
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

CORE Metadata, citation and similar papers at core.ac.uk

Provided by IntechOpen

https://core.ac.uk/display/322386558?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


15

A New Mathematical Model for Flexible Flow
Lines with Blocking Processor and  

Sequence-Dependent Setup Time

R. Tavakkoli-Moghaddam1 and N. Safaei2

1 Department of Industrial Engineering, Faculty of Engineering, University of Tehran,  
2 Department of Mechanical and Industrial Engineering, University of Toronto,  

1 Iran, 2 Canada

1. Introduction 

This chapter presents a novel, mixed-integer programming model of the flexible flow line 
problem that minimizes the makespan of a product. The proposed model considers two 
main constraints, namely blocking processors and sequence-dependent setup time between 
jobs. We extend two previous studies conducted by Kurz and Askin (2004) and Sawik 
(2001), which considered only one of the foregoing constraints. However, this chapter 
considers both constraints jointly for flexible flow lines. A flexible flow line consists of 
several parallel processing stages in series, separated by finite intermediate buffers, in which 
each stage has one or more identical parallel processors. The line produces several different 
jobs, and each job must be processed by at most one processor at each stage. The completed 
job may remain on a machine and block the processor until a downstream processor 
becomes available for processing in the next stage; this is known as the blocking processor
constraint. In the sequence-dependent setup time constraint , the processing of each job requires 
a setup time for preparing the processor that is immediately dependent on the preceding 
job. The objective, therefore, is to determine a production schedule for all jobs in such a way 
that they are completed in a minimum period of time (i.e., makespan). A number of 
numerical examples are solved and some computational results are reported to verify the 
performance of the proposed model. Finally, areas for future research are identified. 
A flexible flow line consists of several processing stages in series, separated by finite inter-
stage buffers, where each stage includes one or more identical parallel machines. The line 
produces several different job types. Each job must be processed by at most one machine in 
each stage. A processed job on a machine in some stage is transferred either directly to an 
available machine in the next stage (or another downstream stage depending on the job-
processing route), or, when no intermediate buffer storage is available, to a buffer ahead of 
that stage. The job may remain on the machine and block it until a downstream machine 
becomes available (i.e., a blocking processor) (McCormick, 1989; Hall and Sriskandarajah, 
1996; Sawik, 2000; Sawik, 2002). However, this blockage prevents another job from being 
processed on the blocked machine. Actually, a flexible flow line represents a special type of 
traditional flow shop, in which there is only one machine in each stage and unlimited 
intermediate storage between successive machines. The flexible flow line with unlimited O
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intermediate buffers has been also referred to a hybrid flow line (Blazewicz et al., 1994). 
Blocking scheduling problems arise in modern manufacturing environments, such as just-
in-time production systems or flexible assembly lines, that have limited intermediate buffers 
between machines, or no buffers (e.g., surface mount technology (SMT) lines in the 
electronics industry for assembling printed circuit boards (Sawik, 2001)). 
Setup includes work required to prepare the machine, process, or bench for job parts or the 
cycle. This presentation includes obtaining tools, positioning work-in-process inventory, 
returning tools and fixtures, cleaning up, setting the required jigs and fixtures, adjusting 
tools, and inspecting materials. Because of its complexity, in most studies, the setup 
operation (time and/or cost) has been considered negligible and hence ignored, or 
considered as part of the processing time in the case of setup times. While this may be 
justified for some scheduling problems, many other situations call for explicit (separable) 
setup time consideration. For a separable setup, two types of problem exist. In the first type, 
setup depends only on the job to be processed, hence is called sequence-independent. In the 
second type, setup depends on both the job to be processed and the immediately preceding 
job, hence is called sequence-dependent (Allahverdi et al., 1999).  

2. Literature Review 

The literature on the traditional flow shop and parallel machines scheduling is abundant 
and contains various optimization and approximation algorithms (Blazewicz et al., 1994). In 
addition, scheduling for flexible lines has been analyzed extensively in the literature over 
the last three decades. Kusiak (1988) considered flexible machining and assembly systems as 
two dependent subsystems, and proposed a heuristic two-level scheduling algorithm for a 
system consisting of a machining and an assembly subsystem in a flexible manufacturing 
system (FMS).  Brandimart (1993) proposed a hierarchical algorithm for the flexible job shop 
scheduling problem based on a tabu search algorithm to minimize the makespan and the 
total weighted tardiness. Daniels and Mazzola (1993) used a tabu search algorithm for the 
flexible-resource flow shop scheduling problem (FRFSP). They introduced the FRFSP as a 
generalization of the flow shop scheduling problem. It explicitly considers the dynamic 
allocation of a flexible resource to machines, with operation processing times determined as 
a function of the amount of assigned resource. This problem requires that job-sequencing 
and resource-allocation decisions be made in conjunction, thus creating an environment in 
which significant operational benefits can be realized. Control of operation processing times 
by means of strategic resource allocation is a familiar concept in the project management 
literature. Riezebos et al., (1995) introduced a special instance of the flow shop scheduling 
problem originating from flexible manufacturing systems. In this problem, there is one 
machine at each stage. A job may require multiple operations at each stage. The first 
operation of a job on stage j cannot start until the last operation of the job on stage j-1 has 
finished. Preemption of the operations of a job is not allowed. To move from one operation 
of a job to another requires a finite amount of time, called a time lag. This time lag is 
independent of the sequence and may not be the same for all operations or jobs. During a 
time lag of a job, operations of other jobs may be processed.  
Lee and Vairaktarakis (1998) compared the throughput performance of several flexible flow 
shop and job shop designs. They considered the two-stage assembly flow shops with m
parallel machines in Stage 1 and a single assembly facility in Stage 2. Every upstream 
operation can be processed by any one of the machines in Stage 1 prior to the assembly 
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stage. They also studied a similar design where every Stage 1 operation is processed by a 
predetermined machine. For both designs, they presented heuristic algorithms with good 
worst-case error bounds, and showed that the average performance of these algorithms is 
near optimal. Jayamohan and Rajendran (2000) investigated the effectiveness of two 
approaches using different dynamic dispatching rules for the scheduling of flexible flow 
shops minimizing the flow times and tardiness of the jobs. Quadt and Kuhn (2005) 
considered a lot-sizing and scheduling problem of flexible flow lines for a semiconductor 
industry that minimizes the mean flow time as well as set-up, inventory holding, and back-
order costs. Hong et. al., (2005) introduced a new fuzzy flexible flow shops for more than 
two machine centers with uncertain processing times and triangular membership functions. 
They also applied the triangular fuzzy LPT algorithm to allocate jobs and triangular fuzzy 
Palmer algorithm to find suitable sequence for the jobs. Alisantoso et al., (2003) proposed an 
immune algorithm for the scheduling of a flexible flow shop for PCB manufacturing.  Torabi 
et al., (2005) studied the common cycle multi-product lot-scheduling problem in 
deterministic flexible job shops, and proposed an efficient enumeration method to 
determine the optimal solution for their model. Tavakkoli-Moghaddam and Safaei, (2005) 
proposed a queen-bee-based genetic algorithm to schedule flexible flow lines while 
considering the blocking processor. Tavakkoli-Moghaddam et al., (2007) also proposed a 
memetic algorithm to solve the mentioned scheduling problem. Jungwattanakit et al., (2007) 
formulated a 0–1 mixed-integer program to address the flexible flow shop scheduling 
problem in the textile industries that determines a schedule by minimizing a convex 
combination of makespan and the number of tardy jobs.  
Research on the development of scheduling algorithms for flexible flow lines with finite or 
limited capacity buffers, or with no in-process buffers, is mostly restricted to the heuristics 
domain, in which good solutions are produced in reasonable computing times (Sawik, 1993; 
Sawik, 1994). Sawik (2000; 2001; 2002) first proposed an integer programming formulation 
for scheduling flexible flow lines with blocking processor and limited buffers. Sawik (2001) 
presented new mixed-integer programming formulations for blocking scheduling of SMT 
lines for printed wiring board assembly to minimize the makespan. He tested the model for 
small-sized problems (e.g., five stages and ten jobs). Kaczmarczyk et al., (2004) proposed a 
new mixed integer programming formulation for general or batch scheduling in SMT lines 
with continuous or limited machine availability. Their formulation is an improved version 
of the model presented by Sawik (2001), incorporating new cutting constraints on decision 
variables. They also presented a new formulation for batch scheduling with various specific 
cutting constraints. Tavakkoli-Moghaddam and Safaei (2006) presented an intial idea to 
consider both the blocking processor and sequence dependent setup time in flexible flow 
lines. Kis and Pesch (2005) provided a comprehensive and uniform overview on exact 
solution methods for flexible flow shops with branching, bounding, and propagating of 
constraints, under the following two objective functions: minimizing both the makespan and 
mean flow time of a schedule. Quadt and Kuhn (2007) also presented a taxonomy for 
flexible flow line scheduling procedures that included heuristic, metaheuristic, and holistic 
approaches.
The significance of setup times has been investigated in several studies. Wilbrecht and 
Prescott (1969) found that sequence-dependent setup times were significant when a job shop 
was operated at or near full capacity. In a survey of industrial managers, Panwalkar et al., 
(1973) discovered that out of about three-quarters of the managers' reports, at least some of 
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their scheduled operations require sequence-dependent setup times, while approximately 
15% reported all operations requiring sequence-dependent setup times. Flynn (1986) 
determined that applications of both sequence-dependent setup procedures and group 
technology principles increased output capacity in a cellular manufacturing shop. Wortman 
(1992) also underlined the importance of considering sequence-dependent setup times for 
the effective management of manufacturing capacity. Krajewski et al., (1987) examined those 
factors in a production environment that had the biggest influence on performance and 
concluded that, regardless of the production system in use, simultaneous reduction of setup 
times and lot sizes was the most effective way to reduce inventory levels and improve 
customer service. Kurz and Askin (2004) presented an integer programming (IP) approach 
for a flexible flow line problem with infinite buffer and sequence-dependent setup time; 
their model does not consider blocking processor. A major disadvantage of the above 
integer programming approaches to scheduling is the need for solving large mixed-integer 
programs to obtain meaningful optimal solutions (Greene and Sadowski, 1986; Jiang and 
Hsiao, 1994). The size and complexity of the integer programming formulation increase 
when introduction of finite-capacity buffers results in a blocking scheduling problem. 
Although recent theoretical advances in integer programming and the advent of 
sophisticated computer hardware have enabled very powerful commercial software 
packages to come into use, large-sized problems cannot be optimaly solved within a 
reasonable time. Thus, heuristic or metaheuristic algorithms must be used for solving large 
and complex problems (Kurz and Askin, 2004).  
While recent advances in manufacturing technologies such as flexible manufacturing 
systems (FMSs) or single-minute exchange of die (SMED) concepts have reduced the 
influence of setup time, there are still many environments where setup time is significant. 
There are also many practical applications that support separate consideration of setup tasks 
from processing tasks. These applications can be found in various shop types and 
environments; e.g., production, service, and information processing. Pinedo (1995) 
described a paper-bag factory where setup was needed when the machine was switched 
between types of paper bags, and the setup duration depended on the degree of similarity 
between consecutive batches, e.g., size and number of colors. The printing industry provides 
numerous applications of sequence-dependent setups where the machine cleaning involved 
depends on the color of the current and immediate following orders (Conway et al., 1967). 
In several textile industry applications, setup for weaving and dying operations depends on 
the job sequence. In the container and bottle industry, the settings change depending on the 
sizes and shapes of the containers. Further, in the plastic industry, different types and colors 
of jobs require sequence-dependent setups (Das et al., 1995; Franca, 1996; Srikar and Ghosh, 
1986; Bianco, 1988). Similar practical situations arise in the chemical, pharmaceutical, food 
processing, metal processing, and paper industries (Bitran and Gilbert, 1990). Also, in an 
automatic turning center (ATC), setup time depends on the difference in the number and 
types of tools currently mounted on the turret and those required for the next work piece. 
Other examples of sequence-dependent setup time applications include a semiconductor 
testing facility (Kim and Bobrowski, 1994) and a machine shop environment (Ovacik and 
Uzsoy, 1992). Sule and Huang (1983) described the activities typically associated with 
sequence-dependent and sequence-independent operations in machine shop environments.
Allahverdi et al., (1999) conducted a comprehensive review of setup-time research for 
scheduling problems classifying into batch, non-batch, sequence-independent, and 
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sequence-dependent setup. Also, Wang (2005) reviewed research on flexible flow shops 
(FFSs). Botta-Genoulaz (2000) solved a FFS problem with precedence constraints, time lags, 
setup and removal times, and due dates to minimize the maximum lateness.  
In this chapter, we consider the flexible flow line problem (FFLP) with sequence-dependent 
setup time, without intermediate buffers that may lead to blocking processors. 
Simultaneouse consideration of both sequence-dependent setup time and blocking 
processor make the problem very complex for modeling and solving. We present a mixed-
integer programming model that is optimally solved by a branch-and-bound (B/B) 
approach for small-sized problems. The rest of the chapter is organized as follows. The 
problem is described in Section 3; the proposed model is presented in Section 4; 
computational results are reported in Section 5; and in Section 6, conclusions are presented. 

3. FFLP with Sequence-Dependent Setup Time and Blocking Processor 

As mentioned earlier, the flexible flow lines problem (FFLP) with blocking (FFLPB) 
processor is a flexible flow line scheduling problen with no intermediate buffers or in-
process buffers (Sawik, 2000). A processed job on a machine may remain there and block the 
processor until a downstream processor becomes available for processing in the next stage. 
A unified modeling approach is adopted with the buffers viewed as machines with zero 
processing times. As a result, the scheduling problem with buffers can be converted into one 
with no buffers but with blocking (Sawik, 1993 and 1995). The blocking time of a machine 
with zero processing time denotes job waiting time in the buffer represented by that machine. 
We assume that each job must be processed in all stages, including the buffers stages. 
However, zero blocking time in a buffer stage indicates that the corresponding job does not 
need to wait in the buffer. It is worth noting that for each buffer stage, job completion time is 
equal to its departure time from the previous stage, since the processing time is zero. In the 
notation proposed by Sawik (2000), buffers and machines are jointly called processors.
In this chapter, the FFLB problem consists of m processing stages in series, as shown in 

Figure 1. Each stage i (i =1,…, m) is made up of ni t 1 identical parallel processors. The 
system produces K jobs of various types. Each job must be processed without preemption on 
exactly one processor in each of the stages sequentially. That is, each job must be processed 
in stage 1 through stage m, in that order. The order of processing the jobs in every stage is 
identical and determined by an input sequence in which the jobs enter the line. Let pik be the 
processing time for job k (k =1,…,K) in stage i. Also, the completion time for job k in stage i is 
denoted by cik , and dik is its departure time from stage i. Processing without preemption 
indicates that job k completed in stage i at time cik had started its processing in that stage at  

time cik - pik . Job k completed in stage i at time cik departs at time dik t cik to an available 
processor in the next stage i+1. If time cik of all ni+1 processors in stage i+1 are occupied, then 
the processor in stage i is blocked by job k until time dik = c(i+1)k - p(i+1)k , when job k starts 
processing on an available processor in stage i+1 (see Figure 2). Note that c(i+1)k is 
determined with respect to c(i+1)(k-1). The objective is to determine an assignment of jobs to 
processors in each stage over a scheduling horizon in such a way that all the jobs are 
completed in a minimum time in order to minimize the makespan (i.e., Cmax = maxk{cmk}).     
With blocking processor, on the other hand, it is possible that we encounter idle time for 
processors. In Figure 3, job l must be processed on stage i+1 (on the same processor) 
immediately before job k, where cik > d(i+1)l. Therefore, the corresponding processor incurs an 
idle time in interval (d(i+1)l, cik]. As depicted in Figure 3, the complete and departure times for 
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job k in stage i are the same, because the corresponding processor in stage i+1 is idle at the 
same time and job l can be processed on stage i+1 immediately after completion in stage i.

Figure 1. A flexible flow line with no intermediate buffers 

Figure 2. A schema of processor blocking 

As noted earlier, setup time can include the time for preparing the machine or the processor.  
In an FFLPB with sequence-dependent setup time (FFLPB-SDST), it is assumed that the 
setup time depends on both jobs to be processed, the immediately preceding job, and the 
corresponding stage. Thus, a proper operation sequence on the processors has a significant 
effect on the makespan (i.e., Cmax). As already assumed, the processors in each stage are 
identical, whereas the stages are different. Therefore, it is assumed that the setup time also 
depends on the stage type. A schema of sequence-dependent setup time in the FFLPB is 
illustrated in Figure 4. Job q must be processed immediately before job k in stage i. Also, job l
must be processed immediately before job k in stage i+1. siqk is equal to the processor setup 
time for job k if job q is the immediately preceding job in the sequence operation on the 
corresponding processor. Likewise, s(i+1)lk is equal to the processor setup time for job k if job l
is  the immediately preceding job. Job q is completed in stage i at time ciq and departs as time 

diq t ciq to an available processor in stage i+1 (excepting the one that is processing job k). As a 

result, job k is started at time diq+siqk in stage i and departs at time dik t d(i+1)l to stage i+1.

Likewise, job l is completed in stage i+1 at time c(i+1)l and departs at time d(i+1)l t c(i+1)l to an 
available processor in the next stage. As a result, job k started at time d(i+1)l +s(i+1)lk in stage 
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i+1 and completed at time c(i+1)k. It is worth noting that the blocking processor or idle times 
cannot be used as setup time, because we assume the preparing processor requires the 
presence of a job. 

kStage i
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l
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cik = dik
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Figure 3. A schema of idle time 

Figure 4. A schema of sequence-dependent setup time in FFLPB 

4. Problem Formulation 

In this section, we present a proposed model for the FFLP by considering both the blocking 
processor and sequence-dependent setup time. This model belongs to the mixed-integer 
nonlinear programming (MINLP) category. Then, we present a linear form for the proposed 
model. Without loss of generality, the FFLP can be modeled based on a traveling salesman 
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problem approach (TSP), since each processor at each stage plays the role of salesman once 
jobs (nodes) have been assigned to the processor. In this case, the sum of setup time and 
processing time indicates the distance between nodes.  Thus, essentially the FFLP is an NP-
hard problem (Kurz and Askin, 2004). A detailed breakdown of the proposed model 
follows.  

4.1. Assumptions 

The problem is formulated under the following assumptions. Like Kurz and Askin (2004), 
we also consider blocking processor and sequence-dependent setup times. 
1. Machines are available at all times, with no breakdowns or scheduled or unscheduled 

maintenance. 
2. Jobs are always processed without error.
3. Job processing cannot be interrupted (i.e., no preemption is allowed) and jobs have no 

associated priority values. 
4. There is no buffer between stages, and processors can be blocked. 
5. There is no travel time between stages; jobs are available for processing at a stage 

immediately after departing at previous stage. 
6. The ready time for all jobs is zero.
7. Machines in parallel are identical in capability and processing rate. 
8. Non-anticipatory sequence-dependent setup times exist between jobs at each stage. 

After completing processing of one job and before beginning processing of the next job, 
some sort of setup must be performed. 

4.2. Input Parameters 

m = number of processing stage.  
K = number of jobs. 
ni= number of parallel processors in stage i.
pik = processing time for job k in stage i.
silk = processor setup time for job k if job l is the immediately preceding job in sequence 

operation on the processor i. As discussed earlier, we assume that processors at each 
stage are identical, thus Silk is independent of index j, i.e., the processor index. 

4.3. Indices 

i  = processing stage, where i =1,…, m.
j = processor in stage, where j =1,…, ni.
k, l = job, where k, l =1,…, K.

4.4. Decision Variables 

Cmax = makespan. 
cik = completion time of job k at stage i.
dik = departure time of job k from stage i.
xijlk = 1, if job k is assigned to processor j in stage i where job l is its predecessor job; 

otherwise xijlk = 0. Two nominal jobs 0 and K+1 are considerd as the first and last 
jobs, respectively (Kurz and Askin, 2004). It is assumed that nominal jobs 0 and 
K+1 have zero setup and process time and must be processed on each processor in 
each stage. 
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4.5. Mathematical Formulation 
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The objective function is to minimize the schedule length. Constraint (1) ensures that each 
job k in every stage is assigned to only one processor immediately after job l. Constraint (2), 
which is complementary to Constraint (1), is a flow balance constraint, guaranteeing that 
jobs are performed in well-defined sequences on each processor at each stage. This 
constraint determines which processors at each stage must be scheduled. Constraint (3) 
calculates the complete time for the first available job on each processor at stage 1. Likewise, 
Constraint (4) calculates the complete time for the first available job on each processor in 
other stages, and also guarantees that each job is processed in all downstream stages with 
regard to setup time related to both the job to be processed and the immediately preceding 
job. Constraint (5) controls the formation of the processor's blocking. Constraint (6) 
calculates the processing of a job depending on the processing of its predecessor on the same 
processor in a given stage. This constraint controls creating the processor's idle time. Both 
constraint sets (5) and (6) ensure that a job cannot begin setup until it is available (done at 
the previous stage) and the previous job at the current stage is complete. Constraint (6) 
indicates that the processing of each job in every stage starts immediately after its departure 
from the previous stage plus the setup time of the immediately preceding job. Actually, this 
constraint calculates the departure time related to each job at each stage except for the last 
stage. Constraint (7) ensures that each product leaves the line as soon as it is completed in 
the latest stage. Finally, Constraint (8) defines the maximum completion time. 
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4.6. Model Linearization 

The proposed model has a nonlinear form because of the existence of Constraint (5). Thus, it 
cannot be solved optimally in a reasonable time by programming approaches. Thus, we 
present a linear form for the proposed model by defining the integer variable yijlk and
changing Constraint (5), as indicated in the following expressions. 
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where M is an arbitrary big number. Constraint (5) must be replaced by Constraints (9) and 
(10) in the above proposed model.  

4.7 A Lower Bound for the Makespan 

In this section, we develop a processor based on a lower bound and evaluate schedules 
produced in this manner with other heuristic (or metaheuristic) approaches. The proposed 
lower bound was developed based on the lower-bound method presented by Sawik (2001) 
for the FFLPB. The proposed lower bound resulted from the following theorem: 
Theorem. Equation (11) is the lower bound on any feasible solution of the proposed model.  
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Proof. Let Sik be the minimum time required to set up job k at stage i. We know that every 
job k must be processed at each stage and must also be set up. In an optimistic case, we 
assume that the work-load incurred to processors at each stage is identical. Thus, each 

processor at stage i has the minimum mean workload (1/ni)u(¦k[pik+Sik]) (i.e., the first term 
in Equation (11)). According to constraint sets (4) and (5), a job cannot begin setup until it is 
available and the previous job at the current stage is complete. Actually, constraint sets (4) 
and (5) remark two facts. First, each processor at each stage i incurs an idle time because of 
waiting for the first available job. A lower bound for this waiting time in stage i can be the 
second term in Equation (11). Second, each processor at each stage i incurs an idle time after 
accomplishment of processing untill the end of scheduling. This idle time is equal to the 
sum of the minimum time to processing jobs at the next stages (i.e., i+1, ..., m). A lower 
bound for this idle time can be the third term in Equation (11). The sum of the above three 
terms indicates a typical lower bound in terms of an optimistic scheduling in stage i. Thus, 

LB in Equation (11) is a lower bound on any feasible solution.฀

5. Numerical Examples 

In this section, many numerical examples are presented, and some computational results are 
reported to illustrate the efficiency of the proposed approach. Fourteen small-sized 
problems are considered in order to evaluate the proposed model. Each problem has some 
integer processing times selected from a uniform distribution between 50 and 70, and 
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integer setup times selected from a uniform distribution between 12 and 24 (Kurz and 
Askin, 2004). To verify the model and illustrate the approach, problems were generated in 
the following three categories: (1) Classical flow shop (one processor at each stage), termed 
CAT1 problems; (2) FFLP with the same number of processors at each stage, termed CAT2 
problems; and (3) FFLP with a different number of processors at each stage, termed CAT3 
problems. The CAT1 problems are considered simply to verify the performance of the 
proposed model. To make the comparison of runs simpler and also for standardization, we 
assume that the total number of processors in all stages is equal to double the number of 

stages, i.e., ¦knk = 2um. For example, a problem with three stages has six processors in total. 
These problems have been solved by the Lingo 8.0 software on a personal computer with 
Celeron M 1.3 GHz CPU and 512 MB of memory. Each problem is allowed a maximum of 

7200 seconds of CPU time (two hours) using the Lingo setting (o/Option/General 
Solver/time Limitation = 7200 Sec.). 
Table 1 contains additional information about CAT1 problems for finding optimal solutions 
(i.e., classical flow shop). Problems are considered with two, three, and four stages and more 
than four jobs. The values for Columns 'B/B Steps' and 'CPU Time' are two vital criteria for 
measuring the severity and complexity of the proposed model. Also, the dimension of the 
problem is shown when regarding the number of 'Variables' and 'Constraints' in Table 1. In 
CAT1 problems, the number of variables is less than the number of constraints. Thus, CAT1 
problems are more severe than CAT2 and CAT3 problems in terms of the time complexity and 
computational time required. For example, despite all efforts, a feasible solution is not found in 
2 hours for problem 10 (i.e., 6 jobs and 4 stages = 4 processors). However, for problem 3 in 
Table 2 with nearly the same condition and dimension (i.e., 6 jobs and 2 stages = 4 processors), 
the optimal solution is reached in less than one hour. Likewise, for problem 3 in Table 3 (i.e., 6 
jobs and 2 stages = 4 processors), the optimal solution is reached in less than three minutes. To 
illustrate the complexity of solving FFLPB-SDST, the behavior of the B/B’s CPU time vs. 
increasing the number of jobs for different numbers of stages related to data provided in Table 
1 is shown in Figure 5. As the figure indicates, by increasing the number of stages, the CPU 
time increases progressively. Table 1 also shows that increasing the number of stages (or 
processors) leads to a greater increase in computational time, rather than an increase in the 
number of jobs. Table 2 contains additional problem characteristics and information for 
optimal solutions related to CAT2 problems (i.e., there are two processors at each stage). 
Likewise, Table 3 contains additional problem information for obtaining optimal solutions 
related to CAT3 problems (i.e., different numbers of processors at each stage).   

Number of 

No. K m ni Variables Constraints B/B Steps CPU Time  Cmax LB

1 4 2 1,1 81 95 330 00:00:03 384 383 
2 5 2 1,1 121 138 2743 00:00:17 450 445 
3 6 2 1,1 169 189 151739 00:14:52 524 503 
4 7 2 1,1 225 248 - > 2 hours 610* 585 

5 4 3 1,1,1 121 140 1849 00:00:25 465 430 
6 5 3 1,1,1 181 204 9588 00:01:45 544 519 
7 6 3 1,1,1 253 280 - > 2 hours 615* 577 

8 4 4 1,1,1,1 161 185 297 00:00:26 548 520 
9 5 4 1,1,1,1 241 270 122412 00:21:20 627 605 
10 6 4 1,1,1,1 337 371 - > 2 hours Infeasible** 700 

  * The best feasible objective value is found so far. 
  ** A feasible solution is not found so far.

Table 1. Optimal solutions for CAT1 problems 
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       Number of 

No. K m ni Variables Constraints B/B Steps CPU Time  Cmax LB

1 4 2 2,2 145 145 872 00:00:05 230 218 
2 5 2 2,2 221 220 10814 00:00:55 295 252 
3 6 2 2,2 313 311 240586 00:47:36 299 291 
4 7 2 2,2 421 418 - > 2 hours 380* 335 

5 4 3 2,2,2 217 215 6644 00:00:32 314 306 
6 5 3 2,2,2 331 327 232987 01:02:38 376 328 
7 6 3 2,2,2 469 463 - > 2 hours 389* 376 

8 4 4 2,2,2,2 289 285 28495 00:02:23 395 392 
9 5 4 2,2,2,2 441 434 - > 2 hours 446* 390 

  * The best feasible objective value is found so far.  

Table 2. Optimal solution for CAT2 problems 

Number of 

No. K m ni Variables Constraints B/B Steps CPU Time  Cmax LB

1 4 2 1,3 209 145 251 00:00:03 381 380 
2 5 2 1,3 321 220 1849 00:00:36 434 429 
3 6 2 1,3 457 311 6921 00:02:32 527 523 
4 7 2 1,3 617 418 - > 2 hours 584* 577 

5 4 3 2,1,3 311 215 754 00:00:11 437 426 
6 5 3 2,1,3 481 327 89714 00:13:52 484 479 
7 6 3 2,1,3 685 463 84304 00:25:26 574 570 
8 7 3 2,1,3 925 623 - > 2 hours 645* 639 

  * The best feasible objective value is found so far.  

Table 3. Optimal solution for CAT3 problems 

m=3

m=2

m=1

Figure 5. The behavior of the B/B’s CPU time vs. increasing the number of jobs for a 
different number of stages 

A linear regression analysis was made to fit a line through a set of observations related to 
values of Cmax (i.e., makespan) vs. the lower bound (LB). Original figures were obtained 
from the results in Tables 1, 2, and 3. This analysis can be useful for estimating the Cmax

value for the large-sized problems genererated by using  the form presented in this chapter. 
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A scatter diagram of Cmax vs. the LB is shown in Figure 5. Obviously, the linear trend of the 
scatter diagram is noticeable. Table 4 contains regression results. According to Table 4, Cmax

can be estimated as . The R2 value, which is called the coefficient of 

determination, compares estimated with actual Cmax values ranging from 0 to 1. If R2 is 1, 
then there is a perfect correlation in the sample and there is no difference between the 
estimated Cmax value and the actual Cmax value. At the other extreme, if R2 is 0, the regression 
equation is not helpful in predicting a Cmax value. Thus, R2 = 0.981 implies the goodness of 
fitness and observations. For instance, we generate a problem with 20 jobs and 3 stages 
belonging to CAT2 (two processors at each stage) that cannot be solved optimally in a 
reasonable time. According to Equation (14), the lower bound for the generated problem is 
886, thus, the estimated Cmax is 893. If some other approach can achieve a solution with a 
Cmax value in the interval (886, 893], we can say that this is an efficient approach. Thus, 

interval (LB, ] can be a proper criterion for evaluating the performance of other 

approaches.

maxĈ 0.9833 LB 0.0325 u �

maxĈ

Slop Constant R2 Regression sum of squares  Residual sum of squares 

0.9833 0.0325 0.981 912.44 202313.79

Table 4. Regression results 

As further illustrations, we present a typical optimal scheduling for each category of 
problem, i.e., CAT1, CAT2, and CAT3, in Figures 7, 8, and 9, respectively. These figures are 
created by using the notations shown in Figure 6. Figure 7 illustrates the optimal scheduling 
for problem 9 in Table 1. For instance, there is a blocking time in stage 2 (S2-P2), that is close 
to the completion time of job 3, since job 2 is not departed from stage 3. In addition, there is 
a blocking processor and immediate idle time in stage 3 that is close to the completion time 
of job 3, because job 2 is not still departed from stage 4 and the completion time of job 1 in 
stage 2 is greater than departure time of job 3 in stage 3. It is worth noting that the 
processing sequence is the same at all stages implying a classical flow shop. Figure 8 depicts 
the optimal scheduling for problem 6 shown in Table 2, in which there is one tiny blocking 
time and several relatively long idle times. For instance, there is a tiny blocking time next to 
job 3 in stage 2 on processor 1 (S2-P1) because job 2 is not yet departed from stage 3 on 
processor 2 (S3-P2). Figure 8 also presents the processing sequence between each pair of 
observed jobs. For example, the departure time of job 2 is always later than the setup time 
(processing start time) of job 1 at the stages. In general, we expect few blocking times for 
CAT1 and CAT2 problems because there are an equal number of processors at each stage 
and the model endeavors to allocate the same workload to each processor at each stage for 
minimizing Cmax. On the other hand, in CAT3 problems, we expect more blocking time 
because of the unequal number processor times at each stage. For instance, as shown in 
Figure 9, there are two relatively long blocking times in stage 1 because all jobs must be 
processed in stage 2 on only one processor. On the other hand, there are several relatively 
long idle times in stage 3 because of the above reason. Actually, stage 2 plays the role of 
bottleneck here.  
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Figure 7. Optimal scheduling for problem 9 shown in Table 1 from CAT1 
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Figure 8. Optimal scheduling for problem 6 shown in Table 2 from CAT2 

Figure 9. Optimal scheduling for problem 6 shown in Table 2 from CAT3 
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6. Conclusions 

In this chapter, we presented a new mixed-integer programming approach to the flexible 
flow line problem without intermediate buffers by assuming in-process buffers and 
sequence-dependent setup time. The proposed mathematical model can provide an optimal 
schedule by considering blocking processor and idle time as well as sequence-dependent 
setup time. We solved the proposed model for three problem categories, i.e., classical flow 
shop (CAT1), stages with an equal number of processors (CAT2), and stages with an 
unequal number of processors (CAT3). Computation results showed that solving CAT3 
problems requires low computational time, since there are less complex than CAT1 and 
CAT2 problems. On the other hand, in the classical flow shop case (i.e., CAT1), a high 
computational time is required. In many practical situations, the proposed model cannot 
optimally solve more than seven jobs with three stages (or six processors). Further, we 
developed a lower bound to evaluate the schedules produced with other heuristic or 
metaheuristic approaches. Also, a linear regression analysis was made to find a logical 
relationship between the makespan and its lower bound, which can be used in future 
research. The proposed model can be solved by other heuristic or metaheuristic approaches 
as well, and with uncertain processing times and/or setup times. It can also be solved using 
limited intermediate buffers instead of in-process buffers.  
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