100 research outputs found

    Wireless Information and Energy Transfer for Two-Hop Non-Regenerative MIMO-OFDM Relay Networks

    Full text link
    This paper investigates the simultaneous wireless information and energy transfer for the non-regenerative multipleinput multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) relaying system. By considering two practical receiver architectures, we present two protocols, time switchingbased relaying (TSR) and power splitting-based relaying (PSR). To explore the system performance limit, we formulate two optimization problems to maximize the end-to-end achievable information rate with the full channel state information (CSI) assumption. Since both problems are non-convex and have no known solution method, we firstly derive some explicit results by theoretical analysis and then design effective algorithms for them. Numerical results show that the performances of both protocols are greatly affected by the relay position. Specifically, PSR and TSR show very different behaviors to the variation of relay position. The achievable information rate of PSR monotonically decreases when the relay moves from the source towards the destination, but for TSR, the performance is relatively worse when the relay is placed in the middle of the source and the destination. This is the first time to observe such a phenomenon. In addition, it is also shown that PSR always outperforms TSR in such a MIMO-OFDM relaying system. Moreover, the effect of the number of antennas and the number of subcarriers are also discussed.Comment: 16 pages, 12 figures, to appear in IEEE Selected Areas in Communication

    Energy-efficiency for MISO-OFDMA based user-relay assisted cellular networks

    Get PDF
    The concept of improving energy-efficiency (EE) without sacrificing the service quality has become important nowadays. The combination of orthogonal frequency-division multiple-access (OFDMA) multi-antenna transmission technology and relaying is one of the key technologies to deliver the promise of reliable and high-data-rate coverage in the most cost-effective manner. In this paper, EE is studied for the downlink multiple-input single-output (MISO)-OFDMA based user-relay assisted cellular networks. EE maximization is formulated for decode and forward (DF) relaying scheme with the consideration of both transmit and circuit power consumption as well as the data rate requirements for the mobile users. The quality of-service (QoS)-constrained EE maximization, which is defined for multi-carrier, multi-user, multi-relay and multi-antenna networks, is a non-convex and combinatorial problem so it is hard to tackle. To solve this difficult problem, a radio resource management (RRM) algorithm that solves the subcarrier allocation, mode selection and power allocation separately is proposed. The efficiency of the proposed algorithm is demonstrated by numerical results for different system parameter

    Jointly Optimal Channel Pairing and Power Allocation for Multichannel Multihop Relaying

    Full text link
    We study the problem of channel pairing and power allocation in a multichannel multihop relay network to enhance the end-to-end data rate. Both amplify-and-forward (AF) and decode-and-forward (DF) relaying strategies are considered. Given fixed power allocation to the channels, we show that channel pairing over multiple hops can be decomposed into independent pairing problems at each relay, and a sorted-SNR channel pairing strategy is sum-rate optimal, where each relay pairs its incoming and outgoing channels by their SNR order. For the joint optimization of channel pairing and power allocation under both total and individual power constraints, we show that the problem can be decoupled into two subproblems solved separately. This separation principle is established by observing the equivalence between sorting SNRs and sorting channel gains in the jointly optimal solution. It significantly reduces the computational complexity in finding the jointly optimal solution. It follows that the channel pairing problem in joint optimization can be again decomposed into independent pairing problems at each relay based on sorted channel gains. The solution for optimizing power allocation for DF relaying is also provided, as well as an asymptotically optimal solution for AF relaying. Numerical results are provided to demonstrate substantial performance gain of the jointly optimal solution over some suboptimal alternatives. It is also observed that more gain is obtained from optimal channel pairing than optimal power allocation through judiciously exploiting the variation among multiple channels. Impact of the variation of channel gain, the number of channels, and the number of hops on the performance gain is also studied through numerical examples.Comment: 15 pages. IEEE Transactions on Signal Processin

    Jointly Optimal Channel and Power Assignment for Dual-Hop Multi-channel Multi-user Relaying

    Full text link
    We consider the problem of jointly optimizing channel pairing, channel-user assignment, and power allocation, to maximize the weighted sum-rate, in a single-relay cooperative system with multiple channels and multiple users. Common relaying strategies are considered, and transmission power constraints are imposed on both individual transmitters and the aggregate over all transmitters. The joint optimization problem naturally leads to a mixed-integer program. Despite the general expectation that such problems are intractable, we construct an efficient algorithm to find an optimal solution, which incurs computational complexity that is polynomial in the number of channels and the number of users. We further demonstrate through numerical experiments that the jointly optimal solution can significantly improve system performance over its suboptimal alternatives.Comment: This is the full version of a paper to appear in the IEEE Journal on Selected Areas in Communications, Special Issue on Cooperative Networking - Challenges and Applications (Part II), October 201

    Jointly Optimal Channel Pairing and Power Allocation for Multichannel Multihop Relaying

    Full text link
    We study the problem of channel pairing and power allocation in a multichannel multihop relay network to enhance the end-to-end data rate. Both amplify-and-forward (AF) and decode-and-forward (DF) relaying strategies are considered. Given fixed power allocation to the channels, we show that channel pairing over multiple hops can be decomposed into independent pairing problems at each relay, and a sorted-SNR channel pairing strategy is sum-rate optimal, where each relay pairs its incoming and outgoing channels by their SNR order. For the joint optimization of channel pairing and power allocation under both total and individual power constraints, we show that the problem can be decoupled into two subproblems solved separately. This separation principle is established by observing the equivalence between sorting SNRs and sorting channel gains in the jointly optimal solution. It significantly reduces the computational complexity in finding the jointly optimal solution. It follows that the channel pairing problem in joint optimization can be again decomposed into independent pairing problems at each relay based on sorted channel gains. The solution for optimizing power allocation for DF relaying is also provided, as well as an asymptotically optimal solution for AF relaying. Numerical results are provided to demonstrate substantial performance gain of the jointly optimal solution over some suboptimal alternatives. It is also observed that more gain is obtained from optimal channel pairing than optimal power allocation through judiciously exploiting the variation among multiple channels. Impact of the variation of channel gain, the number of channels, and the number of hops on the performance gain is also studied through numerical examples.Comment: 15 pages. IEEE Transactions on Signal Processin

    Resource Management in Multicarrier Based Cognitive Radio Systems

    Get PDF
    The ever-increasing growth of the wireless application and services affirms the importance of the effective usage of the limited radio spectrum. Existing spectrum management policies have led to significant spectrum under-utilization. Recent measurements showed that large range of the spectrum is sparsely used in both temporal and spatial manner. This conflict between the inefficient usage of the spectrum and the continuous evolution in the wireless communication calls upon the development of more flexible management policies. Cognitive radio (CR) with the dynamic spectrum access (DSA) is considered to be a key technology in making the best solution of this conflict by allowing a group of secondary users (SUs) to share the radio spectrum originally allocated to the primary user (PUs). The operation of CR should not negatively alter the performance of the PUs. Therefore, the interference control along with the highly dynamic nature of PUs activities open up new resource allocation problems in CR systems. The resource allocation algorithms should ensure an effective share of the temporarily available frequency bands and deliver the solutions in timely fashion to cope with quick changes in the network. In this dissertation, the resource management problem in multicarrier based CR systems is considered. The dissertation focuses on three main issues: 1) design of efficient resource allocation algorithms to allocate subcarriers and powers between SUs such that no harmful interference is introduced to PUs, 2) compare the spectral efficiency of using different multicarrier schemes in the CR physical layer, specifically, orthogonal frequency division multiplexing (OFDM) and filter bank multicarrier (FBMC) schemes, 3) investigate the impact of the different constraints values on the overall performance of the CR system. Three different scenarios are considered in this dissertation, namely downlink transmission, uplink transmission, and relayed transmission. For every scenario, the optimal solution is examined and efficient sub-optimal algorithms are proposed to reduce the computational burden of obtaining the optimal solution. The suboptimal algorithms are developed by separate the subcarrier and power allocation into two steps in downlink and uplink scenarios. In the relayed scenario, dual decomposition technique is used to obtain an asymptotically optimal solution, and a joint heuristic algorithm is proposed to find the suboptimal solution. Numerical simulations show that the proposed suboptimal algorithms achieve a near optimal performance and perform better than the existing algorithms designed for cognitive and non-cognitive systems. Eventually, the ability of FBMC to overcome the OFDM drawbacks and achieve more spectral efficiency is verified which recommends the consideration of FBMC in the future CR systems.El crecimiento continuo de las aplicaciones y servicios en sistemas inal´ambricos, indica la importancia y necesidad de una utilizaci´on eficaz del espectro radio. Las pol´ıticas actuales de gesti´on del espectro han conducido a una infrautilizaci´on del propio espectro radioel´ectrico. Recientes mediciones en diferentes entornos han mostrado que gran parte del espectro queda poco utilizado en sus ambas vertientes, la temporal, y la espacial. El permanente conflicto entre el uso ineficiente del espectro y la evoluci´on continua de los sistemas de comunicaci´on inal´ambrica, hace que sea urgente y necesario el desarrollo de esquemas de gesti´on del espectro m´as flexibles. Se considera el acceso din´amico (DSA) al espectro en los sistemas cognitivos como una tecnolog´ıa clave para resolver este conflicto al permitir que un grupo de usuarios secundarios (SUs) puedan compartir y acceder al espectro asignado inicialmente a uno o varios usuarios primarios (PUs). Las operaciones de comunicaci´on llevadas a cabo por los sistemas radio cognitivos no deben en ning´un caso alterar (interferir) los sistemas primarios. Por tanto, el control de la interferencia junto al gran dinamismo de los sistemas primarios implica nuevos retos en el control y asignaci´on de los recursos radio en los sistemas de comunicaci´on CR. Los algoritmos de gesti´on y asignaci´on de recursos (Radio Resource Management-RRM) deben garantizar una participaci´on efectiva de las bandas con frecuencias disponibles temporalmente, y ofrecer en cada momento oportunas soluciones para hacer frente a los distintos cambios r´apidos que influyen en la misma red. En esta tesis doctoral, se analiza el problema de la gesti´on de los recursos radio en sistemas multiportadoras CR, proponiendo varias soluciones para su uso eficaz y coexistencia con los PUs. La tesis en s´ı, se centra en tres l´ıneas principales: 1) el dise˜no de algoritmos eficientes de gesti´on de recursos para la asignaci´on de sub-portadoras y distribuci´on de la potencia en sistemas segundarios, evitando asi cualquier interferencia que pueda ser perjudicial para el funcionamiento normal de los usuarios de la red primaria, 2) analizar y comparar la eficiencia espectral alcanzada a la hora de utilizar diferentes esquema de transmisi´on multiportadora en la capa f´ısica del sistema CR, espec´ıficamente en sistemas basados en OFDM y los basados en banco de filtros multiportadoras (Filter bank Multicarrier-FBMC), 3) investigar el impacto de las diferentes limitaciones en el rendimiento total del sistema de CR. Los escenarios considerados en esta tesis son tres, es decir; modo de transmisi´on descendente (downlink), modo de transmisi´on ascendente (uplink), y el modo de transmisi´on ”Relay”. En cada escenario, la soluci´on ´optima es examinada y comparada con algoritmos sub- ´optimos que tienen como objetivo principal reducir la carga computacional. Los algoritmos sub-´optimos son llevados a cabo en dos fases mediante la separaci´on del propio proceso de distribuci´on de subportadoras y la asignaci´on de la potencia en los modos de comunicaci´on descendente (downlink), y ascendente (uplink). Para los entornos de tipo ”Relay”, se ha utilizado la t´ecnica de doble descomposici´on (dual decomposition) para obtener una soluci´on asint´oticamente ´optima. Adem´as, se ha desarrollado un algoritmo heur´ıstico para poder obtener la soluci´on ´optima con un reducido coste computacional. Los resultados obtenidos mediante simulaciones num´ericas muestran que los algoritmos sub-´optimos desarrollados logran acercarse a la soluci´on ´optima en cada uno de los entornos analizados, logrando as´ı un mayor rendimiento que los ya existentes y utilizados tanto en entornos cognitivos como no-cognitivos. Se puede comprobar en varios resultados obtenidos en la tesis la superioridad del esquema multiportadora FBMC sobre los sistemas basados en OFDM para los entornos cognitivos, causando una menor interferencia que el OFDM en los sistemas primarios, y logrando una mayor eficiencia espectral. Finalmente, en base a lo analizado en esta tesis, podemos recomendar al esquema multiportadora FBMC como una id´onea y potente forma de comunicaci´on para las futuras redes cognitivas

    Weighted Sum Rate Maximization for Downlink OFDMA with Subcarrier-pair based Opportunistic DF Relaying

    Full text link
    This paper addresses a weighted sum rate (WSR) maximization problem for downlink OFDMA aided by a decode-and-forward (DF) relay under a total power constraint. A novel subcarrier-pair based opportunistic DF relaying protocol is proposed. Specifically, user message bits are transmitted in two time slots. A subcarrier in the first slot can be paired with a subcarrier in the second slot for the DF relay-aided transmission to a user. In particular, the source and the relay can transmit simultaneously to implement beamforming at the subcarrier in the second slot. Each unpaired subcarrier in either the first or second slot is used for the source's direct transmission to a user. A benchmark protocol, same as the proposed one except that the transmit beamforming is not used for the relay-aided transmission, is also considered. For each protocol, a polynomial-complexity algorithm is developed to find at least an approximately optimum resource allocation (RA), by using continuous relaxation, the dual method, and Hungarian algorithm. Instrumental to the algorithm design is an elegant definition of optimization variables, motivated by the idea of regarding the unpaired subcarriers as virtual subcarrier pairs in the direct transmission mode. The effectiveness of the RA algorithm and the impact of relay position and total power on the protocols' performance are illustrated by numerical experiments. The proposed protocol always leads to a maximum WSR equal to or greater than that for the benchmark one, and the performance gain of using the proposed one is significant especially when the relay is in close proximity to the source and the total power is low. Theoretical analysis is presented to interpret these observations.Comment: 8 figures, accepted and to be published in IEEE Transactions on Signal Processing. arXiv admin note: text overlap with arXiv:1301.293

    Resource allocation and optimization techniques in wireless relay networks

    Get PDF
    Relay techniques have the potential to enhance capacity and coverage of a wireless network. Due to rapidly increasing number of smart phone subscribers and high demand for data intensive multimedia applications, the useful radio spectrum is becoming a scarce resource. For this reason, two way relay network and cognitive radio technologies are required for better utilization of radio spectrum. Compared to the conventional one way relay network, both the uplink and the downlink can be served simultaneously using a two way relay network. Hence the effective bandwidth efficiency is considered to be one time slot per transmission. Cognitive networks are wireless networks that consist of different types of users, a primary user (PU, the primary license holder of a spectrum band) and secondary users (SU, cognitive radios that opportunistically access the PU spectrum). The secondary users can access the spectrum of the licensed user provided they do not harmfully affect to the primary user. In this thesis, various resource allocation and optimization techniques have been investigated for wireless relay and cognitive radio networks
    corecore