. Recently, reinforce-
ment learning gained a lot of attention owing to its abil-
ity to solve resource allocation systems, particularly, those
with dynamic, large and complex problem spaces. RL-based
approaches are still in their infancy and further efforts need
to be conducted to examine their performance on MEC
networks.
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Further improvements can be achieved by considering
the users radio channel in the joint optimization scheme.
The joint optimization of edge resources can improve the
resource utilization to a certain level, however recently, D2D
collaboration has been proposed in edge computing sys-
tem, which enabled mobile devices to offload computations
to other resource-rich helper devices. Such types of D2D-
enabled MEC systems can boost the performance of the
system beyond the edge capacity limits.

IV. MOBILE EDGE COMPUTING - APPLICATIONS IN
VIDEO STREAMING

In the previous section, we discussed the detail overview of
mobile edge computing, its architecture and state-of-the-art
including caching and computation. However, it is important
to understand how MEC can help to improve the users’
video streaming experience and/or implement novel video
streaming applications and services. The primary benefit of
mobile edge computing in the video streaming is reducing
the end to end latency to enhance user quality of experience
by eliminating network lags, frames dropping and buffering.
However, in addition to latency reduction, MEC alleviate the
network congestion by running applications and performing
the processing tasks closer to the end users. As the MEC
servers are deployed at the base station (i.e. RAN), thus it
allows flexible and rapid deployment of new applications
and services for cellular customers. Similarly, as network
service providers can authorize trusted third parties, such as
application developers and content providers to deploy MEC-
based services.

This section outlines novel video streaming services in
which MEC can bring potential advantages. It is evident
from the previous discussion in Section III that MEC helps
improve video streaming via optimal caching of contents
at the network edge and provide computing resources for
faster processing. However, how these inherited advantages
of MEC benefit video streaming? What are the scenarios

120525



IEEE Access

M. A. Khan et al.: Survey on Mobile Edge Computing for Video Streaming: Opportunities and Challenges

TABLE 4. Computational offloading schemes in mobile edge computing.

Category ‘ Ref ‘ Description Evaluation Metrics Method/Algorithm
(93] Transmission energy minimization under computation deadline. Delay, Energy Convex programming
Binary S . . - . . .
Offloading (94] Minimize energy consumption with a soft real-time requirement. Delay, Energy Convex Programming
[95] A binary offloading model to maximize profit to video service provider. | N/A MAB
Schedqle offloading tgsk§ from multlpl.e mobile nodes. to a single MEC Energy SMSEF
[98] | server in order to maximize energy savings of all mobile nodes.
Partial Offloading [99] Task-input data is divided for local and remote execution. Energy, Latency uni-variate search
[100] Load balancing between mobile and edge servers to minimize latency. Latency Heuristic
[105] Reinforcement learning to proactive allocation resources to multiple. E2E Reliability Q-learning
Irmodng s dleaion ving P ien vt 000 | Ntk | ST GRUL NN
Offloading [106] g tme ! easting to p ’ MLP, XGboost
requests using a heuristic.
A scheduling algorithm that solves client to edge mapping (load balanc- | Throughput, —Buffer Heuristic
[111]| ing) and per client bit rate selection problems. delay, Fairness
Server . . . . . . Nested interval algo-
Scheduling [109] Scheduling uplink and downlink transmissions using queuing theory. Energy rithm
Tasks Ofﬂoa(_img selection using clock frequency and transmission Energy, Delay DVES
[110] | power allocation.
Joint Radio and Jointly optimize communication and computational resources with Latenc Convex optimization
Processing [108] | tasks splitting between edge and cloud. y P
[107] Joint allocation of computation and radio resources. Power consumption Convex optimization
Jointly optimize caching and transcoding resources to minimize the Network cost ILP
[91] backhaul network cost.
Joint Caching and Collaborative offloading and caching scheme using Lyapunov optimiza- Throughput, Playout Theoretical architec-
. - N . . delay, Buffer length,
Processing [92] | tion to minimize the overall latency of all mobile devices. . . ture
Rebuffering duration
. Balance work load among edge nodes by considering edge computing .
Server Selection [117]| capability, existing work load and distance among edge server and user. Service delay PSO
Proactively allocate resources by predicting the number of viewers ina | Viewers’ QoE, Net-
. - . . MLP, DT, RF
[116] | cloud site and then serving viewers by their closest server. work cost
edge servers in a sing-hop clusters cooperate to cache and transcode | Network cost, delay, ILP
[119]| contents. cache hit ratio
Server Coopera- Jointly optimize communication and computational resources with Dela Convex optimization
tion [108] | tasks splitting between edge and cloud. y P
[118] Edge/cloud selection to meet deadline requirements. Task completion Heuristic
Computation migration based on distance threshold between user and
[120] | two servers using MDP. MDP Delay
Computation Mi- Jointly optimize computation scheduling and service migration to min- MDP Application queue
gration [121] | imize energy transmission and reconfiguration cost. length
Compute locally or offload to remote server such that total energy .
[122] | consumption and latency is minimized. Energy, Delay Mip

and novel services that can be realised using MEC? This
section provides an overview of the attractive applications of
MEC-based video streaming services. Figure 7 illustrates the
most attractive applications of MEC assisted video streaming,
whereas specific examples of each application category are
listed in Table 5.

A. CONTENT SEARCHING

The powerful computing capabilities of the edge server can
bring a more personalized search features which runs faster
than traditional approaches using cloud computing. Using
MEQC, locally available information at the edge servers about
user preferences, location, local events and incidents can help
improve user search experience [17], [128]. For instance,
users in a specific area when search for a local event or
incidents, the content searching can be optimized based on
the other local users’ search history and selections data saved
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at the local MEC server. This kind of localised content search-
ing is only possible using MEC servers deployed in users’
proximity.

B. CONTENT SUGGESTION

MEUC offers the computational capabilities to process the data
related to user preferences and activities. When such pro-
cessing is done faster, the user can be served with appealing
content in real time that ultimately enhancing user streaming
experience [128]. The kind of location specific content sug-
gestions is based on the search history of other local users,
which is saved in the edge caches.

C. TARGETED ADVERTISEMENT

When powerful computations are applied to user’s prefer-
ence data, the usually unwanted advertisements that inter-
rupt streaming videos can be tailored to the user’s interest.
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FIGURE 7. MEC use cases in video streaming applications.

Advertisement agencies can benefit from the user search pref-
erences, search history, previous purchase history, locations
visited with timing information etc., to send highly targeted
advertisements [129]. As an example, a user at a shopping
mall would be probably buying some goods whereas another
user at a hospital would be interested in a healthcare product.
MEC thus allows location-based service recommendations
tightly coupled with a specific place. Particularly, information
of radio node to which user terminals is connected is available
at MEC server that can be used to get location information
of users especially when users are connected to an indoor
small cell. Then an inference engine deployed at the MEC
server can determine proper services and sends the related
advertisements for the user at the moment.

D. INTERACTIVE VIDEO EXPERIENCE

Users would always enjoy interacting with live videos e.g.
displaying the statistics of a baseball game being streamed,
pulling the filmography of an actor as he appears in a scene.
Such user interaction always requires a level of immedi-
acy which can be made possible using the high compu-
tation power of the edge servers available with minimum
latency [130].

E. VIDEO ANALYTICS

Surveillance and video analytics to detect accidents are
included under the umbrella of live video streaming. More
specifically, in surveillance applications, the aim is to mon-
itor a specific area and identify potential threats within the
target region. Some of the area are very critical and need
24/7 surveillance such as military borders, oil/gas off-shores,
and forests exposed to potential fires. The video frames (or
video streaming) are sent instantaneously to remote servers
for real-time object/accident detection using Al for example.
The traditional wisdom resorts to cloud or servers to compute
these heavy tasks. However, video streaming destined for

VOLUME 10, 2022

TABLE 5. MEC applications in video streaming.

Content Searching

Faster content search with user’s search his-
tory cached and updated over time.

Faster search

Personalised . .
Personalized search based on user’s location

search .
(e.g. supermarket, office, stadium)
Content Suggestions

Use case 1 Personalized content suggestion based on
user preferences.

Use case 2 Improved content suggestions over time
when user preferences changes.

Use case 3 Content suggestions based on local/regional
events.

Targeted Advertisements

Use case 1 Highly targeted advertisements based on
user’s interests.

Use case 2 Targeted advertisements based on user’s pre-

viously visited shopping locations with tim-
ing information.

Interactive Videos

Live Sports Display Live statistics of a match

Filmography Pulling filmography of an actor appearing in
ascene

Retail/E- Allowing users to click on objects inside

commerce

video to see details or buy.

Education/Trainings Allow users to ask questions, submit an-
swers, fill surveys

Video Analytics

object detection, motion tracking, facial
recognition, gesture recognition , activity
recognition, head counting

detecting banned videos, parental control,
illegal videos

Surveillance

Content detection

QoE . .

Measurement KPI calculation for encrypted streaming
videos

Realtime . . .

Assistance Detecting (?bstacles using videos captured by
stereoscopic camera

VR and AR ‘

Retail Try items using AR/VR reality without phys-
ically trying things

Gaming Pokémon GO is a popular example.

Education/Trainings Wearable cognitive assistance

Tourism Try items using AR/VR reality without phys-
ical try things

Healthcare AR enabled minimal invasive surgeries

Industry/safety Building Digital maps and digital twin

detection and surveillance do not tolerate high latency, such
as forest fire detection that needs immediate intervention.
Furthermore, used cameras are sending high-resolution video
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frames to cloud servers and knowing that incidents are rarely
occurring, the large data volume transmitted by source units
has become problematic, particularly for systems that do not
have stable bandwidth availability. Because of this tremen-
dous amount of data, video analytics should be done at the
edge of the network.

The huge amount of videos generated by mobile users,
social media, IoT devices, scientific apparatus, satellites,
and video surveillance cameras is being processed by mod-
ern computer vision techniques powered with Al. The pro-
cessing can be done on-camera, which requires expensive
Al-powered chips. Alternatively, to process these videos on
cloud, longer delays occur as previously described (approx-
imately 150 to 200 milliseconds). Edge computing offers a
good trade-off by eliminating the need for on-camera pro-
cessing to reduce cost and processing videos locally reduces
delay (around 10 milliseconds). Reduced delay allows for
quick detection and faster response which is required in many
applications.

Video streaming analytic has a broad range of applications
such as head counting in live streaming videos, suspicious
activity detection, correlations in different video streams,
combining real time information with historical context and
search and rescue in live videos captured using drones. All
these use cases require low latency (sometimes ultra low
latency) analysis of streaming videos, thus motivates for
using edge computing. Representative works in video ana-
lytics can be found in [131], [132], [133], [134], [135], [136],
and [137].

F. VIRTUAL REALITY (VR) AND AUGMENTED REALITY (AR)
VR and AR are two emerging technologies that connect
the physical and digital worlds. While there is a distinction
between both,! both uses streaming videos to enrich user
experience. There are a range of attractive use cases of both
technologies such as games, entertainment, training, educa-
tion and scientific areas [138]. A list of games using VR/AR
technologies can be found in [139].

Recently many commercialized smart applications [140]
are proposing to create a virtual avatar of the user, that allows
to try the clothes virtually. More specifically, the user is able
see his/her reflection on the screen as if he/she is looking to a
mirror, where the virtual clothes are blended with the scene.
This process is called blended-reality. The application users
can see themselves moving, turning around, and walking
while being dressed with the chosen items. The users can
also see, in 360°, how the item looks like on them and if
the size is appropriate. In the same context, Amazon has
published a patent [141] of its partially reflective intelligent
mirror, where virtual clothes and real scenes are transmit-
ted through the mirror to generate a blended-reality client

TAR overlay digital elements such as visual content and information on
your real world view, whereas VR implies a complete immersion experience,
allowing users to experience things and places that actually do not exist there
in the user’s environment. Mixed Reality (MR) refers to combining VR and
AR technologies for a richer user experience.

120528

able to see himself/herself wearing new items. This type of
application, called interactive application, uses virtual reality
streaming that is extremely intolerant to delay variance or
image freezing, as the user wants to see his/her avatar without
any motion sickness affecting the quality of experience. For
this reasons, the cloud wisdom to blend the streamed video
is no longer sustainable of such real-time applications and
sending data to remote severs may not satisfy the latency
requirements.

MEC can be used to improve VR/AR applications for sev-
eral benefits such as latency reduction [142], [143], efficient
resource utilization using device-MEC collaboration [142],
improved throughput [142], and reducing the backhaul traffic
load [144].

G. LESSONS LEARNED AND CHALLENGES

Mobile edge computing can help improve video stream-
ing services by providing proximal caching and computa-
tional resources for transcoding the videos. In addition, faster
edge-based processing of videos, a number of benefits can be
achieved such as faster content searching and personalized
suggestions, targeted advertisements, real-time user inter-
action with videos, video analytics for surveillance, object
detection and real-time assistance, and virtual reality applica-
tions such as gaming, retail, healthcare and industrial safety.
It is widely believed that 5G networks fall short of meeting
the unprecedented requirements of data-intensive and delay-
sensitive applications such as autonomous vehicles, remote
surgeries etc., thus leaving room for acceptance of edge-
based solutions. The future 6G networks further mandates
the use of edge intelligence in a variety of network functions
and services. However, the success of MEC-based solution
heavily rely upon the edge infrastructure deployment. MEC
deployment will incrementally progress in a way to support
as new network services are introduced. As will be explored
further in the subsequent section, MEC deployment consid-
erations include revenue as an important factor in addition to
the QoS metrics (e.g., delay, storage, throughput, energy etc.).

V. STATE-OF-THE-ART IN MEC-BASED VIDEO
STREAMING

In the previous section, we discussed MEC-assisted video
streaming applications and services. However, to implement
these services in real-world applications, providing caching
and computing resources along the network edge is not suffi-
cient. Indeed, it involves various challenges such as efficient
caching strategies, optimal resource allocation, cooperation
among network entities, and tasks/requests scheduling, etc,
to realise the full range of these applications. There have
been a huge amount of research efforts contributed to cope
with these challenges. This section focuses on covering
these research works to solve the aforementioned problems.
We have dedicated separate sections for the works involv-
ing device-to-device (D2D) cooperation (in Section VI) and
machine learning (in Section VII).

VOLUME 10, 2022



M. A. Khan et al.: Survey on Mobile Edge Computing for Video Streaming: Opportunities and Challenges

IEEE Access

E Traditional
[ based on past popularity

i and requests.
\

Caching E Human Behavior-aware
in Video Streaming ' based on predicted popularity
and requests.

v
~

i Cooperative
— based on cooperation among

FIGURE 8. Caching techniques in video streaming.

A. CONTENT CACHING AT EDGE

As discussed earlier, MEC offers proximal storage at the
edge server that significantly reduces the delay to retrieve
content and alleviate the congestion and bandwidth usage for
network operators, resulting in overall improved performance
and QoS in several services [131]. However an edge server
has limited storage as compared to cloud servers to store
large-sized video content, hence caching schemes need to
be optimized for efficient allocation of storage resources to
end users. In the following, we present research contributions
aiming at edge caching optimization.

One of the key parameters that influences the content
retrieval latency and the traffic transmitted over the network
is the distance between the end-user and the remote servers.
In this context, caching the video content in MEC servers
is a promising solution that enhances the bandwidth effi-
ciency and reduces the latency to serve viewers. However,
the edge servers are characterized by their limited capacities
in terms of storage. On the other hand, we are witness-
ing an explosion of newly published video streaming. For
example, in 2020, users have been uploading to Youtube
around 500 hours of videos every minute [145]. Therefore,
edge caching should be performed wisely. Several approaches
responsible for scheduling the content caching and removal
have been proposed in the literature. These approaches can
be classified into two groups, namely traditional schemes and
popularity/human behavior- aware strategies.

1) TRADITIONAL CACHING SCHEMES

The traditional schemes assume that each video has a pop-
ularity assessed by the number of views and this popularity
remains stable, even after passing the trend. Several policies
are proposed in this context:

e Most Popular Videos (MPV): This technique was orig-
inally used by Hulu [146] for content caching. MPV is
a proactive caching policy that caches the content based
on the nation-wide content popularity. The shortcoming
of MPV is that the cache is not updated based on the
user requests or viewing patterns. MPV is suitable for
large caches such as Internet CDN to achieve a high hit
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ratio but performs poorly on edge caching due to the fact
that the local request by users may be different than the
nation-wide distribution.

o Least Recently Used (LRU): This conventional caching
scheme can be considered as a baseline that has been
used for a long time in networking systems. LRU stores
the time of the last access of each content and when the
memory capacity of the server is insufficient, it replaces
the most idle video that was not requested for a long
time, by a new content. The problem of LRU is that it
gives priority to some unpopular content just because
they were recently requested [147]. LRU has multiple
variants including the three Segmented Least Recently
(S3-LRU), which divides the cache into three segments
where the most requested videos are stored in the high-
est segments and least requested are saved in the last
segment. If a new content is requested, it is placed in
the head of the list while removing the tail of the last
segment. If it already exists in the cache, it is considered
as the least recently requested and all the others are
shifted downwards [148].

o Least Frequently Used (LFU): This caching strategy
relies on the number of requests per video to judge the
popularity of content. In this way, the content with the
lowest number of requests is evicted to create a room
for the new published video. However, LFU suffers from
gradual performance degradation as videos with histor-
ical high number of requests can remain a long time
in the cache even if they are no longer accessed [149].
This problem is solved by defining a time window for
observing the frequency of requests as done in the Jump-
ing Window Least Frequently Used (JW-LFU) and the
Sliding Window Least Frequently Used (SW-LFU).

o First In First Out (FIFO): This scheme caches the videos
according to the order of their first request. It means
when a new video is requested for the first time, it occu-
pies the head of the list. The FIFO was later combined
with LFU (FIFO-LFU) to take into consideration the
popularity of the content [150].

o Least Recently Frequency Used (LRFU): This caching
approach takes into consideration both frequency of
requests and recentness, as adopted in [151].

The aforementioned traditional caching schemes are
widely used in edge computing owing to their low complexity
and simplicity of deployment. However, these approaches
ignored the dynamic of viewers, and their preferences and
behaviors. Therefore, due to the limitation of edge band-
width and memory, better caching schemes that take into
consideration the viewership and their capacities and make
videos available at peak hours beforehand using prediction
techniques should be designed.

2) HUMAN BEHAVIOR-AWARE STRATEGIES
This type of strategies is based on popularity prediction and
the learning of the viewers’ preferences through either Al
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FIGURE 9. Popularity prediction features.

or mathematical studies. However, prediction techniques can
add latency overheads and computational costs to ensure
satisfactory performance and take accurate caching decisions.
Therefore, the designed algorithm should be quick, provide
accurate decisions, and scalable to handle high number of
requests and large library of content. Finally, the prediction
should be based on the preferences and behaviors of in-
proximity viewers. Specifically, the contextual and social
information, the content’ demands, the users’ interests, and
the geographical location of viewers should be the input of
the prediction model. These data is processed to get spatial,
temporal and social insights and identify the viewing pattern.
In this way, the designed caching strategy will be able to
predict the videos that will receive higher attention locally
or globally, and accordingly plan for content storage, repli-
cation, eviction and select the most adequate MEC server for
content storage. The input features can be classified into four
groups: static, temporal, cross-domain and social features as
we can see in Figure 9.

« Static features: refer to the parameters that are prepared
before publishing the content. These features include the
video characteristics that give hints about the quality of
the video such as the duration, publication date, video
and audio standard, music style, etc. The visual features
such as the images at each frame and the text features
such as the category, the title, the keywords, and the
description can contribute to increase the popularity of
the video and enhance its visibility in the search engines.

o Temporal features: refer to the data that change over
time such as the channel features including the number
of rates, views, subscribers, comments and shares for
different published videos and the video features such as
the video age, the watch time, and the subscribers gained
from this content. Additionally, the previous requests of
viewers can give insights about their future requests for
other content.

o Cross-domain features: refer to the external sources
such as the reputation of the content creator and the
propagation of the content via other social medias or
video platforms.

120530

« Social features: includes the relationship between users,
their followers and followees, and their social interaction
which can help to share and forward the content to more
viewers.

A wise selection of the features fed as an input to the
prediction model is very important to improve the accuracy,
reduce the complexity and computation time of the decisions,
and remove the redundancy of attributes. Next, we will dis-
cuss the popularity-aware MEC caching approaches that rely
on the described features. These approaches can be classified
into two groups: a single domain and cross-domain strategies.
The single domain covers the approaches trusting only the
features related to the video and its broadcasting platform
such as:

o Popularity evolution of a content: The high correlation
between the past popularity of a videos (e.g., number of
views, shares, and requests) can indicate its trend for the
future. In [125], two caching policies i.e., P-UPP and
R-UPP are proposed, which are based on the popularity
of content. In P-UPP (Proactive User Preference Profile)
scheme, videos that are Most Likely to be Requested
(MLR) by active users of the cell are pre-fetched. This
is different from the traditional scheme such as MPYV,
which accounts for the nation-wide popularity of the
video content. The local popularity of a video v; in a pool
of videos V is calculated using the equation:

(v
pOvij) = plv,((v)) @)
i=1 Vi

where the denominator of the equation represents the
probabilities of all videos in the category vc;. A draw-
back of this scheme is that if the cell is highly dynamic,
the users may leave or join frequently which will change
the MLR set of videos, thus increasing the computation.
To reduce the computation complexity caused by cell
dynamics, authors proposed to use a threshold value for
cache hit ratio to decide before pre-fetching/replacing
content. In R-UPP (Reactive User Preference Profile),
a video is fetched upon user request, however if the
cache is full, the video that is ““Least Likely Requested”
(LLR) is replaced. LLR is calculated using the probabil-
ity of requesting a video. In real-world, the demand of a
video content is always associated with the user behavior
i.e., it is the user preference that makes a video more
popular. Hence, caching schemes based on the user con-
text/behavior is proposed in [152]. The authors proposed
a smart caching scheme using knapsack problem to find
context-aware content popularity to maximise video hit
rate within a limited time. As the user preference may
change based on time and/or location, in [152], the
spatio-temporal context is constructed from the user’s
access time and spatial characteristics to mimic video
popularity. In [153], a collaborative online caching algo-
rithm is proposed that minimizes the sum of User Attri-
tion (UA) cost and caching cost for each content. The
problem is formulated as Integer Linear Program (ILP).
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In the online settings, the user requests are revealed
one by one to the edge server and the server should
take decision before next request to provide the content
from local cache (if available), or fetch from neighboring
edge servers or from the origin server. Authors in [154]
proposed Proactive Cache Policy (PcP) i.e., a popularity-
aware proactive video chunks caching based on chunk
popularity instead of the whole video popularity. This
is particularly useful as normally the users would not
watch the whole video but rather watches the first few
chunks. Hence, this work proposes to cache the popular
chunks rather than the entire video of long duration.

o Metadata of the content: Some videos are newly pub-
lished and has not indication about the past. Hence,
the content data such as subscribers, title, and frames
can be considered to predict the popularity. Authors
in [148] proposed an online caching strategy that uses
the mixed-integer linear program (MILP) to load the
MEC cache with most popular videos during the valley
hours, based on the content metadata such as keywords
and description. Authors in [155] designed a deep learn-
ing approach that handles the popularity of new pub-
lished videos. The input data of the model are extracted
from the video raw data. Then, the popularity is defined
by studying the similarity of the extracted features to the
old videos.

e Social dynamics: the interaction between users (e.g.,
friendship, likes, and shares) are very insightful for the
watching trend of videos within a small edge area. The
authors in [156] used the susceptible-infected-recovery
(SIR) model to study the social propagation of videos.
More specifically, the SIR model defines three states:
susceptible, informed and refractory. In the first state,
the viewers are notified of the new published content.
During the informed state, the users discover the video
and decide whether to share it to the followers or not.
If the content is shared, more viewers can see it, if not
the initial user is considered in refractory state. The
popularity of a video can be examined through the prob-
ability to spread the content, which is also called social
connections.

The cross-domain prediction models use features from
external sources (e.g., attractiveness of the video on other
sources) to increase the accuracy of the decision. In [157],
authors improve the popularity-aware video caching by
jointly considering the popularity and attractiveness of the
video stream. The authors argue that despite the high popu-
larity of the videos, user may decide to finish the videos after
a short duration of viewing (i.e 15 seconds). This duration is
known as retention rate. Thus, simple heuristic algorithm is
developed to cache videos with high popularity as well as low
retention rates.

3) COOPERATIVE CONTENT CACHING
In cooperative caching, multiple MEC servers collabo-
rate with each other to serve the network-wide users’
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requests. Thus, a single MEC does not need to cache all
videos. In fact, different MECs serve the requested videos
to any user in the network to minimize the CDN cost and
access delay, while maximizing the cache hit ratio. Several
works propose cooperative caching in multi-server MEC
environment. For instance, in [119] authors proposed to
fetch content from neighboring servers using high rate X2
interfaces (instead of typically used S1 interface), when the
requested bitrate of the video is not locally available. The
scheme aims at improve bandwidth utilization of backhaul
links. Despite the fact that cooperative caching can help
to efficiently utilize the network resources, storing multiple
bit rates of the same video in overlapping regions is still a
challenge. Authors in [158] explain the trade-off between
caching for high bitrate videos and caching for diversity
videos. [158] propose an optimum caching algorithm to
store multi-bitrates of videos at the edge servers aiming at
maximising the user perceived QoE. The authors adopt the
proactive caching policy to update edge caches when the
systemisidle (i.e., least busy). Video content has huge storage
size that makes caching a large number of video files at the
edge server challenging; hence, efficient cache replacement
strategies are required. To cope with this problem, authors
in [159] proposed to improve the performance of mobile
video delivery through caching layered videos i.e., instead
of caching the entire videos at the edge server, only lay-
ers/descriptions of videos can be stored at the edge. Thus
when a user request is generated, the edge server can send
the cached layer to the users, while in the meanwhile the rest
of the video is fetched form the remote/origin server. Similar
to cooperation among MEC servers, network users can also
implement cooperative strategies to serve contents to each
other. A relevant study on users’ cooperation in vehicular
network is found in [160]. The work proposes a low-cost
video caching strategy for mobile devices for delay-tolerant
video applications and provided simulation evidences to
claim the efficacy. While caching most popular videos at
the edge servers significantly improves the performance
of video delivery system, there is still a tradeoff between
caching high bit rate videos versus caching high diversity
videos.

Video retrieval occurs too frequently as compared to cache
placement. Hence to enhance the efficiency of edge based
caching, the caching policy shall consider the two different
time scaled of cache placement and video retrieval. In [161],
authors proposed a caching policy that jointly considers the
long-term cache placement and short-term cache retrieval in
coordinated multi-server system to reduce service delay and
cache hit ratio. In [162], authors propose a hybrid caching
scheme by combining edge cache sponsoring (ECS) and
cellular data sponsoring (CDS). In CDS, the content provider
serve free content to the user at the cost of playing adver-
tisements to generate revenue. The user is allowed to select
any scheme with the aim to achieve total maximum revenue
for both ECS and CDS via cooperation or for an individual
provider via competition.
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To avoid caching a large number of multiple bitrate ver-
sions of the same videos at the edge server, a single high
bitrate version of a videos is stored and then transcoded to
lower bitrate when lower bitrates are requested by users.
However, when the number of user requests increases, the
simultaneous transcoding tasks can exhaust edge computa-
tion resources. To efficiently uses caching and transcoding
resources at the edge server, authors in [163] proposed a
RAN-aware adaptive caching scheme, which employs net-
work information acquired from the RAN to estimate the
probability distribution of the user requests and uses it
to jointly decide video bitrate selection for caching and
transcoding. In [164], authors jointly optimize caching,
transcoding and retrieval in an energy efficient manner. The
probability of uncertain user requests is inferred via historical
data to propose a proactive caching policy. The work proposes
that edge server can use backhaul links to retrieve requested
but not locally available from other neighboring servers.

Few works consider financial metrics (e.g., revenue etc) to
design cooperative caching schemes. For instance, in [153],
acollaborative online caching algorithm is proposed that min-
imizes the sum of User Attrition (UA) cost and caching cost
for each content. The problem is formulated as Integer Linear
Program (ILP). In the online settings, the user requests are
revealed one by one to the edge server and the server should
take decision before next request to provide the content from
local cache (if available), or fetch from neighboring edge
servers or from the origin server.

B. EDGE-BASED PROCESSING

Cloud computing has been preferred for computational exten-
sive tasks. However, it has several shortcomings in addition to
the common issue i.e., delay constraints as discussed earlier.
First, when transcoding a video stream at cloud, multiple
versions are created. The number of such transcoded bit rate
versions increases the traffic traversing the core network.
Second, the cloud-based transcoding strategy is usually fixed
and does not adapt to the dynamic changes in viewership.
Hence, edge-based processing of video content improves the
network resources utilization by sending only the higher bit
rate version to the edge server and then the edge server
transcodes videos locally as per local viewership. However,
edge servers have limited computational resources as dis-
cussed earlier and hence must optimize computational tasks
to improve the system’s capacity. This section presents an
overview of research efforts in MEC based video content
processing.

1) JOINT CACHING AND PROCESSING

The edge server provides caching and computation resources
in close proximity to the end devices. In video stream-
ing applications, mobile devices may need to utilize both
resources i.e., fetching cached video content from the edge
server and offload computation tasks such as video transcod-
ing to the edge server. For efficient utilization of both
resources, the joint optimization of caching and processing
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functions can improve the network performance to achieve
several benefits. In this section, we provide research efforts
on joint optimization of caching and processing resource
allocation.

The collaboration among multiple MEC servers connected
via backhaul links is proposed in [91], i.e., for each new video
request, servers collaborate with each other to jointly cache
and transcode videos for each other. The idea is that any MEC
server in the delivery path (from video origin) to the home
MEC server of the requesting user can transcode the video.
A major benefit of this scheme is that a server does not need
to cache different bitrate versions of the same video, enabling
efficient storage across the edge network. Multi-MEC coop-
eration allows to efficiently utilize overall edge resources
in a network. To improve the utilization of a single edge
server’s resources, end-devices must cooperate to access edge
servers. One way to achieve this is efficient scheduling of
tasks at the edge server. In [165], authors propose an optimal
scheduling strategy for video streaming in best-effort HTTP
DASH-based video delivery, leveraging joint coordination
among mobile users. Example of joint caching and processing
using edge-device cooperation is in [166]. In this work, the
authors investigated edge-based processing in VR applica-
tion. While the VR devices cache most of the components
locally, the MEC delivers the components not cached at the
VR device. The components are cached and processed at the
edge server to reduce computation delay. In order to cope with
high communication delay of the component delivery, a task
scheduling strategy is proposed. Joint caching and processing
has a great significance in adaptive video streaming in which
the video bit rate is automatically adjusted (or selected) based
on the user device capability (e.g., channel, buffers capac-
ity etc). Instead of storing all possible bit rates of a video,
MEC servers decides which bit rates of a popular video are
stored and which bit rates are to be generated upon request.
For instance, authors in [167] proposed joint caching and
processing to implement adaptive bitrate video streaming by
formulating it as integer linear program to minimize the the
latency of video retrieval. The authors used ML technique to
find the video popularity for caching. As caching large num-
ber of videos incurs storage cost, caching/processing decision
also involves revenue as an important consideration. As a
example. authors in [95] studied edge based joint caching and
processing to maximise the profit to video service providers.
The joint scheme is formulated as a binary optimization prob-
lem and solved using multi-armed bandits (MAB) problem
and the cache is updated in real time as per users requests.
Another interesting approach to solve the joint caching and
processing problem is to use a more direct and realistic metric
such as the “number of user requests’”. The work in [168]
addressed this issue by proposing a joint caching and pro-
cessing scheme which aims at the maximising the number of
service requests that can be served by each base station using
a Stackelberg game. The edge server predicts the requests of
each BS’s users and defines the caching/computing price that
maximises its utility. The BS then compete with each other
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to maximise the availed resources from the MEC at fixed
price. A similar approach to [168] is proposed in [169] with
additionally considering the user association. The problem is
formulated as a mixed integer programming (MIP) to mini-
mize the video retrieval latency in ultra dense heterogeneous
networks.

In [170], authors propose a joint video caching and
transcoding for VoD streaming called as ‘““proactive caching
and chunk processing (PCCP)”. First video chunks of popu-
lar videos based on the user viewing patterns are proactively
fetched and stored in neighboring edge servers such that none
are replicated. When user requests a video, the respective
chunks corresponding to the same video are collected from
the neighboring servers and served to the user. A similar
approach is used in [119] to fetch only high bitrate versions
of a video from the origin/CDN server and transocode to
lower bitrate versions at the edge servers. Different edge
servers in the neighborhood can collaborate to transcode
and share videos with each other via X2 backhaul inter-
face. In [171], authors propose a joint caching and offload-
ing scheme to offload duplicate computation tasks and the
requested data content to the edge servers. By jointly opti-
mizing the caching and offloading decision, the scheme min-
imizes the latency while satisfying the energy consumption
of mobile devices. The work uses genetic algorithm to imple-
ment an online-learning without requiring future information.

2) JOINT RADIO, CACHING AND PROCESSING

Resource allocation in edge computing can be further
improved by considering the user’s wireless channel quality
in the resource allocation problem. Several works propose
the joint optimization of the edge resource allocation and
the user’s communication resources to meet the QoS require-
ment. Some representative works are listed [137], [172],
[173], [174], [175], [176].

In [172], authors proposed a joint radio, caching and
processing scheme for MEC-assisted VR applications. The
edge server proactively caches some parts of the videos and
process these videos. The caching and processing resource
allocation at the edge is jointly optimized with the transmis-
sion rate constraint of end VR devices to maximize aver-
age delay, while guaranteeing transmission rates, cache size,
energy consumption and front-haul capacity. In [173], MEC-
assisted VR delivery is proposed in which some parts of the
videos are cached at the edge whereas others are stored at
the VR device. The algorithm jointly optimize caching and
computing resources to determine the parts of videos (more
specifically called Field of Views or FOVs) to be cached and
processed at the mobile device and which ones to offload to
the edge server under three constraints (i.e., cache size, power
consumption and latency). Due to the more dynamic and
complex nature of the problem, advanced techniques based
on DL are being proposed. For instance, in [174], the joint
caching, transcoding and transmission of videos is formulated
as Markov Decision Process (MDP) and solved using Deep
Reinforcement Learning (DRL) to improve user experience
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in adaptive video streaming. In [175], authors consider joint
optimization of caching, processing and radio resources to
maximize system revenue. In [176], authors propose video
caching and transcoding scheme in heterogeneous virtual
MEC networks. The scheme jointly optimize caching and
transcoding with the network radio conditions during the
cache placement and delivery phase respectively. In [137],
authors propose to perform the pre-processing of the videos
at edge servers using a lightweight Deep Neural Network
(DNN) model, and upload the results to cloud nodes for fur-
ther analysis to produce a complete video analytic solution.
The aforementioned state-of-the-art discussed in this section
is summarized in Table 6.

C. LESSONS LEARNED AND CHALLENGES

The main objective of deploying video streaming applications
in the mobile edge networks is to minimize the perceived
delay, the network cost and the energy consumption, and
to maximize different resources utilities (e.g., computation,
memory, and bandwidth) and the users’ QoE. Hence, most of
the recent works in the literature focus on establishing a joint
optimization to balance different purposes. The MEC strate-
gies are classified into centralized and collaborative video
caching and processing. The centralized approach relies typ-
ically on a base station or eNodeB to deploy different tasks.
In general, this strategy is simpler and the optimal resource
decisions are less complex. On the other hand, the joint strate-
gies involve multiple MEC entities that collaborate to offload
the streams, while respecting the objective constraints.

More specifically, when the users’ demand increases, MEC
servers can collaborate to serve content to its neighboring
servers. The collaboration among MEC servers becomes
essential when storing all requested video content locally is
not possible due to limited storage capacity. Typically, the
caching and processing of content is considered as a joint
problem in various works to improve the overall network per-
formance. Moreover, due to its strong impact on the offload-
ing capability, the channel quality is also considered in the
joint optimization problem. In this context, previous works
proved that the optimal solution is NP-hard and approxima-
tion algorithms have to be designed.

Due to the large size of videos and increasing use of video-
based services, traditional cloud-based caching schemes such
as MPV, LRU and LFU schemes are inefficient to meet the
network demand. MEC-based video caching can benefit from
machine learning to implement proactive content caching
at the network edge to reduce latency and improving the
utilization of limited caching capacity.

VI. DEVICE-TO-DEVICE (D2D) COOPERATION IN MEC
SYSTEMS

Over the last decade, a significant increase in the computa-
tional power in the end devices has been observed. These
resource-rich devices can collaborate with each other via
D2D communication to achieve network-wide performance
gains. In the MEC system, mobile devices can implement
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TABLE 6. State-of-the-art of MEC in video streaming.

Evaluation Metrics

Category Ref | Description of Contribution
Z
8
=T - I O
> | B | E °lg = =
182128352
[a] m o=t Z | O [~4 o
[146] Fetch Most Popular Videos (MPV) using nation-wide popularity. X X X | X | v | X | X
[153] Proactively fetch contents to reduce the sum of storage cost and user attrition cost. X X X | v | X X | X
Caching and
Proactive Caching based on popularity and retention rate of video streams to maximize their video bitrate. X X X | x| v | X | X
[157] 4 pop y
Content Fetching
[152] Smart caching based on user behavior to maximize the hit rate of contents within limited time. X X | vV | X | X | XX
[159] Cache layered videos for multiple user groups. Users in same group share caching cost. v X v X X X X
[131] Prefetch popular videos from YouTube using ML-based prediction. X X |\ V| X |V | X |V
Cache videos that serves the maximum users by estimating the requested qualities using RAN information. VX | v X | Vv |X]|X
[163]
(177 Edge caching strategy for vehicular networks in which video content is stored on the RSU and fetched by users. VX | VX Xx|x|X
[119] Prefetch highest bitrate version of the video from CDN server using X2 interface. VX | VIV X]|Xx]|X
[160] Prefetch video chunks into playout buffer from encountered vehicle caches/ stream from the cellular. X X X | X | X | X |V
[158] Solve the multiple bitrate video caching problem using polynomial complexity algorithm. X X X | x| X X | v
[161] Operators advertise contents to attract a mobile user to request cached contents instead of non-cached contents. X X X | x| x| v | X
Cooperative [62] Context-aware adaptive caching through network virtualization at the edge. X |V | X | X | X | x| X
Caching
[164] Jointly optimize caching of bitrate-aware files and the scheduling requests to minimize energy consumption. X v v X X X X
1] Jointly optimize caching and transcoding resources using ILP to minimize the backhaul network cost. VX | VIV X ]| Xx]|X
[178] Cooperative caching when users’ preference is unknown and only the historical content demands. VX | v|Xx|X X | X
[179] Joint caching placement (long-term) and video retrieval (short-term) in coordinated multi-server system. v X v X X X X
[180] Using Q-learning, find the appropriate cache state to improve caching mechanism. X X X | x| X | x|V
[167] Joint collaborative caching and processing at multiple servers to minimize the delay of video retrieval. VX | vV X X | X
[170] Cache only the video chunks to be watched and collaboration among neighboring MECs to improve utilization. VX | VIV X]|Xx]|X
[181] A greedy collaborative caching strategy in heterogenous MEC network to minimize total delay of all users.. VX | vV | X | Xx]|X
Cooperative Edge nodes pre-process video data using DNN model and upload the results to cloud for further analysis. v X | X | X X | X
Procr;wing [137]
[182] Peer-offloading using perceptual parameters such as pausing frequency, watching percentage and bit rates. X X X X X v
[166] Reduce communication-resource consumption by using MEC to compute components not stored on VR device. X X X | vV | X | X | X
[165] Implement per-channel optimal service-aware resource allocation. X X X | X | X | X |V
[167] A method to decide (i) transcode locally or (ii) fetch from neighboring MEC or (iii) fetch from the origin server. v X v v X X X
95] A video caching and processing model that offers maximized profit to video service provider. X X X | x| x| v | X
Joint Caching 195
and Processing [183] A joint caching and transcoding scheduling strategy to minimize the energy consumption. X | v | X | X | X X | X
[168] BSs compete to maximise its revenue by maximising the request rate that can be served by the MEC server. X X X X X X v
[169] Minimizes the average retrieval latency of all users using proactively caching and user-BS association scheme. VX | vV X | XX
[170] Proactively cache video chunks likely to be watched instead of whole video content. VX | vV ]X X | X
[19] Online bit rate conversion to the requested version of videos fetched from the origin/CDN servers. VX | VIV X ]| Xx]|X
071] Joint task offloading and dynamic caching strategy to reduce overall latency of all mobile devices. VIV X | x| X | X | X
[184] Joint optimization of caching and transcoding for resource allocation in DASH. X X v X v X v
(1721 To maximize the average tolerant delay while meeting the rate constraint in VR devices. VX | X x| x| x|X
[173] To decide whether to pre-cache (and if yes, which) parts of the field of views (FOVs), with local pre-processing. X X X | vV | X | X | X
Jg;?ﬁ;:zd:s& [174] Jointly considers buffers, video quality, edge caching, transcoding and transmission for energy saving and QoE. X | v | X | X | X X | X
Processing Jointly optimize the caching, radio and resource allocation to maximize the system revenue. X X X X X v X
[175] P! g y
[176] Joint multi-bitrate caching and transcoding by allocating physical and radio resources based on network stats. X X X | X | X | v | X
[185] Jointly considers transmission, coding, caching, and computation to meet delay requirement in mobile VR. v X X X X X X
Jointly optimize cachig, processing and transmission to reduce latency. v X X X X X X
[186] Y op! g, p g Y
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FIGURE 10. D2D cooperation in MEC systems.

D2D communication to achieve several benefits: First, to alle-
viate the computation load on the edge server, particularly
if the edge server has limited resources or high computation
load by offloading tasks to mobile devices. Second, devices
can collaborate to exploit and reduce communication latency
by exploiting the high speed D2D communication. Third, due
to the short range communication, the device’s energy con-
sumption can be significantly reduced. Fourth, the spectrum
utilization of cellular network can be multiplexed to improve
system’s overall capacity.

Both D2D and MEC systems aim to benefit from the prox-
imity of the devices to achieve performance gains. In D2D
networks, a device connects with another nearby device to
communicate at smaller distance and thus achieve high data
rates and less latency. In MEC systems, devices can ben-
efit from the closely located edge servers to fetch content
and offload computations thus achieving low latency and
computational gains. Thus, the integration of both systems
will intuitively allow network users to benefit from both
technologies in a range of applications. Figure 10 illustrates
D2D oftloading in MEC systems.

A. RELEVANT WORKS

D2D communication has been used in wireless networks to
gain several benefits such as energy saving, less bandwidth
utilization and enhanced quality of experience [187], [188],
[189]. For instance, [187] proposes a generic framework for
D2D communication to improve video quality and reduce
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energy consumption and bandwidth utilization. In [189],
authors propose Wi-Fi Direct based D2D scheme to scale the
network size and increase throughput.

Recently, D2D-enabled MEC systems have been pro-
posed [112], [114], [190], [191], [192], [193], [194], [195],
[196], [197]. In D2D-enabled MEC systems, mobile devices
can not only exploit the communication resources over
D2D links but they can also benefit from the computational
resources of under-utilized devices. Every D2D enabled
device in the network is a computational resource and thus
can aid to improve the overall computational capability of
the system by realising cooperation among devices and edge
server. Such kind of D2D-MEC cooperation can be extremely
useful.

Several works have recently proposed the integration
of D2D communication in MEC systems to achieve
performance gains. In [190], authors proposed that D2D
communication can be used by mobile users to find alter-
native resources when accessing the cloud server encoun-
ters long delays due to intermittent wireless connectivity.
D2D-fogging is proposed in [112], a concept similar to
standard edge computing architecture with D2D communi-
cation enabled among user devices. The D2D devices collab-
orate with each other to share their computation resources
controlled by the base station (associated edge server).
The tasks are offloaded online, aiming at minimizing the
time-average energy consumption. In [193] authors pro-
posed a D2D-ECN (Edge Computing Network) framework
for computation offloading. Using D2D-ECN, computation
intensive devices can offload tasks to resource rich devices.
Q-learning has been used to perform optimal resource alloca-
tion in a point-to-point offloading system. In [113], authors
proposed D2D-MEC system in which devices offload their
computation to nearby idle devices (helpers). The task
offloading is jointly optimized with communication and
energy beamforming to maximize the sum-computation rates
of users. In [192] authors used D2D communication in
MEC system to maximize the number of devices supported
by the system with communication and computation con-
straints. A mixed integer programming (MIP) formulation is
presented for the D2D-MEC system and solved by decom-
posing the MIP problem into two sub problem. The simu-
lation results reveal significance of the proposed D2D-MEC
system in cellular networks. In [114], authors highlighted
the use of D2D collaboration in MEC system to improve
the overall system capacity. Computing in D2D network is
more complicated when it comes to resource and topology
management. The work in [198] presents resource manage-
ment in D2D-MEC system such as link selection and sub-
channel allocation, transmit beamforming, transmit power
and receiver combiner.

In [56], authors investigated experimentally the feasibil-
ity of video transcoding at the user devices. The authors
transcoded videos of short duration on mobile phones to
measure the transcoding time. In [192], authors propose a
D2D-ME