326 research outputs found

    An Effective Hybrid Genetic Algorithm for Hybrid Flow Shops with Sequence Dependent Setup Times and Processor Blocking

    Get PDF
    Hybrid flow-shop or flexible flow shop problems have remained subject of intensive research over several years. Hybrid flow-shop problems overcome one of the limitations of the classical flow-shop model by allowing parallel processors at each stage of task processing. In many papers the assumptions are generally made that there is unlimited storage available between stages and the setup times are neglected or considered independent from sequences of jobs. In this paper we study the hybrid flow shop problems with sequence dependent setup times and processor blocking. We present an effective hybrid genetic algorithm with some state-of-the-art procedures for these NP-hard problems to minimize total completion time or makespan. We established a benchmark to draw an analogy between the performance of our algorithm and RKGA. The obtaining results clearly show the superiority performance of our algorithm

    A survey of scheduling problems with setup times or costs

    Get PDF
    Author name used in this publication: C. T. NgAuthor name used in this publication: T. C. E. Cheng2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Demystifying reinforcement learning approaches for production scheduling

    Get PDF
    Recent years has seen a sharp rise in interest pertaining to Reinforcement Learning (RL) approaches for production scheduling. This is because RL is seen as a an advantageous compromise between the two most typical scheduling solution approaches, namely priority rules and exact approaches. However, there are many variations of both production scheduling problems and RL solutions. Additionally, the RL production scheduling literature is characterized by a lack of standardization, which leads to the field being shrouded in mysticism. The burden of showcasing the exact situations where RL outshines other approaches still lies with the research community. To pave the way towards this goal, we make the following four contributions to the scientific community, aiding in the process of RL demystification. First, we develop a standardization framework for RL scheduling approaches using a comprehensive literature review as a conduit. Secondly, we design and implement FabricatioRL, an open-source benchmarking simulation framework for production scheduling covering a vast array of scheduling problems and ensuring experiment reproducibility. Thirdly, we create a set of baseline scheduling algorithms sharing some of the RL advantages. The set of RL-competitive algorithms consists of a Constraint Programming (CP) meta-heuristic developed by us, CP3, and two simulation-based approaches namely a novel approach we call Simulation Search and Monte Carlo Tree Search. Fourth and finally, we use FabricatioRL to build two benchmarking instances for two popular stochastic production scheduling problems, and run fully reproducible experiments on them, pitting Double Deep Q Networks (DDQN) and AlphaGo Zero (AZ) against the chosen baselines and priority rules. Our results show that AZ manages to marginally outperform priority rules and DDQN, but fails to outperform our competitive baselines

    Integrated capacitated lot sizing and scheduling problems in a flexible flow line

    Get PDF
    The lot sizing and scheduling problem in a Flexible Flow Line (FFL) has extensive real-world applications in many industries. An FFL consists of several production stages in series with parallel machines at each stage. The decisions to be taken are the determination of production quantities (lots), machine assignments and production sequences (schedules) on each machine at each stage in an FFL. Lot sizing and scheduling problems are closely interrelated. Solving them separately and then coordinating their interdependencies is often ineffective. However due to their complexity, there is a lack of mathematical modelling and solution procedures in the literature to combine and jointly solve them.Up to now most research has been focused on combining lotsizing and scheduling for the single machine configuration, and research on other configurations like FFL is sparse. This thesis presents several mathematical models with practical assumptions and appropriate algorithms, along with experimental test problems, for simultaneously lotsizing and scheduling in FFL. This problem, called the ‘General Lot sizing and Scheduling Problem in a Flexible Flow Line’ (GLSP-FFL). The objective is to satisfy varying demand over a finite planning horizon with minimal inventory, backorder and production setup costs. The problem is complex as any product can be processed on any machine, but these have different processing rates and sequence-dependent setup times & costs. As a result, even finding a feasible solution of large problems in reasonable time is impossible. Therefore the heuristic solution procedure named Adaptive Simulated Annealing (ASA), with four well-designed initial solutions, is designed to solve GLSP-FFL.A further original contribution of this study is to design linear mixed-integer programming (MILP) formulations for this problem, incorporating all necessary features of setup carryovers, setup overlapping, non-triangular setup while allowing multiple lot production per periods, lot splitting and sequencing through ATSP-adaption based on a variety of subtour elimination

    A real-time simulation-based optimisation environment for industrial scheduling

    Get PDF
    n order to cope with the challenges in industry today, such as changes in product diversity and production volume, manufacturing companies are forced to react more flexibly and swiftly. Furthermore, in order for them to survive in an ever-changing market, they also need to be highly competitive by achieving near optimal efficiency in their operations. Production scheduling is vital to the success of manufacturing systems in industry today, because the near optimal allocation of resources is essential in remaining highly competitive. The overall aim of this study is the advancement of research in manufacturing scheduling through the exploration of more effective approaches to address complex, real-world manufacturing flow shop problems. The methodology used in the thesis is in essence a combination of systems engineering, algorithmic design and empirical experiments using real-world scenarios and data. Particularly, it proposes a new, web services-based, industrial scheduling system framework, called OPTIMISE Scheduling System (OSS), for solving real-world complex scheduling problems. OSS, as implemented on top of a generic web services-based simulation-based optimisation (SBO) platform called OPTIMISE, can support near optimal and real-time production scheduling in a distributed and parallel computing environment. Discrete-event simulation (DES) is used to represent and flexibly cope with complex scheduling problems without making unrealistic assumptions which are the major limitations of existing scheduling methods proposed in the literature. At the same time, the research has gone beyond existing studies of simulation-based scheduling applications, because the OSS has been implemented in a real-world industrial environment at an automotive manufacturer, so that qualitative evaluations and quantitative comparisons of scheduling methods and algorithms can be made with the same framework. Furthermore, in order to be able to adapt to and handle many different types of real-world scheduling problems, a new hybrid meta-heuristic scheduling algorithm that combines priority dispatching rules and genetic encoding is proposed. This combination is demonstrated to be able to handle a wider range of problems or a current scheduling problem that may change over time, due to the flexibility requirements in the real-world. The novel hybrid genetic representation has been demonstrated effective through the evaluation in the real-world scheduling problem using real-world data

    A new innovative cooling law for simulated annealing algorithms

    Get PDF
    The present paper proposes an original and innovative cooling law in the field of Simulated Annealing (SA) algorithms. Particularly, such a law is based on the evolution of different initial seeds on which the algorithm works in parallel. The efficiency control of the new proposal, executed on problems of different kind, shows that the convergence quickness by using such a new cooling law is considerably greater than that obtained by traditional laws. Furthermore, it is shown that the effectiveness of the SA algorithm arising from the proposed cooling law is independent of the problem type. This last feature reduces the number of parameters to be initially fixed, so simplifying the preliminary calibration process necessary to optimize the algorithm efficiency
    • 

    corecore