316 research outputs found

    An Enhanced Query Optimization Implemented in Hadoop using Bio-Inspired Algorithm with HDFS Technique

    Get PDF
    A more effective method for massive data query optimization using HDFS and the Bio-inspired algorithm. Big Data configuration and query optimization are the two phases of the process. To remove redundant data, the input data is first per-processed using HDFS. Then, utilizing entropy calculation, features like closed frequent pattern, support, and confidence are extracted and managed. The Bio-inspired Horse Herd approach is used to group pertinent information based on this outcome. In the second step, the Big Data queries are used to obtain the same features. The optimized query is then located using the Bio-inspired technique, and the similarity assessment procedure is run. The proposed algorithm, according to this research, outperforms other ones that is unique in use. It is challenging to determine the veracity of this claim without more information regarding the experimental setup and the precise measures employed to assess the algorithm's effectiveness. Furthermore, it is unknown how the proposed algorithm stacks up against other cutting-edge query optimization methods. Finally, the assess has efficiency of using this method, more optimistic query achieved and comparison analysis are proved

    Energy-aware dynamic-link load balancing method for a software-defined network using a multi-objective artificial bee colony algorithm and genetic operators

    Get PDF
    Information and communication technology (ICT) is one of the sectors that have the highest energy consumption worldwide. It implies that the use of energy in the ICT must be controlled. A software-defined network (SDN) is a new technology in computer networking. It separates the control and data planes to make networks more programmable and flexible. To obtain maximum scalability and robustness, load balancing is essential. The SDN controller has full knowledge of the network. It can perform load balancing efficiently. Link congestion causes some problems such as long transmission delay and increased queueing time. To overcome this obstacle, the link load balancing strategy is useful. The link load-balancing problem has the nature of NP-complete; therefore, it can be solved using a meta-heuristic approach. In this study, a novel energy-aware dynamic routing method is proposed to solve the link load-balancing problem while reducing power consumption using the multiobjective artificial bee colony algorithm and genetic operators. The simulation results have shown that the proposed scheme has improved packet loss rate, round trip time and jitter metrics compared with the basic ant colony, genetic-ant colony optimisation, and round-robin methods. Moreover, it has reduced energy consumption. © 2020 Institution of Engineering and Technology. All rights reserved

    A Survey on Intent-based Diversification for Fuzzy Keyword Search

    Get PDF
    Keyword search is an interesting phenomenon, it is the process of finding important and relevant information from various data repositories. Structured and semistructured data can precisely be stored. Fully unstructured documents can annotate and be stored in the form of metadata. For the total web search, half of the web search is for information exploration process. In this paper, the earlier works for semantic meaning of keywords based on their context in the specified documents are thoroughly analyzed. In a tree data representation, the nodes are objects and could hold some intention. These nodes act as anchors for a Smallest Lowest Common Ancestor (SLCA) based pruning process. Based on their features, nodes are clustered. The feature is a distinctive attribute, it is the quality, property or traits of something. Automatic text classification algorithms are the modern way for feature extraction. Summarization and segmentation produce n consecutive grams from various forms of documents. The set of items which describe and summarize one important aspect of a query is known as the facet. Instead of exact string matching a fuzzy mapping based on semantic correlation is the new trend, whereas the correlation is quantified by cosine similarity. Once the outlier is detected, nearest neighbors of the selected points are mapped to the same hash code of the intend nodes with high probability. These methods collectively retrieve the relevant data and prune out the unnecessary data, and at the same time create a hash signature for the nearest neighbor search. This survey emphasizes the need for a framework for fuzzy oriented keyword search

    Proceedings of the First PhD Symposium on Sustainable Ultrascale Computing Systems (NESUS PhD 2016)

    Get PDF
    Proceedings of the First PhD Symposium on Sustainable Ultrascale Computing Systems (NESUS PhD 2016) Timisoara, Romania. February 8-11, 2016.The PhD Symposium was a very good opportunity for the young researchers to share information and knowledge, to present their current research, and to discuss topics with other students in order to look for synergies and common research topics. The idea was very successful and the assessment made by the PhD Student was very good. It also helped to achieve one of the major goals of the NESUS Action: to establish an open European research network targeting sustainable solutions for ultrascale computing aiming at cross fertilization among HPC, large scale distributed systems, and big data management, training, contributing to glue disparate researchers working across different areas and provide a meeting ground for researchers in these separate areas to exchange ideas, to identify synergies, and to pursue common activities in research topics such as sustainable software solutions (applications and system software stack), data management, energy efficiency, and resilience.European Cooperation in Science and Technology. COS

    Holistic, data-driven, service and supply chain optimisation: linked optimisation.

    Get PDF
    The intensity of competition and technological advancements in the business environment has made companies collaborate and cooperate together as a means of survival. This creates a chain of companies and business components with unified business objectives. However, managing the decision-making process (like scheduling, ordering, delivering and allocating) at the various business components and maintaining a holistic objective is a huge business challenge, as these operations are complex and dynamic. This is because the overall chain of business processes is widely distributed across all the supply chain participants; therefore, no individual collaborator has a complete overview of the processes. Increasingly, such decisions are automated and are strongly supported by optimisation algorithms - manufacturing optimisation, B2B ordering, financial trading, transportation scheduling and allocation. However, most of these algorithms do not incorporate the complexity associated with interacting decision-making systems like supply chains. It is well-known that decisions made at one point in supply chains can have significant consequences that ripple through linked production and transportation systems. Recently, global shocks to supply chains (COVID-19, climate change, blockage of the Suez Canal) have demonstrated the importance of these interdependencies, and the need to create supply chains that are more resilient and have significantly reduced impact on the environment. Such interacting decision-making systems need to be considered through an optimisation process. However, the interactions between such decision-making systems are not modelled. We therefore believe that modelling such interactions is an opportunity to provide computational extensions to current optimisation paradigms. This research study aims to develop a general framework for formulating and solving holistic, data-driven optimisation problems in service and supply chains. This research achieved this aim and contributes to scholarship by firstly considering the complexities of supply chain problems from a linked problem perspective. This leads to developing a formalism for characterising linked optimisation problems as a model for supply chains. Secondly, the research adopts a method for creating a linked optimisation problem benchmark by linking existing classical benchmark sets. This involves using a mix of classical optimisation problems, typically relating to supply chain decision problems, to describe different modes of linkages in linked optimisation problems. Thirdly, several techniques for linking supply chain fragmented data have been proposed in the literature to identify data relationships. Therefore, this thesis explores some of these techniques and combines them in specific ways to improve the data discovery process. Lastly, many state-of-the-art algorithms have been explored in the literature and these algorithms have been used to tackle problems relating to supply chain problems. This research therefore investigates the resilient state-of-the-art optimisation algorithms presented in the literature, and then designs suitable algorithmic approaches inspired by the existing algorithms and the nature of problem linkages to address different problem linkages in supply chains. Considering research findings and future perspectives, the study demonstrates the suitability of algorithms to different linked structures involving two sub-problems, which suggests further investigations on issues like the suitability of algorithms on more complex structures, benchmark methodologies, holistic goals and evaluation, processmining, game theory and dependency analysis

    Modélisation formelle des systÚmes de détection d'intrusions

    Get PDF
    L’écosystĂšme de la cybersĂ©curitĂ© Ă©volue en permanence en termes du nombre, de la diversitĂ©, et de la complexitĂ© des attaques. De ce fait, les outils de dĂ©tection deviennent inefficaces face Ă  certaines attaques. On distingue gĂ©nĂ©ralement trois types de systĂšmes de dĂ©tection d’intrusions : dĂ©tection par anomalies, dĂ©tection par signatures et dĂ©tection hybride. La dĂ©tection par anomalies est fondĂ©e sur la caractĂ©risation du comportement habituel du systĂšme, typiquement de maniĂšre statistique. Elle permet de dĂ©tecter des attaques connues ou inconnues, mais gĂ©nĂšre aussi un trĂšs grand nombre de faux positifs. La dĂ©tection par signatures permet de dĂ©tecter des attaques connues en dĂ©finissant des rĂšgles qui dĂ©crivent le comportement connu d’un attaquant. Cela demande une bonne connaissance du comportement de l’attaquant. La dĂ©tection hybride repose sur plusieurs mĂ©thodes de dĂ©tection incluant celles sus-citĂ©es. Elle prĂ©sente l’avantage d’ĂȘtre plus prĂ©cise pendant la dĂ©tection. Des outils tels que Snort et Zeek offrent des langages de bas niveau pour l’expression de rĂšgles de reconnaissance d’attaques. Le nombre d’attaques potentielles Ă©tant trĂšs grand, ces bases de rĂšgles deviennent rapidement difficiles Ă  gĂ©rer et Ă  maintenir. De plus, l’expression de rĂšgles avec Ă©tat dit stateful est particuliĂšrement ardue pour reconnaĂźtre une sĂ©quence d’évĂ©nements. Dans cette thĂšse, nous proposons une approche stateful basĂ©e sur les diagrammes d’état-transition algĂ©briques (ASTDs) afin d’identifier des attaques complexes. Les ASTDs permettent de reprĂ©senter de façon graphique et modulaire une spĂ©cification, ce qui facilite la maintenance et la comprĂ©hension des rĂšgles. Nous Ă©tendons la notation ASTD avec de nouvelles fonctionnalitĂ©s pour reprĂ©senter des attaques complexes. Ensuite, nous spĂ©cifions plusieurs attaques avec la notation Ă©tendue et exĂ©cutons les spĂ©cifications obtenues sur des flots d’évĂ©nements Ă  l’aide d’un interprĂ©teur pour identifier des attaques. Nous Ă©valuons aussi les performances de l’interprĂ©teur avec des outils industriels tels que Snort et Zeek. Puis, nous rĂ©alisons un compilateur afin de gĂ©nĂ©rer du code exĂ©cutable Ă  partir d’une spĂ©cification ASTD, capable d’identifier de façon efficiente les sĂ©quences d’évĂ©nements.Abstract : The cybersecurity ecosystem continuously evolves with the number, the diversity, and the complexity of cyber attacks. Generally, we have three types of Intrusion Detection System (IDS) : anomaly-based detection, signature-based detection, and hybrid detection. Anomaly detection is based on the usual behavior description of the system, typically in a static manner. It enables detecting known or unknown attacks but also generating a large number of false positives. Signature based detection enables detecting known attacks by defining rules that describe known attacker’s behavior. It needs a good knowledge of attacker behavior. Hybrid detection relies on several detection methods including the previous ones. It has the advantage of being more precise during detection. Tools like Snort and Zeek offer low level languages to represent rules for detecting attacks. The number of potential attacks being large, these rule bases become quickly hard to manage and maintain. Moreover, the representation of stateful rules to recognize a sequence of events is particularly arduous. In this thesis, we propose a stateful approach based on algebraic state-transition diagrams (ASTDs) to identify complex attacks. ASTDs allow a graphical and modular representation of a specification, that facilitates maintenance and understanding of rules. We extend the ASTD notation with new features to represent complex attacks. Next, we specify several attacks with the extended notation and run the resulting specifications on event streams using an interpreter to identify attacks. We also evaluate the performance of the interpreter with industrial tools such as Snort and Zeek. Then, we build a compiler in order to generate executable code from an ASTD specification, able to efficiently identify sequences of events

    Agents: a distributed client/server system for leaf cell generation

    Get PDF
    The Agents system generates the mask level layout of full custom CMOS, BICMOS, bipolar and mixed digital/analogue leaf cells. Leaf cells are subcircuits of a complexity comparable with SSI (Small Scale Integration) components such as small adders, counters or multiplexers. The system is formed by four server programs: the Placer, Router, Database and Broker. The Placer places components in a cell, the Router wires the circuits sent to it, the Database keeps all the information that is dependent upon the fabrication process, such as the design rules, and the Broker makes the services of the other servers available. These servers communicate over a computer network using the TCP/IP Internet Proto­col. The Placer server receives from its client the description and netlist of the circuit to be generated using EDIF (Electronic Design Interchange Format). The output to its client is the layout of the circuit (no virtual grid is used), again codified in EDIF. The concept of agents as software components which have the ability to communicate and cooperate with each other is at the heart of the Agents system. This concept is not only used at the higher level, for the four servers Placer, Router, Broker and Database, but as well at a lower level, inside the Router and Placer servers, where small rela­tively simple agents work together to accomplish complex tasks. These small agents are responsible for all the reasoning carried out by the two servers as they hold the basic inference routines and the knowledge needed by the servers. The key concept is that competence emerges out of the collective behaviour of a large number of rela­tively simple agents. In addition and integrated with these small agents, the system uses a genetic algorithm to improve components’ placement before routing

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    BNAIC 2008:Proceedings of BNAIC 2008, the twentieth Belgian-Dutch Artificial Intelligence Conference

    Get PDF

    Applied Metaheuristic Computing

    Get PDF
    For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact methods are constrained with prior assumptions, and partly due to the heuristics being problem-dependent and lacking generalization. AMC, on the contrary, guides the course of low-level heuristics to search beyond the local optimality, which impairs the capability of traditional computation methods. This topic series has collected quality papers proposing cutting-edge methodology and innovative applications which drive the advances of AMC
    • 

    corecore