26,243 research outputs found

    Solving no-wait two-stage flexible flow shop scheduling problem with unrelated parallel machines and rework time by the adjusted discrete Multi Objective Invasive Weed Optimization and fuzzy dominance approach

    Get PDF
    Purpose: Adjusted discrete Multi-Objective Invasive Weed Optimization (DMOIWO) algorithm, which uses fuzzy dominant approach for ordering, has been proposed to solve No-wait two-stage flexible flow shop scheduling problem. Design/methodology/approach: No-wait two-stage flexible flow shop scheduling problem by considering sequence-dependent setup times and probable rework in both stations, different ready times for all jobs and rework times for both stations as well as unrelated parallel machines with regards to the simultaneous minimization of maximum job completion time and average latency functions have been investigated in a multi-objective manner. In this study, the parameter setting has been carried out using Taguchi Method based on the quality indicator for beater performance of the algorithm. Findings: The results of this algorithm have been compared with those of conventional, multi-objective algorithms to show the better performance of the proposed algorithm. The results clearly indicated the greater performance of the proposed algorithm. Originality/value: This study provides an efficient method for solving multi objective no-wait two-stage flexible flow shop scheduling problem by considering sequence-dependent setup times, probable rework in both stations, different ready times for all jobs, rework times for both stations and unrelated parallel machines which are the real constraints.Peer Reviewe

    PENYELESAIAN MULTI-OBJECTIVE FLEXIBLE JOB SHOP SCHEDULING PROBLEM MENGGUNAKAN HYBRID ALGORITMA IMUN

    Get PDF
    Flexible Job shop scheduling problem (FJSSP) is one of scheduling problems with specification: there is a job to be done in a certain order, each job contains a number of operations and each operation is processed on a machine of some available machine. The purpose of this paper is to solve Multi-objective Flexible Job Shop scheduling problem with minimizing the makespan, the biggest workload and the total workload of all machines. Because of complexity these problem, a integrated approach Immune Algorithm (IA) and Simulated Annealing (SA) algorithm are combined to solve the multi-objective FJSSP. A clonal selection is a strategy for generating new antibody based on selecting the antibody for reproduction. SA is used as a local search search algorithm for enhancing the local ability with certain probability to avoid becoming trapped in a local optimum. The simulation result have proved that this hybrid immune algorithm is an efficient and effective approach to solve the multi-objective FJSS

    A hybrid algorithm for flexible job-shop scheduling problem with setup times

    Get PDF
    [EN] Job-shop scheduling problem is one of the most important fields in manufacturing optimization where a set of n jobs must be processed on a set of m specified machines. Each job consists of a specific set of operations, which have to be processed according to a given order. The Flexible Job Shop problem (FJSP) is a generalization of the above-mentioned problem, where each operation can be processed by a set of resources and has a processing time depending on the resource used. The FJSP problems cover two difficulties, namely, machine assignment problem and operation sequencing problem. This paper addresses the flexible job-shop scheduling problem with sequence-dependent setup times to minimize two kinds of objectives function: makespan and bi-criteria objective function. For that, we propose a hybrid algorithm based on genetic algorithm (GA) and variable neighbourhood search (VNS) to solve this problem. To evaluate the performance of our algorithm, we compare our results with other methods existing in literature. All the results show the superiority of our algorithm against the available ones in terms of solution quality.Azzouz, A.; Ennigrou, M.; Ben Said, L. (2017). A hybrid algorithm for flexible job-shop scheduling problem with setup times. International Journal of Production Management and Engineering. 5(1):23-30. doi:10.4995/ijpme.2017.6618SWORD233051Allahverdi, A. (2015). The third comprehensive survey on scheduling problems with setup times/costs. European Journal of Operational Research, 246(2), 345-378. doi:10.1016/j.ejor.2015.04.004Azzouz, A., Ennigrou, M., & Jlifi, B. (2015). Diversifying TS using GA in Multi-agent System for Solving Flexible Job Shop Problem. Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics. doi:10.5220/0005511000940101Azzouz, A., Ennigrou, M., Jlifi, B., & Ghedira, K. (2012). Combining Tabu Search and Genetic Algorithm in a Multi-agent System for Solving Flexible Job Shop Problem. 2012 11th Mexican International Conference on Artificial Intelligence. doi:10.1109/micai.2012.12Bagheri, A., & Zandieh, M. (2011). Bi-criteria flexible job-shop scheduling with sequence-dependent setup times—Variable neighborhood search approach. Journal of Manufacturing Systems, 30(1), 8-15. doi:10.1016/j.jmsy.2011.02.004Brandimarte, P. (1993). Routing and scheduling in a flexible job shop by tabu search. Annals of Operations Research, 41(3), 157-183. doi:10.1007/bf02023073Cheung, W., & Zhou, H. (2001). Annals of Operations Research, 107(1/4), 65-81. doi:10.1023/a:1014990729837Fattahi, P., Saidi Mehrabad, M., & Jolai, F. (2007). Mathematical modeling and heuristic approaches to flexible job shop scheduling problems. Journal of Intelligent Manufacturing, 18(3), 331-342. doi:10.1007/s10845-007-0026-8González, M. A., Rodriguez Vela, C., Varela, R. (2013). An efficient memetic algorithm for the flexible job shop with setup times. In Twenty-Third International Conference on Automated, pp. 91-99.Hurink, J., Jurisch, B., & Thole, M. (1994). Tabu search for the job-shop scheduling problem with multi-purpose machines. OR Spektrum, 15(4), 205-215. doi:10.1007/bf01719451Imanipour, N. (2006). Modeling&Solving Flexible Job Shop Problem With Sequence Dependent Setup Times. 2006 International Conference on Service Systems and Service Management. doi:10.1109/icsssm.2006.320680KIM, S. C., & BOBROWSKI, P. M. (1994). Impact of sequence-dependent setup time on job shop scheduling performance. International Journal of Production Research, 32(7), 1503-1520. doi:10.1080/00207549408957019Moghaddas, R., Houshmand, M. (2008). Job-shop scheduling problem with sequence dependent setup times. Proceedings of the International MultiConference of Engineers and Computer Scientists,2, 978-988.Mousakhani, M. (2013). Sequence-dependent setup time flexible job shop scheduling problem to minimise total tardiness. International Journal of Production Research, 51(12), 3476-3487. doi:10.1080/00207543.2012.746480Naderi, B., Zandieh, M., & Fatemi Ghomi, S. M. T. (2008). Scheduling sequence-dependent setup time job shops with preventive maintenance. The International Journal of Advanced Manufacturing Technology, 43(1-2), 170-181. doi:10.1007/s00170-008-1693-0Najid, N. M., Dauzere-Peres, S., & Zaidat, A. (s. f.). A modified simulated annealing method for flexible job shop scheduling problem. IEEE International Conference on Systems, Man and Cybernetics. doi:10.1109/icsmc.2002.1176334Nouiri, M., Bekrar, A., Jemai, A., Niar, S., & Ammari, A. C. (2015). An effective and distributed particle swarm optimization algorithm for flexible job-shop scheduling problem. Journal of Intelligent Manufacturing, 29(3), 603-615. doi:10.1007/s10845-015-1039-3Oddi, A., Rasconi, R., Cesta, A., & Smith, S. (2011). Applying iterative flattening search to the job shop scheduling problem with alternative resources and sequence dependent setup times. In COPLAS 2011 Proceedings of the Workshopon Constraint Satisfaction Techniques for Planning and Scheduling Problems, pp. 15-22.Pezzella, F., Morganti, G., & Ciaschetti, G. (2008). A genetic algorithm for the Flexible Job-shop Scheduling Problem. Computers & Operations Research, 35(10), 3202-3212. doi:10.1016/j.cor.2007.02.014Sadrzadeh, A. (2013). Development of Both the AIS and PSO for Solving the Flexible Job Shop Scheduling Problem. Arabian Journal for Science and Engineering, 38(12), 3593-3604. doi:10.1007/s13369-013-0625-ySaidi-Mehrabad, M., & Fattahi, P. (2006). Flexible job shop scheduling with tabu search algorithms. The International Journal of Advanced Manufacturing Technology, 32(5-6), 563-570. doi:10.1007/s00170-005-0375-4Vilcot, G., & Billaut, J.-C. (2011). A tabu search algorithm for solving a multicriteria flexible job shop scheduling problem. International Journal of Production Research, 49(23), 6963-6980. doi:10.1080/00207543.2010.526016Shi-Jin, W., Bing-Hai, Z., & Li-Feng, X. (2008). A filtered-beam-search-based heuristic algorithm for flexible job-shop scheduling problem. International Journal of Production Research, 46(11), 3027-3058. doi:10.1080/00207540600988105Wang, S., & Yu, J. (2010). An effective heuristic for flexible job-shop scheduling problem with maintenance activities. Computers & Industrial Engineering, 59(3), 436-447. doi:10.1016/j.cie.2010.05.016Zandieh, M., Yazdani, M., Gholami, M., & Mousakhani, M. (2009). A Simulated Annealing Algorithm for Flexible Job-Shop Scheduling Problem. Journal of Applied Sciences, 9(4), 662-670. doi:10.3923/jas.2009.662.670Zambrano Rey, G., Bekrar, A., Prabhu, V., & Trentesaux, D. (2014). Coupling a genetic algorithm with the distributed arrival-time control for the JIT dynamic scheduling of flexible job-shops. International Journal of Production Research, 52(12), 3688-3709. doi:10.1080/00207543.2014.881575Zhang, G., Gao, L., & Shi, Y. (2011). An effective genetic algorithm for the flexible job-shop scheduling problem. Expert Systems with Applications, 38(4), 3563-3573. doi:10.1016/j.eswa.2010.08.145Zhang, G., Shao, X., Li, P., & Gao, L. (2009). An effective hybrid particle swarm optimization algorithm for multi-objective flexible job-shop scheduling problem. Computers & Industrial Engineering, 56(4), 1309-1318. doi:10.1016/j.cie.2008.07.021Zhou, Y., Li, B., & Yang, J. (2005). Study on job shop scheduling with sequence-dependent setup times using biological immune algorithm. The International Journal of Advanced Manufacturing Technology, 30(1-2), 105-111. doi:10.1007/s00170-005-0022-0Ziaee, M. (2013). A heuristic algorithm for solving flexible job shop scheduling problem. The International Journal of Advanced Manufacturing Technology, 71(1-4), 519-528. doi:10.1007/s00170-013-5510-zZribi, N., Kacem, I., Kamel, A. E., & Borne, P. (2007). Assignment and Scheduling in Flexible Job-Shops by Hierarchical Optimization. IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), 37(4), 652-661. doi:10.1109/tsmcc.2007.89749

    Spatial-temporal data modelling and processing for personalised decision support

    Get PDF
    The purpose of this research is to undertake the modelling of dynamic data without losing any of the temporal relationships, and to be able to predict likelihood of outcome as far in advance of actual occurrence as possible. To this end a novel computational architecture for personalised ( individualised) modelling of spatio-temporal data based on spiking neural network methods (PMeSNNr), with a three dimensional visualisation of relationships between variables is proposed. In brief, the architecture is able to transfer spatio-temporal data patterns from a multidimensional input stream into internal patterns in the spiking neural network reservoir. These patterns are then analysed to produce a personalised model for either classification or prediction dependent on the specific needs of the situation. The architecture described above was constructed using MatLab© in several individual modules linked together to form NeuCube (M1). This methodology has been applied to two real world case studies. Firstly, it has been applied to data for the prediction of stroke occurrences on an individual basis. Secondly, it has been applied to ecological data on aphid pest abundance prediction. Two main objectives for this research when judging outcomes of the modelling are accurate prediction and to have this at the earliest possible time point. The implications of these findings are not insignificant in terms of health care management and environmental control. As the case studies utilised here represent vastly different application fields, it reveals more of the potential and usefulness of NeuCube (M1) for modelling data in an integrated manner. This in turn can identify previously unknown (or less understood) interactions thus both increasing the level of reliance that can be placed on the model created, and enhancing our human understanding of the complexities of the world around us without the need for over simplification. Read less Keywords Personalised modelling; Spiking neural network; Spatial-temporal data modelling; Computational intelligence; Predictive modelling; Stroke risk predictio

    Spatial-temporal data modelling and processing for personalised decision support

    Get PDF
    The purpose of this research is to undertake the modelling of dynamic data without losing any of the temporal relationships, and to be able to predict likelihood of outcome as far in advance of actual occurrence as possible. To this end a novel computational architecture for personalised ( individualised) modelling of spatio-temporal data based on spiking neural network methods (PMeSNNr), with a three dimensional visualisation of relationships between variables is proposed. In brief, the architecture is able to transfer spatio-temporal data patterns from a multidimensional input stream into internal patterns in the spiking neural network reservoir. These patterns are then analysed to produce a personalised model for either classification or prediction dependent on the specific needs of the situation. The architecture described above was constructed using MatLab© in several individual modules linked together to form NeuCube (M1). This methodology has been applied to two real world case studies. Firstly, it has been applied to data for the prediction of stroke occurrences on an individual basis. Secondly, it has been applied to ecological data on aphid pest abundance prediction. Two main objectives for this research when judging outcomes of the modelling are accurate prediction and to have this at the earliest possible time point. The implications of these findings are not insignificant in terms of health care management and environmental control. As the case studies utilised here represent vastly different application fields, it reveals more of the potential and usefulness of NeuCube (M1) for modelling data in an integrated manner. This in turn can identify previously unknown (or less understood) interactions thus both increasing the level of reliance that can be placed on the model created, and enhancing our human understanding of the complexities of the world around us without the need for over simplification. Read less Keywords Personalised modelling; Spiking neural network; Spatial-temporal data modelling; Computational intelligence; Predictive modelling; Stroke risk predictio

    Dynamic scheduling in a multi-product manufacturing system

    Get PDF
    To remain competitive in global marketplace, manufacturing companies need to improve their operational practices. One of the methods to increase competitiveness in manufacturing is by implementing proper scheduling system. This is important to enable job orders to be completed on time, minimize waiting time and maximize utilization of equipment and machineries. The dynamics of real manufacturing system are very complex in nature. Schedules developed based on deterministic algorithms are unable to effectively deal with uncertainties in demand and capacity. Significant differences can be found between planned schedules and actual schedule implementation. This study attempted to develop a scheduling system that is able to react quickly and reliably for accommodating changes in product demand and manufacturing capacity. A case study, 6 by 6 job shop scheduling problem was adapted with uncertainty elements added to the data sets. A simulation model was designed and implemented using ARENA simulation package to generate various job shop scheduling scenarios. Their performances were evaluated using scheduling rules, namely, first-in-first-out (FIFO), earliest due date (EDD), and shortest processing time (SPT). An artificial neural network (ANN) model was developed and trained using various scheduling scenarios generated by ARENA simulation. The experimental results suggest that the ANN scheduling model can provided moderately reliable prediction results for limited scenarios when predicting the number completed jobs, maximum flowtime, average machine utilization, and average length of queue. This study has provided better understanding on the effects of changes in demand and capacity on the job shop schedules. Areas for further study includes: (i) Fine tune the proposed ANN scheduling model (ii) Consider more variety of job shop environment (iii) Incorporate an expert system for interpretation of results. The theoretical framework proposed in this study can be used as a basis for further investigation

    An investigation into minimising total energy consumption and total completion time in a flexible job shop for recycling carbon fiber reinforced polymer

    Get PDF
    The increased use of carbon fiber reinforced polymer (CFRP) in industry coupled with European Union restrictions on landfill disposal has resulted in a need to develop relevant recycling technologies. Several methods, such as mechanical grinding, thermolysis and solvolysis, have been tried to recover the carbon fibers. Optimisation techniques for reducing energy consumed by above processes have also been developed. However, the energy efficiency of recycling CFRP at the workshop level has never been considered before. An approach to incorporate energy reduction into consideration while making the scheduling plans for a CFRP recycling workshop is presented in this paper. This research sets in a flexible job shop circumstance, model for the bi-objective problem that minimise total processing energy consumption and makespan is developed. A modified Genetic Algorithm for solving the raw material lot splitting problem is developed. A case study of the lot sizing problem in the flexible job shop for recycling CFRP is presented to show how scheduling plans affect energy consumption, and to prove the feasibility of the model and the developed algorithm

    Comparative study of different approaches to solve batch process scheduling and optimisation problems

    Get PDF
    Effective approaches are important to batch process scheduling problems, especially those with complex constraints. However, most research focus on improving optimisation techniques, and those concentrate on comparing their difference are inadequate. This study develops an optimisation model of batch process scheduling problems with complex constraints and investigates the performance of different optimisation techniques, such as Genetic Algorithm (GA) and Constraint Programming (CP). It finds that CP has a better capacity to handle batch process problems with complex constraints but it costs longer time

    A framework for smart production-logistics systems based on CPS and industrial IoT

    Get PDF
    Industrial Internet of Things (IIoT) has received increasing attention from both academia and industry. However, several challenges including excessively long waiting time and a serious waste of energy still exist in the IIoT-based integration between production and logistics in job shops. To address these challenges, a framework depicting the mechanism and methodology of smart production-logistics systems is proposed to implement intelligent modeling of key manufacturing resources and investigate self-organizing configuration mechanisms. A data-driven model based on analytical target cascading is developed to implement the self-organizing configuration. A case study based on a Chinese engine manufacturer is presented to validate the feasibility and evaluate the performance of the proposed framework and the developed method. The results show that the manufacturing time and the energy consumption are reduced and the computing time is reasonable. This paper potentially enables manufacturers to deploy IIoT-based applications and improve the efficiency of production-logistics systems

    Efficient heuristics for the parallel blocking flow shop scheduling problem

    Get PDF
    We consider the NP-hard problem of scheduling n jobs in F identical parallel flow shops, each consisting of a series of m machines, and doing so with a blocking constraint. The applied criterion is to minimize the makespan, i.e., the maximum completion time of all the jobs in F flow shops (lines). The Parallel Flow Shop Scheduling Problem (PFSP) is conceptually similar to another problem known in the literature as the Distributed Permutation Flow Shop Scheduling Problem (DPFSP), which allows modeling the scheduling process in companies with more than one factory, each factory with a flow shop configuration. Therefore, the proposed methods can solve the scheduling problem under the blocking constraint in both situations, which, to the best of our knowledge, has not been studied previously. In this paper, we propose a mathematical model along with some constructive and improvement heuristics to solve the parallel blocking flow shop problem (PBFSP) and thus minimize the maximum completion time among lines. The proposed constructive procedures use two approaches that are totally different from those proposed in the literature. These methods are used as initial solution procedures of an iterated local search (ILS) and an iterated greedy algorithm (IGA), both of which are combined with a variable neighborhood search (VNS). The proposed constructive procedure and the improved methods take into account the characteristics of the problem. The computational evaluation demonstrates that both of them –especially the IGA– perform considerably better than those algorithms adapted from the DPFSP literature.Peer ReviewedPostprint (author's final draft
    • …
    corecore