
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

CORE Metadata, citation and similar papers at core.ac.uk

Provided by IntechOpen

https://core.ac.uk/display/322386558?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

15

A New Mathematical Model for Flexible Flow
Lines with Blocking Processor and

Sequence-Dependent Setup Time

R. Tavakkoli-Moghaddam1 and N. Safaei2

1 Department of Industrial Engineering, Faculty of Engineering, University of Tehran,
2 Department of Mechanical and Industrial Engineering, University of Toronto,

1 Iran, 2 Canada

1. Introduction

This chapter presents a novel, mixed-integer programming model of the flexible flow line
problem that minimizes the makespan of a product. The proposed model considers two
main constraints, namely blocking processors and sequence-dependent setup time between
jobs. We extend two previous studies conducted by Kurz and Askin (2004) and Sawik
(2001), which considered only one of the foregoing constraints. However, this chapter
considers both constraints jointly for flexible flow lines. A flexible flow line consists of
several parallel processing stages in series, separated by finite intermediate buffers, in which
each stage has one or more identical parallel processors. The line produces several different
jobs, and each job must be processed by at most one processor at each stage. The completed
job may remain on a machine and block the processor until a downstream processor
becomes available for processing in the next stage; this is known as the blocking processor
constraint. In the sequence-dependent setup time constraint , the processing of each job requires
a setup time for preparing the processor that is immediately dependent on the preceding
job. The objective, therefore, is to determine a production schedule for all jobs in such a way
that they are completed in a minimum period of time (i.e., makespan). A number of
numerical examples are solved and some computational results are reported to verify the
performance of the proposed model. Finally, areas for future research are identified.
A flexible flow line consists of several processing stages in series, separated by finite inter-
stage buffers, where each stage includes one or more identical parallel machines. The line
produces several different job types. Each job must be processed by at most one machine in
each stage. A processed job on a machine in some stage is transferred either directly to an
available machine in the next stage (or another downstream stage depending on the job-
processing route), or, when no intermediate buffer storage is available, to a buffer ahead of
that stage. The job may remain on the machine and block it until a downstream machine
becomes available (i.e., a blocking processor) (McCormick, 1989; Hall and Sriskandarajah,
1996; Sawik, 2000; Sawik, 2002). However, this blockage prevents another job from being
processed on the blocked machine. Actually, a flexible flow line represents a special type of
traditional flow shop, in which there is only one machine in each stage and unlimited
intermediate storage between successive machines. The flexible flow line with unlimited O

pe
n

A
cc

es
s

D
at

ab
as

e
w

w
w

.i-
te

ch
on

lin
e.

co
m

Source: Multiprocessor Scheduling: Theory and Applications, Book edited by Eugene Levner,
ISBN 978-3-902613-02-8, pp.436, December 2007, Itech Education and Publishing, Vienna, Austria

Multiprocessor Scheduling: Theory and Applications 256

intermediate buffers has been also referred to a hybrid flow line (Blazewicz et al., 1994).
Blocking scheduling problems arise in modern manufacturing environments, such as just-
in-time production systems or flexible assembly lines, that have limited intermediate buffers
between machines, or no buffers (e.g., surface mount technology (SMT) lines in the
electronics industry for assembling printed circuit boards (Sawik, 2001)).
Setup includes work required to prepare the machine, process, or bench for job parts or the
cycle. This presentation includes obtaining tools, positioning work-in-process inventory,
returning tools and fixtures, cleaning up, setting the required jigs and fixtures, adjusting
tools, and inspecting materials. Because of its complexity, in most studies, the setup
operation (time and/or cost) has been considered negligible and hence ignored, or
considered as part of the processing time in the case of setup times. While this may be
justified for some scheduling problems, many other situations call for explicit (separable)
setup time consideration. For a separable setup, two types of problem exist. In the first type,
setup depends only on the job to be processed, hence is called sequence-independent. In the
second type, setup depends on both the job to be processed and the immediately preceding
job, hence is called sequence-dependent (Allahverdi et al., 1999).

2. Literature Review

The literature on the traditional flow shop and parallel machines scheduling is abundant
and contains various optimization and approximation algorithms (Blazewicz et al., 1994). In
addition, scheduling for flexible lines has been analyzed extensively in the literature over
the last three decades. Kusiak (1988) considered flexible machining and assembly systems as
two dependent subsystems, and proposed a heuristic two-level scheduling algorithm for a
system consisting of a machining and an assembly subsystem in a flexible manufacturing
system (FMS). Brandimart (1993) proposed a hierarchical algorithm for the flexible job shop
scheduling problem based on a tabu search algorithm to minimize the makespan and the
total weighted tardiness. Daniels and Mazzola (1993) used a tabu search algorithm for the
flexible-resource flow shop scheduling problem (FRFSP). They introduced the FRFSP as a
generalization of the flow shop scheduling problem. It explicitly considers the dynamic
allocation of a flexible resource to machines, with operation processing times determined as
a function of the amount of assigned resource. This problem requires that job-sequencing
and resource-allocation decisions be made in conjunction, thus creating an environment in
which significant operational benefits can be realized. Control of operation processing times
by means of strategic resource allocation is a familiar concept in the project management
literature. Riezebos et al., (1995) introduced a special instance of the flow shop scheduling
problem originating from flexible manufacturing systems. In this problem, there is one
machine at each stage. A job may require multiple operations at each stage. The first
operation of a job on stage j cannot start until the last operation of the job on stage j-1 has
finished. Preemption of the operations of a job is not allowed. To move from one operation
of a job to another requires a finite amount of time, called a time lag. This time lag is
independent of the sequence and may not be the same for all operations or jobs. During a
time lag of a job, operations of other jobs may be processed.
Lee and Vairaktarakis (1998) compared the throughput performance of several flexible flow
shop and job shop designs. They considered the two-stage assembly flow shops with m
parallel machines in Stage 1 and a single assembly facility in Stage 2. Every upstream
operation can be processed by any one of the machines in Stage 1 prior to the assembly

A New Mathematical Model for Flexible Flow Lines with Blocking Processor and
Sequence-Dependent Setup Time 257

stage. They also studied a similar design where every Stage 1 operation is processed by a
predetermined machine. For both designs, they presented heuristic algorithms with good
worst-case error bounds, and showed that the average performance of these algorithms is
near optimal. Jayamohan and Rajendran (2000) investigated the effectiveness of two
approaches using different dynamic dispatching rules for the scheduling of flexible flow
shops minimizing the flow times and tardiness of the jobs. Quadt and Kuhn (2005)
considered a lot-sizing and scheduling problem of flexible flow lines for a semiconductor
industry that minimizes the mean flow time as well as set-up, inventory holding, and back-
order costs. Hong et. al., (2005) introduced a new fuzzy flexible flow shops for more than
two machine centers with uncertain processing times and triangular membership functions.
They also applied the triangular fuzzy LPT algorithm to allocate jobs and triangular fuzzy
Palmer algorithm to find suitable sequence for the jobs. Alisantoso et al., (2003) proposed an
immune algorithm for the scheduling of a flexible flow shop for PCB manufacturing. Torabi
et al., (2005) studied the common cycle multi-product lot-scheduling problem in
deterministic flexible job shops, and proposed an efficient enumeration method to
determine the optimal solution for their model. Tavakkoli-Moghaddam and Safaei, (2005)
proposed a queen-bee-based genetic algorithm to schedule flexible flow lines while
considering the blocking processor. Tavakkoli-Moghaddam et al., (2007) also proposed a
memetic algorithm to solve the mentioned scheduling problem. Jungwattanakit et al., (2007)
formulated a 0–1 mixed-integer program to address the flexible flow shop scheduling
problem in the textile industries that determines a schedule by minimizing a convex
combination of makespan and the number of tardy jobs.
Research on the development of scheduling algorithms for flexible flow lines with finite or
limited capacity buffers, or with no in-process buffers, is mostly restricted to the heuristics
domain, in which good solutions are produced in reasonable computing times (Sawik, 1993;
Sawik, 1994). Sawik (2000; 2001; 2002) first proposed an integer programming formulation
for scheduling flexible flow lines with blocking processor and limited buffers. Sawik (2001)
presented new mixed-integer programming formulations for blocking scheduling of SMT
lines for printed wiring board assembly to minimize the makespan. He tested the model for
small-sized problems (e.g., five stages and ten jobs). Kaczmarczyk et al., (2004) proposed a
new mixed integer programming formulation for general or batch scheduling in SMT lines
with continuous or limited machine availability. Their formulation is an improved version
of the model presented by Sawik (2001), incorporating new cutting constraints on decision
variables. They also presented a new formulation for batch scheduling with various specific
cutting constraints. Tavakkoli-Moghaddam and Safaei (2006) presented an intial idea to
consider both the blocking processor and sequence dependent setup time in flexible flow
lines. Kis and Pesch (2005) provided a comprehensive and uniform overview on exact
solution methods for flexible flow shops with branching, bounding, and propagating of
constraints, under the following two objective functions: minimizing both the makespan and
mean flow time of a schedule. Quadt and Kuhn (2007) also presented a taxonomy for
flexible flow line scheduling procedures that included heuristic, metaheuristic, and holistic
approaches.
The significance of setup times has been investigated in several studies. Wilbrecht and
Prescott (1969) found that sequence-dependent setup times were significant when a job shop
was operated at or near full capacity. In a survey of industrial managers, Panwalkar et al.,
(1973) discovered that out of about three-quarters of the managers' reports, at least some of

Multiprocessor Scheduling: Theory and Applications 258

their scheduled operations require sequence-dependent setup times, while approximately
15% reported all operations requiring sequence-dependent setup times. Flynn (1986)
determined that applications of both sequence-dependent setup procedures and group
technology principles increased output capacity in a cellular manufacturing shop. Wortman
(1992) also underlined the importance of considering sequence-dependent setup times for
the effective management of manufacturing capacity. Krajewski et al., (1987) examined those
factors in a production environment that had the biggest influence on performance and
concluded that, regardless of the production system in use, simultaneous reduction of setup
times and lot sizes was the most effective way to reduce inventory levels and improve
customer service. Kurz and Askin (2004) presented an integer programming (IP) approach
for a flexible flow line problem with infinite buffer and sequence-dependent setup time;
their model does not consider blocking processor. A major disadvantage of the above
integer programming approaches to scheduling is the need for solving large mixed-integer
programs to obtain meaningful optimal solutions (Greene and Sadowski, 1986; Jiang and
Hsiao, 1994). The size and complexity of the integer programming formulation increase
when introduction of finite-capacity buffers results in a blocking scheduling problem.
Although recent theoretical advances in integer programming and the advent of
sophisticated computer hardware have enabled very powerful commercial software
packages to come into use, large-sized problems cannot be optimaly solved within a
reasonable time. Thus, heuristic or metaheuristic algorithms must be used for solving large
and complex problems (Kurz and Askin, 2004).
While recent advances in manufacturing technologies such as flexible manufacturing
systems (FMSs) or single-minute exchange of die (SMED) concepts have reduced the
influence of setup time, there are still many environments where setup time is significant.
There are also many practical applications that support separate consideration of setup tasks
from processing tasks. These applications can be found in various shop types and
environments; e.g., production, service, and information processing. Pinedo (1995)
described a paper-bag factory where setup was needed when the machine was switched
between types of paper bags, and the setup duration depended on the degree of similarity
between consecutive batches, e.g., size and number of colors. The printing industry provides
numerous applications of sequence-dependent setups where the machine cleaning involved
depends on the color of the current and immediate following orders (Conway et al., 1967).
In several textile industry applications, setup for weaving and dying operations depends on
the job sequence. In the container and bottle industry, the settings change depending on the
sizes and shapes of the containers. Further, in the plastic industry, different types and colors
of jobs require sequence-dependent setups (Das et al., 1995; Franca, 1996; Srikar and Ghosh,
1986; Bianco, 1988). Similar practical situations arise in the chemical, pharmaceutical, food
processing, metal processing, and paper industries (Bitran and Gilbert, 1990). Also, in an
automatic turning center (ATC), setup time depends on the difference in the number and
types of tools currently mounted on the turret and those required for the next work piece.
Other examples of sequence-dependent setup time applications include a semiconductor
testing facility (Kim and Bobrowski, 1994) and a machine shop environment (Ovacik and
Uzsoy, 1992). Sule and Huang (1983) described the activities typically associated with
sequence-dependent and sequence-independent operations in machine shop environments.
Allahverdi et al., (1999) conducted a comprehensive review of setup-time research for
scheduling problems classifying into batch, non-batch, sequence-independent, and

A New Mathematical Model for Flexible Flow Lines with Blocking Processor and
Sequence-Dependent Setup Time 259

sequence-dependent setup. Also, Wang (2005) reviewed research on flexible flow shops
(FFSs). Botta-Genoulaz (2000) solved a FFS problem with precedence constraints, time lags,
setup and removal times, and due dates to minimize the maximum lateness.
In this chapter, we consider the flexible flow line problem (FFLP) with sequence-dependent
setup time, without intermediate buffers that may lead to blocking processors.
Simultaneouse consideration of both sequence-dependent setup time and blocking
processor make the problem very complex for modeling and solving. We present a mixed-
integer programming model that is optimally solved by a branch-and-bound (B/B)
approach for small-sized problems. The rest of the chapter is organized as follows. The
problem is described in Section 3; the proposed model is presented in Section 4;
computational results are reported in Section 5; and in Section 6, conclusions are presented.

3. FFLP with Sequence-Dependent Setup Time and Blocking Processor

As mentioned earlier, the flexible flow lines problem (FFLP) with blocking (FFLPB)
processor is a flexible flow line scheduling problen with no intermediate buffers or in-
process buffers (Sawik, 2000). A processed job on a machine may remain there and block the
processor until a downstream processor becomes available for processing in the next stage.
A unified modeling approach is adopted with the buffers viewed as machines with zero
processing times. As a result, the scheduling problem with buffers can be converted into one
with no buffers but with blocking (Sawik, 1993 and 1995). The blocking time of a machine
with zero processing time denotes job waiting time in the buffer represented by that machine.
We assume that each job must be processed in all stages, including the buffers stages.
However, zero blocking time in a buffer stage indicates that the corresponding job does not
need to wait in the buffer. It is worth noting that for each buffer stage, job completion time is
equal to its departure time from the previous stage, since the processing time is zero. In the
notation proposed by Sawik (2000), buffers and machines are jointly called processors.
In this chapter, the FFLB problem consists of m processing stages in series, as shown in

Figure 1. Each stage i (i =1,…, m) is made up of ni t 1 identical parallel processors. The
system produces K jobs of various types. Each job must be processed without preemption on
exactly one processor in each of the stages sequentially. That is, each job must be processed
in stage 1 through stage m, in that order. The order of processing the jobs in every stage is
identical and determined by an input sequence in which the jobs enter the line. Let pik be the
processing time for job k (k =1,…,K) in stage i. Also, the completion time for job k in stage i is
denoted by cik , and dik is its departure time from stage i. Processing without preemption
indicates that job k completed in stage i at time cik had started its processing in that stage at

time cik - pik . Job k completed in stage i at time cik departs at time dik t cik to an available
processor in the next stage i+1. If time cik of all ni+1 processors in stage i+1 are occupied, then
the processor in stage i is blocked by job k until time dik = c(i+1)k - p(i+1)k , when job k starts
processing on an available processor in stage i+1 (see Figure 2). Note that c(i+1)k is
determined with respect to c(i+1)(k-1). The objective is to determine an assignment of jobs to
processors in each stage over a scheduling horizon in such a way that all the jobs are
completed in a minimum time in order to minimize the makespan (i.e., Cmax = maxk{cmk}).
With blocking processor, on the other hand, it is possible that we encounter idle time for
processors. In Figure 3, job l must be processed on stage i+1 (on the same processor)
immediately before job k, where cik > d(i+1)l. Therefore, the corresponding processor incurs an
idle time in interval (d(i+1)l, cik]. As depicted in Figure 3, the complete and departure times for

Multiprocessor Scheduling: Theory and Applications 260

job k in stage i are the same, because the corresponding processor in stage i+1 is idle at the
same time and job l can be processed on stage i+1 immediately after completion in stage i.

Figure 1. A flexible flow line with no intermediate buffers

Figure 2. A schema of processor blocking

As noted earlier, setup time can include the time for preparing the machine or the processor.
In an FFLPB with sequence-dependent setup time (FFLPB-SDST), it is assumed that the
setup time depends on both jobs to be processed, the immediately preceding job, and the
corresponding stage. Thus, a proper operation sequence on the processors has a significant
effect on the makespan (i.e., Cmax). As already assumed, the processors in each stage are
identical, whereas the stages are different. Therefore, it is assumed that the setup time also
depends on the stage type. A schema of sequence-dependent setup time in the FFLPB is
illustrated in Figure 4. Job q must be processed immediately before job k in stage i. Also, job l
must be processed immediately before job k in stage i+1. siqk is equal to the processor setup
time for job k if job q is the immediately preceding job in the sequence operation on the
corresponding processor. Likewise, s(i+1)lk is equal to the processor setup time for job k if job l
is the immediately preceding job. Job q is completed in stage i at time ciq and departs as time

diq t ciq to an available processor in stage i+1 (excepting the one that is processing job k). As a

result, job k is started at time diq+siqk in stage i and departs at time dik t d(i+1)l to stage i+1.

Likewise, job l is completed in stage i+1 at time c(i+1)l and departs at time d(i+1)l t c(i+1)l to an
available processor in the next stage. As a result, job k started at time d(i+1)l +s(i+1)lk in stage

1

2

n1

�

Stage 1

1

2

n2

�

1

2

nm

�

Stage mStage 2

k

k

0

Processor blocking

dik

c(i+1)k

cik

pik

p(i+1)k

Wait
time

Stage

Stage i

Stage i+1

Time

A New Mathematical Model for Flexible Flow Lines with Blocking Processor and
Sequence-Dependent Setup Time 261

i+1 and completed at time c(i+1)k. It is worth noting that the blocking processor or idle times
cannot be used as setup time, because we assume the preparing processor requires the
presence of a job.

kStage i

Stage i+1 k

0

Stage

c(i+1)k

l

dik

cik = dik

pik

p(i+1)k

Idle
time

Time

c(i+1)l

d(i+1)l

Figure 3. A schema of idle time

Figure 4. A schema of sequence-dependent setup time in FFLPB

4. Problem Formulation

In this section, we present a proposed model for the FFLP by considering both the blocking
processor and sequence-dependent setup time. This model belongs to the mixed-integer
nonlinear programming (MINLP) category. Then, we present a linear form for the proposed
model. Without loss of generality, the FFLP can be modeled based on a traveling salesman

kStage i

Stage i+1 k

Stage
dik

dik

Time

0

diq cik

q

l

diq

siqk

ciq

s(i+1)lk

c(i+1)1

d(i+1)1

Multiprocessor Scheduling: Theory and Applications 262

problem approach (TSP), since each processor at each stage plays the role of salesman once
jobs (nodes) have been assigned to the processor. In this case, the sum of setup time and
processing time indicates the distance between nodes. Thus, essentially the FFLP is an NP-
hard problem (Kurz and Askin, 2004). A detailed breakdown of the proposed model
follows.

4.1. Assumptions

The problem is formulated under the following assumptions. Like Kurz and Askin (2004),
we also consider blocking processor and sequence-dependent setup times.
1. Machines are available at all times, with no breakdowns or scheduled or unscheduled

maintenance.
2. Jobs are always processed without error.
3. Job processing cannot be interrupted (i.e., no preemption is allowed) and jobs have no

associated priority values.
4. There is no buffer between stages, and processors can be blocked.
5. There is no travel time between stages; jobs are available for processing at a stage

immediately after departing at previous stage.
6. The ready time for all jobs is zero.
7. Machines in parallel are identical in capability and processing rate.
8. Non-anticipatory sequence-dependent setup times exist between jobs at each stage.

After completing processing of one job and before beginning processing of the next job,
some sort of setup must be performed.

4.2. Input Parameters

m = number of processing stage.
K = number of jobs.
ni= number of parallel processors in stage i.
pik = processing time for job k in stage i.
silk = processor setup time for job k if job l is the immediately preceding job in sequence

operation on the processor i. As discussed earlier, we assume that processors at each
stage are identical, thus Silk is independent of index j, i.e., the processor index.

4.3. Indices

i = processing stage, where i =1,…, m.
j = processor in stage, where j =1,…, ni.
k, l = job, where k, l =1,…, K.

4.4. Decision Variables

Cmax = makespan.
cik = completion time of job k at stage i.
dik = departure time of job k from stage i.
xijlk = 1, if job k is assigned to processor j in stage i where job l is its predecessor job;

otherwise xijlk = 0. Two nominal jobs 0 and K+1 are considerd as the first and last
jobs, respectively (Kurz and Askin, 2004). It is assumed that nominal jobs 0 and
K+1 have zero setup and process time and must be processed on each processor in
each stage.

A New Mathematical Model for Flexible Flow Lines with Blocking Processor and
Sequence-Dependent Setup Time 263

4.5. Mathematical Formulation

Min Cmax

s.t.

1 0,

1 ,
in K

ijlk

j l l k

x i k
 z

 ¦ ¦ � (1)

1

0, 1,

 , ,
K K

ijlk ijkq

l l k q q k

x x i
�

 z z

 ¦ ¦ j k�

k

 (2)

 (3)
1 1 1 0 0

1

in

k k j k i k

j

c p x s

t � �¦

 (4)
(-1)

1 0

- 1,
in K

ik i k ik ijlk ilk

j l

c c p x s i k

t � � !¦¦

 (5) � �
1 0,

 , 1,..., 1
in K

ik ik ijlk ilk il

j l l k

c p x s d i k K
 z

t � � � �¦ ¦

 (6)
(1)

1 0,

 1,
in K

ik i k ik ijlk ilk

j l l k

c d p x s i k�
 z

 � � � !¦ ¦

 cmk =dmk �k (7)

 Cmax t cmk �k (8)

xijlk �{0,1} �i,j,l,k ; cik , dik t 0 �i,k

The objective function is to minimize the schedule length. Constraint (1) ensures that each
job k in every stage is assigned to only one processor immediately after job l. Constraint (2),
which is complementary to Constraint (1), is a flow balance constraint, guaranteeing that
jobs are performed in well-defined sequences on each processor at each stage. This
constraint determines which processors at each stage must be scheduled. Constraint (3)
calculates the complete time for the first available job on each processor at stage 1. Likewise,
Constraint (4) calculates the complete time for the first available job on each processor in
other stages, and also guarantees that each job is processed in all downstream stages with
regard to setup time related to both the job to be processed and the immediately preceding
job. Constraint (5) controls the formation of the processor's blocking. Constraint (6)
calculates the processing of a job depending on the processing of its predecessor on the same
processor in a given stage. This constraint controls creating the processor's idle time. Both
constraint sets (5) and (6) ensure that a job cannot begin setup until it is available (done at
the previous stage) and the previous job at the current stage is complete. Constraint (6)
indicates that the processing of each job in every stage starts immediately after its departure
from the previous stage plus the setup time of the immediately preceding job. Actually, this
constraint calculates the departure time related to each job at each stage except for the last
stage. Constraint (7) ensures that each product leaves the line as soon as it is completed in
the latest stage. Finally, Constraint (8) defines the maximum completion time.

Multiprocessor Scheduling: Theory and Applications 264

4.6. Model Linearization

The proposed model has a nonlinear form because of the existence of Constraint (5). Thus, it
cannot be solved optimally in a reasonable time by programming approaches. Thus, we
present a linear form for the proposed model by defining the integer variable yijlk and
changing Constraint (5), as indicated in the following expressions.

� � � �1 , , ,ijlk ilk il ijlky s d M x i j lt � � u � � k (9)

 (10)

1 1,

 ,
in K

ik ik ijlk

j l l k

c p y i k
 z

t � �¦ ¦
where M is an arbitrary big number. Constraint (5) must be replaced by Constraints (9) and
(10) in the above proposed model.

4.7 A Lower Bound for the Makespan

In this section, we develop a processor based on a lower bound and evaluate schedules
produced in this manner with other heuristic (or metaheuristic) approaches. The proposed
lower bound was developed based on the lower-bound method presented by Sawik (2001)
for the FFLPB. The proposed lower bound resulted from the following theorem:
Theorem. Equation (11) is the lower bound on any feasible solution of the proposed model.

� � ^ ` ^ `
1

1 11
1 1 1

max min min
K i mm K K

ik ik

hk hk hk hk
k ki

k h h ii

p S
LB p S p S

n

�

 �

�­ ½
 � � � �® ¾

¯ ¿
¦ ¦ ¦ (11)

where,

^ `
1

min ,
K

ik ilk
l

S s

 �i k

Proof. Let Sik be the minimum time required to set up job k at stage i. We know that every
job k must be processed at each stage and must also be set up. In an optimistic case, we
assume that the work-load incurred to processors at each stage is identical. Thus, each

processor at stage i has the minimum mean workload (1/ni)u(¦k[pik+Sik]) (i.e., the first term
in Equation (11)). According to constraint sets (4) and (5), a job cannot begin setup until it is
available and the previous job at the current stage is complete. Actually, constraint sets (4)
and (5) remark two facts. First, each processor at each stage i incurs an idle time because of
waiting for the first available job. A lower bound for this waiting time in stage i can be the
second term in Equation (11). Second, each processor at each stage i incurs an idle time after
accomplishment of processing untill the end of scheduling. This idle time is equal to the
sum of the minimum time to processing jobs at the next stages (i.e., i+1, ..., m). A lower
bound for this idle time can be the third term in Equation (11). The sum of the above three
terms indicates a typical lower bound in terms of an optimistic scheduling in stage i. Thus,

LB in Equation (11) is a lower bound on any feasible solution.฀

5. Numerical Examples

In this section, many numerical examples are presented, and some computational results are
reported to illustrate the efficiency of the proposed approach. Fourteen small-sized
problems are considered in order to evaluate the proposed model. Each problem has some
integer processing times selected from a uniform distribution between 50 and 70, and

A New Mathematical Model for Flexible Flow Lines with Blocking Processor and
Sequence-Dependent Setup Time 265

integer setup times selected from a uniform distribution between 12 and 24 (Kurz and
Askin, 2004). To verify the model and illustrate the approach, problems were generated in
the following three categories: (1) Classical flow shop (one processor at each stage), termed
CAT1 problems; (2) FFLP with the same number of processors at each stage, termed CAT2
problems; and (3) FFLP with a different number of processors at each stage, termed CAT3
problems. The CAT1 problems are considered simply to verify the performance of the
proposed model. To make the comparison of runs simpler and also for standardization, we
assume that the total number of processors in all stages is equal to double the number of

stages, i.e., ¦knk = 2um. For example, a problem with three stages has six processors in total.
These problems have been solved by the Lingo 8.0 software on a personal computer with
Celeron M 1.3 GHz CPU and 512 MB of memory. Each problem is allowed a maximum of

7200 seconds of CPU time (two hours) using the Lingo setting (o/Option/General
Solver/time Limitation = 7200 Sec.).
Table 1 contains additional information about CAT1 problems for finding optimal solutions
(i.e., classical flow shop). Problems are considered with two, three, and four stages and more
than four jobs. The values for Columns 'B/B Steps' and 'CPU Time' are two vital criteria for
measuring the severity and complexity of the proposed model. Also, the dimension of the
problem is shown when regarding the number of 'Variables' and 'Constraints' in Table 1. In
CAT1 problems, the number of variables is less than the number of constraints. Thus, CAT1
problems are more severe than CAT2 and CAT3 problems in terms of the time complexity and
computational time required. For example, despite all efforts, a feasible solution is not found in
2 hours for problem 10 (i.e., 6 jobs and 4 stages = 4 processors). However, for problem 3 in
Table 2 with nearly the same condition and dimension (i.e., 6 jobs and 2 stages = 4 processors),
the optimal solution is reached in less than one hour. Likewise, for problem 3 in Table 3 (i.e., 6
jobs and 2 stages = 4 processors), the optimal solution is reached in less than three minutes. To
illustrate the complexity of solving FFLPB-SDST, the behavior of the B/B’s CPU time vs.
increasing the number of jobs for different numbers of stages related to data provided in Table
1 is shown in Figure 5. As the figure indicates, by increasing the number of stages, the CPU
time increases progressively. Table 1 also shows that increasing the number of stages (or
processors) leads to a greater increase in computational time, rather than an increase in the
number of jobs. Table 2 contains additional problem characteristics and information for
optimal solutions related to CAT2 problems (i.e., there are two processors at each stage).
Likewise, Table 3 contains additional problem information for obtaining optimal solutions
related to CAT3 problems (i.e., different numbers of processors at each stage).

Number of

No. K m ni Variables Constraints B/B Steps CPU Time Cmax LB

1 4 2 1,1 81 95 330 00:00:03 384 383
2 5 2 1,1 121 138 2743 00:00:17 450 445
3 6 2 1,1 169 189 151739 00:14:52 524 503
4 7 2 1,1 225 248 - > 2 hours 610* 585

5 4 3 1,1,1 121 140 1849 00:00:25 465 430
6 5 3 1,1,1 181 204 9588 00:01:45 544 519
7 6 3 1,1,1 253 280 - > 2 hours 615* 577

8 4 4 1,1,1,1 161 185 297 00:00:26 548 520
9 5 4 1,1,1,1 241 270 122412 00:21:20 627 605
10 6 4 1,1,1,1 337 371 - > 2 hours Infeasible** 700

 * The best feasible objective value is found so far.
 ** A feasible solution is not found so far.

Table 1. Optimal solutions for CAT1 problems

Multiprocessor Scheduling: Theory and Applications 266

 Number of

No. K m ni Variables Constraints B/B Steps CPU Time Cmax LB

1 4 2 2,2 145 145 872 00:00:05 230 218
2 5 2 2,2 221 220 10814 00:00:55 295 252
3 6 2 2,2 313 311 240586 00:47:36 299 291
4 7 2 2,2 421 418 - > 2 hours 380* 335

5 4 3 2,2,2 217 215 6644 00:00:32 314 306
6 5 3 2,2,2 331 327 232987 01:02:38 376 328
7 6 3 2,2,2 469 463 - > 2 hours 389* 376

8 4 4 2,2,2,2 289 285 28495 00:02:23 395 392
9 5 4 2,2,2,2 441 434 - > 2 hours 446* 390

 * The best feasible objective value is found so far.

Table 2. Optimal solution for CAT2 problems

Number of

No. K m ni Variables Constraints B/B Steps CPU Time Cmax LB

1 4 2 1,3 209 145 251 00:00:03 381 380
2 5 2 1,3 321 220 1849 00:00:36 434 429
3 6 2 1,3 457 311 6921 00:02:32 527 523
4 7 2 1,3 617 418 - > 2 hours 584* 577

5 4 3 2,1,3 311 215 754 00:00:11 437 426
6 5 3 2,1,3 481 327 89714 00:13:52 484 479
7 6 3 2,1,3 685 463 84304 00:25:26 574 570
8 7 3 2,1,3 925 623 - > 2 hours 645* 639

 * The best feasible objective value is found so far.

Table 3. Optimal solution for CAT3 problems

m=3

m=2

m=1

Figure 5. The behavior of the B/B’s CPU time vs. increasing the number of jobs for a
different number of stages

A linear regression analysis was made to fit a line through a set of observations related to
values of Cmax (i.e., makespan) vs. the lower bound (LB). Original figures were obtained
from the results in Tables 1, 2, and 3. This analysis can be useful for estimating the Cmax

value for the large-sized problems genererated by using the form presented in this chapter.

A New Mathematical Model for Flexible Flow Lines with Blocking Processor and
Sequence-Dependent Setup Time 267

A scatter diagram of Cmax vs. the LB is shown in Figure 5. Obviously, the linear trend of the
scatter diagram is noticeable. Table 4 contains regression results. According to Table 4, Cmax

can be estimated as . The R2 value, which is called the coefficient of

determination, compares estimated with actual Cmax values ranging from 0 to 1. If R2 is 1,
then there is a perfect correlation in the sample and there is no difference between the
estimated Cmax value and the actual Cmax value. At the other extreme, if R2 is 0, the regression
equation is not helpful in predicting a Cmax value. Thus, R2 = 0.981 implies the goodness of
fitness and observations. For instance, we generate a problem with 20 jobs and 3 stages
belonging to CAT2 (two processors at each stage) that cannot be solved optimally in a
reasonable time. According to Equation (14), the lower bound for the generated problem is
886, thus, the estimated Cmax is 893. If some other approach can achieve a solution with a
Cmax value in the interval (886, 893], we can say that this is an efficient approach. Thus,

interval (LB,] can be a proper criterion for evaluating the performance of other

approaches.

maxĈ 0.9833 LB 0.0325 u �

maxĈ

Slop Constant R2 Regression sum of squares Residual sum of squares

0.9833 0.0325 0.981 912.44 202313.79

Table 4. Regression results

As further illustrations, we present a typical optimal scheduling for each category of
problem, i.e., CAT1, CAT2, and CAT3, in Figures 7, 8, and 9, respectively. These figures are
created by using the notations shown in Figure 6. Figure 7 illustrates the optimal scheduling
for problem 9 in Table 1. For instance, there is a blocking time in stage 2 (S2-P2), that is close
to the completion time of job 3, since job 2 is not departed from stage 3. In addition, there is
a blocking processor and immediate idle time in stage 3 that is close to the completion time
of job 3, because job 2 is not still departed from stage 4 and the completion time of job 1 in
stage 2 is greater than departure time of job 3 in stage 3. It is worth noting that the
processing sequence is the same at all stages implying a classical flow shop. Figure 8 depicts
the optimal scheduling for problem 6 shown in Table 2, in which there is one tiny blocking
time and several relatively long idle times. For instance, there is a tiny blocking time next to
job 3 in stage 2 on processor 1 (S2-P1) because job 2 is not yet departed from stage 3 on
processor 2 (S3-P2). Figure 8 also presents the processing sequence between each pair of
observed jobs. For example, the departure time of job 2 is always later than the setup time
(processing start time) of job 1 at the stages. In general, we expect few blocking times for
CAT1 and CAT2 problems because there are an equal number of processors at each stage
and the model endeavors to allocate the same workload to each processor at each stage for
minimizing Cmax. On the other hand, in CAT3 problems, we expect more blocking time
because of the unequal number processor times at each stage. For instance, as shown in
Figure 9, there are two relatively long blocking times in stage 1 because all jobs must be
processed in stage 2 on only one processor. On the other hand, there are several relatively
long idle times in stage 3 because of the above reason. Actually, stage 2 plays the role of
bottleneck here.

Multiprocessor Scheduling: Theory and Applications 268

0

100

200

300

400

500

600

700

C
m

a
x

Figure 5. Cmax vs. the lower bound (LB)

Tiny idle
time

Tiny
blocking

Departure
time

Setup time Blocking Idle time

Figure 6. Legends

Figure 7. Optimal scheduling for problem 9 shown in Table 1 from CAT1

A New Mathematical Model for Flexible Flow Lines with Blocking Processor and
Sequence-Dependent Setup Time 269

Figure 8. Optimal scheduling for problem 6 shown in Table 2 from CAT2

Figure 9. Optimal scheduling for problem 6 shown in Table 2 from CAT3

Multiprocessor Scheduling: Theory and Applications 270

6. Conclusions

In this chapter, we presented a new mixed-integer programming approach to the flexible
flow line problem without intermediate buffers by assuming in-process buffers and
sequence-dependent setup time. The proposed mathematical model can provide an optimal
schedule by considering blocking processor and idle time as well as sequence-dependent
setup time. We solved the proposed model for three problem categories, i.e., classical flow
shop (CAT1), stages with an equal number of processors (CAT2), and stages with an
unequal number of processors (CAT3). Computation results showed that solving CAT3
problems requires low computational time, since there are less complex than CAT1 and
CAT2 problems. On the other hand, in the classical flow shop case (i.e., CAT1), a high
computational time is required. In many practical situations, the proposed model cannot
optimally solve more than seven jobs with three stages (or six processors). Further, we
developed a lower bound to evaluate the schedules produced with other heuristic or
metaheuristic approaches. Also, a linear regression analysis was made to find a logical
relationship between the makespan and its lower bound, which can be used in future
research. The proposed model can be solved by other heuristic or metaheuristic approaches
as well, and with uncertain processing times and/or setup times. It can also be solved using
limited intermediate buffers instead of in-process buffers.

7. References

Alisantoso, D.; Khoo, L.P. & Jiang, P.Y. (2003). An immune algorithm approach to the
scheduling of a flexible PCB flow shop. Int. J. of Advanced Manufacturing Technology,
Vol. 22, pp. 819-827.

Allahverdi, A.; Gupta, J. & Aldowaisan, T. (1999). A review of scheduling research involving
setup considerations. Omega, Int. J. Mgmt Sci., Vol. 27, pp. 219-239.

Blazewicz, J.; Ecker, K.H.; Schmidt, G. & Weglarz, J. (1994). Scheduling in Computer and
Manufacturing Systems. Berlin: Springer-Verlag.

Bianco, L.; Ricciardelli; S.; Rinaldi, G. & Sassano, A. (1988). Scheduling tasks with sequence-
dependent processing times. Naval Res. Logist, Vol. 35, pp. 177-84.

Bitran, G.R. & Gilbert, S.M. (1990). Sequencing production on parallel machines with two
magnitudes of sequence-dependent setup cost. J. Manufact Oper Manage, Vol. 3, pp.
24-52.

Botta-Genoulaz, V. (2000). Hybrid flow shop scheduling with precedence constraints and
time lags to minimize maximum lateness. Int. J. of Production Economics, Vol. 64,
Nos. 1–3, pp. 101–111.

Brandimarte, P. (1993). Routing and scheduling in a flexible job shop by tabu search. Annals
of Operations Research, Vol. 41, pp. 157-183.

Conway, R.W.; Maxwell, W.L. & Miller, L.W. (1967). Theory of Scheduling, Addison Wesley,
MA.

Daniels, R.L. & Mazzola, J.B. (1993). A tabu-search heuristic for the flexible-resource flow
shop scheduling problem. Annals of Operations Research, Vol. 41, pp. 207-230.

Das, S.R.; Gupta, J.N.D. & Khumawala, B.M. (1995). A saving index heuristic algorithm for
flowshop scheduling with sequence dependent setup times. J. Oper Res Soc, Vol. 46,
pp. 1365-73.

A New Mathematical Model for Flexible Flow Lines with Blocking Processor and
Sequence-Dependent Setup Time 271

Franca, P.M.; Gendreau, M.; Laporte, G. & Muller, F.M. (1996). A tabu search heuristic for
the multiprocessor scheduling problem with sequence dependent setup times. Int J.
Prod Econ, Vol. 43, pp. 79-89.

Flynn, B.B. (1987). The effects of setup time on output capacity in cellular manufacturing.
Int. J. Prod Res, Vol. 25, pp. 1761-72.

Greene, J.T. & Sadowski, P.R. (1986). A mixed integer program for loading and scheduling
multiple flexible manufacturing cells. European Journal of Operation Research, Vol. 24,
pp. 379-386.

Hall, N.G. & Sriskandarajah, C. (1996). A survey of machine scheduling problems with
blocking and no-wait in process. Operations Research, Vol. 44, pp. 510-525.

Hong, T.-P.; Wang, T.-T. & Wang, S.-L. (2001). A palmer-based continuous fuzzy flexible
flow-shop scheduling algorithm. Soft Computing, Vol. 6., pp. 426-433.

Jayamohan, M.S. & Rajendran, C. (2000). A comparative analysis of two different
approaches to scheduling in flexible flow shops. Production Planning & Control,
2000, Vol. 11, No. 6, pp. 572-580.

Jiang, J. & Hsiao, W. (1994). Mathematical programming for the scheduling problem with
alterative process plan in FMS. Computers and Industrial Engineering, Vol. 27, No. 10,
pp. 5-18.

Jungwattanakit, J.; Reodecha, M.; Chaovalitwongse, P. & Werner, F. (2007). Algorithms for
flexible flow shop problems with unrelated parallel machines, setup times, and
dual criteria. Int. J. of Advanced Manufacturing Technology, DOI 10.1007/s00170-007-
0977-0.

Kaczmarczyk, W., Sawik, T., Schaller, A. and Tirpak T.M. (2004). Optimal versus heuristic
scheduling of surface mount technology lines. Int. J. of Production Research, Vol. 42,
No. 10, pp. 2083-2110.

Kim, S.C. & Bobrowski, P.M. (1994). Impact of sequence-dependent setup times on job shop
scheduling performance. Int. J. Prod Res., Vol. 32, pp. 1503-20.

Kis, T. & Pesch, E. (2005). A review of exact solution methods for the non-preemptive
multiprocessor flowshop problem. Eur. J. of Operational Research, Vol. 164, No. 3, pp.
592-608.

Krajewski, L.J.; King, B.E.; Ritzman, L.P. & Wong, D.S. (1987). Kanban, MRP, and shaping
the manufacturing environment. Manage Sci, Vol. 33, pp. 39-57.

Kurz, M.E. & Askin, R.G. (2004). Scheduling flexible flow lines with sequence-dependent
setup times. Eur. J. of Operational Research, Vol. 159, pp. 66–82.

Kusiak, A. (1988). Scheduling flexible machining and assembly systems. Annals of Operations
Research, Vol. 15, pp. 337-352.

Lee, C.-Y. & Vairaktarakis, G.L. (1998). Performance comparison of some classes of flexible
flow shops and job shops. Int. J. of Flexible Manufacturing Systems, Vol. 10, pp. 379-
405.

McCormick, S.T.; Pinedo, M.L.; Shenker, S. & Wolf, B. (1989). Sequencing in an assembly line
with blocking to minimize cycle time. Operation Research, Vol. 37, pp. 925-936.

Ovacik, I.M. & Uzsoy, R.A. (1992). Shifting bottleneck algorithm for scheduling
semiconductor testing operations. J. Electron Manufact, Vol. 2, pp. 119-34.

Panwalkar, S.S.; Dudek, R.A. & Smith, M.L. (1973). Sequencing research and the industrial
scheduling problem. In: Symposium on the Theory of Scheduling and its Applications,
Elmaghraby, S.E. (editor), pp. 29-38.

Multiprocessor Scheduling: Theory and Applications 272

Pinedo, M. (1995), Scheduling: Theory, Algorithms, and Systems. Prentice Hall, NJ.
Quadt, D. & Kuhn, H. (2005). Conceptual framework for lot-sizing and scheduling of

flexible flow lines. Int. J. of Production Research, Vol. 43, No. 11, pp. 2291-2308.
Quadt, D. & Kuhn, H. (2007). A taxonomy of flexible flow line scheduling procedures. Eur. J.

of Operational Research, Vol. 178, pp. 686-698.
Riezebos, J.; Gaalman, G.J.C. & Gupta, J.N.D. (1995). Flow shop scheduling with multiple

operations and time lags. J. of Intelligent Manufacturing, Vol. 6, pp. 105-115.
Sawik, T. (1993). A scheduling algorithm for flexible flow lines with limited intermediate

buffers. Applied Stochastic Models and Data Analysis, Vol. 9, pp. 127-138.
Sawik, T. (1995). Scheduling flexible flow lines with no-process buffers. Int. J. of Production

Research, Vol. 33, pp. 1359-1370.
Sawik, T. (2000). Mixed integer programming for scheduling flexible flow lines with limited

intermediate buffers. Mathematical and Computer Modeling, Vol. 31, pp. 39-52.
Sawik, T. (2001). Mixed integer programming for scheduling surface mount technology

lines. Int. J. of Production Research, Vol. 39, No. 14, pp. 2319- 3235.
Sawik, T. (2002). An Exact Approach for batch scheduling in flexible flow lines with limited

intermediate buffers. Mathematical and Computer Modeling, Vol. 36, pp. 461-471.
Srikar, B.N. & Ghosh, S. (1986). A MILP model for the n-job, M-stage flowshop, with

sequence dependent setup times. Int. J. Prod Res., Vol. 24, pp. 1459-1472.
Sule, D.R. & Huang, K.Y. (1983). Sequence on two and three machines with setup,

processing and removal times separated. Int J Prod Res, Vol. 21, pp. 723-32.
Tavakkoli-Moghaddam, R. & Safaei, N. (2005). A genetic algorithm based on queen bee for

scheduling a flexible flow line with blocking, Proceeding of the 1st Tehran International
Congress on Manufacturing Engineering (TICME2005), Tehran: Iran, December 12-15,
2005.

Tavakkoli-Moghaddam, R.; Safaei, N. & Sassani, F., (2007). A memetic algorithm for the
flexible flow line scheduling problem with processor blocking, Computers and
Operations Research, Article in Press, DOI: 10.1016/j.cor.2007.10.011.

Tavakkoli-Moghaddam, R. & Safaei, N. (2006). Modeling flexible flow lines with blocking
and sequence dependent setup time, Proceeding of the 5th International Symposium on
Intelligent Manufacturing Systems (IMS2006), pp. 149-158, Sakarya: Turkey, May 29-
31, 2006.

Torabi, S.A.; Karimi, B. & Fatemi Ghomi, S.M.T. (2005). The common cycle economic lot
scheduling in flexible job shops: The finite horizon case. Int. J. of Production
Economics, Vol. 97, No. 1, pp. 52-65.

Wang, H. (2005). Flexible flow shop scheduling: optimum, heuristics and artificial
intelligence solutions. Expert Systems, Vol. 22, No. 2, pp. 78-85.

Wilbrecht, J.K. & Prescott, W.B. (1969). The influence of setup time on job shop performance.
Manage Sci., Vol. 16, pp. B274-B280.

Wortman, D,B. (1992). Managing capacity: getting the most from your form's assets. Ind.
Eng, Vol. 24, pp. 47-59.

Multiprocessor Scheduling, Theory and Applications

Edited by Eugene Levner

ISBN 978-3-902613-02-8

Hard cover, 436 pages

Publisher I-Tech Education and Publishing

Published online 01, December, 2007

Published in print edition December, 2007

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

A major goal of the book is to continue a good tradition - to bring together reputable researchers from different

countries in order to provide a comprehensive coverage of advanced and modern topics in scheduling not yet

reflected by other books. The virtual consortium of the authors has been created by using electronic

exchanges; it comprises 50 authors from 18 different countries who have submitted 23 contributions to this

collective product. In this sense, the volume can be added to a bookshelf with similar collective publications in

scheduling, started by Coffman (1976) and successfully continued by Chretienne et al. (1995), Gutin and

Punnen (2002), and Leung (2004). This volume contains four major parts that cover the following directions:

the state of the art in theory and algorithms for classical and non-standard scheduling problems; new exact

optimization algorithms, approximation algorithms with performance guarantees, heuristics and metaheuristics;

novel models and approaches to scheduling; and, last but least, several real-life applications and case studies.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

R. Tavakkoli-Moghaddam and N. Safaei (2007). A New Mathematical Model for Flexible Flow Lines with

Blocking Processor and Sequence-Dependent Setup Time, Multiprocessor Scheduling, Theory and

Applications, Eugene Levner (Ed.), ISBN: 978-3-902613-02-8, InTech, Available from:

http://www.intechopen.com/books/multiprocessor_scheduling_theory_and_applications/a_new_mathematical_

model_for_flexible_flow_lines_with_blocking_processor_and_sequence-dependent_setu

© 2007 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the

Creative Commons Attribution-NonCommercial-ShareAlike-3.0 License, which permits use,

distribution and reproduction for non-commercial purposes, provided the original is properly cited

and derivative works building on this content are distributed under the same license.

