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Abstract 

In order to cope with the challenges in industry today, such as changes in product 

diversity and production volume, manufacturing companies are forced to react more 

flexibly and swiftly. Furthermore, in order for them to survive in an ever-changing 

market, they also need to be highly competitive by achieving near optimal efficiency in 

their operations. Production scheduling is vital to the success of manufacturing systems 

in industry today, because the near optimal allocation of resources is essential in 

remaining highly competitive.  

 

The overall aim of this study is the advancement of research in manufacturing 

scheduling through the exploration of more effective approaches to address complex, 

real-world manufacturing flow shop problems. The methodology used in the thesis is in 

essence a combination of systems engineering, algorithmic design and empirical 

experiments using real-world scenarios and data. Particularly, it proposes a new, web 

services-based, industrial scheduling system framework, called OPTIMISE Scheduling 

System (OSS), for solving real-world complex scheduling problems. OSS, as 

implemented on top of a generic web services-based simulation-based optimisation 

(SBO) platform called OPTIMISE, can support near optimal and real-time production 

scheduling in a distributed and parallel computing environment. Discrete-event 

simulation (DES) is used to represent and flexibly cope with complex scheduling 

problems without making unrealistic assumptions which are the major limitations of 

existing scheduling methods proposed in the literature.  At the same time, the research 

has gone beyond existing studies of simulation-based scheduling applications, because 

the OSS has been implemented in a real-world industrial environment at an automotive 

manufacturer, so that qualitative evaluations and quantitative comparisons of scheduling 

methods and algorithms can be made with the same framework.  

 

Furthermore, in order to be able to adapt to and handle many different types of real-

world scheduling problems, a new hybrid meta-heuristic scheduling algorithm that 

combines priority dispatching rules and genetic encoding is proposed. This combination 

is demonstrated to be able to handle a wider range of problems or a current scheduling 
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problem that may change over time, due to the flexibility requirements in the real-

world.  The novel hybrid genetic representation has been demonstrated effective 

through the evaluation in the real-world scheduling problem using real-world data.  
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Chapter 1 

1 Introduction 

The introductory chapter presents the research background (Section 1.1) that motivated 

this research study and thereby the aim and objectives (Section 1.2). The research 

methodology (Section 1.3) used is explained, the scope of the work (Section 1.4) is then 

defined and followed by the organisation of the whole thesis (Section 1.5). 

 

1.1 Research background 

1.1.1 Challenges of manufacturing industry 

Manufacturing organisations are experiencing shortened product life cycles, 

unpredictable customer demands, and fluctuating production volumes. At the same 

time, the level of global competition is becoming much stronger. All these changes are 

forcing manufacturing companies to react more flexibly and swiftly to changes in both 

product diversity and production volume. In order to meet these challenges, the shop 

floor control system of a manufacturing system has to be designed to incorporate a high 

degree of flexibility. Groover (2001) defines different types of flexibility in 

manufacturing systems as follows: 

 Machine flexibility means the ability to adapt machines to different production 

operations and parts. 

 Production flexibility means the range of different parts that can be produced by 

the system. 

 Mix Flexibility means the system’s ability to maintain production volume 

despite a change of product mix. 

 Product flexibility means the system’s ability to cope with design changes and 

introduction of new products. 

 Routing flexibility means the system’s ability to continue production through 

alternative workstations if machines are subject to interruptions.  

 Volume flexibility means the system’s ability to economically produce parts of 

high and low volumes. 

 Expansion flexibility means the ability for a system to expand for a higher 

production volume. 
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In terms of the challenges faced by any manufacturing company, there is no exception 

for high quantity production (mass production) such as that of car manufacturers. In 

order for them to survive in an ever-changing market, they need to be highly 

competitive by achieving near optimal efficiency in their operations. However, with the 

demand for much more flexibility to cope with greater product variety and fluctuating 

production volumes, as mentioned above, industrial manufacturing systems, in general, 

and car manufacturers, in particular, are becoming much more complex, viewed from 

both a technological and management perspective.  

 

In general, scheduling concerns “the allocation of resources over time to perform a 

collection of tasks” (Baker and Trietsch, 1974). In practice, scheduling refers to “the 

determination of a set of orders, which will be processed by the resources during a 

short-term period (day, week, etc.)” (Kiran, 1998). For a manufacturing company to 

remain highly competitive, a near optimal allocation of their resources is essential. 

Furthermore, scheduling may also contribute to the flexibility of a firm (De Snoo et al., 

2011). It is therefore not difficult to recognise that efficient scheduling is vital to the 

success of manufacturing systems in industry today. This makes scheduling an 

interesting area that has drawn much attention from both academic researchers and 

industrial practitioners. Nevertheless, with the demand for higher flexibility, the 

efficient scheduling of a production line has become an extremely difficult task, 

especially when day-to-day challenges, such as product or order changes, have to be 

handled efficiently. On a modern manufacturing shop floor, scheduling tasks are 

undertaken by the Enterprise Resource Planning (ERP) system. Unfortunately, the 

existing scheduling modules developed for an ERP system are based on deterministic 

algorithms which are only suitable for operations in a predictable and stable 

environment. This implies that ERP systems in general do not have the capability to 

generate detailed schedules for a complex manufacturing system. Therefore, a 

scheduling decision support that can cope with real-world industrial production systems 

is needed. Consequently, it is necessary for the research community to explore some 

new approaches that can make shop floor scheduling tasks capable of handling the 

complexity and flexibility demands facing today’s manufacturing companies.  
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1.1.2 State of the art: a brief overview 

The scheduling of a real-world production line may be highly complex; sequence 

dependent setup times, constraints, and long failures could affect the possibility of 

reaching the production target. Many real-world scheduling problems belong to the 

class of NP-complete problems, for which finding the optimal solution within an 

acceptable time period is impossible, due to the size of the problems (Garey and 

Johnson, 1979). To prove that an optimisation problem is as difficult as an NP-complete 

problem, the term NP-hard is useful, because it describes that it is not possible to find 

the optimal solution with available techniques (Baker and Trietsch, 2009). The same 

could be said about scheduling problems with increasing complexity. Trying to compare 

all scheduling problems would not be feasible, simply because the combinations of 

scheduling problems are huge. There are too many different sizes, constraints and 

objectives in order to solve them optimally, which on the other hand can be done for 

smaller scheduling problems. At the same time, trying to simplify complex scheduling 

problems by reducing the number of constraints and characteristics would simply 

transform them into unrealistic textbook problems that may not be acceptable in a real-

world scheduling situation. This claim can be supported by many other researchers. For 

example, Pinedo (2008) states that advances in scheduling theory have only had a 

limited impact on scheduling in practice, although the theoretical research has not been 

a complete waste of time, because it has given insights into the scheduling problem in 

general. Gupta and Stafford (2006) also claim that theoretical flow shop scheduling 

problems remain largely unsolved, when the 50 years of research is considered. They 

state that research within flow shop scheduling seems to have been motivated by what 

the researchers can achieve rather than what is important, and thereby also suffers from 

too much abstraction and too little application.  Future research in flow shop scheduling 

should address real-world problems (Jahangirian et al., 2010), in order to avoid 

spending decades only trying to solve textbook problems. Even though most real-life 

situations are better represented by models with uniform or unrelated machines, most 

research has been done on flow shops with identical machines, which is probably due to 

the fact that identical machines are easier to handle (Ribas et al., 2010). According to 
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Ribas et al., (2010), most research has been carried out with at most one constraint (e.g., 

setups, failures, blocking) at a time being studied and only a few researchers have 

studied all or most of them at the same time. Consequently, in order to diminish the gap 

between theory and real-world scheduling problems, several constraints need to be 

considered.  

 

Simulation modelling, i.e., discrete event simulation (DES), has the capability to 

represent complex real-world systems and their constraints in detail. Simulation-based 

scheduling approaches are derived from dispatching rule-based methods. In a 

simulation-based approach, several dispatching rules might be used at different stages, 

in order to make a decision (Kiran, 1998). Basically, a dispatching rule is a rule of 

thumb that gives priority to a job among other ones at a specific stage, i.e., at a machine. 

This is why dispatching rules can also be called priority dispatching rules (PDRs). 

Generally, a PDR-based approach does not try to find an optimal schedule, but relies on 

knowing that one scheduling rule statistically performs better than another one, which is 

sufficient. In comparison, using a meta-heuristic optimiser, such as a Genetic Algorithm 

(GA), to generate the near optimal schedules directly, may be advantageous if searching 

for “optimal” solutions is desired. There are many studies that compare these two 

approaches and some of them provide results showing that the use of GAs to generate 

detailed schedules can obtain better solutions (Sankar et al., 2003; Kim et. al., 2007) 

than those obtained by using PDRs. On the other hand, using a GA to select PDRs has 

shown promising results (Tanev et. al., 2004; Ochoa et al., 2009) compared to 

conventional GA approaches. Furthermore, hybrids that have a combined representation 

of these two approaches have shown good results, when uncertainty is considered 

(Roundy et.al., 1991; Barua et.al., 2005). Robust scheduling (e.g., Leon et al., 1994), 

reactive scheduling, or rescheduling (Church and Uzsoy, 1992) are also some 

methodologies that have been successfully used to address scheduling problems with 

regard to uncertainty. 

 

Regarding uncertainty, McKay and Wiers (1999) claim that researchers and real-world 

schedulers do not discuss the same problem. While researchers are solving deterministic 

sequencing problems, real-world schedulers are faced with day-to-day challenges in 
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which uncertainty is believed to be the key characteristic. McKay and Wiers (1999) 

define a scheduling task as: “a dynamic and adaptive process of iterative decision 

making and problem solving, involving information acquisition from a number of 

sources, and with the decisions affecting a number of production facets in reaction to 

immediate or anticipated problems”. Wiers (1997) defines production scheduling as a 

task and the following four types of control are used to further characterise the task: 

Detailed control, Direct control, Restricted control, and Sustained control. These 

controls generally mean that the scheduling task deals with short-term decisions 

regarding what to do next and the situation at hand, answering questions and giving 

directions. Furthermore, the scheduler monitors schedule execution and carries out 

necessary changes when needed, in order to fulfil scheduling targets. It is also important 

to generate a valid schedule, since there is no intermediate control before launching the 

schedule and there is a risk that the schedules will be adjusted manually (Stoop and 

Wiers, 1996). Pinedo (2005) also addresses that “Analyzing a planning or scheduling 

problem and developing a procedure for dealing with it on a regular basis is, in the real 

world, only part of the story. The procedure has to be embedded in a system that 

enables the decision-maker to actually use it. The system has to be integrated into the 

information system of the organization, which can be a formidable task”. Jahangirian et 

al., (2010) show that even though scheduling applications have been the most common 

ones among simulation applications in manufacturing and business between 1997 and 

2006, only a small portion of them use both real problems and real data. They also point 

out that papers addressing real-world problems are important to future research. 

According to the review of hybrid flow shops by Ribas et al., (2010), only two papers 

use on-line algorithms for real-time scheduling, when simulation with dispatching rules 

or realistic decision support systems is considered, and indicate this as an interesting 

area for future research.  

 

It is not only the scheduling problem that needs to be considered, but also the 

scheduling task and its integration in the organisation. A real-time scheduling system is 

not only needed to support the work of the production scheduler, but also the operators 

on the shop floor, by re-generating feasible schedules when required. With a real-time 

rescheduling capability, the proposed scheduling system not only solves the sequencing 
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problems, but also provides decision-making support on a day-to-day basis when 

disturbances, such as machine breakdowns, happen. Based on this research background, 

the need of a real-time shop floor scheduling system capable of handling the complexity 

and uncertainty found in real-world problems, when generating near optimal schedules, 

as well as interacting with users, such as production schedulers and shop floor 

operators, is identified as the target of this study.  

 

1.2 Aim and objectives 

The overall aim of this study is the advancement of research in manufacturing 

scheduling through the exploration of more effective approaches to address complex, 

real-world manufacturing flow shop problems. The research hypothesis behind this aim 

is that existing scheduling approaches and algorithms are believed to be inadequate to 

address complex, real-world manufacturing flow shop problems because they lack the 

real-time and reactive support to tackle uncertainty. Therefore, in order to advance the 

research of manufacturing scheduling, a combination of systems engineering and 

algorithmic design is needed to tackle the uncertainty issues in real-world environment.   

The aim of this thesis can be further refined into the following specific objectives: 

 Appraise the existing research knowledge and industrial practice to establish the 

understanding of manufacturing systems and explore the requirements of the 

scheduling in real-world complex hybrid flow shops.  

 Based on the comprehensive literature review, investigate how simulation tools 

and scheduling techniques can be enhanced to cope with uncertainty, and 

flexibly cope with different scheduling approaches in order to enhance their 

performance. 

 To design a system framework with real-time and reactive support and then 

evaluate this framework qualitatively using a real-world industrial case study. 

 Design and propose a hybrid meta-heuristic scheduling algorithm for simulation-

based optimisation that can flexibly cope with different scheduling approaches 

in order to be more adaptive to tackle complex hybrid flow shop scheduling 

problems. 
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 Validate the performance of the algorithm using empirical experiments based on 

real-world shop-floor data collected through the system framework implemented 

in earlier stages. 

 

1.3 Research methodology 

Real-world research generally refers to applied research which typically uses projects 

that are small in scope and scale. Compared to academic research, where the focus is on 

advancing an academic discipline, real-world research focuses on problems with direct 

relevance to people or the environment, such as child care and climate change. The real-

world researcher needs well-developed social skills and almost always works in the 

field, e.g., industry, compared to the academic researcher that mainly uses laboratories 

of some kind. (Robson, 2011) 

 

1.3.1 Qualitative, quantitative, and multi-method research 

According to Robson (2011), research can be divided into two main groups: qualitative 

or quantitative. Whilst quantitative research makes use of numerical data, qualitative 

data is typically non-numerical (e.g., in the form of words). Myers (1997) defines 

qualitative research as research that “involves the use of qualitative data, such as 

interviews, documents, and participant observation, to understand and explain social 

phenomena”. Jabar et al., (2009) argue that qualitative research is significant for 

information systems research because of its ability to explain what is going on in a real 

organisation. Quantitative research was, on the other hand, first developed to study 

natural phenomena in natural sciences (Jabar et al., 2009).  Quantitative research 

involves the collection of quantitative data, the design of which typically used is to 

exactly determine at an early stage how to carry out the research project before the data 

is accumulated (Robson, 2011). According to Reswick (1994), the researcher can isolate 

a problem, e.g., using a laboratory, and can therefore with precision and accuracy define 

and measure input and output parameters of the study. However, multi-strategy designs 

have received increased interest because they produce a substantial collection of both 

qualitative and quantitative data in different parts of a research project. (Robson, 2011) 
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1.3.2 Different research strategies 

Depending on the form and context of the research question, as well as control over 

behavioural events and focus on contemporary ones, the research strategy used will 

differ. Yin (2003) defines different types of research strategies: 

Table 1.1 Relevant situations for different research strategies (Yin, 2003) 

Strategy Form of research question Requires control of 

behavioural events? 

Focuses on contemporary 

events? 

Experiment How, why? Yes Yes 

Survey Who, what, where, how 

many, how much? 

No Yes 

Archival 

analysis 

Who, what, where, how 

many, how much? 

No Yes/No 

History How, why? No No 

Case study How, why? No  Yes 

 

The “who” and “where” questions are common in survey or archival analysis in which 

the research goal is to be predictive about specific outcomes or when the prevalence of a 

phenomenon needs to be described. The “what” question is also appropriate in survey or 

archival analysis which, for example, may provide the answer to the outcomes of a 

specific type of managerial restructuring. The “how” and “why” questions are typically 

more explanatory and used for the research strategies: case studies, experiment, and 

history. In general, the history research strategy is used when no living persons of 

relevance  can report afterwards and therefore historical data needs to be applied. 

However, the case study strategy can be used when contemporary events need to be 

examined. In addition to the historical data method, the case study strategy includes the 

possibilities of interviews with people involved and direct observation of the events 

being studied. The experiment research strategy is carried out when the researcher can 

control behavioural events, i.e., can manipulate them directly, precisely, and 

systematically. (Yin, 2003) 
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A multi-method research strategy is one that combines different research methods 

(qualitative and quantitative), in order to provide a greater understanding of the 

phenomenon of interest and to increase the confidence in the conclusions generated by 

the research study (Johnson et al., 2007). This can also be referred to as triangulation, 

for resolving the inherent biases of one measurement technique (Denzin, 2009). Denzin 

(2009) divides triangulation into four basic categories: 

 Data triangulation means using more than one type of data collection method. 

Different sources can be used to collect the data (observation, interviews or 

documents), and the data can be collected at different times and different places. 

 Investigator triangulation means using multiple observers rather than single 

observers. For example, different interviewers or data analysts can be used in the 

study to remove the potential bias connected to one person. 

 Theoretical triangulation means using multiple perspectives (theories) on a set of 

objects rather than a single perspective. 

 Methodological triangulation means within-method triangulation or between-

method triangulation.  

 

Denzin (2009) suggests that using between-class triangulation, i.e., different methods 

and measurement strategies, is preferred in comparison to within-class triangulation, in 

which there are variations of one and the same measurement technique.   

A wide range of research methods may be appropriate for systems engineering because 

it is an interdisciplinary and broad field of engineering dealing with complex projects 

(Ferris, 2009). According to Yin (2003), one reason why a case-based research 

approach is appropriate is when contextual conditions must be covered because they are 

believed to be relevant to the phenomenon of study, which is something that can be 

characterised with qualitative research. At the same time, a case study may be part of a 

multi-method research study (Yin, 2003). Consequently, the research approach adopted 

is a multi-method research strategy in which both theories of current research, 

experiments (quantitative) and case study (qualitative) are used to achieve the research 

objectives. Data was collected from three different sources:  
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 Literature review of existing research to establish the understanding of 

manufacturing systems and to explore the requirements of the scheduling in real-

world complex hybrid flow shops (Chapters 2, 3 and the beginning of Chapter 

4). 

 Evaluation of the proposed system framework using a real-world industrial case 

study. Chapter 6 begins with the motivation and selection of industrial case 

study, and then continues with the implementation and evaluation of the system 

(proposed in Chapter 4). 

 Data generation using simulation-based optimisation with a discrete-event 

simulation model to investigate how the hybrid meta-heuristic scheduling 

algorithm (proposed in Chapter 5) can flexibly cope with different scheduling 

approaches, in order to be more adaptive in tackling complex hybrid flow shop 

scheduling problems (Chapter 7). 

 

Figure 1.1 provides an overview of the research methodology used to realise the 

research objectives of the whole study. 

 

Figure 1.1 Research methodology adopted. 
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1.4 Scope 

Flow shops are generally the type of production lines used for mass production in 

industry (Groover, 2000). In the classical definition of flow shop problems (Baker, 

1974), each production stage consists of only one resource, e.g., machine, and there are 

at least two production stages. All jobs need to go through the production stages in the 

same machine order.  

 

In industry, many companies need to increase their production capacity or balance the 

capacity between different production stages. Companies may also need to manufacture 

new products, which could mean that the new products are produced using the same 

machines in most stages but require new ones in others. Consequently, and for other 

reasons, a flow shop with parallel machines is formed, commonly also known as a 

hybrid flow shop (Ribas, et al., 2010). 

 

Since “a dear child has many names”, the same scheduling problem could be specified 

by a number of definitions, e.g., flow shop with multiple machines, flexible flow shop, 

multiprocessor flow shop, or modified flow shop. However, the hybrid flow shop 

notation proposed in Ribas et al., (2010) is good for defining real-world scheduling 

problems, since it handles a broad range of flow shop scheduling problems. A hybrid 

flow shop consists of at least two production stages and at least one of these stages 

includes more than one machine (Gupta, 1988). 

 

The scope of this thesis is therefore to address the multi-stage (more than three stages) 

hybrid flow shops with unrelated parallel machines for discrete parts manufacture, 

because most real-world flow shops in industry consist of several production stages. 

Furthermore, in order to diminish the gap between theory and real-world scheduling 

problems and not make unrealistic assumptions, several constraints and multiple 

scheduling objectives are addressed as well. Consequently, a review of flow shop 

scheduling problems and different scheduling methodologies is made. However, the 

review of scheduling methodologies is not limited to hybrid flow shops, since much 
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scheduling research has been conducted on other complex scheduling problems, e.g., 

job shops, which could in fact be useful for hybrid flow shops as well. Nevertheless, in 

the design of the hybrid genetic representation, the focus is only put on hybrid flow 

shops. As mentioned, because uncertainty is a key characteristic in real-world 

scheduling, it needs to be addressed in order to realise a schedule in a production line. 

However, uncertainty is only one part of the scheduling task in which day-to-day 

challenges need to be handled by production schedulers. Consequently, methodologies 

that handle uncertainty as well as scheduling system functions and features, in order to 

support the tasks of the scheduler, are also studied.  

 

1.5 Thesis organisation 

Chapters 2, 3, and parts of Chapter 4 feature the literature review. In short, Chapter 2 

describes the background of scheduling theory and scheduling methodologies. Chapter 

3 reviews rescheduling and identifies the main functions and features to be included in a 

system to support the scheduling task. Chapter 4 begins with a brief introduction and 

literature review of Web-based simulation and some existing platforms found in the 

literature. Furthermore, this chapter describes the overall system architecture of the web 

services-based industrial scheduling system, i.e., OPTIMISE Scheduling System (OSS), 

which is designed to be software architecture to solve the limitations of existing 

scheduling software used in industry. Chapter 5 describes a new novel hybrid genetic 

representation which is based on a mixture of dispatching rules and genetic encoding 

the entire schedule. The design and implementation of the hybrid genetic representation 

into an SBO algorithm for handling various real-world, complex hybrid flow shop 

scheduling problems is then addressed in detail. In order to prove the system 

architecture, optimisation methods and techniques proposed in this thesis, a full-scale 

industrial case study of a machining line was completed in this study and is presented in 

Chapter 6. Chapter 7 presents the experimental results of applying the hybrid genetic 

representation to the real-world case study. All the results in this chapter were obtained 

from the OSS implementation on the real machining line. Finally, the thesis 

conclusions, contributions to knowledge, and identified future research areas are 

presented in Chapter 8. 
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Chapter 2 

2 Hybrid Flow Shop Scheduling Problems and 

Scheduling Methodologies 

 

This chapter describes the background of scheduling theory, classification of scheduling 

problems, and what kinds of assumptions are usually made in scheduling research. 

Furthermore, different approaches to solve scheduling problems and new advances to 

solve complex hybrid flow shop scheduling problems are reviewed. Finally, the review 

is concluded and recommendations regarding how to solve real-world, complex hybrid 

flow shop scheduling problems are proposed. 

 

2.1 The production scheduling problem 

There are many different definitions of scheduling problems from the research 

communities and still they may differ from the understanding of scheduling problems 

faced daily in industry. The classical definition is more limited to “sequencing”, which 

can be found in Conway et al., (1967), who define sequencing in terms of one machine 

and scheduling as the sequencing of operations on several machines. In general, 

scheduling concerns “the allocation of resources over time to perform a collection of 

tasks” (Baker and Trietsch, 1974). In practice, scheduling refers to “the determination of 

a set of orders, which will be processed by the resources during a short-term period 

(day, week, etc.)” (Kiran, 1998). 

 

2.2 Categories of scheduling problems 

Graves (1981) introduced a broad classification that covers the general characteristics of 

both scheduling theory and scheduling practice. The classification divides production 

scheduling problems into the following three dimensions: 

1. Requirements generation 
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2. Processing complexity 

3. Scheduling criteria 

 

The first dimension, requirements generation, means that a manufacturing facility can 

be either an open shop when items are produced to order or a closed shop when orders 

are filled from existing inventory. In an open shop, the scheduling is simply described 

as a sequencing problem in which open orders are sequenced at the production facility. 

In a closed shop, both the sequencing problem and the lot-sizing decisions connected to 

the inventory replenishment process need to be considered. The second dimension, 

processing complexity, refers to the number of production stages and type of flow and 

can be further classified into: 

1. One stage, one processor 

2. One stage, parallel processors 

3. Multistage, flow shop 

4. Multistage, job shop 

 

In a one stage, one processor problem, all jobs require one production stage and only 

one single resource or machine needs to be scheduled.  The one stage, parallel processor 

problem means that all jobs only require a single production stage, but there is more 

than one resource that can process the job. In the multistage, flow shop problem, all jobs 

require processing by the same set of resources and there is a common route for all jobs. 

The multistage, job shop problem means that there are no restrictions on the production 

stages for a job and alternative routes can be chosen for a job. The third dimension, 

scheduling criteria, describes the scheduling objectives. These include, to mention a 

few, to minimise tardiness, minimise work-in-process, maximise production rate, and 

maximise the utilisation level of resources, which are just some of the objectives 

commonly used in production scheduling problems.  

 

According to Graves (1981), there are two additional dimensions that could have been 

included: the requirement specification and the scheduling environment. The 

requirement specification shows the degree of uncertainty of the scheduling problem 

which can be defined as deterministic or stochastic. Stochastic scheduling problems 
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may include random variables such as distributions of processing times, failures, and so 

on. The scheduling environment defines whether the scheduling problem is static or 

dynamic. A static scheduling problem is when the number of jobs and their ready times 

are available, while a dynamic scheduling problem is when the number of jobs and 

related characteristics change over time.  

 

2.3 Hybrid flow shops 

Flow shops are generally the type of production lines used for mass production in 

industry (Groover, 2000). In the classical definition of flow shop problems, each 

production stage consists of only one resource, e.g., machine, and there are at least two 

production stages (Baker, 1974). All jobs need to go through the production stages in 

the same machine order.  

 

In industry, many companies need to increase their production capacity or balance the 

capacity between different production stages. Companies may also need to manufacture 

new products, which could mean the new products are produced using the same 

machines in most stages but require new ones in others. Consequently, a flow shop with 

parallel machines is formed, commonly also known as a hybrid flow shop (Ribas, et al., 

2010). As mentioned earlier in Chapter 1, there are some other names to describe a 

hybrid flow shop: e.g., flow shop with multiple machines, flexible flow shop, 

multiprocessor flow shop, or modified flow shop. In the remainder of this thesis, the 

term hybrid flow shop is continuously used, because its formal definition, as introduced 

in the next section, has captured the essence of the scheduling problems that can be 

found on real-world shop floors. 

 

2.3.1 Description of hybrid flow shop scheduling problem notation: 

A HFS (hybrid flow shop) consists of at least two production stages and at least one of 

these stages includes more than one machine, which has proven to be NP-complete, 

even for this basic HFS case (Gupta, 1988). In the structure | |    proposed by 

Graham et al., (1979),    stands for the machine characteristics,   for the job 
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constraints and   for the objective considered. Ribas et al., (2010) refers to the specific 

notation proposed by Vignier et al., (1999) which follows the same structure proposed 

by Graham et al., (1979), but divides  into four terms, i.e.,  2( )(1)

1 2 3 4 3 4,...,
     . 

The first term 1 specifies the problem considered, i.e., “HF” for a hybrid flow shop. 

The second term 2  specifies the number of production stages, while the third term 3  

specifies the type of machines at a stage, i.e., identical (P), uniform (Q), unrelated (R), 

or one machine (0). Finally, the term 4 specifies the number of machines at a stage. 

Furthermore, when there are several subsequent stages with the same type and number 

of machines, the terms 3  and 4 can be grouped as   3 4

k
l

l s

 


, where s stands for the 

first stage in the index and k for the last stage in the index (Ribas et al., 2010). 

 

2.3.2 Machine characteristics 

Identical parallel machines mean that all machines within each production stage are 

considered to be identical, and therefore the processing time of a job does not depend on 

which of the machines it is assigned to. According to Ribas et al., (2010), most research 

focuses on the hybrid flow shop problems with identical machines, e.g., Gupta et al., 

(1997) and Zhang et al., (2005) have studied the 
  1

2 ,0HF PM problems, i.e., two-

stage hybrid flow shop problems with several parallel identical machines in the first 

stage and one machine in the second. However, uniform or unrelated machines 

represent real-life situations in a better way. Uniform parallel machines mean that each 

machine within a production stage has its own speed and therefore has an individual 

completion time for a job. However, unrelated parallel machines mean that the 

processing times of a job on a production stage depend on each one of the parallel 

machines. Some of the machines might be better suited to some jobs whilst others are 

not, which may be due to physical differences in the machines, such as old machine 

equipment or newly bought machines. The reason for machine eligibility, i.e., when 

machines are dedicated to certain jobs, can be due to the technological differences 

between machines in the same stage or because some jobs have some special 
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characteristics. On the other hand, it can also happen that a job can only be assigned to 

machines that are physically nearby. The last cause is still valid for defining a 

production stage with identical parallel machines, but if there are technological 

constraints, the production stage should be defined as a stage with unrelated parallel 

machines (Ribas, et al., 2010). 

 

Ribas et al., (2010) also further categorise scheduling problems according to the 

specifics of the production system. For example,
  1

2 ,0HF RM fmachs , means a two 

stage hybrid flow shop with several unrelated parallel machines in the first stage, one 

machine in the second stage, and dedicated machines. Some constraints of production 

systems are: 

 fmachs , represents jobs that at some or all stages are dedicated to specific 

machines (machine eligibility). 

 nw , stands for “no wait” which means that the operations of a job have to be 

processed from the start to the end without any interruption on or between 

machines. 

 brk , means that unavailability periods (failures) may happen in some or all 

machines in the production system. 

 size , stands for multiprocessor task, which means that more than one machine is 

required in order to perform an operation at a certain stage. 

 blck , stands for blocking and means that jobs may be blocked for transportation 

to the next production stage. Blocking can occur for several reasons, but 

downstream machine failures with limited buffer capacities are a common cause. 

 

 There is no agreed set of benchmark tests for the standard HFS, which makes it 

difficult to compare different algorithms (Ruiz and Vázquez-Rodríguez, 2010). 

 

2.3.3 Job constraints 

Job constraints can be classified as hybrid-specific or non-hybrid-specific. Hybrid-

specific job constraints are those that are to be found exclusively in a hybrid flow shop. 
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The non-hybrid-specific job constraints are more general ones that can be found in any 

manufacturing environment.  An example of a non-hybrid-specific job constraint is the 

setup time required to be able to process a job. If the setup time is machine dependent, 

i.e., the required time will depend on which machine it is assigned to, the job constraint 

is hybrid-specific. However, the differences between hybrid- and non-hybrid-specific 

job constraints can be quite hard to define, and it is argued in this thesis that the 

distinction between hybrid- and non-hybrid-specific job constraints has made no 

contribution to resolve complex scheduling problems. Therefore, hereafter, job 

constraints will not be distinguished as hybrid- or non-hybrid-specific, but simply as job 

constraints. Some common job constraints and characteristics follow: 

 Job pre-emption: this means that a job currently being processed on a machine 

may be put on hold in its processing in favour of another job. When the job that 

had been put on hold continues, it need not restart its entire processing 

operation, but can continue where it left off. (Pinedo, 2008) 

 Job precedence: is a predefined sequence or order of jobs that must be preserved. 

The reason for job precedence might be that certain sequences are prohibited due 

to technological constraints or because of a policy decision. An example of 

when job precedence rules are created is when there are long, sequence 

dependent setup times. (Conway, et al., 1967) 

 Sequence dependent setup times: this means that a setup on a machine, in order 

to start a job, depends on the differences between the last and the current job 

(Pinedo, 2005). 

 Transportation times: this means the time it takes to move a job between 

different locations (Pinedo, 2005). 

 Missing operations (Ribas, et al., 2010), bypass (Pinedo, 2005), or by-passing 

move (Groover, 2000): all of these refer to the jobs which do not need to go 

through all production stages and can thus disregard some of them. 

 Lot splitting means that a lot can be split over parallel machines in at least one 

production stage. If lot splitting is not allowed, it means that a lot cannot be 

started at the next production stage until the whole batch is finished in the 

current production stage.  
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 A lot sizing and scheduling problem is common in a closed shop and means that 

not only the sequencing problem is considered, but also the lot-sizing decisions 

associated with the inventory replenishment process (Graves, 1981). 

 Re-entrant hybrid flow shop means that some jobs need to revisit some previous 

production stages. 

 Rework means that some jobs might need to revisit a previous production stage 

because of quality problems.  

 

2.3.4 Objective function 

The objective function of a scheduling problem is what determines whether a schedule 

is good or bad. The definition of an objective function that represents the scheduling 

and production system goals is crucial in order to find the best schedules. The 

“minimax” criteria, simplified as “max”, are frequently used in the literature to denote 

the time of the latest job to some criteria, e.g., the time of the latest job (T’Kindt et al., 

2002). In the same manner, the “minisum” criterion f  designates objectives based on 

all jobs, usually averages or sums of some kind (T’Kindt et al., 2002).  Pinedo (2005) 

sorts objectives into three main groups: (1) throughput and makespan objectives; (2) 

due date related objectives, and (3) cost related objectives. In the throughput and 

makespan objectives, the following aims can be included: 

maxC
 Maximum job completion time. The objective is to decrease the 

makespan, i.e., the time required for the last job to be finished. (T’Kindt et al., 

2002) 

Th   Throughput rate. The objective is to increase throughput rate (average), 

e.g., throughput per hour. However, the throughput rate is usually unnecessary 

when decreasing the makespan, because maximizing maxC
 tends to increase the 

throughput rate (see Pinedo, 2005). 

C   Average completion time or total completion time of jobs. The objective is 

to decrease the average completion time of all jobs or the total completion time 

of jobs (T’Kindt et al., 2002). 
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In the due date related objectives the following aims can be included: 

maxL
 Maximum lateness. The objective is to decrease the lateness of the latest 

job. Lateness can be less than zero and often there are no benefits in finishing 

earlier than the deadline. Therefore, it is often more appropriate to work with 

tardiness instead (see Baker and Trietsch, 2009).  

maxT
 Maximum tardiness. The objective is to decrease the tardiness of the 

tardiest job. Tardiness for each job can be zero (on time) or larger than zero 

(late). Tardiness can never be less than zero (T’Kindt et al., 2002). 

T   Average tardiness or total tardiness of jobs. The objective is to decrease 

the average tardiness of the tardy jobs or the total tardiness of the tardy jobs. 

U   Number of late jobs. The objective is to decrease the total number of late 

jobs.  

 

Examples of cost related objectives are setup costs, work-in-process inventory costs, 

finished goods inventory costs and transportation costs. However, there are other costs, 

such as those related to personnel and equipment, which may also depend on the 

schedule, but are perhaps not necessarily proportional to other objectives, e.g., 

makespan.  

 

2.4 Scheduling methodologies 

According to the classical definition of the scheduling problem, the goal is to find the 

best possible schedule (sequences). Makespan is probably the most common objective 

and means the maximum job completion time. However, it has to be clarified that there 

might be several objectives and constraints that make the problem itself difficult. The 

methodology used to solve the problem will differ, depending on what kind of 

scheduling problem it is and the requirements of the solution, e.g., optimality and time 

requirements. 
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Different scheduling methodologies for different scheduling problems are presented in 

this chapter, based on a classical definition of scheduling problems, i.e., sequencing of 

operations on several machines (Conway et al., 1967). When all numeric quantities 

(processing times, due dates etc.) are known in advance, the scheduling problem can be 

classified as a deterministic scheduling problem. In contrast, numerical quantities are 

stochastic in a stochastic scheduling problem. A static problem is when jobs are 

assumed to be available at time 0, and a dynamic problem is when a subset of jobs has a 

non-zero release or ready time. According to Kiran (1998), scheduling problems can be 

defined into four different categories: static stochastic, static deterministic, dynamic 

deterministic and dynamic stochastic and can be addressed by three basic approaches:  

 Optimisation-based approaches 

 Artificial intelligence-based approaches 

 Dispatching rules and simulation-based approaches 

 

2.4.1 Optimisation-based approaches 

Optimisation-based approaches attempt to find the optimal schedule mathematically. 

There are different techniques that may be used according to the problem to be solved. 

Approaches based on optimal scheduling rules create schedules using a set of rules that 

are based on the characteristics of the schedule and mathematical properties of the 

problem. Once it has been proven that a scheduling rule can find optimal solutions for 

most general causes of a scheduling problem, it can be used for all other problems in 

this problem class. Examples are that the priority dispatching rule’s shortest processing 

time (SPT) and earliest due date (EDD) can prove their optimality for minimising the 

total flow time and the maximum tardiness respectively for the single machine 

sequencing problem (Baker and Trietsch, 2009). Another example is the adjacent 

pairwise interchange technique, which can be used for static deterministic problems, to 

evaluate different sequences by swapping adjacent jobs and checking the objective 

function to find optimal schedules. Compared to a total or complete enumeration, where 

all sequences need to be evaluated, the adjacent pairwise interchange technique has an 

obvious advantage, according to Kiran (1998). 



Chapter 2 Hybrid Flow Shop Scheduling Problems and Scheduling Methodologies 

 
 

22 

 

While approaches based on optimal scheduling rules might be inappropriate, due to the 

huge solutions space when considering larger problems, or even unfeasible with regard 

to dynamic scheduling problems, implicit enumeration techniques can be used. The 

functionality of enumeration-based approaches is to find optimal schedules faster, by 

reducing the computational burden using mathematical analysis and mathematical 

programming. Implicit enumeration uses the simultaneous evaluation of alternatives 

and, compared to total enumeration, not all possible combinations need to be evaluated, 

because promising solutions are kept and unpromising ones are deleted. These 

algorithms are also called branch and bound, proposed by Land and Doig (1960). 

Implicit enumeration may, on the other hand, not be used for constrained optimisation 

problems.  Mathematical programming, also referred to as linear programming or 

integer programming, can represent many quite different scheduling problems and is 

mainly used to solve constrained optimisation problems. For example, linear 

programming can be used for scheduling optimisation problems, given that the 

objective function and the constraints can be defined as linear equations. Another major 

drawback with the mathematical approaches is that they take a long time to solve even 

moderately sized problems.  

 

As Laguna and Marti (2003) put it, “Many real world optimization problems in 

business, engineering and science are too complex to be given tractable mathematical 

formulations”. Furthermore, Kempf et al., (2000) also conclude that using a 

mathematical model with abstractions of the problem directly in a production line and 

expecting it to work is unrealistic. Accordingly, complex real-world scheduling 

problems would be impossible to solve using mathematical programming without 

making huge simplifications, and with these simplifications it may not provide valid 

solutions.  

 

2.4.2 Artificial intelligence-based approaches 

Artificial intelligence (AI)-based approaches are used to generate schedules that satisfy 

the constraints, so called constraint-based scheduling. AI-based approaches can be 

divided into three main groups:  
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 Rule/knowledge-based approaches. 

 Artificial Neural Networks (ANNs). 

 Meta-heuristic approaches, such as using Tabu Search (TS), Simulated 

Annealing (SA), or Genetic Algorithms (GA). 

 

Rule/knowledge-based approaches, also called expert systems, rely on rules that 

evaluate and develop schedules in a manner similar to human experts. These systems 

need to have input-output components that have information regarding orders, 

applicable rules stored in a database and a logic component that processes the data by 

using the rules in the database. There might be rule conflicts that different systems 

handle differently, e.g., by weighing up the importance of the rules (Kiran, 1998).  

 

According to Jones (2009), these systems can successfully cope with both quantitative 

and qualitative knowledge. They can handle complex heuristics, cope with huge 

amounts of information that may directly or indirectly affect the scheduling problem, 

capture complex relationships in new data structures, and create algorithms that can 

manipulate those data structures in new and novel ways. The drawbacks are that they 

can be difficult to build and manage and they become tied to the system for which they 

are built.  Furthermore, they only generate feasible solutions, making it hard to know 

how close to the optimum any given solution is.  

 

The basic idea of using ANNs for scheduling relies on their power of pattern 

recognition in “good” schedules. An ANN is trained by feeding data to it from a set of 

training problems and their acceptable solutions. The trained network can then be 

presented to a new problem and, depending on how it is built, can generate the answer 

of a recommended solution. However, using ANNs would be difficult with regard to 

more complex scheduling problems. 

 

Neighbourhood search techniques mainly consist of the following steps: (1) create an 

initial solution and evaluate it according to the objective, (2) generate new solutions in 

the neighbourhood and evaluate them, and (3) select the best solution in the 
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neighbourhood and let it be the new “seed” or terminate the search, if there are no 

solutions better than the previous best solution. The generating mechanism uses the seed 

solution to create new solutions according to a predefined pattern, e.g., the adjacent 

pairwise interchange technique could be used to generate neighbourhood solutions. 

Examples of widely used neighbourhood search methods are some of the meta-heuristic 

algorithms introduced earlier, such as TS, SA and GA (Baker and Trietsch, 2009). 

 

TS can be regarded as a modified form of neighbourhood search in its basic form. 

Stopping at local optima is a well-known problem of neighbourhood search and TS tries 

to avoid that by occasionally moving to worse solutions. A number of already evaluated 

solutions are stored in a “tabu list” which makes sure that the same sequences are not re-

evaluated. The method used for selecting the neighbourhood solutions and the size of 

the neighbourhood seems to have a major influence on the quality of the solution 

obtained (Kiran, 1998; Baker and Trietsch, 2009).  

 

SA selects neighbouring solutions randomly, whilst TS selects the best non-taboo 

solution in the neighbourhood. The better the value of a neighbouring solution, the 

higher the probability it will be chosen as the next starting solution. Annealing comes 

from the physical process of cooling down material slowly. At the beginning of the 

optimisation process, the value of the objective function tends to fluctuate quite a lot, 

but at the end the value does not fluctuate significantly (Kiran, 1998; Baker and 

Trietsch, 2009). Since a GA-based approach is adopted in this thesis, GA is described in 

more detail. 

 

2.4.3 Genetic algorithms 

Genetic algorithms (GAs), originally described by Holland (1962, 1975), may be 

viewed as a neighbourhood search procedure (Baker and Trietsch, 2009). It can also be 

classified as a population-based meta-heuristic and belongs to the class of evolutionary 

algorithms.  GAs are based on the Darwinian theory of natural selection, i.e., the 

survival of the fittest. The first initial solutions are usually randomly generated into a 

population of solutions. Each of the solutions is then evaluated, after which a new 
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population is generated. The new population is based on current solutions and in the 

selection strategy a good solution usually has a higher probability of being chosen as the 

parent to form new solutions. The new solutions called children or offspring of the 

parent solutions are formed through reproduction, i.e., crossover and mutation. This 

process is discontinued when the stopping criterion is met, e.g., time or number of 

iterations. The success of the search for optimal or near optimal solutions is largely 

determined by the problem structure and the design of the genetic algorithm (Kiran, 

1998; Talbi, 2009). GAs can be used for both manufacturing design and planning 

decisions, such as decisions concerning aggregate planning, material requirements 

planning, assembly line balancing and facilities layout, as reviewed and tested in 

Stockton et al., (2004a, 2004b). Khalil et al., (2012) proposed a framework with 

discrete-event simulation, drum-buffer-rope and GA, and demonstrated an improvement 

when simultaneously changing the buffer sizes and batch sizes for a multi-objective 

optimisation problem, i.e., maximising the throughput and minimising the queue length. 

However, in this review of GA, the focus is on solving scheduling problems which 

include changing batch sizes, but exclude design parameters such as buffer sizes. 

 

2.4.3.1 Population 

A GA is a population-based algorithm and in the conventional GA a generation-based 

approach is used where the entire population is replaced simultaneously (Rogers and 

Prugel-Bennet, 1999). A shortcoming of this method is that if several computers are 

being used in parallel all the computers may not be utilised if the population size is not 

divisible by the number of computers or if there are more computers than the size of the 

population. On the other hand, a steady state GA can utilise parallel evaluations in a 

better way, because the populations overlap.  

 

2.4.3.2 Representation 

A permutation is the arrangement of jobs into a row, hence there are n! permutations 

totally out of n unique jobs (Whitley, 1997). A permutation representation can be used 

for resource scheduling where the permutation represents a priority queue of jobs. The 
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classical GAs called canonical GAs use a binary string representing the decision 

variables (Bäck, 1997b), although a real number representation is possible and is 

probably more intuitive (Davis, 1991). For example, a permutation representation can 

be used for an actual sequence, and a vector of real values could be used for the capacity 

size of a buffer. The former is the focus of the review in the following sub-sections on 

the two most important GA operators: crossover and mutation. 

 

2.4.3.3 Initialisation 

The task of the initialisation process is to create an initial population of solutions. This 

is usually done randomly, but domain-specific knowledge or other information can be 

used to create the initial solutions (Sastry et al., 2005).  

 

2.4.3.4 Selection 

The main task of the selection process is to select parents for mating, in order to 

generate new offspring. A main feature of this process is to let a better solution obtain a 

higher probability of being chosen as parent. A common method is the roulette wheel 

selection that uses a biased roulette wheel which is proportional to the fitness of the 

different solutions. However, a conventional roulette wheel method may get a 

premature convergence at the beginning of the search process and, therefore, methods 

such as tournament selection may be used (Talbi, 2009). Tournament selection simply 

selects a number of individuals and the best one of these is chosen as a parent. 

 

2.4.3.5 Crossover operators 

A well-known scheduling problem is that of the travelling salesman (TSP), which is 

NP-complete. In short, TSP represents a problem in which a salesman starts at a given 

city and has to visit each of n cities only once while making a round trip. The target is to 

find the shortest possible path for the salesman. This problem has similarities to other 

scheduling issues, such as the job shop scheduling problem, and many of its 

applications can be used for production scheduling as well. The partially mapped 
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crossover (PMX) was introduced by Goldberg and Linge (1985) for the TSP and has 

been compared to other crossover operators in various GA scheduling studies (Kellegöz 

et al., 2008; Engin et al., 2011). A great review of crossover operators applied to GAs 

for scheduling problems can be found in Aytug et al., (2003). A popular crossover 

operator in scheduling is the linear order crossover (LOX) (Falkenauer and Bouffouix, 

1991), which can be applied to both simple and complex scheduling problems (Pinedo, 

2008). The LOX is a modified version of the order crossover (OX) (Davis, 1985) and is 

quite similar to both OX and PMX. However, it maintains the relative order of the 

positions that need to move due to the insertion of new genetic material. The LOX 

works in the following way, redrawn from Pinedo (2008) which is based on Liaw 

(2000) in Figure 2.1:  

 

 

Figure 2.1 linear order crossover. 

Basically it works in the following way: a range or a substring is selected from one of 

the parents, exact positions of which are transferred to the offspring solution, and then 

the remaining solutions are transferred to the offspring from the other parent. The LOX 

keeps the internal order of the parent two numbers: 8, 9, 2, 1, 10 and 3 in Figure 2.1, 

which is different when compared to the OX and PMX, where this internal order could 

vary. 
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2.4.3.6 Mutation operators 

Mutation operators are used to provide a random diversity in the population of 

solutions. According to Deep and Thakur (2007), the proportion of the population 

undergoing the mutation and the strength of the mutation is of great importance when 

applying a mutation operator. According to Talbi (2009), there are three points that 

must be taken into account when designing or using a mutation operator: 

 Ergodicity: all solutions of the search space should be able to be reached by the 

mutation operator.  

 Validity: valid solutions must be generated by the mutation operator. 

 Locality: a small change should be generated by the mutation operator. 

There are different types of mutation operators applied to different types of problem 

representations. Furthermore, there are different techniques when mutation is applied to 

binary strings, real-valued vectors, permutations, finite-state machines, parse trees and 

other representations such as hybrid representations. A mutation applied to a 

permutation must result in a solution that represents a permutation. Most mutation 

operators for permutations are related to and can be applied for local neighbourhood 

search strategies (Bäck et al., 1997a). 

 

The 2-opt, 3-opt and k-opt mutation operators generally mean that cut points are 

selected, between which the sequence is reversed. The following is an example of a 

sequence of ten elements [A, B, C, D, E, F, G, H, I, J] in which a 2-opt mutation 

operator is used. If the segment [D, E, F, G], i.e., two cut points, is selected this would 

result in the complete sequence [A, B, C, G, F, E, D, H, I, J], which would be a minimal 

change with regard to the TSP, but a larger change for resource scheduling where the 

permutation represents a priority queue of jobs. Therefore, in order to make a smaller 

change when considering a resource scheduling problem, it is possible to use insert, 

swap or scramble. Insert simply means to select a job and insert it at a random position 

in the list of jobs. A similar approach, position-based mutation, describes a variant of 

this mutation that randomly selects two jobs and allows the second job to be inserted 

before the first one (Syswerda, 1991). Another way is to select two jobs and swap their 

positions (Bäck et al., 1997a) or, in other words, order-based mutation described by 
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Syswerda (1991). Syswerda (1991) also defines a scramble mutation operator that 

randomly re-orders jobs in a sub-list of jobs (Bäck et al., 1997a). 

 

To further distinguish the different types of mutation operators, there is also adjacent 

exchange mutation, displacement mutation and inversion/displacement mutation 

(Nearchou, 2004). The adjacent exchange mutation, also described as swap of adjacent 

elements in (Bäck et al., 1997a), means that two consecutive jobs swap their positions. 

A variant of the insert mutation is the displacement mutation that takes a range of 

subsequent jobs and inserts them into a new position. The inversion/displacement 

mutation is similar to the latter, but uses the reversion/inversion for the subsequent 

range of jobs being inserted into a new position.  

However, some of the more conventional mutation operators may not be suitable for 

real-world scheduling problems in which several constraints may make it difficult for 

them to create valid solutions. To prevent previously good solutions being cast into 

unfeasible regions of the search space, a domain-specific directed mutation operator that 

follows the rules of the constraints can be used. Berry and Vamplew (2004) propose 

Pointed Directed (PoD) mutation in which each gene is tightly coupled to a bit that 

decides the mutation direction possible for that gene. Korejo et al., (2010) propose a 

similar approach in which the directed mutation makes an individual shifting based on 

statistical information, in order to guide the search into a promising area.  

 

2.4.4 Dispatching rules approaches 

When it takes longer to actually solve a scheduling problem optimally than to actually 

execute the work in the shop with any given sequence, there is an NP-hard situation 

(Baker and Trietsch, 2009). Therefore, in practice, using heuristics such as dispatching 

rules is often the rule rather than the exception (Baker and Trietsch, 2009). According to 

Kiran (1998), the scheduling objective is not directly considered when using a 

dispatching rule. Basically, a dispatching rule is a rule of thumb that gives priority to a 

job among other jobs at a specific stage, i.e., at a machine. This is why dispatching rules 

can also be called priority dispatching rules (PDRs). Generally, a PDR-based approach 

does not try to find an optimal schedule, but relying on knowing that one scheduling 
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rule statistically performs better than another one is sufficient. According to Panwalkar 

and Iskander (1977), PDRs can be classified into: 

 Simple priority rules: simple dispatching rules, combinatorial dispatching rules, 

weighted priority rules. 

 Heuristic scheduling rules. 

 Other rules. 

 

Simple dispatching rules, such as shortest processing time (SPT), earliest due date 

(EDD), first come, first served (FCFS), among others, are quite simple and intuitive 

rules. When using combinatorial dispatching rules, also referred to as composite 

dispatching rules (CDR), a ranking expression is used to create a function of attributes 

of jobs and/or machines (Pinedo, 2005). An example of this approach can be found in 

(Tay and Ho, 2008), in which CDRs are generated by genetic programming (GP). In 

their simulation study they found that CDRs generated by GP outperformed several 

simple PDRs, when minimising tardiness and makespan objectives.  A similar approach 

is the weighted priority indexes that use a combination of PDRs with assigned weights 

to each PDR, e.g., Jayamohan and Rajendran (2004) who assign specific weights 

according to the importance of different objectives. They also take the weighted priority 

rules one step further, when the weighted dispatching rules have different weights due 

to more important jobs.  

 

Heuristic scheduling rules are rules that may use human experience expertise together 

with both simple PDRs and CDRs (Panwalkar and Iskander, 1977).  

 

Other scheduling rules may be those designed for a specific shop, rules based on 

mathematical functions, and so on. Barman (1997) reveals that combining different 

priority rules at different production stages is appealing, because it is more practicable 

and less complex than many of the combinatorial rules. Furthermore, he points out that 

it is an excellent strategy for achieving better results, when several performance 

measures are considered. They claim that the consensus of researchers is that in some 

way a combination of dispatching rules is better than using simple dispatching rules. 



Chapter 2 Hybrid Flow Shop Scheduling Problems and Scheduling Methodologies 

 
 

31 

 

The main disadvantage of PDRs is their myopic nature (Tanev et. al., 2004; Tay and 

Ho, 2008), because local PDRs, at a stage, are far from optimal and no single PDR is 

likely to perform highly on a range of complex scheduling problems (Pierreval and 

Mebarki, 1997). In order to improve overall performance, both combined dispatching 

rules at different stages, CDRs and combined GA with PDRs, e.g., approaches found in 

Tanev et al., (2004) and Ochoa et al., (2009) have been demonstrated to perform better 

than simple PDRs.  

 

2.4.5 Simulation-based approaches 

A complex real-world scheduling problem comes with many constraints that cannot be 

ignored if a valid schedule is to be created. To find a good and feasible schedule is 

much more important than attempting to find a mathematical optimal schedule for near–

term production scheduling practice (Sivakumar and Gupta, 2006). At the same time, 

production facilities tend to exist in an ever-changing environment which also affects 

the problem structure of the scheduling problem, while at the same time, flexibility is 

the key to the success of any production system (Groover, 2000). McKay et al., (2002) 

conclude that flexible and configurable algorithms need to be researched further.  

 

Simulation modelling has the capability to represent complex real world systems in 

detail, which is its main advantage compared to other methods. It is also very useful for 

communicating details, such as a scheduling situation, due to the visual aids provided 

by most simulation software. According to Koh et al., (1996), a simulation model built 

for scheduling is quite different compared to an ordinary simulation model which is 

generally used for the design and analysis of an existing or proposed system. 

Simulation-based scheduling, on the other hand, is used for the on-going operation and 

control of the system, and the ultimate output is a detailed operation plan. Hence, 

models built for simulation-based scheduling need to be more detailed compared to 

typical simulation models. Typical simulation models are usually stochastic when 

analysing design, and so on, whilst scheduling simulation models are usually 

deterministic. Koh et al., (1996) also identifies a number of important requirements for 

discrete event, simulation models used for scheduling, namely, flexibility, speed, and 
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details. A model needs to be flexible enough to cope with changes in the physical 

configuration, fast enough so a schedule can be generated in an acceptable time, and 

detailed enough with an appropriate level of simplification. 

 

Simulation-based scheduling approaches are derived from the group of dispatching rule-

based approaches. In a simulation-based approach several dispatching rules might be 

used at different stages, in order to make a decision (Kiran, 1998). Many real-world 

optimisation problems can only be treated by simulation models (Laguna and Marti, 

2003), but the problem is that simulation is not an optimisation in itself (Law and 

McComas, 2000). Therefore, simulation-based scheduling may include much user 

intervention, in order to manually test different schedules, which would be unfeasible 

with regard to larger optimisation problems. In order to automatically search for near 

optimal solutions, a scheduling problem can be solved by using the simulation-based 

optimisation (SBO) approach in which the simulation model is integrated with meta-

heuristic search methods, such as TS or GA (Laguna and Marti, 2003).  

 

In this approach the simulation model is viewed as a black box function evaluator which 

evaluates a set of input parameters generated by the meta-heuristic optimiser. The 

response or output is used by the meta-heuristic optimiser to generate new values of the 

inputs. Simulated annealing may be viewed as a sort of random search procedure, but its 

main disadvantage is the computational time it takes to find a good solution. The main 

advantage of evolutionary approaches, such as GAs, compared to those that use 

neighbourhood search-based methods on a single solution, e.g., simulated annealing, is 

that fewer evaluations are needed in order to search a larger area of the solution space. 

Finding good solutions early in the search process is particularly important regarding 

SBO (April et al., 2003). 

  

The weakness of simulation is that it is time consuming, which can be somewhat 

compensated by SBO, because it does not try to evaluate all solutions, but rather a 

fraction of the whole search space. Furthermore, it is possible to parallelise the 

simulation evaluations (e.g., Li and Wang, 2008) and to use a steady state GA (Rogers 

and Prugel-Bennet, 1999) in order to speed up the optimisation process. The weakness 
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of GAs and other meta-heuristic search methods is that they may not find the optimal 

solution for larger scheduling problems. On the other hand, the question is whether any 

method would find an optimal solution in an acceptable period of time for an NP-hard, 

complex real-world scheduling problem? It is important to note that an optimal solution 

is usually not the target in a complex real-world scheduling problem; it is instead to 

achieve a relatively high performance for many problems, which is a characteristic of 

GA (Sankar et al., 2003). 

 

2.4.6 GA or dispatching rules for simulation 

In the last decade, there has been extensive research in the field of production 

scheduling using simulation. Simulation modelling has the capability to represent 

complex real-world systems in detail, and several dispatching rules can be used at 

different stages to make decisions about what parts to select for the next scheduling 

period. The number of rules can be infinite, because it is possible to define new 

scheduling rules as the combinations of several other dispatching rules (Holtaus, 1997). 

Generally speaking, a PDR-based simulation scheduling approach does not attempt to 

find an “optimal” schedule, but relies on knowing that one rule, or a combination of 

rules, performs better than another one. In comparison, using a meta-heuristic optimiser, 

such as a Genetic Algorithm (GA), to generate the near optimal schedules directly, 

which is referred to as a direct approach in this thesis, may be advantageous if searching 

for “optimal” solutions is desired. Nevertheless, to generate a complete schedule using a 

GA-based SBO may require very long computing time. This is usually impractical or 

even unacceptable, if the result is needed to control the system in “real-time”.  

 

There are many studies that compare these two approaches and some of them provide 

results showing that the use of GAs to generate detailed schedules can obtain better 

solutions than those obtained by using PDRs. For example, Sankar et al., (2003) use a 

GA for the scheduling of a job shop with five production stages, parallel machines in 

each stage and 43 jobs to be scheduled. Several objectives, including customer 

satisfaction, machine utilisation and total elapsed time, are integrated into a single 

combined objective function. A GA is coded in such a way that the chromosomes 
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represent the job sequences which the manufacturing system has to follow in order to 

achieve the best schedule. The results obtained with the GA are then compared with the 

results obtained using six different dispatching rules including SPT, LPT, EDD, largest 

batch quantity (LBT), smallest batch quantity (SBQ), and highest penalty (HP). It has 

been found that the solutions generated by GA outperform the solutions obtained by 

using PDRs, for this specific production system. 

 

The most common form of hybridisation is combining a GA with local search 

procedures or using domain specific knowledge. Hybrid genetic algorithm and memetic 

approaches have achieved good results in complex real-world application areas, but 

there has been limited work developing a theoretical basis for genetic algorithm 

hybridisation (Sastry et al., 2005). Kim et al., (2007) made a comparison between the 

use of PDRs and GAs for solving the scheduling problem in a real factory that 

manufactures standard hydraulic cylinders. More specifically, it was a job shop of six 

machines and nine jobs. Different dispatching rules were used in this study, namely 

SPT, LPT, most work remaining (MWKR), and least work remaining (LWKR). When 

using GAs, different jobs to be performed by different machines are codified into an 

individual chromosome, and then the different individuals are selected following the 

“natural selection”, in order to minimise makespan. Again in this study, the researchers 

found that the GA-based approach outperforms the PDR-based one. At the same time, 

the researchers state in their conclusion that better results could be found if the two 

techniques for the scheduling of orders are used in combination. An example is Kianfar 

et al. (2012) that propose a hybrid GA procedure that uses PDRs to generate initial 

solutions. Overall, the algorithm was shown to be better than some common dispatching 

rules, when compared in four flow shop scheduling scenarios.  

 

A method that combines GA and PDR can be found in Tanev et al., (2004), where a 

hybrid evolutionary algorithm for the scheduling of a plastic injection machines factory 

was developed. The system was a job shop with four machines and 50-400 jobs. In their 

approach, the researchers proposed a hybrid GA combined with the use of PDRs; a GA 

was used to evolve the different combinations of dispatching rules and to finally find 

which one provides the best schedule. The solutions were then evaluated by means of a 
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fitness function conformed by the different parameters (flow times, setups, makespan, 

tardiness, etc.) to be optimised. They found that letting the GA select PDRs generated 

better solutions compared to a conventional GA, in a shorter time period. At the same 

time, the computational effort/job to be scheduled seems to decrease with an increasing 

number of jobs, making it particularly appropriate for complex real-world problems 

compared to a conventional GA. Another study has been carried out by Ochoa et al., 

(2009), in which the hybrid flow shop was considered as  
1

k
l

l
HFk QM


, where k is 5-30 

stages and M is four to five machines. A conventional GA creating a permutation 

schedule was compared to a GA that selected dispatching rules, and the latter approach 

was demonstrated to be advantageous compared to the conventional GA.  

 

These methodologies that use some sort of meta-heuristic, e.g., GA, in order to select 

other heuristics, e.g., PDRs, may also be referred to as a hyper-heuristic approach, in 

which some meta-heuristics are used to select the appropriate heuristics (Burke at al., 

2003). This kind of approach in which a GA chromosome is used to represent different 

combination of PDRs, is referred to as the indirect approach in this thesis. The reason is 

that the actual sequence itself is only indirectly handled by the GA using the PDRs. 

Burke at al., (2003) reveal that current meta-heuristic search methods tend to solve and 

be customised for a particular problem type, whilst hyper-heuristics are able to handle a 

wider range of problems and may lead to more general systems. Algorithms’ ability to 

adapt and learn has been identified as future research issues (McKay et al., 2002). 

2.5 Assumptions usually made in scheduling research 

Even moderately sized scheduling problems tend to become complex. Gupta and 

Stafford (2006) state that research within flow shop scheduling seems to have been 

motivated by what the researchers can achieve rather than what is important, and 

thereby also suffers from too much abstraction and too little application. According to 

Pinedo (2008), advances in scheduling theory have only had a limited impact on 

scheduling in practice, but the theoretical research has not been a complete waste of 

time, because it has given insights into the scheduling problem. Still, looking at 50 years 

of research, theoretical flow shop scheduling problems remain largely unsolved (Gupta 
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and Stafford, 2006). Generally, scheduling problems include many restrictive 

assumptions to be solved (Kiran, 1998). Many of these assumptions are valid for 

different scheduling problems, but it would not be true to say that these assumptions can 

be used for all different kinds of scheduling problems. Assumptions are usually made 

about scheduling problems and some of the most general ones include the following 

(e.g., Baker and Trietsch, 1974; Ramasesh, 1990; Kiran, 1998; Baker and Trietsch, 

2009): 

 All jobs to be scheduled are available at time zero. 

 Machines can only process one job at a time. 

 Setup times are sequence independent, i.e., there are no sequence dependent 

setup times. 

 Setup times are included in the processing times. 

 There are not any breakdowns of machines, i.e., the machines are continuously 

available for production. 

 Jobs are processed without any disruptions. 

 There is no alternative routing of jobs, i.e., jobs have strictly ordered operation 

sequences. 

 No parallel machines can do the same type of operation. 

 An operation may not start before the preceding ones are finished. 

 There is no pre-emption of jobs, i.e., once started jobs must be processed until 

completion. 

 A job may not be started before it is finalised in previous operations. 

 There is no variation of processing times. 

 Jobs are moved directly between production stages, i.e., there are no transfer 

times between machines. 

 Buffer sizes (queue lengths) are not limited. 

 There are no assembly operations. 

 Jobs are carried out on a machine only once. 

 There is no rework of jobs. 
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When considering complex, real-world production scheduling problems, only a few of 

these assumptions can possibly be made without changing the original issue into a 

completely different scheduling problem, i.e., a theoretical scheduling problem that is 

not of much use in practice. In a review of flow shop scheduling research, Ribas et al., 

(2010) states that even though most real-life situations are better represented by models 

with uniform or unrelated machines, most research has been done on flow shops with 

identical machines, which is probably due to the fact that identical machines are easier 

to handle. According to Allahverdi et al., (2008) who reviewed 300 papers on 

scheduling with setup times, between 1999 and 2008, there has been a significant 

increase in scheduling problems involving setup times. The reason is that substantial 

savings can be made, when setup times are considered for real-world industries. The 

majority of papers dealt with sequence independent setup times, because this is easier to 

handle compared to sequence dependent setup times. Again, according to Ribas et al., 

(2010), most research has been carried out with, at most, one constraint (e.g., setups, 

failures, blocking) being studied at a time and only a few studies dealt with all or most 

constraints at the same time. Consequently, in order to diminish the gap between theory 

and real-world scheduling problems, several constraints need to be considered 

simultaneously. 

 

2.6 Scheduling objectives in real-world problems 

Most real-world scheduling problems have more than one objective of interest (Gary et 

al., 1995; Yang and Chang, 1998), commonly defined as multi-objective scheduling 

problems. However, most of the theoretical literature addresses single objectives only 

(Graves, 1981; Allahverdi et al., 2008; Ribas et al., 2010). 

 

There are different ways to address multi-objective scheduling problems, of which some 

can be found in Kempf et al., (2000). One way is to use the primary objective as the one 

to optimise and a secondary objective as a constraint. Another strategy is to use a multi-

objective approach and let the user decide from a set of Pareto (non-dominated) 

solutions. For example, when using the Elitist non-dominated sorting genetic algorithm 

(NSGA-II), the Pareto front consists of all the solutions that are not dominated by other 
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solutions of at least one objective (Deb et al., 2000). Another common approach is to 

combine different objectives into a single one by using weights for the different 

objectives of interest (Kempf et al., 2000). Finally, a similar approach to the latter one is 

to use a cost-based objective (see Section 2.3.4) where all the objectives are measured in 

cost (Kempf et al., 2000). Real-world scheduling problems usually have multiple 

objectives. Whilst a Pareto set of solutions of multiple objectives may be beneficial 

when analysing a production system, it would require much time from the production 

scheduler and is probably better suited for other types of SBO problems, such as 

optimal buffer allocation ones. A weight-based objective function was adopted in the 

thesis, because the production scheduler needed to obtain the result quite quickly and 

the user had no time to study separate sub-targets. 

 

Regarding real-world problems, different organisations have different objectives and 

therefore the scheduling metrics will vary from case to case. At a higher company level, 

profit is the important long-term objective, along with customer satisfaction; however, 

the importance of customers may vary depending on the customer. As a matter of fact, 

on the production floor, the supervisor might want high overall machine utilisation and 

throughput rate by having bigger batch sizes, as demonstrated in Stockton et al., (2012), 

and an operator might want homogenous batches, in order to avoid setups on a certain 

machine.  

 

2.7 Concluding remarks 

In summary, it has been emphasised in this chapter that even a moderately sized 

scheduling problem tends to be too complex to solve by any analytical approaches and 

many real-world problems, such as the hybrid flow shop, belong to the class of NP-

complete problems. In other words, it could be possible to solve real-world scheduling 

problems using mathematical programming, but it would require huge simplifications, 

as reviewed in this chapter. Flow shop scheduling seems to have been motivated by 

what the researchers can achieve rather than what is important, and thereby also suffers 

from too much abstraction and too little application. Discrete event simulation has the 

capability to represent complex real-world systems in detail, as well as cope with 
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several constraints and multiple objectives, which have been identified as important 

factors. By using the simulation-based optimisation (SBO) approach in which the 

simulation model is integrated with meta-heuristic search methods, such as genetic 

algorithms, the search for optimal or near optimal solutions can be done automatically. 

A main advantage of using genetic algorithms is that quite a few evaluations are needed, 

in order to search a large area of the solution space. Furthermore, combining GA with 

dispatching rules (hyper-heuristics) seems to be a promising research direction, 

according to several researchers reviewed in this chapter. Therefore, a hybrid genetic 

representation is proposed in this study and presented in Chapter 5. The scheduling 

problem from the perspective of uncertainty is dealt with in Chapter 3. 
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Chapter 3 

3 Rescheduling and System Support 

This chapter describes the functions and features needed in order to support production 

scheduling in real-world problems which are subjected to disturbances such as machine 

breakdowns. It begins with a brief introduction of how uncertainty affects the execution 

of a schedule and continues with rescheduling methods and policies to handle 

uncertainty. Furthermore, functions of the scheduling task are presented, which is 

followed by a review of important scheduling system functions identified in the 

research society. Finally, based on the literature reviews in chapters 2 and 3, a summary 

of the most important functions of a production scheduling system is presented.  

 

3.1 Uncertainty and rescheduling 

In the research of the higher levels of production control, there have been successful 

practical implementations of research, such as Enterprise Resource Planning (ERP) 

systems used more often nowadays by companies in industry (McKay and Wiers, 

1999). However, there have been very few successful practical implementations or 

usable optimisation methods in dynamic job shops and detailed dispatching (McKay 

and Wiers, 1999; Stoop and Wiers, 1996). In fact, McKay and Wiers (1999) depict that 

the underlying principles of scheduling research are insufficient and should be 

reassessed. A common opinion is however that the theoretical techniques are actually 

applicable, but people in industry do not use them, because they do not know how to 

apply them or simply because they are not aware of their existence (McKay and Wiers, 

1999). The traditional definition of scheduling is more about sequencing, while the 

impact of uncertainty is systematically underestimated by academic research. Frequent 

schedule interruptions may occur during the execution of a schedule in a production 

system, due to the variability present in these systems (Stockton et al., 2012). According 

to McKay and Wiers (1999), a common approach to uncertainty is to react and 

reschedule. In some way, it is possible to reduce uncertainty by taking precautionary 

actions, such as preventive maintenance, but it is hard to remove uncertainty 
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completely. Some researchers who address specific scheduling problems do include 

uncertainty in the scheduling problem with stochastic arrival and/or processing times, 

e.g., Daniels and Kouvelis (1995) and Leon et al., (1994). However, with regard to 

hybrid flow shop scheduling problems, most research papers do not consider 

uncertainty or other related constraints, or they simply handle only one constraint at a 

time (Ribas et al., 2010).  

 

Graves (1981) identified that scheduling robustness is an important area of future 

research and vividly stated that “A frequent comment heard in many scheduling shops is 

that there is no scheduling problem but rather a rescheduling problem”. Production 

scheduling research can be divided into two groups, namely, deterministic scheduling 

research, in which the problems are defined with deterministic terms, and stochastic 

scheduling research, whereby at least some randomness is modelled for the problems. 

Aytug et al., (2005) reveal that many of the stochastic scheduling research efforts have 

focused on local control policies, such as priority dispatching rules, aimed at 

minimising some measure of performance. Most of these methods do not use any 

information about the global state of the shop floor and create the schedules during 

executions. The deterministic scheduling research is more focused on creating an 

optimal or near-optimal schedule, according to a single or multiple objectives, usually 

with regard to a single or multiple machines. The problem with the deterministic 

solutions obtained is that it is assumed they can be exactly executed in the real 

machine/line/shop for which they are created. However, many researchers have 

recognised that uncertainty is always part of the problem and therefore put effort into 

extending the deterministic approaches to enable them to handle some form of 

uncertainty.  

 

The predictive schedule could be described as the forecasted “optimal” schedule found 

by the scheduling approach used and may be updated with a new predictive schedule 

when required. When this predictive schedule is used in the real world, very often with 

regard to disturbances, it is called the realised schedule. Stoop and Wiers (1996) have 

found that the expected performance of a (predictive) schedule often deviates from the 

(realised) actual performance which, in most cases, is worse than the expected 
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performance. Three categories of disturbances that cause these performance deviations 

have been classified (Stoop and Wiers, 1996): (1) capacity disturbances, such as 

machine breakdowns; (2) order disturbances, such as rush orders; (3) relates to the 

measurement of data, such as estimated processing times used in the scheduling 

process. The quality of data affects the uncertainty and is very important, but a high 

quality measurement of data could be difficult to obtain in some production systems. 

Therefore, these three types of uncertainties are included in the reactive scheduling 

experiments presented in Section 7.4. Viera et al., (2003) further present a framework to 

classify rescheduling research in which uncertainty plays some key role. Such a 

rescheduling framework includes rescheduling environments, rescheduling strategies, 

rescheduling policies and rescheduling methods, which is discussed in more detail in 

the following sub-sections. 

  

3.1.1 Rescheduling environments 

The rescheduling environment refers to the problem instance to be rescheduled, i.e., 

whether it is a finite set of jobs (static) or an infinite set of jobs (dynamic). In a static 

and deterministic environment (instance), nothing is unknown and a rescheduling is not 

necessary. In a static and stochastic environment, there is a finite set of jobs but some 

uncertain variables exist, such as the processing times of the jobs. When there is no 

arrival variability of the jobs in a dynamic environment, a cyclic schedule that is 

executed repeatedly could be used. On the other hand, when there is an arrival 

variability of the jobs, but all the jobs have the same route, the sequence cannot be 

reused if a direct representation of the schedule is used.  Finally, process flow 

variability and arrival variability of the jobs may co-exist, which is mostly characterised 

in job shops, where a great variability of job arrivals is very common. 

 

In terms of rescheduling strategies, two common categories of approaches can be 

identified: (1) dynamic - completely reactive approaches, and (2) predictive-reactive 

approaches, which are discussed below.  
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3.1.2 Completely reactive approaches 

In a dynamic approach, the schedule itself is not generated beforehand, but jobs are 

dispatched at the machines in real-time. Dispatching rules, or other types of heuristics or 

control policies, characterise dynamic scheduling (Viera et al., 2003). This group is also 

called completely reactive approaches (McKay and Wiers, 1999), as the dispatching 

rules actually react to the events that are taking place and dynamically generate the 

sequences. Different approaches using dispatching rules are reviewed in Chapter 2, such 

as simple priority dispatching rules (PDRs) (Panwalkar and Iskander, 1977), combined 

dispatching rules at different stages (Barman, 1997), composite dispatching rules (Tay 

and Ho, 2008), and combined GA with PDRs (Tanev et. al., 2004; Ochoa et al., 2009). 

Dispatching rules have the capability to keep the machines utilised, as long as there is 

material waiting in the queue, but it is nonetheless hard to know the performance of the 

realised sequence order in the presence of uncertainty. The realised sequence order may 

have a significant impact on the performance of the schedule, if sequence-dependent 

setup times are present (Allahverdi et al., 2008).  

 

3.1.3 Predictive-reactive rescheduling policies 

When the schedule is generated beforehand, i.e., direct representation of the schedule, 

there are different policies to decide when to reschedule, in order to update the 

predictive schedule. Church and Uzsoy (1992) present a rough taxonomy of the existing 

approaches, namely: periodic, continuous, and event-driven rescheduling. Periodic 

rescheduling is when rescheduling takes place periodically with a predetermined time 

interval. The event-driven rescheduling is triggered as soon as a “big enough” 

disruption occurs. In other words, if the realised schedule deviates too much from the 

predictive schedule by some measure, then a rescheduling will be executed. An example 

is Kianfar et al. (2012) that use an event-driven triggering based on the arrival of new 

jobs and reschedules if the number of jobs or time elapsed since last rescheduling is big 

enough. Continuous rescheduling is an extreme case in which each event starts a new 

rescheduling. Periodic rescheduling may also be seen as a form of event-driven 

rescheduling policy. Additionally, in hybrid rescheduling policies, periodic rescheduling 
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is combined with event-driven rescheduling (Herrmann, 2006). Church and Uzsoy 

(1992) studied one stage, one machine and a parallel machines’ problem with dynamic 

job arrivals, for the purpose of decreasing maximum lateness, and show how the 

rescheduling frequency affects the schedule performance. Suwa and Fujiwara (2007) 

propose a new hybrid rescheduling policy based on the cumulative delay of jobs, i.e., 

differences between the predictive and realised schedule that outperform a combined 

periodic and event-driven rescheduling policy for a single machine scheduling problem 

and a parallel machines’ scheduling problem, which showed positive results. Actually, 

periodic and hybrid rescheduling policies seem to be the most common ones in practice 

(Herrmann, 2006). Since the main approach used in this thesis is react and reschedule, a 

hybrid rescheduling policy has been adopted, as described in Section 4.4.4.  

  

3.1.4 Rescheduling methods 

While a predetermined sequence created by a direct approach could be re-sequenced 

when a disruption occurs, a more novel approach is to generate the sequences to be 

robust enough to handle uncertainties. Robust scheduling approaches, also called 

proactive approaches, focus on creating a schedule that, when implemented, will be 

robust enough to handle different disruptions and minimise their effects with respect to 

some performance measure. These approaches can be further classified: (1) optimising 

the worst possible scenario; (2) minimising differences in objective function, subject to 

disturbances, and (3) to include the effects of machine failures, subject to a given 

rescheduling method. Daniels and Kouvelis (1995) develop a procedure for creating 

robust schedules, by analysing worst case scenarios. Leon et al., (1994) create a 

schedule approach that shows robustness for processing time variability and machine 

failures with makespan as the minimisation objective. Leon et al., (1994) develop 

robustness measures that are used with a GA to find robust schedules. Another approach 

to optimise buffer allocation in a job shop was proposed by Al-Aomar (2002). In this 

method, the author achieves robustness by integrating it into the GA search engine 

through assigning a Signal-to-Noise ratio (S/N) to each simulation outcome. The 

method has been applied to a hypothetical job shop example with buffer sizes as the 

discrete factors (Al-Aomar, 2006). 
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When rescheduling is necessary, e.g., due to the deviations of the initial plan, there are 

different ways of repairing a schedule.  According to Herrmann (2006) and Viera et al., 

(2003), there are three ways to reschedule: (1) complete regeneration, (2) right-shift 

scheduling, and (3) match-up scheduling or so called partial rescheduling. Complete 

regeneration means that the whole schedule is regenerated, i.e., all the jobs that have not 

been executed by the time of rescheduling will be rescheduled. A complete rescheduling 

may lead to schedule nervousness (Stoop and Wiers, 1996), which, according to McKay 

and Wiers (1999), can be overcome in most real-world situations, if small changes are 

continuously updated and only partial solutions are generated. Right-shift scheduling 

means that the remaining jobs are postponed by the time needed to obtain a feasible 

schedule. Right shift scheduling may be seen as a simple form of match-up scheduling, 

since the jobs are shifted to the right in the Gantt chart, without any re-sequencing being 

done. Match-up scheduling means the necessary actions to be able to get “back on 

track” with the predetermined schedule. The match-up point indicates what part of the 

schedule has to be rescheduled. Bean et al., (1991) propose a match-up heuristic method 

that begins with incrementally searching for the appropriate match-up point with regard 

to machine disruption. Jobs are rescheduled for the machine, or machines, with the 

disruption, using several dispatching rules. If jobs can be rescheduled without exceeding 

the threshold for the tardiness costs, the search stops. If a schedule cannot be found for a 

given, maximum match-up time point for the machine(s), then the search is extended by 

scheduling several machines. Akturk and Gorgulu (1999) propose a match-up heuristic 

procedure that determines the match-up point and does the rescheduling for a modified 

flow shop. Since both the match-up point and the new schedule for that period are 

determined simultaneously, a heuristic procedure was chosen, involving different 

dispatching rules, in the creation of a new schedule. In this thesis, all three ways to 

reschedule have been adopted, as described in Section 4.4.4.  

 

3.1.5 Direct, indirect and hybrid representation of schedules 

Several researchers, e.g., Sankar et al., (2003) and Kim et al., (2007), have shown that 

global scheduling, i.e., a direct representation of schedules, using GA, has the potential 
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to improve the performance of complex shops, compared to dispatching rules. Lawrence 

and Sewell (1997) also compare dynamic heuristics, e.g., dispatching rules, with static 

algorithms such as shifting bottleneck heuristic, for several job shop scheduling 

problems with makespan objective and different degrees of processing time variability. 

They found that simple dynamic (real-time/on-line) scheduling heuristics yield equally 

good or better results compared to complex static (off-line) algorithms, especially when 

complexity and uncertainty are increased. Wan (1995) shows similar results to the latter, 

in which a dynamic dispatching rule yields equally good or better results compared to 

static methods, when subjected to processing time variability. Regarding scheduling 

problems with high uncertainty, many studies have confirmed that an indirect 

representation of schedules, such as dispatching rules, can produce better solutions 

compared to a direct representation of schedules (Lawrence and Sewell, 1997, Matsuura 

et al., 1993; 1997; Wan, 1995). In order to show that the predictive-reactive approach 

using a direct representation could be better, even when the uncertainty is quite low, 

Matsuura et al., (1993) propose a hybrid approach called switching. In such a hybrid 

approach, a predictive schedule is created for the shop which uses a periodic 

rescheduling policy. If the realised schedule deviates significantly from the predicted 

one, the system switches to using a dispatching rule for the remainder of the period. 

Another hybrid approach, which includes a global scheduler and a dispatching module 

for a job shop with variable processing times, is proposed by Roundy et al., (1991). In 

this approach, the dispatching module selects a job, which is based on the outcome of 

deriving the costs associated with performing a job at a particular time, from the global 

schedule. With increasing shop complexity, this method has been shown to perform 

well in comparison to dispatching rules. A similar hybrid approach to the latter, called 

SB-DIS, was proposed by Barua et al., (2005). A global schedule is created for the shop 

which uses a periodic rescheduling policy. The global schedule is implemented directly, 

but serves to provide a priority index for the jobs. Compared to the latter approach, the 

global schedule does not need to be feasible, but serves as a priority index for jobs used 

by the dispatching procedure. SB-DIS was tested on both a deterministic and a 

stochastic, hypothetical multi-stage shop problem and generally showed that it 

outperformed different dispatching rules.  
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3.2 The scheduling task 

Conway et al., (1967) state that a scheduling problem taken out of its context gains in 

generality, since it approximates many situations, but does not represent a solution to 

any real-world sequencing problem. This information is only a partial assessment of the 

real problem. McKay and Wiers (1999) claim that researchers and real-world schedulers 

are not discussing the same problem, since researchers are solving the sequencing 

problems and real-world schedulers are faced with day-to-day challenges, such as 

communicating with personnel about events of the previous night. A critical task of a 

scheduler is also to check the current status of the plant with regard to demand, 

machines, material, and personnel. Another task is to anticipate and plan future events, 

such as machine maintenance and repair issues, processing changes, and new product 

samples. When planning what has to be done, where, and by whom, there is almost 

always a compromise, due to the wide range of options faced by the scheduler. This is 

why McKay and Wiers (1999) define the scheduling task as: “a dynamic and adaptive 

process of iterative decision making and problem solving, involving information 

acquisition from a number of sources, and with the decisions affecting a number of 

production facets in reaction to immediate or anticipated problems”, which this work is 

based on. 

 

3.2.1 Functions of the production scheduling task 

Wiers (1997) proposes that four types of control can be used to further characterise a 

scheduling task: Detailed control, Direct control, Restricted control and Sustained 

control. In Detailed control, the scheduling is very detailed in order to deal with the 

short-term dispatching decisions that determine what to do next (Wiers, 1997). It is 

important that a valid schedule for a short-term scheduling horizon is generated, 

because there is no intermediate control before the schedule is launched and there is a 

risk that the schedules have to be adjusted manually (Stoop and Wiers, 1996).  

 

Direct control means that the scheduler has direct control to answer questions and give 

directions, as the schedule has been created without any intermediate control before its 
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launch (Wiers, 1997). Methods such as completely reactive approaches or predictive-

reactive approaches are possible solutions, but in real-world situations these procedures 

need to have some system support, in order to be able to provide the direct control 

functions.  

 

With regard to Restricted control, schedulers have to deal with the situation at hand, 

with material availability and requirements usually beyond their control (Wiers, 1997). 

McKay and Wiers (1999) explain that the decisions made regarding various problems 

may differ, depending on the kinds of situation, such as the beginning of a day or a 

Friday afternoon. The scheduling process needs to be able to answer questions in a 

limited amount of time and small changes to the schedule must be made continuously 

throughout the day, even if there is not a complete set of data available. Instead of a 

complete rescheduling, some sort of partial rescheduling could possibly reduce the risk 

of schedule nervousness.  

 

Finally, Sustained control refers to the scheduler that monitors schedule execution and 

carries out necessary changes when needed, in order to fulfil scheduling targets (Wiers, 

1997).  Consequently, a solution for real-world scheduling problems would have to 

include detailed monitoring capability.  

  

3.3 System support 

As Pinedo (2005) vividly states, “Analysing a planning or scheduling problem and 

developing a procedure for dealing with it on a regular basis is, in the real world, only 

part of the story. The procedure has to be embedded in a system that enables the 

decision-maker to actually use it. The system has to be integrated into the information 

system of the organization, which can be a formidable task”. Therefore, in order to be 

able to handle the scheduling task that takes uncertainty into account, a scheduling 

system, not only a scheduling algorithm is needed. Framinan and Ruiz (2009) believe 

that scheduling research needs to increase studies in areas such as user interfaces, data 

management, scheduling monitoring, as well as in more tools and methods for the 

design and implementation of scheduling systems for manufacturing facilities. Hence, 
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this review identifies important functions and features that need to be handled by a 

scheduling system. 

  

3.3.1 User-interfaces and human control 

Improvements can usually only be made through the scheduling process in practice 

(McKay and Wiers, 1999), and the success of a particular technique is greatly 

determined by its human users (Stoop and Wiers, 1996). In the field study of McKay et 

al., (1995) at a printed circuit board (PCB) factory, an analysis of a scheduler’s task was 

made to find out which decisions were taken due to uncertainty. The analysis indicates 

that the scheduler was more of a problem solver and used more than 100 heuristics in 

order to take precautionary actions and to anticipate problems. Furthermore, Stoop and 

Wiers (1996) rightly note that humans often rely on their own judgement with regard to 

the application of techniques and common sense tells them that these techniques are 

imperfect. The only way to increase the use of new procedures is to have a great deal of 

transparency, i.e., letting the user see what happens and to offer monitoring support. 

User interfaces to support both model input manipulation and schedule manipulation are 

believed to be an important research area (McKay et al., 2002). Gantt charts are 

probably the most common way to present schedule information (e.g., McKay and 

Buzacott, 2000) and there are real-world case studies that allow the user to modify the 

predictive schedule through a Gantt chart-based interface (McKay and Black, 2007). 

Higgins (1996) observes that the jobs screen, which displays the attributes of the 

available jobs, is central to the interactive decision-making and thereby presents a 

system architecture for human-computer interaction. A jobs screen is both made up of 

assigned jobs at machines and unassigned ones. Although this approach is possible 

using the dispatching clients or monitoring programs of the proposed system (see 

Chapter 6), it is not used in this work because a schedule, generated by the SBO, is used 

to suggest jobs for the operators in a production line. Consequently, the scheduling 

system will support the operators with a schedule, in contrast to jobs screens (Higgins, 

1996) that would leave this decision to the operators themselves. Scheduling 

rules/heuristics can be used to test different policies and the knowledge-based adviser 

will indicate if any constraints are infringed. Higgins also notes that human decision- 
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making with its ability of pattern recognition and setting things into a context is part of 

an interactive process for creating the Gantt chart. In a similar vein, McKay et al., 

(2002) also maintain that the monitoring schedule execution status and evaluation 

performance is important. Furthermore, they identify the research opportunity of task 

design, i.e., what functions should be automated and what should be left to human 

control. 

 

McKay et al., (1999) also rightly point out that disturbances in the process and the 

environment can be anticipated, reacted to, and adjusted in the scheduling process. A 

manufacturing system is exposed to uncertainty in many forms, i.e., varying machine 

processing times, machine failures, quality problems, personnel on sick leave, late 

supply deliveries, and so forth. Although some uncertainties cannot be predicted, there 

are some “surprises” that can be foreseen. For example, they mention that the humidity 

during the summer months is higher and may affect the production line and quality of 

products, but can be taken into account since it is known in advance. Therefore, a 

resource calendar interface (Pinedo, 2005) can be used for this reason and also for short-

term conditions, such as planned maintenance and shift schedules. 

 

Additionally, Pinedo (2005) provides other examples of various, important user-

interfaces that may be used in a scheduling system: plant layout, routing table, capacity 

buckets, and throughput data interfaces. Plant layout and routing table interfaces are 

simple user-interfaces for the input data. The capacity buckets interface is used when 

the time axis is divided into buckets or periods of time, e.g., days, weeks, or months, in 

order to show the utilisation of the line capacity, when jobs are assigned to these 

buckets. The benefit of such information is that the decision-maker can be proactive and 

make sure that the resources can be utilised efficiently over time, e.g., to avoid 

generating schedules that would require additional work on weekends some weeks, 

when the extra work could, in fact, be balanced over several weeks of production. The 

throughput data interface shows information about material waiting to be processed, 

products delivered, WIP-levels, FGI-levels, utilisation of machines, and so forth. 

Finally, a column editor could be useful for the scheduler, because it displays lists of 

jobs in scheduled order divided over the machines (Pinedo et al., 1994). 
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3.3.2 Flexible objectives over the horizon 

McKay et al., (1999) describe that everything changes over time and one day is not like 

another, e.g., Monday morning is different to Friday afternoon. Consequently, the 

scheduling function must be able to handle both absolute and relative time. Absolute 

time is calendar-based information, such as the planned maintenance of machines, while 

relative time refers to the decisions on the rolling horizon and affects the level of detail 

and type of constraints used to make decisions. For example, in the next few weeks all 

the constraints may be relevant when specific, production target levels are to be met, but 

since the scheduling strategy might be changed, due to a future machine installation, 

infinite loading may be used to enable preparation for production line maintenance. 

Stoop and Wiers (1996) state that the scheduling horizon must be determined long 

enough, in order to avoid generating sub-optimal schedules due to a too-short 

scheduling horizon. Hence, it is natural that the productivity fluctuates over time.  

 

3.3.3 Feasibility check and fault control 

McKay and Wiers (2003) observe that checking the consistency of input data is 

important, since data may come from many different sources. In addition, Blazewicz et 

al., (2001) propose a feasibility analysis to ensure that resources, e.g., machines and raw 

material, are available for scheduling the jobs. Framinan and Ruiz (2009) point out that 

a standard language, such as XML standard, is needed to facilitate system integration 

for scheduling systems. However, it may also be important to control scheduling 

dispatching in real-time, similar to the knowledge-based adviser proposed by Higgins 

(1996), in order to indicate if any constraints are violated. Hence, breaking soft 

constraints could give a warning and breaking hard constraints will be prohibited.  

 

3.3.4 Evaluating scheduling systems 

Kempf et al., (2000) conclude that one of the problems with implementing systems in 

industry is the difficulty evaluating the effectiveness of production schedules. An 
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absolute measurement may be used to ascertain whether a schedule is good or not on its 

own. Furthermore, a benchmark result is needed to be able to obtain an absolute 

measurement. Most real-world problems are NP-hard (Garey and Johnson, 1979), i.e., 

finding the optimal solutions for them is computationally difficult or not possible. An 

alternative is to theoretically compute a result with regard to a stable state and compare 

it against that value. A relative comparison means that two or more schedules are 

available and the best among them may be determined. However, if the system is to be 

evaluated against a real-world production system, real-world historical data can be used 

for the comparison in a relative or an absolute approach. One way could be to use the 

historical data as it is and another could be to use the trends of the historical data. 

Manufacturing facilities are subject to an ever-changing environment and therefore the 

historical data needs to be updated. Static measurement is when the predictive schedule 

is measured without considering the dynamics of the real system, while a dynamic 

measurement is when the predictive schedule is tested in the real environment with 

regard to disturbances. The result of the dynamic test would be the realised schedule. A 

schedule measurement is when the schedule itself is evaluated against some objectives, 

but a good schedule might still leave a production line in a bad state at the end of the 

horizon. For example, leaving a production line in a WIP status that is too low may lead 

to a problem later on, and therefore the state measurement is of importance as well 

(Kempf et al., 2000). 

 

When comparing the results of different optimisation methods, one replication is not 

enough, if the model or the algorithm is stochastic, such as GAs. Comparing average 

results between various optimisation methods will almost always generate different 

outcomes, and it may be tempting to proclaim that the method with the better average 

results is the better one. However, it may be an erroneous conclusion, because there is a 

risk that the randomness is the cause of the difference between them. A common 

method is to use a hypothesis test for testing claims:  

 H0: Optimisation method A (OMA) is not better than optimisation method B 

(OMB). 

 H1: OMA is better (lower) than OMB. 
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The hypothesis H1 is the hypothesis an experimenter wants to prove correct, but 

hypothesis H0 cannot be rejected until H1 has been proven statistically correct. Two 

common statistic methods that can prove whether hypothesis H1 is true are the t-test and 

the Mann-Whitney test. An unpaired t-test is based on the difference between the 

averages of the two groups divided by the standard deviation of the two populations, 

and if this fractional number is large it is possible to reject hypothesis H0 and state that 

hypothesis H1 is true. Observe that the t-test assumes the data sets in comparison are 

normally distributed (Lövås, 2006). 

 

The Mann-Whitney test is called a non-parametric test, since it does not need any 

parameters, such as standard deviation and average, and hence does not assume the data 

sets are normally distributed (Lowry, 2012). Hypothesis tests, i.e., Mann-Whitney test 

and unpaired t-test, for the experimental results in Chapter 7 have been used in this 

work and can be found in Appendix F. 

 

3.3.5 Commercial software and real-world case studies 

3.3.5.1 Commercial software 

A generic job shop scheduling system named “LEKIN” is presented in Pinedo (2005). 

Built mainly for education and research, it has also been used in real-world 

implementations. The system is able to handle many different environments from single 

machine to flexible flow- and job shops. The machine environment is modelled directly 

in the software which guides the user to set the necessary settings. Different predefined 

algorithms as well as user-developed algorithms can be used. A problem with using this 

software which is related to the validity of the schedule is that the constraints necessary 

for many real-world scheduling problems cannot be modelled, due to the fact that no 

real, discrete-event simulation software or language is used. Furthermore, it is not 

designed to be part of an on-line reactive scheduling system and would need to be re-

designed (if possible), in order to handle on-line data. Another type of software which is 

also used mainly for learning scheduling and comparing algorithms is “Parsifal” 
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(Morton and Pentico, 1993). However, the software seems to be outdated as it runs only 

on MS-DOS. A commercial scheduling tool that has the possibility to use discrete event 

simulation is Delfoi Planner (Delfoi, 2012). The simulation-based version, Delfoi 

Planner Simu, is a web-based scheduling software primarily used for the analysis of a 

scheduling situation and possibly also to generate detailed schedules, but without the 

possibility of on-line scheduling and monitoring. The other version, Delfoi Planner Lite, 

is without discrete event simulation support, focuses more on the integration with other 

systems, and only supports a simple, finite capacity planning function. The two systems 

together could possibly support on-line and reactive scheduling, but it is not possible at 

this time. Furthermore, no information is available about the optimisation algorithms 

used to generate schedules, so its capability of handling complex scheduling problems is 

uncertain.  

 

ILOG (2012) is the name used for an umbrella of products supplied by IBM, and the 

ILOG solver is the most common commercial tool for constraints programming 

(Gusikhin et al., 2007). For example, a system based on products within ILOG, called 

Centralized Vehicle Scheduler (CVS), was developed for the sequencing in a paint shop 

at DaimlerChrysler (CVS, 2012). Many real-world applications use ILOG products 

(ILOG, 2012), but the main problem is that the system is primarily based on 

mathematical programming techniques.  

 

3.3.5.2 Real-world case studies 

In a statistical review of flow shop scheduling research between 1952 and 1994 

(Reisman et al., 1997), it has been shown that only 5 out of 184 papers dealt with true 

applications, which is much less compared to other areas within the science of 

operations research/management. The study carried out by Jahangirian et al., (2010) 

illustrates that even though scheduling applications have been the most common ones 

among simulation applications in manufacturing and business between 1997 and 2006, 

only a small portion of them use both real problems and real data. They also point out 

that papers addressing real-world problems are important future research. On the other 

hand, Kumar and Nottestad (2006) present a real-world, decision support system for the 
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scheduling of a plastic parts manufacturing line, using discrete event simulation. The 

application uses the discrete-event simulation software WITNESS and a heuristics to 

generate job allocation for two different lanes in a manufacturing line for plastic parts. 

The heuristics used in the simulation includes many different constraints, although the 

model itself is deterministic. It seems that a predictive-reactive approach is used in 

which a manual periodic and event-driven rescheduling strategy is applied. 

Furthermore, Excel, Microsoft Access, and Visual Basic for Applications (VBA) are 

used to present input and output data for decision support. The result of a scheduling 

cycle is the output data report which can be printed and delivered to the shop floor.  

 

Dangelmaier et al., (2006; 2007) present a simulation-based scheduling system with 

real-time control. Although the experiments in their research are not based on real-

world data, the system idea of online reactive scheduling is based on a realistic problem. 

The system is divided into two parts: predictive scheduling and reactive scheduling. In 

the predictive scheduling part, the schedules are generated in two steps. In the first step, 

an optimisation algorithm generates a semi-feasible schedule, because not all constraints 

are considered, e.g., buffer sizes. A simple heuristics sequences each job with the 

longest tail order at the earliest available machine based on the bottleneck stage and 

then applied for all the stages. The schedule generated from the optimisation algorithm 

is simulated in a discrete event simulation model in order to obtain a valid schedule. 

Another simulation is started with the activated Flow Analyzer Module that may 

override the current schedule, by using rules mostly based on the waiting times of jobs 

in the system. The schedule from the predictive phase is executed on the manufacturing 

floor. Once there is a process disturbance, the rescheduling mechanism is activated. The 

real-time monitoring and control module starts the simulation evaluation function when 

a disturbance occurs. In order to generate a new schedule, two algorithms are used:  an 

optimisation rescheduling algorithm that reschedules as few jobs as possible and the 

match-up rescheduling algorithm which tries to get the current schedule back on track. 

Thereafter, a simulation is started together with the Flow Analyzer, and the user may 

decide whether to apply the new schedule or whether the current one is preferred. The 

proposed system was implemented in the discrete event simulation software 

Tecnomatix eM-Plant (Plant Simulation) and partly tested in Dangelmaier et al., (2006) 
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for a hypothetical flexible flow shop with parallel and identical machines at three stages. 

The results show that the combination of simulation and optimisation is better than only 

using optimisation or random scheduling alone, when the number of jobs increases. The 

system proposed by Dangelmaier et al., (2006; 2007) has only been tested for 

theoretical problems and uses simple optimisation heuristics. Furthermore, the “system” 

is implemented as a module inside discrete event simulation software, which would 

limit its general use in other applications. However, to our best knowledge, it is one of 

few simulation-based scheduling systems that deal with online reactive scheduling. 

 

McKay and Buzacott (2000) describe two different, industrial real-world case studies, 

one with a high volume low product mix and the other with a low volume high product 

mix. The first case study revealed that the decisions of the scheduler were too difficult 

to handle in computerised scheduling software, which was therefore stopped before 

implementation. However, if the product mix had been higher, the need for scheduling 

software would have been desirable. In the second case study, a production planning 

system using an evolutionary approach was implemented. The tool was built in Excel 

with VBA and produced Gantt charts. In addition, the necessary reports were printed 

and delivered to the shop floor. The scheduling tool generates schedules in a short 

horizon of two days, but deals with various real-world constraints.  

 

McKay and Black (2007) describe the evolution of a real-world scheduling system that 

supports the tasks of the scheduler in a job shop environment. In some ways, the shop 

may be defined as a re-configurable flow shop, since several machines were put 

together in order to form a line without intermediate inventory between production 

stages. Initially, a two-week cyclic schedule was desired, and one of the key issues was 

setup reduction and workforce constraints. A first prototype was built in Excel and 

VBA, used simple heuristics and presented the result in a Gantt chart. However, the 

system has been developed over a ten year period into to a small mini-MRP system with 

finite capacity. The scheduling or sequencing task has been divided into two parts, 

namely, scheduler and dispatcher. The scheduler handles the long-term (weeks) 

scheduling and the dispatcher handles the short-term (two days) reactive dispatching 

using heuristics. The scheduling system has a number of different functionalities to 
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support the work of the scheduler, such as user interface for modifying the predictive 

schedule through a Gantt chart and various kinds of output reports. 

  

3.3.6 Proposed architectures 

To briefly summarise the above detailed review, company confidence in existing 

software tools is reduced, because most tools do not provide a fair representation of a 

company’s scheduling problems, due to the vast simplifications (Tolio, et al., 2010). 

Furthermore, Pinedo (2005) also states that many of the commercial systems claim that 

their systems can be used with only minor modifications, however, in reality, the 

changes required are often substantial. Nonetheless, if a system were designed to be 

highly modular, it would increase the possibility for the users to expand their 

functionality and save development time. Framinan and Ruiz (2010) present a system 

architecture with such a modular attribute that entails both production scheduling and 

shop floor control, as shown in Figure 3.1 which illustrates a simplified version of their 

proposed architecture. 

 

Figure 3.1 Extended modular architecture (Framinan, Ruiz 2010) 

The first module, Business Logic/Data Abstraction Management Module, makes sure 

that data needed is at the required abstraction level. The second, the Database 
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Management Module, stores the data and handles the import/export of data and 

production monitoring data from the business information system. The third, the User 

Interface Module, handles the necessary user-interfaces, while the fourth one, the 

Schedule Generator Module, handles the functions in order to generate schedules.  

 

The user-interface module consists of five parts, of which the first is the output sub-

module that presents necessary Gantt charts and other information. The second part is 

the scenario management sub-module which can answer what-if questions that may 

arise, e.g., what happens when the night shift is cancelled? The third part is the system 

maintenance sub-module which handles the shop configuration and product 

information. The fourth part is the scheduling control sub-module that handles real-time 

data from the production. It checks feasibility and input data with each new scenario 

and warns the user when needed. The fifth part is the algorithm generator interface that 

allows users to create new algorithms through a user-friendly interface.  

 

The schedule generator module consists of an algorithm library, algorithm generator, 

scheduler & dispatcher, and pre-processor. The algorithm library contains the different 

optimisation algorithms, while the algorithm generator sub-module is mainly an object 

that generates algorithms, based on information in the algorithm generator interface in 

the user interface module. The Scheduler & Dispatcher use algorithms from the library.  

In addition, a two-step schedule generation is proposed in which the schedule(s) from 

the first step takes major constraints into consideration and the second step also 

incorporates those minor constraints that have been ignored in the first step. The main 

task of the pre-processor sub-module is to find out which algorithms are suitable for the 

scheduling problem at hand. 

 

Framinan and Ruiz (2010) further claim that the “non-essential constraints” could be 

separated from the schedule generation process and used when the actual schedule is 

constructed. This is due to the fact that the architecture’s purpose is mainly to use 

mathematical optimisation methods and meta-heuristics and there is no support for 

discrete-event simulation. To exclude some “non-essential” constraints is common 

when building a discrete-event simulation model, but a simulation model may include 
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many more constraints. In fact, the effect of excluding different constraints can be tested 

in the simulation model by some validation and sensitivity tests.  

 

Li et al., (2012) propose a new modular design for a simulation-based scheduling 

system for semiconductor manufacturing lines. The architecture is divided into a 

software layer, a simulation layer, and a data layer. They use a modular approach in 

which simulation models, algorithms, etc., are divided into different modules. Both 

predictive (dispatching rules) and reactive algorithms are used, but the main focus is on 

the automatic generation of simulation models based on the integrated and modular 

approach of simulation data. Furthermore, there is no information whether on-line 

reactive scheduling is possible, when integrated into a real-world system. A similar 

approach of automatically generating discrete-event simulation models is proposed by 

Horn et al., (2006). A successful implementation in a real-world system employed a 

five-step, simulation-based optimisation procedure using different heuristics, allowing 

the user to modify the schedule and finally generating a detailed operational plan, i.e., a 

Gantt chart. Sivakumar and Gupta (2006) propose an “implementation concept” for 

another similar system using the automatic generation of simulation models. They state 

that a simulation model would require much maintenance, as the circumstances change 

if the model itself is not generated automatically. The system includes the generation of 

schedules in a predictive-reactive manner, but the output reports produced appear to be 

static, i.e., not updated until a rescheduling is carried out. The system was implemented 

at a real-world facility and it allows the user to use both the “what-if” scenario 

experiments and the scheduling function.  

 

Son et al., (2003) describe the structure and architecture of a simulation-based real-time 

shop floor control system for discrete part manufacturing. Discrete-event simulation 

models in ARENA are automatically generated, by using a model generator and a 

resource model, i.e., the database in MS Access 97, and a Message-based Part State 

Graph (MPSG) shop level execution model.  Most of the software tool has been 

developed in VBA. The control system can be used for either flow shops or job shops 

and its purpose is to work on automatic systems, but it may also operate at manual 

workstations, as long as feedback is sent back to the system. The simulation 
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communicates with a shop level executor and interacts with different external databases, 

such as master production schedule. The scheduling function is similar to other hybrid 

methods (e.g., Matsuura et al., 1993; Barua et al., 2005). A commercial scheduler was 

used to find good schedules without employing any simulation-based optimisation 

technique. Each resource, e.g., machine to be scheduled, is associated with a dispatch 

list which is a sequence of jobs to be scheduled in the order which is to be kept, but the 

simulation model is able to run in a FCFS mode as well. The real- time simulation is 

used as the central controller that keeps track of the current status of the system and 

sends required messages. The simulation sends messages to the lower level controllers 

and then receives feedback from the system.  

 

3.4 Identified functions to include in a system architecture 

Following the comprehensive literature review presented in chapters 2 and 3, a 

complete list of the necessary functions that can be included in the architecture of a 

scheduling system capable of handling real-world production scheduling problems is 

provided, in Table 3.1.  

 

Table 3.1 The main areas of modular scheduling system architecture 

Identified main areas Identified functions 

Discrete-event simulation 

(DES) 

DES for complex problems (Laguna and Marti, 2003): multiple 

constraints (Ribas et al., 2010), uniform or unrelated machines (Ribas 

et al., 2010) multiple objectives (Gary et al., 1995). 

Automatic model generation (Sivakumar and Gupta, 2006). 

Model properties: Flexibility, Speed, Details (Koh et al., 1996). 

Simulation-based optimisation 

Genetic Algorithms (GA) + DES (April et al., 2003). 

Steady state GA (Rogers and Prugel-Bennet, 1999) and parallel 

evaluations (Li and Wang, 2008). 

Scheduling 

Schedule representation: Global scheduling (direct) (Sankar et al., 

2003; Kim et. al., 2007), Dispatching rules (Baker and Trietsch, 2009) 

and other heuristics (indirect) (McKay and Wiers, 1999), Hybrid 

solutions (Roundy et al., 1991; Barua et al., 2005). 

Algorithm generator (Framinan and Ruiz, 2010). 

Automatic algorithm selection (Framinan and Ruiz, 2010). 

Meta-heuristics (Laguna and Marti, 2003). 

Hyper-heuristics (Burke at al., 2003). 

Setup-time reduction (Allahverdi et al., 2008). 

Flexible and configurable algorithms (McKay et al., 2002). 

Adaptive and learning by algorithms (McKay et al., 2002). 
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Dispatching (on-line) 

List of jobs to be dispatched (Son et al., 2003). 

Switching (Matsuura et al., 1993)  

Priority index hybrids (Roundy et al., 1991; Barua et al., 2005)  

Rescheduling 

Rescheduling policies: Periodic rescheduling, Event-driven 

rescheduling, Hybrid rescheduling (Church and Uzsoy, 1992; 

Herrmann, 2006) 

Rescheduling methods: Robust schedules , Complete regeneration, 

Right-shift scheduling, Match-up scheduling (Viera et al., 2003). 

Scheduling algorithms Scheduling algorithms library (Framinan and Ruiz, 2010). 

Objectives 
Multiple objectives (Gary et al., 1995). 

Flexible objectives (McKay et al., 1999). 

Experimentation module 

Validation experiments (Kempf et al., 2000). 

What-if scenarios (Framinan and Ruiz, 2010; Sivakumar and Gupta, 

2006). 

Integration with other systems 
Integration and import/export (Pinedo, 2005; Framinan and Ruiz, 

2010) 

Database 

Input data (Framinan and Ruiz, 2010). 

Output data (Framinan and Ruiz, 2010). 

Monitoring data (Framinan and Ruiz, 2010). 

Fault control 

Data feasibility (Blazéwicz et al, 2001) and consistency (McKay and 

Wiers, 2003) check. 

Real-time dispatching fault control: Soft constraints, Hard constraints 

(Higgins, 1996)  

User-interfaces 

Model input data: Plant layout (Pinedo, 2005), Shop configuration 

(Framinan and Ruiz, 2010), Routing table (Pinedo, 2005), Product 

information (Framinan and Ruiz, 2010). 

Scheduling input data: Scheduling horizon (Stoop and Wiers, 1996), 

User interactivity (Higgins, 1996; McKay and Black, 2007), Resource 

calendar (Pinedo, 2005; McKay and Wiers, 1999), e.g., Planned 

maintenance, Machine repairs, Product samples. 

Scheduling output data: Capacity buckets (Pinedo, 2005), Gantt charts 

(McKay and Buzacott, 2000), Column editor (Pinedo et al., 1994), 

output reports (Kumar and Nottestad, 2006). 

On-line data: Schedule execution status, Production status, 

Performance measures (McKay et al., 2002), WIP levels (Pinedo, 

2005), User interactivity (Higgins, 1996). 

Algorithm generator (Framinan and Ruiz, 2010). 

 

3.5 Concluding remarks 

As a general conclusion, the impact of uncertainty is systematically underestimated by 

academic research and a common approach to uncertainty is to react and reschedule 

(McKay and Wiers, 1999). Different methods with which to react and reschedule and 

create schedules that are robust or reactive to real-world disturbances have been 

identified in this chapter. However, solving the sequencing problems is not enough, 

since real-world schedulers are faced with day-to-day challenges. In order to handle the 
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scheduling task including uncertainty, an integrated scheduling system and not only an 

intelligent algorithm is needed. This review has identified the most important functions 

and features that need to be handled by such an integrated scheduling system, such as 

simulation-based optimisation, flexible algorithms, system integration capability, within 

a modular architecture. Chapters 4 and 5 further address the internal details of such 

scheduling system architecture for handling most of the important functions identified.  
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Chapter 4 

4 A Web Services-based Architecture for Industrial 

Scheduling  

This chapter describes the overall system architecture of the Web services-based 

industrial scheduling system, which is designed to be a software architecture to solve 

the limitations of existing scheduling software used in industry. This architecture is 

based on the generic simulation-based optimisation platform, OPTIMISE, introduced in 

(Ng et al., 2008), and is customised and extended for industrial scheduling. Hence, the 

architecture is called OPTIMISE Scheduling System, or OSS. Since a Web services-

based simulation system like OSS is closely related to Web-based simulation 

applications, this chapter begins with a brief introduction and literature review of Web-

based simulation (Section 4.1), as well as some existing platforms found in the literature 

(Section 4.2). A short introduction of the OPTIMISE architecture is presented in 

Section 4.3, after which the chapter focuses on OSS and its core components (Section 

4.4). 

 

4.1 Web-based simulation 

The internet has grown considerably in the last two decades and it is not only a platform 

for information sharing, but also for new applications within many different areas. 

Simulation applications have started using the concept of Web-based simulation (WBS) 

moving from more traditional local desktop solutions. Fishwick (1996) states that WBS 

“represents the connection between the web and the field of simulation”, and Byrne et 

al., (2010) define WBS as “the use of resources and technologies offered by the World-

Wide-Web (WWW) for interaction with client and server modelling and simulation 

tools”. Compared to desktop systems, some advantages can be identified when a Web-

based system approach is used: 
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 Accessibility: A Web-based system enables users at different locations to access 

the data from any computer that has internet available. Furthermore, a Web-

based system is also accessible off-hours (Veith et al., 1999). 

 Cross-platform capability: Such a solution is flexible because the web 

applications can be independent of computer type or operating system (Jin et al., 

2010; Byrne et al., 2010).  

 Controlled access: A Web-based system can use passwords and user-accounts to 

restrict the access of the system. (Veith et al., 1999) 

 Licensing: The cost of simulation software and computer hardware can be high 

for a company (Fishwick, 1996), especially if there are requirements for parallel 

or distributed evaluations. Using a Web-based approach means licenses can be 

used when these are required from within a company or an external service 

provider. The total cost of simulation projects can be substantially reduced 

(Wiedemann, 2001). 

 Maintenance: The maintenance is carried out on the server and the changes take 

effect without needing to involve actual client applications. (Byrne et al., 2010) 

 

However, there are drawbacks to Web-based systems, some of which follow: 

 Graphical user interface limitations: Interfaces supported by the web are limited 

(Suh, 2005), and it may require too much effort (Wiedemann, 2001) creating 

complex Web-based interfaces compared to desktop-based interfaces. 

 Security vulnerability: Web-based applications are vulnerable to malicious 

Internet attacks (Suh, 2005). 

 Licensing: Some software vendors may only allow a single place usage 

(Wiedemann, 2001). 

 Network traffic delays: Luo et al., (2000) state that distributed simulation clients 

may take longer to execute compared to local simulation because of network 

traffic delays. 

 

Byrne et al., (2010) claim that the research within WBS is still in its infancy and the 

number of real-world applications is still low. When it comes to Web-based SBO 
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systems, there are only a few publications, which are briefly reviewed in the following 

sub-section.  

 

4.2 Existing Web-based systems for SBO 

Luo et al., (2000) describe a Web-based distributed SBO system that is based on Java. 

The system consists of three parts: a management console, a web server and central 

controller, and the simulation clients, see Figure 4.1 freely redrawn from Lou et al., 

(2000). 

 

Figure 4.1 Web-based distributed simulation system. 

A Web-browser is used to start a java application, i.e. the management console which is 

used to set up and start experiments for real-time monitoring of the clients and to show 

the simulation results of present and past optimisations. The web server and the central 

controller handle the assignment of jobs to be evaluated by the clients and use a 

sequential optimisation algorithm for Optimal Computing Budget Allocation (OCBA). 

The clients are the computing resources used for the simulation evaluations.  

 

Another Web-based SBO system has been proposed by Yoo et al., (2009). Their 

framework for Web-based SBO uses a distributed platform, Parallel Replicated 

Discrete-Event Simulation (PRDES), to execute the simulation evaluations, see Figure 

4.2 freely redrawn from Yoo et al., (2009). 
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Figure 4.2 Web-based SBO framework. 

A Web-page is used as a user interface, making it accessible through a Web-browser. 

The optimisation service uses an optimisation engine based on an NP-algorithm and, 

when a promising solution is found, it is sent to the simulation service through the 

repository.  The simulation service is not entirely an evaluative client, since it uses a 

variant of the OCBA algorithm called EOCBA, which takes the computing power into 

account as well. The results are stored in the repository, i.e., database.  

 

4.3 OPTIMISE: A web services-based SBO platform 

OPTIMISE (OPTIMisation using Intelligent Simulation and Experimentation) is 

conceived as a generic Internet computing platform that tightly integrates different 

Discrete-Event Simulation (DES) systems with Artificial Intelligence-based 

optimisation tools in a Web services-based platform that can be integrated with other 

industrial/business information systems for valid simulation and optimisation runs (Ng 

et al., 2008). By generic, it is designed to be a computing platform that can be used to: 

(1) address a wide range of real-world optimisation problems commonly found in 

manufacturing and logistic applications; (2) facilitate the combined use of various 

search algorithms (e.g., Genetic Algorithms (GA) and local search); (3) be able to 

connect to different types of simulators and Discrete-Event Simulation (DES) packages 

through the Sim-Agent concept (see Figure 4.4), and (4) support inherently parallel and 

distributed simulation to significantly reduce the time spent on simulation evaluations. 

The platform is designed to be multi-tier client/server based in which all complex 

components, including various meta-heuristic search algorithms, neural network-based 

meta-models, deterministic/stochastic simulation systems and the corresponding 

database management system are integrated in a parallel and distributed platform and 
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made available to general users for easy access, anytime, anywhere, through Web 

Services technology (Ng et al., 2007).  

 

Even though the term cloud computing was not in popular use when OPTIMISE started 

to be implemented in 2006, it actually bears many common features that a cloud 

infrastructure should provide. Particularly, the concept of dual parallelism in cloud 

computing is supported by OPTIMISE, because it supports (1) multiple users from 

several companies/institutions that may be geographically distributed; and (2) running 

multiple simulations for different simulation models developed using various simulation 

languages/packages. 

 

To support these goals, OPTIMISE was designed with the following important features:  

 Web services: using a Web page inside a Web browser as user interface, which 

Yoo et al., (2009) adopt, is advantageous with regard to accessibility and cross-

platform capability.  Although, approaches using client applications, e.g., .NET-

applications are supported as well. 

 Distributed simulations: distributed simulations facilitate the simulation 

evaluations that are to be run in parallel on different computing nodes/cores, 

which is important to reduce the total execution time for SBO. Network traffic 

delays, identified by Luo et al., (2000), are believed not to cause any problems, 

due to the improvements in the network technologies over the years.  

 Remote database – using a database to store optimisation results similar to Lou 

et al., (2000) supports the storage and access to experimental data.  

 Modularity: The system is designed to be highly modular, since it would 

increase the possibility to expand the functionality and save development time 

(Pinedo, 2005).  

 Security: The security is taken into account in order to avoid unauthorized 

access, e.g., by using security certificates.  

 Users:  Different user accounts are needed in order to handle users’ privileges, 

so that an ordinary user does not have administrator privileges. Furthermore, it is 

important that multiple users can use the system at the same time.  
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 Research – to facilitate further research on SBO using hybrid search methods for 

real-time decision making and/or weekly/daily scheduling.  

 

Resembling the system architecture commonly used for cloud computing, the 

OPTIMISE systems architecture (Figure 4.3) is composed of multiple server 

components (cloud components) communicating with each other over a loose coupling 

mechanism such as a messaging queue. OPTIMISE fulfils the definition of cloud 

computing, as it incorporates the ideas of virtualisation and distributed computing using 

Web services technologies. With the XML Web services platform, OPTIMISE can be 

deployed as a three-tier architecture that consists of the following three layers: 1) 

OPTIMISE client; 2) OPTIMISE server; 3) data sources. This is a highly flexible and 

scalable solution and the separation is intended to support industrial IT service 

providers in delivering and supporting both computing services and technical 

consultancies to a wide range of industries, national and global, from SMEs to multi-

national enterprises.  

 

Figure 4.3 With XML Web services, OPTIMISE can be deployed with high flexibility 

and scalability. 

http://en.wikipedia.org/wiki/Systems_architecture
http://en.wikipedia.org/wiki/Loose_coupling
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For example, as illustrated in Figure 4.3a, a SME that does not possess its own 

simulation resources and required computing capacity can run the OPTIMISE client and 

data sources layer locally and connect to a remote OPTIMISE server that houses the 

DES systems and optimisation engines, by contracting an Optimisation Services 

Provider (OSP). The same kind of configuration can also be applied to a multi-national 

enterprise in which multiple OPTIMISE clients can connect to the optimisation services 

supplied by a central IT department, which acts as an internal OSP (Figure 4.3c).  

 

As shown in Figure 4.4, the OPTIMISE architecture consists of a number of 

optimisation engines, surrounded by a set of OPTIMISE Server Components divided 

into three tiers: (1) Web Server; (2) Optimisation, and (3) Simulation subsystem. The 

optimisation engine (OptEngine) in the optimisation tier is the most important 

component for an SBO application, because it provides the core functionality for a 

optimisation/experiment and acts as the hub for coordinating other functions.  

 

 

Figure 4.4 The generic OPTIMISE system architecture. 

The web services function, hosted by the Webserver, listens to the XML requests from 

the client tier, such as start an SBO (through OptManager) or read data from the 

optimisation database (OptDB). The implementation of OPTIMISE started in 2006. 

While several extensions to support new technologies and applications have been made 

over the years, the core components have not been changed. Since these core 
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components are used or extended in OSS, they are briefly introduced in this section and 

described in detail in the following sub-sections.  

 

4.3.1 Optimisation manager and database 

The Optimisation Manager (OptManager) is a Windows process that listens to the 

request from the Web Server to launch different OptEngines, according to the settings 

specified in the client applications. Data required to start an SBO procedure may 

include: (1) simulation settings (e.g., warm-up time, simulation horizon, number of 

replications and production line configuration), (2) objective function, (3) list of input 

variables, (4) list of output variables, (4) constraints to input variables, (5) choice of 

optimisation algorithm, and (6) optimisation parameters (e.g., population size, crossover 

rate, and stop criterion). Currently, OPTIMISE supports several optimisation 

algorithms, such as meta model-assisted hill climbing and evolutionary algorithms. 

However, meta model-assisted hill climbing algorithms are not used in the 

implementation of OSS (Chapter 6) or in the genetic algorithm (Chapter 5). 

Furthermore, new algorithms can be added easily, by compiling the modified algorithm 

core with the Object-Oriented libraries which OPTIMISE supplies. Generic algorithm 

software or templates needs research in its own area (Voß and Woodruff 2000). 

OPTIMISE has an Object-Oriented class library that allows new algorithms to inherit or 

override class methods for selection, crossover, and mutation operations which are 

commonly used in any evolutionary algorithms. There are also common function 

libraries for training meta-models, data normalisations, and communication with other 

components. These enable new algorithms to be quickly developed or customised and 

fit into the OPTIMISE framework by reuse. Such generic support of SBO algorithms’ 

development and ease of launch during optimisation runs is a very important feature for 

the experiments in comparing different genetic representations (Chapter 5) and have 

generated the experiment results presented in Chapter 7. 

 

By letting all OptEngines save their optimisation settings and other experiment results 

in a central database, i.e., OptDB, OPTIMISE supports the following features: 
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 Initial solutions, their quality and diversity, have a huge impact on the 

performance of an optimisation run, especially when a GA or other population 

based algorithms are used. All the experiment results are stored in the OptDB, to 

enable a user to choose the set of initial solutions from previous experiments, 

when starting a new optimisation run. This can also be used in combination with 

other experimental designs, e.g., Design of Experiments (DoE), provided in the 

OPTIMISE client applications. However, DoE is not used in the implementation 

of OSS (Chapter 6) or in the genetic algorithm (Chapter 5). 

 Dynamical changes to meta-heuristic algorithms during the optimisation run are 

especially useful when global search methods, e.g., GAs, are used for 

exploration in a first stage followed by local search methods, e.g., hill-climbing 

algorithms, in order to further improve the optimisation result. However, local 

search methods are not used in the implementation of OSS (Chapter 6) or in the 

genetic algorithm (Chapter 5). 

 Fault tolerance – Faults in a simulation evaluation can easily be detected and 

recovered by re-starting the run with another SimAgent using time-outs for the 

communication. If a simulation model returns invalid results, due to model 

deficiencies, it will be shown in OPTIMISE Browser, with which it is possible 

to browse new and historical optimisation data from OptDB. If the OptEngine 

crashes due to software faults, OPTIMISE indirectly facilitates error-recovery, 

by allowing a user to start an OptEngine and re-load the previous simulation 

records saved in OptDB.    

 

4.3.2 Simulation components 

Parallel simulation evaluations may be needed to speed up the SBO process. Therefore, 

the simulation components are located in a tier of their own, decoupled from the server 

components, to offer a modular solution that enables them to be widely distributed.  

Different simulation systems, e.g., commercial software or developed .Net applications, 

are connected to SimManager homogenously by using SimAgents in the SimAgent tier. 

To launch the simulation software used in a particular optimisation run, the SimAgents 

use the software specific BackEnd objects that support Distributed Component Object 
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Model (DCOM) and Socket communications for connecting to different simulation 

systems.  Furthermore, BackEnd protocols are used to be able to communicate with the 

simulation software, e.g., load model, start simulation run, and collect output data. A 

standard format, XML, is used to return the output data via SimManager, to the 

OptEngine for evaluation and storage.  

 

Unlike the SimManager described in Biles and Kleijnen (2005), which needs the 

software for the statistical methodology and optimisation techniques to be able to 

analyse the simulation results, the SimManager in OPTIMISE is a generic and light-

weighted job dispatcher. Several SimAgents can be started at the same computer, 

depending on the computing capacity, i.e., number of processor cores. The SimManager 

registers all of the SimAgents that have been started, which means that it can dispatch 

several jobs received from OptEngines to multiple simulation systems running in 

parallel. The SimManager will send a job that is pending in the message queue to the 

first available SimAgents that fulfil the correct software requirements. The SimAgent 

will be marked as busy until the result is sent back to SimManager.  

 

Any applications that use the Web services provided by OPTIMISE can be called an 

OPTIMISE client application. In order to supply the data needed to run SBO for the 

industrial scheduling problems, the GUI was extended to connect to the OPTIMISE 

Web services to launch SBO for industrial scheduling applications. On the other hand, 

there are some generic applications which have been developed for the 

monitoring/control of the OPTIMISE Server Components and management of 

optimisation project data. With generic, it means that they have not been specifically 

developed for a particular application. OPTIMISE Browser is useful for many 

optimisation projects and is an example of such a generic application. OPTIMISE 

Browser reads the data from OptDB, presents the data in tables and graphs, and can be 

used to analyse the data.  How the OPTIMISE framework and client applications are 

customised for industrial production scheduling is the topic of the next section. 
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4.4 OPTIMISE Scheduling System (OSS) 

The architecture of the OPTIMISE Scheduling System (OSS) (Frantzén et al., 2010; 

Frantzén et al., 2011) can be seen in Figure 4.5.  

 

Figure 4.5 Architecture of OPTIMISE Scheduling System (see also Figure 4.6 for the 

information exchanges between the modules). 



Chapter 4 A Web services-based Architecture for Industrial Scheduling 

 
 

74 

 

It is divided into two main parts, namely: (1) Web-based simulation optimisation 

(Andersson et al., 2007) and (2) Real-time dispatching. OSS is, in essence, a system 

implemented on top of the generic OPTIMISE platform to support near optimal and 

real-time scheduling with the help of SBO. OSS utilises the existing core components to 

support running the parallel and distributed simulation evaluations via the Internet. The 

connections and communications between the different parts in OSS are explained in 

detail in Section 4.4.3. 

 

Apart from this, OPTIMISE directly offers the following advantages for the research 

advancement of OSS: 

 Simulation models developed for a specific scheduling application, irrespective 

of the simulation languages/packages used for the development, can be 

connected seamlessly to OSS through the SimAgent technology (see Section 

4.3.2). 

 All the OSS scheduling and optimisation data is stored in OptDB, using the 

existing generic database structure. In other words, OSS inherits all the 

advantages offered by OptDB, in terms of the remote accessibility, security, 

fault tolerance, and flexibility, as described in Section 4.3.1. 

 

On the other hand, OSS extends and customises the OPTIMISE platform, in order to 

support the real-time scheduling, identified as important in Chapter 3. In the following, 

the major OPTIMISE extensions, for the research advancement of OSS, are 

summarised:  

 OSS adds a further layer of information management sub-system to the existing 

OptDB to specifically support reactive scheduling applications. This sub-system 

is called OPTIMISE Information System, or OIS hereafter. Unlike OptDB, OIS 

contains many data tables that store both shop floor and scheduling data which is 

related to other optimisation data in OptDB. Based on the real-time data 

collected from the shop floor and scheduling data derived from the optimisation 

data in OptDB, the Scheduling Dispatcher module can generate an expert 

proposed solution for the operator, when selecting the next job for an idle 
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machine. This is done through dispatcher clients, which could be computer 

terminals on the shop floor or other devices like PDA (see Chapter 6), 

depending on the implementation of the Shop Floor Interfacing Module. Unlike 

other scheduling systems which can integrate with the company’s Enterprise 

Resource Planning (ERP) system, the uniqueness of OIS is that the Scheduling 

Dispatcher processes the jobs with reference to the optimised schedules from 

OptDB.   

 The Reactive Re-scheduler in OIS is a technique to tackle unforeseeable events, 

such as machine breakdowns and/or demand fluctuations in machine scheduling 

problems. This technique applies on-line data collection from the factory shop 

floor and on-line transient simulation with the same model used in SO to 

continuously monitor the production status. The near optimal plan is expected to 

yield a certain output performance. Also, there can be two problems: (i) the 

output is not met or (ii) the near optimal plan cannot be executed (e.g., major 

breakdown). In terms of machine scheduling, the Reactive Re-scheduler allows 

engineers to have high fidelity prediction and to determine when it is necessary 

to run re-scheduling, if a large deviation is anticipated. While this technique 

bears some similarity to other approaches, such as DES-based control (Smith et 

al., 1994) and on-line simulation (Davis, 1998), it is argued that such a reactive 

scheduling approach is novel in the sense that: (1) the performance index is 

determined by the deviation of the predicted performance from the near optimal 

plan generated from SBO and (2) integrated SBO support for short-term re-

scheduling.  

 OSS includes a specific module called Shop Floor Module which interfaces the 

data collection systems on the shop floor. 

 

4.4.1 Scheduling functions and features included in OSS 

OSS has a modular design and supports most of the functions and features that are 

presented in Chapter 3. How the following functions are supported by the architecture is 

briefly described for clarification: 
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 Multiple constraints, uniform or unrelated machines, multiple objectives are 

supported by a discrete event simulation model. 

 The GA proposed in Chapter 5 supports: Steady state GA, Meta-heuristics, 

Hyper-heuristics, Setup-time reduction. 

 Parallel evaluations are supported by the Web-based simulation optimisation 

when using the OPTIMISE platform. 

 Different schedule representations, including priority index hybrids, are 

supported by the algorithm libraries. 

 List of jobs to be dispatched is supported by the schedule database in OIS. 

 Different rescheduling policies are supported by the reactive re-scheduler in OIS 

and manual rescheduling.  

 Robust schedules are supported by a DES-model that includes stochastic, such 

as failure distributions, together with robust optimisation objectives. 

 Complete regeneration is supported by the SBO. 

 Match-up scheduling is supported by the reactive re-scheduler and realised 

through a schedule reconfiguration program.  

 Right-shift scheduling is naturally supported by the list of jobs to be dispatched 

(direct representation), because it does not constrain the start time of a job. 

 Scheduling algorithms library is supported by both the predictive and reactive 

libraries. 

 Multiple objectives are easily handled by a DES-model. 

 Flexible objectives can be handled by a DES-model with user-interface settings.  

 What-if scenarios are supported by the OPTIMISE platform. 

 Integration and import/export is supported by the manufacturing data integration 

modules. 

 Input data is supported by the input data database. 

 Output data is supported by the optimisation database, OptDB. 

 Monitoring data is supported by the monitoring database. 

 Data feasibility is supported by input data client and other user-interfaces. 

 Data consistency check is supported by manufacturing data integration modules. 

 Real-time dispatching fault control is supported by the schedule dispatcher.  
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 Model input data and scheduling input data is supported by the input data client, 

the input data database and schedule database. 

 Scheduling output data is supported by the predictive schedule user-interface. 

 On-line data is supported by the realised schedule user-interface and dispatcher 

client user-interface. 

 

On the other hand, the following functions are only indirectly supported by OSS:  

 Automatic algorithm selection, as proposed in Framinan and Ruiz, (2010), is 

partly supported through the use of hyper-heuristics (Burke at al., 2003) for both 

indirect and hybrid representation of schedules. 

 Adaptive, flexible and configurable algorithms (McKay et al., 2002) are partly 

supported through the use of SBO, which is divided into two parts and can easily 

adapt to different types of problems.  

 Validation experiments are partly supported by the OPTIMISE platform. 

 

The following functions are not directly supported, mainly because they are outside the 

scope of this thesis:  

 Algorithm generator (Framinan and Ruiz, 2010) is outside the scope of this 

research, although it would be possible to add it to the architecture. Simple 

heuristics, such as PDRs, could easily be automatically generated, but with 

regard to advanced algorithms, such as meta-heuristics, it could be very difficult. 

 Learning algorithms (McKay et al., 2002) are indeed interesting, but are outside 

the scope of this thesis, due to the complex nature of real-world scheduling 

problems. 

 Capacity buckets (Pinedo, 2005) is not considered part of the scheduling 

function, since it is more a planning activity connected to manpower planning.  

 Automatic model generation has been identified as important by several authors 

(e.g., Li et al., 2012; Horn et al., 2006; Son et al., 2003). Sivakumar and Gupta 

(2006) assert that a simulation model would require much maintenance, as the 

circumstances change, if the model itself is not generated automatically. 

However, input data for real-world problems is rarely built directly into a 
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simulation model without using an external user-interface, such as Excel. Koh et 

al., (1996) describe that a model needs to be flexible enough to cope with 

changes in the physical configuration, fast enough so a schedule can be 

generated in an acceptable period of time, and detailed with a limited number of 

simplifications. Consequently, a model built for a complex real-world 

scheduling problem that satisfies these requirements would already be flexible 

enough. Generating a simulation model completely automatically for such a 

scheduling problem is probably difficult and may affect the speed of the model 

generated. However, an extensive review that maps general and specific 

properties of such scheduling problems resulting in a generic interface could be 

of great use, but is outside the scope of this work.  

 

The Web services-based simulation optimisation is a part of OSS that is supported by 

the OPTIMISE platform. The real-time dispatching is an extension of OPTIMISE and is 

therefore described in the following sub-section. 

 

4.4.2 OPTIMISE Information System 

OPTIMISE Information System (OIS) holds the information that is relevant for the 

schedule execution. When a job is started or ended, the worker/operator uses the 

dispatcher client to report it and the information is sent to OIS, which keeps track of the 

WIP status and the schedule execution status. Job expert suggestions are sent to the 

dispatcher clients in real-time based on the current near optimal schedule.  

 

The optimisation data that contains the near optimal schedule and scheduling scenario is 

sent to OIS by the scheduler, from using the scheduling program. The scheduling 

scenario contains all the information needed to start an optimisation, i.e., shift forms, 

variants processing steps, machine processing and setup times, and so forth. Some of 

this information is necessary for use in other programs, for example, “Update current 

status” of WIP uses the variant processing step information to update correct WIP area 

and PDRs might be using processing times, and so on. The near optimal schedule 



Chapter 4 A Web services-based Architecture for Industrial Scheduling 

 
 

79 

 

contains different sequences and/or PDRs that are selected. The implementation (see 

Chapter 6) of OIS (see Figure 4.5) consists of the following parts: 

 Dispatching algorithm library 

 Schedule database 

 Monitoring database 

 Schedule dispatcher 

 Reactive re-scheduler 

 

4.4.2.1 Dispatching algorithm library 

In the dispatching algorithm library, it is possible to add different kinds of scheduling 

rules. Such rules can be direct, indirect, or hybrid scheduling rules, which handle the 

actual real-world dispatching at the workstations. The scheduling rules in the 

dispatching algorithm library will create the realised schedule and can differ from those 

rules used to create the predictive schedule. See Chapter 5 for further clarification on 

the different types of schedules and Chapter 6 for the actual implementation of different 

sorts of scheduling rules. In the algorithm library, the following types of representation 

rules can be added: 

 Direct representations, such as permutation schedule and non-permutation 

schedule.  

 Indirect representations first-come-first-served and other types of PDRs. 

 Hybrid representations that mix direct- and indirect representation in the same 

rule. 

 

4.4.2.2 Schedule database 

The schedule database contains the current predictive schedule generated from the SBO. 

When a rescheduling has been carried out, i.e., when a new predictive schedule updates 

the current schedule, a schedule reconfiguration is carried out. The schedule 

reconfiguration is the process that brings the active schedule in line with the new 

schedule. The schedule reconfiguration program is part of the reactive re-scheduler and 

is executed after a rescheduling has been carried out in order to match the current state 

against the new schedule. When an optimisation is started, the status of WIP and 
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schedule execution is used to create a scheduling scenario for optimisation. When the 

optimisation is finished, the new schedule will be based on the WIP status and the 

schedule execution status that was, in fact, correct information at the start of the 

optimisation, but may not necessarily still be true at the conclusion of the optimisation. 

Consequently, WIP changes during the optimisation need to be incorporated into the 

new schedule to make it valid. If necessary, the schedule reconfiguration program will 

take care of the activities that have occurred during this time period and merge them 

with the new schedule. This information is taken from the monitoring database. 

 

4.4.2.3 Monitoring database 

The monitoring database may contain information such as schedule execution and 

machine status. To keep track of the WIP status is one of the main tasks of the system. 

When a WIP message is sent to OIS, the status of WIP will be updated. The dispatcher 

clients could be programmed to enable them to report the start or end of jobs and to 

retrieve information about the next job to be started. The WIP of a production stage is 

the number of available jobs to be executed at the workstations belonging to that 

production stage. The schedule execution status monitors production fulfilment of the 

current schedule. In order to know which job to select next, the task of storing 

information is important so that the production rate fulfilment and additional Gantt chart 

for both visualisation and analyses can be monitored. The task of checking off jobs in 

each machine’s predictive sequence (list of jobs to be dispatched) is necessary, when a 

direct approach is used. Direct approach means following an exact sequence at the 

machines, while the indirect approach uses a set of PDRs for the local decision about 

the jobs to be started at the machines. When a job has been moved from one WIP area 

to another, this information will be stored with the job, so that it can be deleted, if 

necessary (i.e., revert job), to maintain a valid Gantt chart. The implementation of the 

monitoring database, described in Chapter 6, keeps track of two things only: (1) WIP 

status and (2) schedule execution status. This is due to a limitation regarding integration 

with the manufacturing systems. 
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4.4.2.4 Schedule dispatcher 

The schedule dispatcher is the program that communicates with the dispatcher client 

when it asks for the next job in line to be scheduled at a specific workstation. The 

schedule dispatcher works as follows: 

 Receives a request for the next job to dispatch to a specific workstation. 

 The schedule dispatcher uses the designated scheduling rule (direct, indirect or 

hybrid) for the workstation together with WIP status and schedule execution 

status to determine the next job to be dispatched. 

 Information is sent back to the dispatcher client to determine whether the next 

job is available or not. 

 

4.4.2.5 Reactive re-scheduler 

The reactive re-scheduler is the module that initiates not only a complete rescheduling, 

but also a partial rescheduling. A complete rescheduling can be initiated periodically, 

due to periodic events such as demand forecast updates. The event-driven rescheduling 

is initiated when a certain event, such as machine failure, occurs. Since most real-world 

rescheduling policies are a hybrid of the two methods, (Herrmann, 2006) the schedule 

dispatcher would need to support both these policies. Some events may, in fact, require 

small changes to a schedule, i.e., when operators scrap parts, block parts, or send parts 

for rework. When this happens, the current schedule will automatically be out of date 

and, in order to cope with this, the match-up scheduling will be initiated to bring the 

current schedule back on the original course. The reactive re-scheduler also initiates a 

schedule reconfiguration program each time the predictive schedule is updated.  

 

4.4.3 Scheduling operational steps and system communication 

The detailed communication of the system architecture connected to the operational 

steps of the scheduling procedure is described in this subsection. In Figure 4.6, the 

“Scheduling steps” (left column) show the different steps necessary to realise the 

scheduling support of the proposed OPTIMISE Scheduling System. “Related system 
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architecture functions”, presented in the middle column of Figure 4.6, show what parts 

of the system architecture (Figure 4.5) are used in relation to the scheduling steps.  

 

Figure 4.6 Operational steps and system communication (see also Figure 4.5) 
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“System architecture implementation” (right column) shows the detailed 

communication between the realised system architecture functions. Microsoft message 

queuing (MSMQ), internet communication (web-services), Visual Basic for 

Applications (VBA), Structured Query Language (SQL), Transmission Control 

Protocol/Internet Protocol (TCP-IP) and company specific message queuing (CSMQ) 

are used in different parts of the system to enable system integration and 

communication. The different steps of the scheduling procedure are as follows: 

 Import data: Scheduling client graphical user-interface (GUI) imports current 

schedule from the schedule database in OIS and the current work in process 

(WIP) information from the monitoring database in OIS. The Excel input file is 

the realised input data client and it imports demand data from the information 

system. See Section 6.2.1 for further information.  

 Forecast simulation: The OPTIMISE platform is used to run a simulation 

evaluation. The data sent by the scheduling client is the Excel input data file (see 

Section 6.3.1), the optimisation settings (see Section 6.3.2.1) and the simulation 

model (See Section 6.1.3). 

 Set scenario data: Excel input data file imports calendar data from the Calendar 

client (See Section 6.3.1.1) and a manual configuration (see Section 6.3.1) is 

made to the file. If necessary, optimisation settings will be made (see Section 

6.3.2.1). 

 Reschedule using SBO: The OPTIMISE platform is used to run a simulation-

based optimisation. The data sent by the scheduling client is the Excel input data 

file (see Section 6.3.1), the optimisation settings (see Section 6.3.2.1) and the 

simulation model (See Section 6.1.3). 

 Monitor SBO results: Predictive schedule GUI, i.e., OPTIMISE Browser is used 

to monitor the SBO progress (see Section 6.4).  

 Transfer schedule to OIS: The new schedule is sent from the optimisation 

database to the schedule database initiated by the scheduling client (see Section 

6.3.2). When the new schedule has been matched-up with the current status of 

the system by the reactive rescheduler (see Section 4.4.2.5), a message is sent 

back to the user of the scheduling client. 
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 Distribute carrier flags: Carrier flags are printed using the carrier flag client (See 

Appendix A) which also marks the jobs as “ready” in the monitoring database. 

The carrier flags are physically distributed to the production line. 

 Real-time dispatching: PDA (dispatching client) communicates with the 

schedule dispatcher (see Section 4.4.2.4) and shop floor information, i.e., parts 

finished to enter Finished Goods Inventory (see Section 6.2.2), updates or 

retrieves information from the monitoring database and the schedule database. 

 Real-time monitoring: PDA can be used to obtain information about a job ID 

(see Appendix B), the line status program to monitor machine status (see Section 

6.5.2) and schedule execution status program to monitor the schedule execution 

(see Section 6.5.1). 

 

4.4.4 Rescheduling procedure 

Schedulers have to deal with partial data, i.e., the situation at hand even if there is not a 

complete set of data available (See Section 3.2.1). Small changes to the schedule must 

be made continuously throughout the day and instead of a complete rescheduling, some 

sort of partial rescheduling (match-up scheduling and right-shift scheduling presented 

here) could possibly reduce the risk of schedule nervousness. Due to the uncertainties in 

the real-world, a rescheduling procedure was adopted based on the periodic- and event-

driven rescheduling policy, i.e., hybrid rescheduling policy (see Section 3.1.3). The 

Rescheduling flowchart presented in Figure 4.7 shows the three different events, 

“Dispatcher message” (see Section 6.6), “Machine status update” (e.g., failure) and 

“Periodic rescheduling” (e.g., demand data), that may initiate a rescheduling. The 

implementation of the system in Chapter 6 includes the periodic rescheduling and 

event-driven rescheduling, although the event-driven rescheduling is not automatically 

carried out and is based on the manual decision of the two decision points: “Deviation 

too big?” and “Too many unscheduled jobs”. The schedule deviation is based on the 

comparison of actual dispatching times, i.e., the starting and stopping of jobs, with the 

current schedule in the schedule database in OIS. The deviation may be the result of the 

uncertainties in a flow shop, such as machine failures. The number of unscheduled jobs 

is increased when jobs have been measured and adjusted in a quality control and 
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thereafter sent for rework. When jobs are sent to an upstream production stage for 

rework, the jobs will be flagged in the monitoring database so that they will be included 

in the next rescheduling. If there are too many jobs, they may constrain the other jobs 

by allocating carriers (see Section 6.1.1) that could be used for other jobs or are 

important to include in a new schedule (reschedule) because of their deadlines. When a 

rescheduling is to be carried out, the first step is to import necessary data and run a 

forecast simulation. The forecast simulation will indicate how the current schedule will 

perform if it continues with the same settings (possibly with new demand data) without 

performing a rescheduling (explained in detail in Section 6.7). Based on the results of 

the forecast simulation, the decision is made whether a rescheduling is necessary.  

 

Figure 4.7 Rescheduling flowcart. 
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The simulation-based optimisation is started and when it is transferred (launched) to the 

shop floor it is matched-up (see Section 6.7) against the events that happened during the 

simulation-based optimisation run.  

 

4.5 Concluding remarks 

By adding new components, specific for industrial scheduling applications, to 

OPTIMISE, a new Web services-based industrial scheduling system called OSS has 

been designed in this study. OSS supports most of the important functions and features 

identified in Chapter 3. As reviewed in this chapter, OSS is unique compared to other 

Web-based SBO systems, as it has the capability to collect real-time data from the shop 

floor for reactive scheduling. On the other hand, since the optimisation algorithms can 

be developed independent of the applications, OSS can facilitate the evaluations of 

various optimisation algorithms. Specifically, a new genetic representation has been 

proposed in this study, which is presented in Chapter 5. Implemented on top of 

OPTIMISE, OSS is also designed to have a generic architecture. Components in OSS, 

particularly OIS and the client applications, can be customised for specific applications, 

which are shown in the full-scale industrial case study in Chapter 6. 
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Chapter 5 

5 Hybrid Genetic Representations for Industrial 

Scheduling 

It has been reviewed in Chapter 2 that SBO using GA is a promising approach to solve 

real-world scheduling problems, compared to classical scheduling methods. 

Nevertheless, because of the deficiencies of existing genetic representations in using 

GA, there is a need to propose some innovative representations to improve the 

performance of GA-based SBO. Therefore, this chapter includes a description of a 

hybrid genetic representation which is based on a mixture of dispatching rules and 

encoding the entire schedule. The chapter starts with an in-depth introduction to various 

representations used in scheduling. The design and implementation of the hybrid 

genetic representation into an SBO algorithm for handling various, real-world complex, 

hybrid flow shop scheduling problems is then addressed with details. Quantitative 

results from applying the hybrid representation to the full-scale industrial case study are 

provided in Chapter 7. 

 

5.1 Predictive and realised schedule 

Most scheduling research has considered the problem of finding an optimal or near 

optimal predictive schedule for various scheduling problems. The predictive schedule 

could be described as the forecasted “optimal” schedule, and when the predictive 

schedule is executed in the real-world the outcome is the realised schedule. There are 

different ways to find the predictive schedule, as described in Chapter 2. The way to 

find the schedules in the optimisation algorithm can be done at the lowest level, by 

handling the sequences directly, i.e., direct representation, or by using heuristics such as 

priority dispatching rules (PDR), i.e., indirect representation.  With regard to scheduling 

using SBO, it is an iterative process in which the optimisation is separated from the 

simulation. The schedules found by the optimisation algorithm are tested in the 

simulation model, in order to estimate the result of the predictive schedules. The global 
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schedules are often referred to as off-line schedules, since they may be executed strictly 

until completion, regardless of events that may occur, such as the arrival of a new job 

(Wan, 1995). However, a global schedule could be completely reactive if a continuous 

rescheduling policy is used, but the output of the algorithm is still a direct representation 

of a schedule. Furthermore, using dispatching rules is often referred to as an on-line, a 

real-time, or a completely reactive approach, which is true when the dispatching rules 

are used directly in the production line. However, when dispatching rules are used to 

create the predictive schedule in a simulation model before execution in a real 

production line, it is still an off-line schedule. Therefore, an algorithm that handles and 

creates sequences directly is referred to as having a direct representation of schedules 

and an algorithm that does not explicitly create sequences directly is referred to as 

having an indirect representation. Another dimension is whether the algorithm is used 

off-line or on-line (soft real-time). Hence, a predictive schedule may be created (in a 

simulation model) in the off-line mode, by using a direct or indirect representation, and 

the realised schedule is created by some sort of on-line dispatching that could be 

indirect (dispatching rule or other heuristic) or direct (predetermined sequences). In the 

following sub-sections, the direct and indirect schedule representations are introduced in 

more detail. 

 

5.1.1 Indirect predictive schedule 

We begin with an example to introduce the use of a simple PDR - First Come First 

Served (FCFS). Consider the Gantt-chart in Figure 5.1, which can be regarded as the 

output from a simulation model with two production stages.  
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Figure 5.1 Gantt chart of a two stage production using FCFS. 

Production stage one has two parallel machines and production stage two has one 

machine. 1:1 refers to production stage one and machine number one, 1:2 refers to 

production stage one and machine number two, and 2:1 refers to production stage two 

and machine number one. As mentioned, this simulated production line uses a 

dispatching rule that makes a decision based on local information at each machine. The 

area of interest here is production stage two which has to choose a job from those 

available after the completion of each job. When job one is finished, there will be no 

available job and therefore it must wait until job three arrives and starts that job. If 

several jobs are available after job completion, the PDR will make a choice depending 

on its setting, which in this case is the order they arrive in at production stage two. 

There are many different types of dispatching rules, and they may be classified as static 

or dynamic rules, global or local rules (Kiran, 1998). Static rules determine a priority 

value of a job that does not change over time, while dynamic rules determine priority 

values that change over time. Local or global rules refers to the data they use, i.e., 

whether it is global information (e.g., line status) or local information. As mentioned 

previously, the use of PDRs will be defined as an indirect schedule, since the actual 

sequence is not handled directly but rather the choice of dispatching rules.  

 

5.1.2 Direct predictive schedule 

A direct schedule is where each machine has a list of jobs it must process in a strict 

order and possibly also the start time. It is not allowed to deviate from this order and, if 

the machine is available but the next job on the list is not, it has to wait for the job to 
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become available before it can continue. Figure 5.2 illustrates the same example as the 

previous one, but with the difference that a direct schedule is used where the jobs are in 

order from the lowest to the highest number, i.e., a permutation schedule.  
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Figure 5.2 Gantt chart of a two stage production using direct schedule. 

The difference with this method is that the schedule will wait for the next job according 

to the decided sequence. In machine 2:1, it waits for job two even though job three is 

available before job two. There are advantages and disadvantages with both methods. 

There is a risk that a direct schedule can create deadlocks in a model where a machine 

waits for a particular job which cannot move due to various constraints, for example.  

 

5.1.3 Predictive schedule and sequence dependent setup times 

Direct schedules are controlled and the sequence in each machine is known beforehand, 

while the indirect schedules generate the sequences as the simulation is executed. Since 

sequence-dependent setup times may have a large impact on the performance of a 

schedule (Allahverdi et al., 2008), the following example is similar to the previous one 

but with the difference that a sequence dependent setup time occurs in machine 2:1. 

There is a sequence dependent setup time between two groups of products, group A 

(jobs 1-2) and group B (jobs 3-8). Figure 5.3 shows the result of using FCFS. 
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Figure 5.3 Gantt chart with setup times and FCFS. 

The FCFS selects the jobs in the order they arrive in, which creates three sequence 

dependent setups. When the direct schedule is used, the result is different, see Figure 

5.4. 
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Figure 5.4 Gantt chart with setup times and direct schedule. 

The direct schedule selects the jobs in the predetermined order, which creates only one 

sequence-dependent setup. Hence, in this example the direct approach is the better 

choice, compared to the previous example where the FCFS was the best one due to 

slightly better makespan. While the direct approach is able to avoid local sub-

optimisations, the dispatching rules may utilise the machines more efficiently, and 

which method to use where is difficult to tell.  

 

5.1.4 Schedule representation for predictive and realised schedules 

The direct and indirect predictive schedules can be used to dispatch jobs on the shop 

floor. The following method, depicted in Table 5.1, can be used to explain the possible 
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combinations of different schedule representations, when both the predictive- and 

realised schedules are considered. 

Table 5.1 Predictive and realised schedules. 

 Direct Schedule Indirect Schedule Hybrid Schedule 

Predictive Sequences PDRs Sequences and PDRs 

Realised Sequences PDRs 
PDRs and 

Sequences 
Sequences 

Sequences 

and PDRs 
Sequences 

 

The predictive refers to the representation used to create the predictive schedule and the 

realised refers to all the possible representations at the actual dispatching of jobs, 

resulting in the realised schedule. The different ways of creating schedules may also 

affect the representation used at the dispatching. Using a direct representation to create 

the predictive schedule will result in a direct schedule at the actual dispatching (direct-

direct). When an indirect representation is used at the creation of the predictive 

schedule, the schedule can be represented by an indirect (indirect-indirect), hybrid 

(indirect-hybrid), or direct schedule (indirect-direct). In using a hybrid schedule to 

represent a schedule in order to create the predictive schedule means that the 

dispatching method may be a hybrid (hybrid-hybrid) or direct schedule (hybrid-direct). 

In a deterministic situation, the realised schedule will be the same, as long as the 

representation of the scheduling problem is valid. PDRs are adaptive to disturbances, 

since the actual schedule is created on-line, whilst the strict sequences may require a 

rescheduling in order to cope with those disturbances. There are, however, many 

different variants in order to cope with uncertainty, of which some are presented in 

Chapter 3. 

 

5.1.5 Permutation versus non-permutation schedules 

A permutation or non-permutation schedule is only relevant in the context of a 

multistage, production scheduling problem using a direct schedule at all production 

stages. A multistage scheduling problem is when multiple processing steps are needed 

to produce the products. Each stage can have its own sequence of jobs, separate from 

the other production stages. However, if the production stage sequence is the same for 
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all the stages, it is called a permutation schedule. An example of a permutation schedule 

is displayed in Table 5.2. 

Table 5.2 Example of a permutation schedule. 

 

Stage 1 Stage 2 Stage 3 

First 1 1 1 

Second 2 2 2 

Third 3 3 3 

Fourth 4 4 4 

Fifth 5 5 5 

 

However, if the sequence is changed on one or more stages, it is called a non-

permutation schedule, e.g., as illustrated in Table 5.3. The reason for having non-

permutation schedules may simply be that some jobs have a longer lead time through 

the production system or belong to a certain product family that may cause long 

sequence-dependent setups if it is intermixed with other product families. If an indirect 

schedule is used at any stage, the sequence cannot be guaranteed and it is therefore not 

meaningful to refer to that schedule as a permutation or non-permutation schedule. 

Table 5.3 Example of a non-permutation schedule. 

 

Stage 1 Stage 2 Stage 3 

First 1 2 2 

Second 2 1 1 

Third 3 4 3 

Fourth 4 3 5 

Fifth 5 5 4 

 

5.2 Optimisation algorithm representation 

The optimisation algorithm, parts of which originally presented by the author in 

Andersson et al., (2008), can be used on several real-world, complex hybrid flow shop 

scheduling problems, since its design is generic and deploying it is just a matter of 

configuration. The reason that the optimisation algorithm is able to be generic is that the 

scheduling problem itself is decoupled from the algorithm and handled by simulation 

models customised for the specific scheduling problems. In order to have an 

optimisation algorithm that manages to optimise a range of real-world, complex hybrid 
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flow shop scheduling problems, data prerequisites are necessary. Furthermore, to be 

able to fully utilise the algorithm’s potential, the following information is needed: 

 The number of processing stages of the scheduling problem. 

 The number of workstations available mapped to their processing stages. 

 The number of product variants available and their production stages. 

 Machine constraints: on/off, product variant constraints. 

 Product variants’ setup groups (product families). 

 List of jobs to be scheduled. 

 

The next sub-section describes the hybrid genetic representation, which is realised by 

the scheduling approach described thereafter.  

 

5.2.1 Hybrid genetic representation 

The optimisation algorithm handles various sizes of scheduling problems, since it 

divides each production stage into one unit that needs to be scheduled, see Figure 5.5. 

 

Figure 5.5 The hybrid genetic representation. 
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Each production stage has one of three scheduling representations: (1) Direct-, indirect-, 

or hybrid representation. Depending on the scheduling representation, a different 

representation of the scheduling at that stage will be made. There are three different 

ways that the algorithm represents the scheduling problem:   

1. Job sequence representation that handles the sequencing at the production stage 

only.  

2. Job allocation handling the selection of workstation/s at which the job will be 

produced.   

3. Dispatching rules that handle both the job sequencing and job allocation 

dynamically. 

 

The job sequence and job allocation are used in a direct representation and dispatching 

rules are used in an indirect representation. However, there are also hybrid dispatching 

rules that utilise all three representations, i.e., hybrid representation. Hybrid dispatching 

rules may have logic that makes dynamic decisions based on the job sequence, job 

allocation, and current situation on the production floor, e.g., Roundy et al., (1991). 

 

5.2.2 Scheduling approaches in the GA 

The optimisation algorithm handles different job sizes. For example, one job may be 

one part, one carrier of parts, several parts, or several carriers depending on the 

scheduling problem at hand.  The GA encodes possible solutions as genomes and each 

genome instance represents a single solution to the problem – in this case, an operation 

schedule. In many applications, the efficiency of GAs is determined mainly on the 

problem structure and how the domain problem is encoded in the genome (Kiran, 1998; 

Talbi, 2009). The representation has therefore been carefully considered.  

One of the contribution aims of this study is to propose a combination of the direct and 

indirect scheduling representations, so-called hybrid scheduling approaches. Simply put, 

a hybrid approach is when some stages use direct schedules and other stages use PDRs. 

Hybrid dispatching rules, where a dispatching rule uses some information about the 

direct schedule, i.e., hybrid representation, have been proposed by several authors (e.g., 

Matsuura et al., 1993; Roundy et al., 1991; Barua et al., 2005), but the use of a hybrid 



Chapter 5 Hybrid Genetic Representations for Industrial Scheduling 

 
 

96 

 

approach has not been found in the literature review. The schedule can be represented 

both directly and indirectly in the different production stages of this problem previously 

described. If several production stages are considered, the definition is either a direct-, 

indirect, or hybrid approach, as shown in Figure 5.6.  

 

Figure 5.6 Direct, indirect, and hybrid approach. 

The direct approach uses a direct representation of the schedules in all production stages 

and the indirect approach uses priority dispatching rules (PDR) in all stages. The hybrid 

approach has some kind of mix between direct and indirect representation in the 

different production stages. The indirect and hybrid approach may be classified as 

hyper-heuristics (Burke at al., 2003), since it is a meta-heuristics (GA) that selects other 

heuristics (PDRs).  

 

5.2.2.1 Direct approach 

The genome for this problem is designed to represent the schedule of the direct 

approach presented in Figure 5.7. The genome is implemented as a matrix in which each 

row corresponds to a specific job and each column represents a workstation. Each job is 

scheduled over parallel workstations in those production stages belonging to the process 

flow of the product type. 

 

Figure 5.7 Direct representation of an operation schedule. 

The example in Figure 5.7 shows job one to job four scheduled over three production 

stages using the direct approach. The jobs are to be allocated only in the white cells of 

the matrix and the striped areas are prohibited. The figure also illustrates that for this 
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particular example the lowest job size is 1, but jobs are also allowed to be larger sets of 

1 to create larger batches. Jobs one and three are processed in all production stages, 

whilst jobs two and four are not processed in production stage two. The task of the GA 

is to change the job sequence, i.e., the order of the jobs, and to fill in the solid cells of 

the matrix while considering some of the constraints, such as batch size. However, most 

of the difficult constraints, such as the required production stages of a product variant 

and a workstation’s constraints, are pre-processed in the initialisation of the 

optimisation run, in order to efficiently create valid solutions during the optimisation 

run.  

 

It is possible to choose a permutation schedule or a non-permutation schedule for a 

multistage scheduling problem, when the direct approach is used. When a non-

permutation schedule is used, the algorithm can also handle only scheduling some of all 

the production stages and letting the “non-scheduled” inherit the sequence from earlier 

stages, i.e., part permutation.  

 

5.2.2.2 Indirect approach 

No single PDR is likely to have high performance on a range of complex scheduling 

problems (Pierreval and Mebarki, 1997). Furthermore, the indirect approach is similar 

to that proposed by Barman (1997), but uses a combined GA with PDRs, which has 

been demonstrated to perform better than simple PDRs (Tanev et al., 2004; Ochoa et al., 

2009). For this problem, the genome is designed to represent the schedule of the indirect 

approach presented in Figure 5.8. The genome is simple for the indirect approach where 

each column represents a production stage to which a dispatching rule needs to be 

assigned. The schedule, exact sequence of jobs, is created dynamically in the 

simulation. Each one of the workstations uses the dispatching rules and the task of the 

GA is to allocate the best dispatching rules to the production stages. It is not necessary 

to handle constraints in the optimisation algorithm, since the actual sequencing is 

carried out in the simulation. 
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Figure 5.8 Indirect representation of an operation schedule. 

5.2.2.3 Hybrid approach 

It is also possible to use a hybrid that combines the direct and indirect approaches in a 

novel way. With the hybrid approach, at least one production stage uses a hybrid 

representation or at least one production stage uses the direct representation and at least 

one production stage uses the indirect. The example in Figure 5.9 shows Job 1 (J1) to 

Job 4 (J4) scheduled over three production stages using a hybrid approach. In 

production stages 1 and 2, the optimisation algorithm needs to allocate jobs to the 

workstations and optimise the job sequence. In production stage n, the optimisation 

algorithm optimises the selection of priority dispatching rules.  

 

Figure 5.9 A hybrid of direct and indirect representation. 

 

5.3 Optimisation algorithm steps 

The optimisation algorithm is similar to a conventional genetic algorithm. However, it 

is not strictly population-based, but uses a steady state GA methodology which has been 

shown to be a more efficient way of utilizing distributed computational resources 

(Rogers and Prugel-Bennet, 1999). The difference is that a steady state GA uses non-

stop optimisation and new solutions are generated continuously, compared to a 

conventional GA where a new population is generated after the completion of the 

previous, possibly causing a delay for distributed computing resources. The first two 

steps of the algorithm are to generate initial solutions and evaluate all of them. 

Thereafter, the actual optimisation steps take place where the population is continuously 
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updated with new better solutions deleting the worst ones. See Figure 5.10 describing 

the algorithm steps. 

Generate initial solutions

Evaluate each one of the solutions

Reproduction, crossover and mutation

NO

YES
Stop criterion met? End the 

optimisation

Evaluate all the solutions

Return results and
add solutions to poulation

 

Figure 5.10 Flow chart of the optimisation algorithm steps. 

The first step is to generate solutions until population size is met. After this step, all the 

initial solutions are evaluated in the simulation model and form the first population. The 

best solution is continuously updated and returned to the user in this step. Thereafter, a 

control is made whether the stop criterion has been met. If not, continue or stop the 

optimisation. 

 

From the population of solutions, two pairs of solutions (four solutions) are randomly 

selected, see Figure 5.11.   
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Solution 1 Solution 2

Solution 1 Solution 2

Pair 1

Pair 2

Tournament selection

Parent 1

Parent 2

Tournament selection

 

Figure 5.11 Reproduction in the optimisation algorithm. 

A tournament selection for each pair is used to determine which ones will be used for 

reproduction, i.e., taking the better of two randomly chosen solutions. Thus, solutions 

with higher fitness values are more likely to be selected for mating; solutions with lower 

fitness values have some probability of being selected as well, in order to keep a large 

diversity of the population and to avoid premature convergence (Talbi, 2009). By using 

this method, only the weakest solution in the population will have no chance of being 

mated. The two remaining solutions will be the parents of one new solution (child). The 

next step is the crossover and mutation, see Figure 5.12.  

Parent 1

Parent 2 Child

Inheritance

Crossover

Child

Mutation

New solution
 

Figure 5.12 Mutation into new solution. 

Parent two’s genetic material will be copied into this new child, onto which changes 

will be made.  There is then the chance of a crossover from parent one. The crossover 

probability is 0.8 (p=0. 8). If a crossover is being made, there are three different ones, 

namely: sequence crossover (p=0.5), job allocation crossover (p=0.5), and dispatching 

rule crossover (p=1). The dispatching rule crossover will not compete against the stages 

that use direct approach and vice versa. Hence, there is a 100% chance of being selected 

for those stages. Only one child will be created from the two parents.  
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To maintain the genetic diversity from one generation to the next, the offspring 

solutions are mutated. The number of mutations is determined using a geometric 

distribution, where at least one mutation is always made. There are five different 

mutation types, namely: batch allocation, dispatching rule, single batch, variant group, 

and setup group mutation. All of these have the same chance of being selected. 

 

Once the new solution has been created, it is added to a job list of solutions that are to 

be evaluated. The solution is evaluated in the simulation model and sent to the 

population, with its result.  

 

5.4 Optimisation algorithm operators 

In this section, different genetic operators (e.g., crossover and mutation) are described in 

detail, in order to gain a more thorough understanding of how the genetic operators of 

the different approaches are implemented. Different genetic operators are reviewed in 

Section 2.4.3. 

 

5.4.1 Initialisation 

A first population, currently set to 50 candidate solutions, is generated satisfying all the 

constraints. Each solution generated goes through the following steps:  

1. Creates a new individual with no genetic material. 

2. Generates the job sequence of the individual according to the following order: 

Production stage position, deadline, product variant number, and job ID number.  

3. Randomises the job allocation and/or dispatching rule allocation. 

 

This job sequence order is inherited by all the production stages using the direct 

approach. Each production stage is handled as one unit which could either have a direct 

or indirect representation. Production stages using the direct representation have their 

jobs randomly allocated for the allowed operations, i.e., satisfying the constraints. 

However, production stages using the indirect representation obtain randomised 

dispatching rules from the set of dispatching rules. 
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5.4.2 Job sequence crossover 

The job sequence crossover operator used is the linear order crossover (lox) operator, 

because it keeps the relative order of the jobs (Liaw, 2000). A range of the parent jobs 

are selected, their sequence positions are copied and inherited by the child replacing the 

current positions of these jobs on all production stages of the child, as described in 

Chapter 2.   

 

5.4.3 Job allocation crossover 

A uniform crossover is used for the job allocation crossover. For each job, there is a 

probability of inheriting the job allocation from the parent. 

 

5.4.4 Dispatching rule crossover 

A uniform crossover is used for the dispatching rule crossover. For each job, there is a 

probability of inheriting the dispatching rule from the parent.  

 

5.4.5 Job allocation mutation 

The batch allocation mutation operator is only applied to work on machines that have 

the direct representation. In the mutation procedure, a job is first selected for allocation 

mutation within a production stage. Then one unit of this job is re-allocated to another 

parallel machine, provided that some other available machines exist within the chosen 

operation group. 

 

5.4.6 Dispatching rule mutation 

Dispatching rule mutation is carried out on those stages that have the indirect or hybrid 

representation. A random production stage is selected and its dispatching rule is 

exchanged for another randomised dispatching rule.  
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5.4.7 Sequence mutations 

In order to prevent previously good solutions being cast into unfeasible regions of the 

search space, a domain-specific, directed mutation operator that follows the rules of the 

constraints can be used. A mutation operator using iterative directed swap of adjacent 

groups is applied, in which dynamically sized groups of jobs are selected. It is a type of 

adjacent elements swap (Bäck et al., 1997a) for groups of subsequent jobs in one 

direction, in an iterative manner. The groups could be one job, referred to as single 

mutation operator, a group of jobs of the same product variant, referred to as variant 

group mutation operator, or a group of jobs of the same product family, referred to as 

setup group mutation operator. In order to obtain valid schedules, a common stopping 

rule is also applied to the mutation operators, in which the two first mutation operators 

stop when they reach a job of the same product variant and the latter stops when it 

reaches a job of the same product family. Furthermore, permutation mutations for all 

succeeding production stages are carried out, when a non-permutation schedule is used 

to create valid schedules. It is not used in the permutation schedule, since the sequence 

order is automatically inherited by the other production stages. The mutation operators 

used generate valid solutions, can reach every solution of the search space, and make 

small changes, which Talbi (2009) identified as important issues when designing and 

using mutation operators. Furthermore, the mutation operators are believed to be able to 

accomplish smart mutations that do not become stuck in local optimas, due to an 

iterative process and the grouping of jobs. Quantitative results of the three different 

sequence mutations are compared in Chapter 7. 

 

5.4.7.1 Single job sequence mutation 

A single job is randomly selected and moved a number of steps in one direction. The 

single job sequence mutation is a variant of the variant group sequence mutation and, 

consequently, has the same implementation as that one except only one batch is moved.  
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5.4.7.2 Variant group sequence mutation 

Grouping jobs of the same variant type is commonly used in industry, in order to reduce 

setup times and to make them easier to handle. The size of these groups may not be 

optimal and it may be a predetermined size that is not connected to the actual demand 

and the production line status. The variant group mutation has been made, in order to 

naturally group product variants of the same type, without determining the size of the 

batches beforehand. Thereby, these group sizes will be adapted to the situation at hand 

and may reduce the sequence dependent setup time. The single batch mutation can do 

the same thing, but probably not as efficiently as the variant group mutation. There is no 

risk that product variants are put into groups that are too large, since the groups can also 

be split to form smaller ones by the same mutation. Consequently, schedules at the same 

level as the single batch mutation can be created. The advantage of grouping jobs is that 

the mutation operator can do more in one mutation step and thereby avoid some of the 

really poor solutions. It may be better to move more than one job at a time, as moving 

only one job could result in more setups. Furthermore, it will make the schedules easier 

for the workers to follow, since it will indirectly generate schedules with fewer different 

shifts at the work stations. The variant group sequence mutation is only applied to the 

production stages using direct or hybrid representation. Figure 5.13 illustrates the 

different steps in grouping product variants and moving them.  

 

Figure 5.13 Variant group sequence mutation. 
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The procedure shown in Figure 5.13 is as follows:  

1. First, one variant group is chosen randomly - in this case a group of four batches 

of V3 (Variant 3). There is a probability 0.8 (p=0.8) that the whole variant group 

will be moved. In addition, the example shows there is a possibility (p=0.2) of 

group splitting. A random job within the group is selected, after which a 

direction is randomised. In this example, the direction is up and, therefore, all 

jobs within the group from and above the selected job will form a group that is 

moved upwards.  

2. From the group’s newly obtained position, there is a chance of moving it even 

one more step, by a probability of 0.8 (p=0.8). In this example, another move is 

made. 

3. All succeeding steps have a probability of 0.8 (p=0.8), unless the group reaches 

a group of the same variant type, in which case the moving procedure will stop 

and the two groups will be merged into one, as shown in this example.  

 

Performing the same kind of move in the same mutation execution with the single job 

sequence mutation would be unlikely.  

 

5.4.7.3 Setup group sequence mutation 

Setup group sequence mutation is very similar to variant group sequence mutation, but 

larger groups are handled. The reason for using setup groups is to avoid those long 

sequence setup times that may occur in many production systems. The variant group 

sequence mutation can do the same thing, but not as efficiently as the setup group 

mutation. However, the setup group mutation cannot replace the variant group sequence 

mutation, since it does not work at that low level. Usually, a product variant belongs to 

a product family, e.g., material, that has the same characteristics, such as different 

variants of four cylindrical petrol engine blocks. A product family or a subset of a 

product family may form a setup group which does not have long sequence setup times 

internally, but longer sequence setup times externally outside that group of products in 

some or all of the production stages. By creating these groups, the algorithm may sort 

those products into larger batches, enabling more efficient and clever sequence 
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reordering. To clarify the example of the procedure, there are three setup groups: (1) 

V1, V3, V5, (2) V2 and (3) V4, in Figure 5.14.  

 

Figure 5.14 Setup group sequence mutation. 

The procedure shown in Figure 5.14 is as follows:  

 First, one setup group is chosen randomly - in this case, a set of three variant 

groups (V1, V3, V5) and a total of six jobs. This example shows a probability of 

0.8 (p=0.8) that the whole setup group will be moved and a 0.2 (p=0.2) 

probability of group splitting.  With regard to splitting, a random variant group 

within the setup group is selected, after which a direction is randomised. In this 

example, the direction is up and therefore all jobs within the group from and 

above the selected variant group will form a setup group that is moved upwards.  

 From the newly obtained position of the group, there is a chance of moving it 

even one more step by a probability of 0.8 (p=0.8). In this example, another 

move is made. 

 All succeeding steps have a probability of 0.8 (p=0.8), unless the setup group 

reaches a setup group of the same type, in which case the moving procedure will 

stop and the two groups will be merged into one, as shown in this example.  

 

The setup group sequence mutation is a way of additionally making sequence changes, 

in order to avoid sequence dependent setup times. Compared to the variant group 

sequence mutation that is actually able to replace the single batch sequence mutation, 
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the setup group sequence mutation cannot replace another sequence mutation, since it 

works at a higher level. The setup group sequence mutation may split setup groups, but 

never splits variant groups. 

 

5.4.7.4 Generating non-permutation schedules efficiently 

A permutation or a non-permutation schedule is only relevant in the context of a 

scheduling problem with multistage production using direct representation on all 

production stages. When the algorithm uses a non-permutation optimisation method, the 

scheduling problem becomes even greater, since every production stage may have its 

own sequence order. However, a crossover or mutation may or may not inherit changes 

to other production stages. Non-permutation schedules are particularly important, if 

some products do not need to be processed in all production stages or if sequence 

dependent setup times are considerable in some of the production stages. A setting will 

determine the probability of using a non-permutation, permutation mutation, or 

crossover.  

 

5.4.7.4.1 Non-permutation sequence mutation and crossover 

When a non-permutation sequence crossover or mutation is made on a production stage, 

the change is only applied to that stage. For example, if a specific product variant has a 

shorter deadline than the other product variants, because it is not being produced in 

production stages two, three and four, the non-permutation mutation may have a hard 

time prioritising jobs of that variant type efficiently. If the jobs of that product variant 

need to be prioritised on the last production stages of the production line, several 

mutations would need to be carried out, similar to the single job sequence mutation. 

 

5.4.7.4.2 Permutation sequence mutation and crossover 

When using a permutation sequence mutation or crossover, the change that is made at 

one production stage will be inherited by the succeeding stages. In the crossover, the 

position of the range of jobs is simply inherited by the other subsequent production 
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stages. In the sequence mutation, the relative change (number of steps) is inherited by 

the other subsequent production stages. When using the permutation mutation and 

crossover, the scheduling problem is not constrained and all kind of schedules can still 

be created. The difference is that changes that will probably result in better schedules 

are made more efficiently.  

 

5.5 Optimisation methods 

Before running an optimisation, an optimisation method must be chosen. The method 

has predefined boundaries of how to run the optimisation with regard to the different 

scheduling approaches. Different optimisation methods are shown in Figure 5.15. 

However, the scheduling approaches are not limited to these methods.  

 

Figure 5.15 Optimisation methods. 

The direct approach uses a direct representation (DR) of the schedules in all production 

stages and it is possible to use either a permutation optimisation (PS) method or a non-

permutation optimisation (NPS) method. The indirect approach uses an indirect 

representation (IR), i.e., priority dispatching rules (PDR) in all stages, and the task of 

the optimisation is to select where the different rules are to be used. The hybrid 

approach has some kind of mix between direct and indirect representation in the 

different production stages. There are currently two optimisation methods within the 

hybrid approaches. The first, “HYB”, is the manual hybrid method originally presented 

by the author in Andersson et al., (2008), wherein the user selects which production 

stages will use direct, indirect or hybrid representation. The second method is called 
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“FHYB” (Andersson, 2011), which stands for “free hybrid”, since the optimisation 

itself selects which of the stages will use the one or the other, similar to the PDR 

method. These optimisation methods are evaluated in Chapter 7. 

 

5.6 Concluding remarks 

A dispatching rule-based approach (PDR) can be a very useful scheduling method, as it 

is time-efficient, but for highly complex scheduling problems or scenarios, a direct 

approach may be advantageous when searching for good solutions. However, in 

principle, a hybrid representation of these two approaches may offer their combined 

strengths. This study has proposed a generic, novel hybrid genetic representation for 

real-world, complex hybrid flow shop scheduling problems. Nevertheless, since hybrid 

flow shop is the focus of this study, whether the hybrid genetic representation can 

address other types of flows, such as job shops, is not considered. As reviewed in 

Chapter 2, to our best knowledge, such a hybrid GA representation is unique, as it has 

the capability to cope with direct, indirect- and hybrid approaches flexibly. In what way 

the optimisation is part of the generic scheduling system architecture is described in 

Chapter 4. Furthermore, the full-scale industrial implementation and qualitative 

evaluation of the optimisation system is presented in Chapter 6.  Quantitative results 

from applying the hybrid representation to the full-scale industrial case study are given 

in Chapter 7.  
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Chapter 6 

6 A Full-Scale Industrial Case Study 

As mentioned in Chapter 1, one of the objectives in this study is to design a system 

framework with real-time and reactive support and then evaluate this framework 

qualitatively using a real-world industrial case study. A new and novel real-time 

industrial scheduling system using simulation-based optimisation technologies is 

proposed. To prove the system architecture, thus, testing the optimisation methods and 

techniques proposed in this thesis in a real-world industrial environment is crucial. In 

order to do this, a full-scale industrial case study was carried out in this work. Full-scale 

means the system and methods proposed were implemented in an industrial 

environment so that real data from the shop floor could be gathered and the optimisation 

methods could be tested and evaluated using the real production planning scenarios of 

the factory. Before the optimisation results and analyses are presented in Chapter 7, this 

chapter serves to address: 1) introduction of the targeted production line in the case 

study; 2) detailed information of how OSS was implemented for the production line, 

and 3) how the implemented OSS system was deployed and applied in a real-world 

setting. 

 

6.1 The industrial case study 

According to Yin (2003), one reason why a case-based research approach is appropriate 

is when contextual conditions have to be covered because it is believed that they are 

relevant to the phenomenon of study. The literature review has revealed that too many 

restrictive assumptions have been made (Kiran, 1998) and real-world problems are 

important future research (Jahangirian et al., 2010). When it comes to the case study as 

a research method, it is possible to use one or several case studies (Yin, 2007). 

However, in this study a single, full-scale industrial case study was more suitable, rather 

than testing different parts of such a system in several case studies. At the same time, it 

would be difficult replicating such a system implementation in several real-world case 

studies, due to the substantial work required for implementation (Pinedo, 2005), without 
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making those unrealistic assumptions usually made in scheduling research. Wiers 

(1996) also points out that the implementation of proposed scheduling systems 

architecture would provide important information that could help scheduling techniques 

succeed in practice. This case study was selected to represent similar, real-world 

complex scheduling problems, and at the same time advance the research of 

manufacturing scheduling systems. Parts of this case study were originally presented by 

the author in Frantzén et al., (2011). The presentation of the case study is divided into 

three parts in order to describe different aspects of the industrial case study, namely: (1) 

the scheduling problem, (2) the production system, and (3) the simulation model. 

 

6.1.1 The scheduling problem 

The real-world problem considered in this full-scale industrial case study is a machining 

line at an automotive manufacturer in Sweden. Currently, the work of the production 

scheduler consists of making decisions about batching and the preferred start order of 

the carriers that transport the products. The dispatching is actually carried out by the 

production personnel on the shop floor: operators and shift leaders. Even though 

different jobs are prioritised in a specific order, the operators usually reschedule them to 

minimise the number of setups. The consequence of these manual decisions in the 

machining line is that while some machines might be locally optimised, the overall 

performance of the line is not. The scheduling problem could be categorised as a hybrid 

flow shop (see Section 2.3.1), described in Ribas, et al., (2010): 

  1 2 3 4 5 6 77 5 ,0 ,0 , 3 , 3 , 7 , 3HF R R R R R Multiobjective Multiproperties  (6.1)
  

where, HF stands for a hybrid flow shop, 7 stands for seven production stages, R stands 

for unrelated parallel workstations and the corresponding number is the number of 

parallel workstations at each production stage. The 0  (zero) stands for a production 

stage with a single workstation and the term Multiobjective  means that the scheduling 

problem has multiple objectives. The case study represents a typical, real-world, 

complex multi-stage flow shop scheduling problem with the following features: 

machine eligibility, unavailability periods (failures, see Section 3.1.1), blocking (e.g., 

buffer limitations, see Section 2.3.2), machine dependent setup times, sequence 
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dependent setup times, transportation times, bypass, lot splitting (see Section 2.3.3), lot 

sizing, and rework. The scheduling problem deals with the simultaneous lot sizing and 

scheduling problem, since the production is carried out with a make-to-stock policy. 

There are currently, in total, eleven production stages and more than ten product 

variants. The first production stage is not to be scheduled because it is a non-bottleneck 

production stage that manufactures product family components from raw materials, 

according to a PDR and inventory order point. In addition, the last three production 

stages are not to be scheduled because these are handled by the FCFS-PDR in the real-

world system, due to practical circumstances. Consequently, there are seven production 

stages to be scheduled, although the last three need to be partially handled using FCFS. 

An assumption made for this scheduling problem is not to handle the operators at the 

production line directly, due to the substantial complexity of their work. The operators 

and their working hours are handled indirectly in the calendar client, which is part of the 

input data client. Furthermore, processing times are assumed to be constant and raw 

material is assumed to be available. 

 

6.1.2 The real-world production system 

The real-world production system is a machining line at an automotive manufacturer in 

Sweden. The production line could be defined as a mass production system (Groover, 

2000), since about 8000-12000 parts are manufactured every week during a two-shift 

production schedule (7.30a.m.-3.48p.m. and 3.48 p.m.-12.00 midnight). The machining 

line has flow shop production with a product layout, i.e., the machines are arranged in 

sequence in order to carry out different parts of the processing/machining required. All 

product variants require processing through most of the ten different production stages, 

but some product variants bypass some of the production stages. This type of 

production is commonly found in automotive components manufacturing industries, 

such as Volvo Powertrain, Volvo Cars, Volkswagen, Vici Industri or Arkivator. The 

machining line is semi-automated with robots that feed machines inside the cells, but 

the loading, unloading and deciding when or where to process different types of parts is 

done by operators at each work area. The machine equipment is quite flexible, i.e., it 

can handle several different product variants, by changing tools. However, changing 
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tools may result in long sequence-dependent setup times. Typical operations carried out 

in these production lines are milling, drilling, lathing, balancing, grinding, washing, and 

quality control. The product manufactured in this production system is a component 

found in a car or a truck engine. Typical products of this type are camshafts, 

crankshafts, or connecting rods.  

The production line uses a make to stock policy (MTS) and has target levels that need to 

be reached each week. At the same time, there are security levels of the different 

product variants in the finished goods inventory (FGI). Based on a daily demand of the 

different product variants, there will be a lack of product variants, according to the 

security levels (about 1-2 days coverage time) or the target levels, sometime in the next 

few days. The task of the production planner is to make sure that the security levels are 

maintained over time and that the different target levels are reached each week. 

Consequently, the scheduling horizon is one week, but a two weeks horizon has been 

used in this study, as explained in Section 6.7.  The different product variants can be 

sorted into their main groups (A or B), setup groups (used by the optimisation 

algorithm, see Section 5.4.7.3), or target level groups (used by the optimisation 

objective function, see Section 7.1.1).  

 

Table 6.1 Product variants groups 

Variant Group Setup group Target level group 

Variant 1 A 1 TL2 

Variant 2 A 2 TL1 

Variant 3 A 2 TL1 

Variant 4 A 2 TL1 

Variant 5 A 2 TL1 

Variant 6 A 2 TL1 

Variant 7 A 3 TL1 

Variant 8 A 3 TL1 

Variant 9 A 4 TL2 

Variant 10 A 4 TL2 

Variant 11 A 4 TL2 

Variant 12 B 5 TL3 

Variant 13 B 6 TL4 

Variant 14 B 6 TL5 

Variant 15 B 6 TL6 

Variant 16 B 6 TL7 
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The product variants are transported on carriers in the production line, which will limit 

the total number of parts in the production line to a maximum of 6.000 parts. However, 

the target level of work in process (WIP) is set to 4350 parts (see Appendix G), so the 

number of parts in the production line is usually around that number. Each carrier may, 

at most, carry 50 parts of the same product variant. There are three different loops of 

carriers, i.e., between production stages 1-5, production stages 6-7 and production 

stages 8-10. The change of carriers is done at the end of each carrier loop, i.e., a free 

carrier of the next loop has to be available. The number of parts in different sections of 

the line is also constrained by the different buffer sizes. The lead times of the products 

are typically 24-35 hours, depending on product variant, current WIP, current product 

mix, failure of machines, and so forth. The actual total processing time through the line 

(value adding time) is about ten minutes. It is possible to prioritise a job, one carrier of 

parts, but since there are usually 50 parts on one carrier, it will still take about 8 hours to 

be produced. Different jobs (carriers with parts) of the same product variant or setup 

group will be grouped together over different production stages in order to reduce the 

sequence-dependent setup time (see Sections 5.4.7 and 7.2). The type of data usually 

changed through the input data client is described in Section 6.3.1 and the data used in 

the simulation model (based on real-world data) is presented in detail in Appendix G. 

The next Section describes the simulation model of this production system. 

6.1.3 The simulation model 

Due to the complexity of the problem, a detailed simulation model was implemented to 

model the existing production line. The discrete simulation model is currently built in 

C# (see Appendix H) to enable fast simulation runs (1-2 seconds on a 2.5 GHz Pentium 

core for two weeks simulation horizon), rather than commercial software that may take 

longer to execute. At the start of the simulation, the model is updated with the transient 

status, in order to obtain a start condition that matches the real production line. In the 

user interface for inputting data, the user has to define the specific scheduling scenario, 

since each production day/week is different. Hence, the simulation model has the 

flexibility to cope with changes in the production line. The simulation model and the 

optimisation can be set up to use different scheduling approaches: direct, indirect, and 

hybrid, as defined in Chapter 5. When using a direct approach, the input to the 
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simulation model will be the sequences for the different machines and the output will be 

a feasible schedule. By using the indirect approach, the input to the simulation model 

will be different PDRs and the output to the shop floor will be a set of selected PDRs, a 

schedule, or a combination of both, depending on the specific scheduling scenario. In 

the hybrid approach, the input to the simulation model will both be sequences and PDRs 

and the output to the production floor is a schedule or a combination of schedule and the 

selected PDRs. The data used in the simulation model (based on real-world data) is 

presented in detail in Appendix G. 

6.1.3.1 Structure of the simulation model 

The simulation model is built with several production stages and each stage is similar to 

the next. The differences between each stage are the number of parallel workstations, 

machine constraints, and so forth. The constraint blocking is naturally used in the 

simulation model, due to the size of buffers and the number of carriers transporting the 

parts. Uncertainty is primarily modelled for failures, but external (indirect) variables, 

such as demand forecasts and scrapped parts, also generates uncertainty. The 

workstations have their individual settings and are classified as unrelated parallel 

machines. Furthermore, the workstation equipment is a combination of old and new 

equipment and changes to the product mix result in tool re-allocation. The simulation 

model easily adapts to the production variants of the different production stages needed. 

As illustrated in the variant production stages in Figure 6.1, there are currently five 

groups of variants when considering the necessary production stages.  Not all variants 

go through all operations and thereby use the scheduling constraint or characteristic 

called bypass. 
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Figure 6.1 Production stages. 

In Figure 6.1, each colour represents one group of product variants. Only one of the 

groups goes through all of the production stages. Furthermore, in each stage, there may 

be several parallel workstations. These groups are not equivalent to product families and 

may change as the production line changes, i.e., a product variant may change its 

necessary production stages if some processing operations are moved or if the line is re-

balanced. Each stage consists of a production stage buffer, input workstation buffer, 

output workstation buffer, and the workstations themselves, see Figure 6.2. 

 

Figure 6.2 Structure of a production stage. 

Each one of the buffers has its own settings for capacity and whether the buffer is used 

or not. For example, some stages may not have a production stage buffer, which can be 
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used for intermediate stores or when several workstations flexibly share the input queue. 

Each workstation has its own settings such as sequence dependent setup times or 

machine dependent setup times. However, all these settings are extracted from the 

simulation model to the input data client (Excel file). The data used in the simulation 

model (based on real-world data) is presented in detail in Appendix G. 

 

6.2 The OSS implementation and integration overview 

The functions, described in Section 4.4.1, of the implemented OSS are described in this 

sub-section and the whole system is illustrated in Figure 6.3. 

 

Figure 6.3 OSS implementation. 

The OSS implemented in this case study is based on “SME without simulation 

resources”, as described for the OPTIMISE platform in Chapter 4. The production 

scheduler takes care of the scheduling activities using the different program clients and 

the actual simulation-based optimisation is carried out with the computer cluster at the 

university, see Figure 6.3. In addition, the production operators use Personal Digital 

Assistants (PDAs) on the shop floor to execute the schedule. The different parts of the 

complete system are located on various servers at the University or the company. In 
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Figure 6.4, the different parts of the OSS architecture are coloured to display their 

location. The web-based simulation optimisation (OPTIMISE platform) is implemented 

at university servers. However, the real-time dispatching has been installed on a 

company web-server, so that the company can access the OIS from several different 

internal networks. At the same time, it allows external consultant companies and the 

university to reach the server through virtual private network (vpn) for easy access. The 

response time of this server is almost immediate, since it is typically used by the 

company for shop floor systems. The user-interface applications are mainly used at the 

company by the production scheduler, but can also be run directly from the server. 

Furthermore, the user-interface applications can be installed on several computers and 

communication with the OIS server is achieved using TCP/IP and Message Queuing 

services. Communication with the university is accomplished using web-services. The 

integration sub-modules are mainly implemented on the company web-server, but 

changes have also been made in other systems, e.g., automatic counting points that 

count parts entering the Finished Goods Inventory (FGI). 

 

Figure 6.4 OSS distributed on different servers. 
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6.2.1 Input data module 

The input data module imports data from several sources, when a rescheduling is taking 

place. It imports WIP information from the monitoring database in OIS (see Section 

4.4.3) at the preparation of the scheduling data. Furthermore, information about the 

execution status of the schedule is automatically imported, when the optimisation is 

started in order to run a forecast simulation. However, for this particular implementation 

of the system, other information from the information systems is not automatically 

integrated with the input data module. Information such as demand forecasts, targets, 

and calendar data is handled through the input data client. 

6.2.2 Shop floor module 

The shop floor module handles the communication to and from the shop floor and, in 

fact, comprises several programs that receive, possibly restructure, and pass messages to 

the right destination. The dispatcher client used on the shop floor is the main program 

that employs the shop floor module. Dispatching requests are sent to the OIS through 

the shop floor module and the answer is sent back. Work-in-process (WIP) messages 

are sent from the shop floor and the dispatcher client specifically, or from automatic 

counting points. At the end of the production line, before the products enter the Finished 

Goods Inventory (FGI), the automatic counting of parts that identifies the correct 

product variants takes place. However, for this particular implementation of the system, 

machine failures and current machine status are not automatically integrated with the 

shop floor module, due to complications executing the integration. 

 

6.2.3 Predictive- and dispatching algorithm library 

The different scheduling rules could be direct, by using a direct representation; indirect, 

by using an indirect representation, as well as hybrid, by using a hybrid representation 

(see Chapter 5). The scheduling rules added to the predictive- and the dispatching 

algorithm libraries are the same rules. The scheduling rules in both the predictive 

algorithm library and the dispatching algorithm library comprise the following:  

 Direct scheduling rules: 
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o Sequence/Schedule 

 Indirect scheduling rules: 

o FCFS stands for “first come first served”. 

o EDD stands for “earliest due date” first. 

o SPT stands for “shortest processing time” first. 

o LPT stands for “longest processing time” first. 

o VSD stands for “variant setup due date” first. What it does is select the 

same product variant as previously produced, if possible, otherwise it 

sorts the jobs according to setup time followed by due date.  

 Hybrid scheduling rules: 

o HNBS stands for “hybrid non-blocking sequence”, which is a hybrid 

representation of schedules. The scheduling rule selects jobs according to 

sequence, but if those jobs are not available then it selects jobs according 

to FCFS. This rule is adopted from the SB-DIS rule proposed by Barua 

et al., (2005), with the difference that a GA is used to generate the global 

schedule. 

o HSNBS stands for “hybrid setup non-blocking sequence”, which is a 

hybrid representation of schedules similar to the latter rule. The 

scheduling rule selects jobs according to sequence, as long as the buffer 

is not full. If the input buffer is full and the next job in sequence is not 

available, the PDR VSD will be used to select jobs. This is due to 

disturbances that may set the production in a stage where the buffers 

become full with the wrong product variants, due to the earlier stages’ 

dispatching rules. Consequently, in order to avoid a deadlock caused by 

the dispatching rules when there are constrained buffer sizes, the strict 

sequence needs to be relaxed.  

 

6.3 Scheduling user-interfaces 

There are quite a lot of user interfaces and they are an important area of research 

(McKay et al., 2002). This statement is further strengthened in the thesis because it has 
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been necessary to use many different user-interfaces in the study. The user-interfaces 

are in Swedish, but some of them have been translated into English for the presentation 

in this chapter.  

 

6.3.1 Input data client 

The users of the simulation model are not expected to be simulation experts and 

therefore they will work from a custom made graphical user-interface (GUI). Built in 

Microsoft Excel, the GUI is important because it enables the users to flexibly test many 

different options in the settings and some attributes of the simulation model, without the 

need to open the model. The GUI includes production input data such as: 

 Machine processing times (13-200 seconds per part).  

 Availability: mean time between failures (50-170 minutes), mean time to repair 

(5-25 minutes). 

 Setup settings: Sequence-dependent setup times (0-2 hours), machine-dependent 

setup times (0-10 minutes). 

 Buffers capacity (500-1500 parts) and FGI capacity (about 20.000 parts). 

 Number of carriers (120). 

 WIP (about 4000 parts) and FGI-contents (about 10.000 parts). 

 Machine settings: on/off, product variant restrictions. 

 Product demands (about 10.000 parts per week). 

 FGI (about 9000 parts) and WIP (4350 parts) target levels. 

 Schedule and scheduling settings. 

 Product variants’ production stages. 

 Product variant names mapped to product groups. 

 Transportation times (120 seconds between production stages). 

 

Consequently, it is also possible to configure and run production related tests. GUI also 

includes different settings that are connected to the scheduling of the line, such as start 

conditions and schedules for different parts of the line, see Figure 6.5.  
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Figure 6.5 Screenshot of a schedule in Excel. 

The GUI allows and helps the user fill in a schedule of the line manually and has the 

capability to check whether the user has made a valid plan. The input data client is 

created in Microsoft Excel, because it is a very flexible and frequently used tool in 

industry. However, the users of the Excel input data file do not need to fill in all the 

information through Excel, since some external programs are used to export data to the 

Excel file, such as the calendar function. The calendar client allows the user to create 

weekly workforce schedules, as described in the next section. Production engineers 

need to keep the simulation model up to date and are supported by user input data client 

to do so. The data used in the simulation model (based on real-world data) is presented 

in detail in Appendix G. 

 

6.3.1.1 The calendar client 

The calendar client is opened from the Excel file, but is in fact an external C# 

application, see Figure 6.6. The reason for having an external application is due to the 

usability requirements, which was a major issue with the first implementation in Excel. 

The calendar client allows the user to create weekly schedules by adding different shifts, 

planned maintenance, and so on, to each day.  
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Figure 6.6 Calendar client. 

The different shifts are prepared on predetermined shift forms used by the production 

staff, according to system load and available personnel. The calendar function allows 

the assignment of types of shift for one or several days. After selecting the days and the 

type of event (day, evening, night, stop, and maintenance), a shift type is chosen. All 

shifts and maintenance activities assigned to one day can be seen in the middle field of 

the program. When selecting one of the events, e.g., shift, its settings will appear on the 

right side of the program listing the specific settings of the machines associated to that 

event. When the schedule has been created, the production scheduler saves the file and 

presses “export data” in the program menu, which then exports the data to the Excel 

file. Consequently, the input data file in Excel will hold all the scheduling scenario data.  

 

6.3.2 Scheduling client user-interface 

The scheduling client is the client that the production scheduler will use to generate a 

new schedule. The production scheduler and the shift leaders use the scheduling client, 

which, in Figure 6.7, contains only the information needed to reschedule.  
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Figure 6.7 The scheduling client. 

The main rescheduling tasks carried out by the production scheduler are done through 

the scheduling client. The input file is selected, which is the Excel file containing all the 

machine data, products, calendar information, and so forth. “Calculate targets” is an 

inter-stage for calculating proposed target levels according to demand changes. The 

production scheduler will have the file updated, in order to illustrate the consequences 

of demand changes. Thereafter, the production scheduler may decide whether the 

planned production volume needs to be increased or not. The “forecast overlap” is the 

time in which the old schedule overlaps the new schedule, in order to obtain a valid new 

schedule and a smooth transition to it. The “Start optimisation” option will first start a 

forecast simulation of updated state, using the current schedule, and then uses this as 

input for the optimisation that is started thereafter. The user is able to watch the 

optimisation and stop it once it is finished. The Gantt chart of the new forecasted 

schedule may be reviewed and then the new schedule is exported to the scheduling 

system by the option “Transfer schedule”, i.e., send and launch schedule in OIS. The 

production scheduler may also need to print carrier flags, which is launched through the 

menu and used to create information sheets attached to the carriers in the production 

line. This sub-program is coupled to the database that monitors what has been printed 

and started in the line, see Appendix A. 
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6.3.2.1 Optimisation algorithm settings 

Through the scheduling client menu, it is possible to reach the settings of the 

optimisation algorithm, such as operators and population size. The following fields of 

settings are available through the scheduling client, see Figure 6.8. 

 

Figure 6.8 Optimisation algorithm settings. 

 Optimisation algorithm: The current choice of algorithms may allow the user to 

choose among a list of available algorithms. In the current study, the steady state 

GA is well suited to this problem, since it utilises parallel computers (simulation 

evaluations) in an efficient way.  

 Evaluation mode: Selection of simulation model to evaluate the different 

schedules is chosen here.  

 Simulation: The number of simulation replications and maximum number of 

parallel evaluations is selected here. In order to reduce data transfer, only the 

better solutions are transferred from the agents and stored in the database.  
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 Algorithm parameters: The basic settings of the GA are set here, namely, 

population size, mutation rate and crossover rate. Sort batches are used to keep 

the internal order of jobs of the same variant type in an ascending order based on 

job ID.  

 Crossover parameters:  The crossovers batch allocation and batch order 

frequency can be set here.  

 Mutation parameters: The mutation parameters are many because of the 

importance of product variant groups. Besides the common setting of these 

mutations there are also non-permutation settings. “Production stages” represent 

the stages that are to be scheduled, i.e., zero (0) means permutation schedule 

since all succeeding stages will inherit the job sequence order. Hence, the 

permutation grade can be set here from a complete permutation schedule to a 

complete non-permutation schedule.  

 Objective weights: Here the user may tune the objective weights of the different 

objectives. 

 Output to input: Two-stage experiments for transforming outputs to inputs, used 

when going from indirect to direct representation of schedules.  

 

6.3.2.2 Advanced mode of the scheduling client 

The scheduling client also has an advanced mode used for other experiments or research 

related questions. Compared with the usual interface, the different functions used in the 

process of rescheduling are extracted here and more settings are available, see Figure 

6.9.  
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Figure 6.9 Advanced optimisation client. 

Many functions are available in the advanced mode, because the different functions 

described for the simple client are decomposed here and may be combined in different 

ways. The advanced mode is mainly used for analysis, such as forecast simulation, or 

for optimisations not connected to the scheduling system. The forecast simulation (see 

Section 6.7) in the advanced mode is particularly interesting, because it provides the 

scheduler with the capability to predict the consequences of the current schedule, by 

performing a forecast simulation. By starting a simulation evaluation based on the 

current status of the system directly from OIS, the user obtains a new predictive 

schedule and objective values. The forecast simulation will indicate how the current 

schedule will perform if it continues with the same settings without performing a 

rescheduling. Thereafter, the user is provided with the decision-making support to 

decide whether a rescheduling is necessary or not. 

 

6.4 Predictive schedule user-interface 

With OPTIMISE Browser, it is possible to see different data plots, study the 

optimisation progress, and generate Gantt charts for each individual evaluation. Figure 
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6.10 provides the screen shots of the information that can be viewed using OPTIMISE 

Browser. When the optimisation is finished, the best operation schedule can be used for 

the real production line. Not only is it important that the industrial users view the output 

data related to the fitness function, but even other production data is very useful in their 

daily work, e.g. in decision making. Large amounts of data are stored in the 

optimisation database, OptDB, which is graphically displayed in the OPTIMISE 

browser. Production personnel might, for example, use forecasted inactive periods for 

planned maintenance using the Gantt chart. Being able to view the machine utilisation 

and stock levels over time makes it easier for the scheduler to identify which machines 

are the possible bottlenecks for the period and which product variants have critical stock 

levels that need to be followed up during the day. 

 

Figure 6.10 Optimisation progress. 
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6.4.1 Optimisation progress 

Some of the output data, stored in the database, is more important from a scheduling 

point of view for the experts of the machining line, and is therefore presented in graphs. 

It enables the users to be able to observe the progress of the SBO process. Mean values 

and standard deviation are presented in graphs of fitness, throughput, shortage, lead 

time, and WIP, but if necessary, it is possible to present more output data in graphs, as 

the data is stored in the database. The left upper corner graph in Figure 6.10 is a 

screenshot from the OPTIMISE browser displaying the optimisation progress of the 

throughput value of a scheduling scenario.  

 

6.4.2 Gantt chart 

For each evaluation, a Gantt chart can be generated in order to study the status of 

machines (processing, setup, failure, planned stops, etc.) and jobs allocated to them in 

the scheduling period. Here the user can see how a schedule affects each machine over 

time. This will give the operators at the machining line additional, previously unknown 

information. The scheduler can see how a schedule affects the line; shift leaders and 

production engineers can plan the number of operators needed, plan extra work such as 

testing new variants, as well as plan machine maintenance and other events such as 

meetings. The Gantt chart at the bottom of Figure 6.10 shows the schedule from one 

evaluation in the simulation model. In order to make the Gantt chart useful for experts 

of different domains, it is possible to configure how it should be displayed. The zoom 

function allows the user to watch a period of interest. Furthermore, the user may select 

which activities (processing, setup, planned stops) should be displayed or not, in order 

to customise the Gantt chart to individual needs. Information is attached to jobs 

showing the variant number and job ID number of a processing activity. The Gantt chart 

bars (jobs) can be coloured according to user specifications, where in default, the 

colours are based on product variant types and activity types. By selecting a job in the 

Gantt chart, all tasks of this particular job will be marked so that it can easily be 

followed throughout its operation steps.  
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6.4.3 Stock levels 

Due to the importance of handling demand fluctuations and unexpected events, such as 

machine break downs and product defects, it is important to monitor over time the 

security stock levels in the FGI of different product variants. Therefore, the FGI levels 

are logged over time during each evaluation, see Figure 6.10. This enables the 

production personnel to see a forecast of the variants that may have some critical stock 

levels which need to be followed up during the day. 

 

6.4.4 Export input and output data 

If necessary, it is easy to export input and output data from the OptDB through 

OPTIMISE browser to Excel, which enables the user to analyse and plot customised 

graphs on a spread sheet (e.g., using Excel). If the user wants to visualise a schedule 

other than just by using the Gantt chart, it is easy to export the schedule to the input data 

GUI and launch a simulation run manually. It is also possible to make modifications to 

the input data directly in the input data file if needed, e.g., change the job sequence 

order or machine availability. Exporting the results of the output data is done 

automatically by copying the matrix of the optimisation output data into Excel.  

 

6.5 Realised schedule user-interface 

Three user interfaces are employed at the actual execution of the schedule: the schedule 

execution status, line status, and the program used in the PDAs. Operators mainly use 

these PDAs to monitor WIP, but they will also be used to transfer and display 

scheduling information. The schedule execution status and line status are used by both 

the production personnel and the production scheduler to monitor the schedule 

execution and line status.  

 

6.5.1 Schedule execution status 

The schedule execution is presented in Figure 6.11, i.e., the Gantt chart of the realised 

schedule updated continuously. Consequently, this Gantt chart shows the history of the 
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jobs that have been started at the workstations. A job currently in process at a 

workstation will be given an estimated end time which will be updated to the actual end 

time when the job is finished.   

 

 

Figure 6.11 Schedule execution status. 

The time line inserted in Figure 6.11 shows the time when the snapshot was taken. The 

jobs on and after this line show those currently being started, i.e., predicting the end 

time of the jobs. Also, the history and current state of machines give the scheduler a 

quick status overview of the system, because it is easy to see whether a machine has 

been idle for some time. If it has been idle, it might imply that there is some material 

deficit or workstation failure. Since data is communicated only from the dispatcher 

client and not from the actual workstations, the reason for the idle periods cannot be 

clearly presented. The dispatcher client, described in section 6.6, mainly sends data 

about jobs being started or finalised at the workstations.  

 

6.5.2 Line status 

The line status program provides WIP data and associated information. In the line status 

program, as displayed in Figure 6.12, the user can see the current WIP and machine 
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status (indirectly). Furthermore, there is information about the target levels of the 

product variants for the week.  

 

Figure 6.12 Line status program. 

 

6.5.2.1 Buffers and workstations 

In the first area, marked with the number “1” in Figure 6.12, the WIP areas are divided 

into two different parts: the buffers and the workstations. The current WIP gives the 

user a quick overview of the line status, i.e., long or short queues of different product 

variants. The production stage buffers are those that store all jobs to be processed at that 

production stage. Each production stage may have several parallel workstations and 

each workstation has its own WIP area, as displayed by the machine boxes in dark grey, 

green, and purple. The dispatcher client mainly sends information about when a job has 

been started or finalised at the workstations. Each job is presented with its specific job 

ID number and product variant number. When a job is finalised, it will be moved to its 

next production stage, which may differ for a different type of product variant. 



Chapter 6 A Full-Scale Industrial Case Study 

 
 

133 

 

Consequently, the job will be moved to the production stage buffer and wait there until 

it is selected for a workstation. When a job is started at a workstation, it will be moved 

from the production stage buffer to the WIP area of the workstation. The workstation 

displays the current job and the box colour will be set to green, which stands for 

“processing” in the company. The status bar at the top of the workstation will display 

the estimated progress of the job, as a guide for the operators about when the job will be 

finished. The machine status is indirect information based on dispatcher client 

messages, which means the user can quickly see the status of the machine.  

 

At some of the workstations which have input conveyors, two jobs can be started at the 

same time if they are of the same product variant type. The reason for this is to keep the 

workstation busy without any delays. However, only the first job will be displayed in 

the box, but the colour will be set to purple indicating that two or more jobs have been 

started at the workstation, see Figure 6.12. The status bar will be associated with the 

first job, but when it is finished, the status bar will be associated with the next job. More 

detailed information of the workstations and their jobs can be viewed by clicking on the 

workstation. 

 

6.5.2.2 Buffer area without job ID numbers 

The second area, marked with the number “2” in Figure 6.12, is a large buffer area at 

the end of the production line. Since this part of the line is less complex, it uses FCFS 

priority dispatching. Furthermore, due to practical reasons, the jobs lose their job ID 

number at this part of the line, since the carrier flags will be detached from the carrier 

(job). Additionally, the operators will not use the dispatcher clients at this part of the 

line. For this reason, the jobs located at the end of the line, which consists of three 

production stages, will be estimated by keeping the jobs on a FCFS priority list. 

Consequently, all jobs started at the last workstation in the first area (first part of the 

line) will be added to the WIP list of the second area. At the end of the line, when the 

jobs enter the FGI, they are automatically counted, which is communicated to the 

program, making it possible to maintain a correct WIP status.  
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6.5.2.3 Adjustments and quality control 

The WIP of area three, marked with the number “3” in Figure 6.12, monitors the jobs 

that have been sent for adjustment or quality control. Quality control is a continuously 

on-going activity that must be carried out. Therefore, some of the parts of a carrier may 

be transferred to this area. Adjustments are sent here in the same way and some of them 

will be scrapped and others sent back to the production line. 

 

6.5.2.4 Target levels 

The fourth area, marked with the number “4” in Figure 6.12, shows the target fulfilment 

of the current week. There are different target levels that need to be reached for different 

product groups and the number of parts currently over or under the target level is 

displayed here. The target levels will help the production personnel reach targets, and 

the targets will be updated (if necessary) at each reschedule. 

 

6.6 Dispatcher client user-interface 

The dispatcher client is the device used by the operators to execute the schedule. In this 

case study, the dispatcher client device used is a PDA, see Figure 6.13. PDAs are 

mainly used by the operators today to monitor WIP. The main reason for using PDAs is 

the fairly low investment cost of working with existing equipment. The PDAs will 

therefore also be used to transfer and display scheduling information. 
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Figure 6.13 Personal digital assistant. 

The PDAs are programmed to be able to report jobs being started or ended and retrieve 

information about the next job to start. The WIP level of a production stage denotes the 

number of jobs available for execution at the workstations belonging to that production 

stage. The different WIP messages are: job started, job stopped, job on hold, parts 

scrapped, job continue, move job started/stopped, add job. When an operator requests 

an expert suggestion in the PDA, a message is sent to OIS, where it uses a program 

called “Schedule Dispatcher” that determines the next job, depending on the current 

scheduling approach used, i.e., sequence or dispatching rule. Thereafter, the expert 

suggestion is sent back to the PDA, based on both the scheduling approach used and the 

available WIP. The PDAs have linear bar code readers, making the process of handling 

them more efficient.  
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Information signboards with different bar codes for the machines are placed on the 

production line and each carrier has the product variant bar code, in order to facilitate 

the work for the operator. Once the operator scans a “start bar code”, he/she will 

immediately receive an expert suggestion in the PDA, see Figure 6.14.  

 

Figure 6.14 Expert suggestion in the PDA. 

The expert suggestion screen, in Figure 6.14, works in the following way: 

 The expert suggestion screen will appear when the start-bar code of a 

workstation is selected or scanned. Thereafter, a message is sent to OIS which 

will return the next job in line to be produced at the workstation in less than one 

second.  

 The ID number and variant type of the job is returned. If the job is currently 

available, it will be coloured green, but if it is not available, it will be coloured 

red. 

 The operator selects the correct job, in this case job ID number 216, by typing 

the ID number or scanning the barcode. Information is sent to OIS, which 

immediately returns information about the job’s variant type (Variant 1) and the 

number of parts associated with the job (50).  

 The last step is to execute the start of a job by pressing send.  
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The PDA program consists of several screens, in order to handle different tasks, e.g., 

there is a special function for stocktaking; efficiently and quickly counting the jobs and 

noting their position in the production line. Almost all screens can be seen in Appendix 

B. 

 

6.7 Scheduling scenarios 

In order to run an optimisation, the user first defines the scheduling scenario, starts the 

optimisation, and then receives the results through the OPTIMISE browser. To define 

the scheduling scenario, certain information is needed. Although the scheduling period 

of interest might only be one day, the simulated scheduling horizon will be longer, in 

order to avoid any sub-optimal schedules (Wiers, 1996), see Figure 6.15. 

 

Figure 6.15 Scheduling horizon and periodic rescheduling. 

Figure 6.15 shows what a periodic rescheduling policy would look like for the industrial 

case study, when using a scheduling horizon of two weeks and a periodic rescheduling 

each production day. At each scheduling cycle, the user defines the scheduling scenario 

by collecting information from different systems. The scheduler needs to import or 

create the following information for the scheduling program: calendar information (shift 

forms, planned maintenance), status of machines and personnel, WIP status, FGI status, 

and demands. The calendar information is put into the calendar program manually by 

the scheduler once a week, unless something has changed. Furthermore, there are 

different predefined weekly shift forms that the user can select and add to the calendar. 

Providing this information can be done once a week, but also for several weeks ahead. 

Daily changes, such as status of machines and personnel, are communicated to the 

scheduler and the necessary alterations are manually fed into the program. When the 
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user is finished, the data is stored in a SQL-lite database file and exported to the 

selected, input data Excel file. FGI status and demands are fed into the input data Excel 

file, i.e., data is copied manually from another system. The information gathered for the 

scheduling scenario is used to create a new schedule on which the optimisation is based.  

Detailed WIP status and machine setup are imported directly from OIS. A built-in 

macro in the input data file in Excel allocates WIP and the start of new jobs, which is 

based on demand information. The WIP status provides information about the location 

of different jobs, i.e., in front of or inside machines. If a job is being processed in a 

machine, then the estimated remaining processing time is imported as well. If the 

optimisation was to be finished immediately or in just a few seconds, the new schedule 

would not have to bother about the merging problems between the old and the new 

schedule, because nothing would have happened during this period of time. However, 

the optimisation takes time (currently10-20 minutes) and gathering input data also takes 

some time, which makes it impossible to guarantee that no jobs have been started during 

this period. Therefore, the schedule reconfiguration, i.e., the process of bringing the 

active schedule in line with the new schedule, is necessary. The forecast simulation 

helps to achieve a smooth transition to the new schedule. The process here is an almost 

seamless launch of the new schedule so that the operators will not even notice that a 

new schedule has been created.  Consequently, the forecast simulation reduces the risk 

of creating a schedule that is not up-to-date when released and the schedule 

reconfiguration updates the new schedule (match-up scheduling) with the events that 

have actually occurred during the optimisation run. 

 

There are six machines (M1-M6) in this example, on rows one to six, where M1-M3 are 

parallel machines in one processing step and M4-M6 are parallel machines in the 

subsequent processing step. The example in Figure 6.16 shows the realised schedule 

until 14:00, the rescheduling point at 14:00, and the forecast simulation for the next two 

hours.  



Chapter 6 A Full-Scale Industrial Case Study 

 
 

139 

 

 

Figure 6.16 The rescheduling point. 

The forecast of two hours marks those jobs that could be produced in the next two 

hours, if production was to continue with the current schedule. In this example, the jobs 

are: 114, 117 and 127 for M1; 115 and 119 for M2; 113 and 116 for M3, none for M4; 

231, 232 and 233 for M5; 99, 108 and 100 for M6. These jobs are then used as input for 

the rescheduling optimisation, so that the new schedule always puts these jobs first, i.e., 

a frozen period, see Figure 6.17.  

 

Figure 6.17 The new predictive schedule. 

The scheduler uses the scheduling program to start an optimisation, which means that 

the input data file is sent to the optimisation engine at the server site via a web service 

interface. At the client site, the user can watch the progress of the optimisation using 

OPTIMISE Browser. When the optimisation is finished, the user can select the best 

schedule and then send it to OIS, where it will update the current schedule with the new 

one. The schedule reconfiguration program is executed and makes sure that the new 

schedule is up-to-date. The complete realised schedule from the example can be seen in 

Figure 6.18. 
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Figure 6.18 The realised schedule. 

By using the forecast scheduling function, the number of jobs that deviate at schedule 

reconfiguration is diminished or zero. If the operators at the different machines follow 

the expert suggestion without any deviations, a schedule reconfiguration is not 

necessary, due to the use of the forecast function. 

 

6.8 Real-world deployment stages 

Wiers (1996) commented that most literature reports of scheduling systems only 

describe the architecture of a system and do not indicate whether a system has been 

implemented in the real world. He also stated that the implementation pitfalls need to be 

identified by researchers for other researchers, in order to succeed with scheduling 

techniques in practice. This section describes the steps toward a complete deployment 

of the OSS at the targeted automotive manufacturer and presents the outcomes. There 

are totally six deployment stages, as illustrated in Figure 6.19.  
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Figure 6.19 Real-world deployment stages. 

There are six stages in Figure 6.19 beginning with the simulation model and ending 

with the whole OSS system. At the top of the figure, it is also indicated whether the test 

experiments were performed online in the real-world production line, i.e., using the 

schedule obtained from the optimisation in the daily work.  

 

6.9 Stage 1: simulation model validation 

A validation plan was created to decide how to validate the simulation model and to 

serve as a basis for production follow up. The simulation model has been validated 

primarily by using two different techniques to enable correct and credible conclusions to 

be drawn. In the first step, a structured model walk through of the simulation model and 

the assumptions document was carried out on the simulation model together with the 
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scheduler, operators and production engineers, in order to approve functionality and 

simplified assumptions in the simulation model. In the second step, detailed instructions 

were formulated on what data was needed for the production follow up and how this 

data could be collected. Excel templates were also created in order to make the 

production follow up and comparison of results easier. The output data from the 

simulation model closely resembled the output data of the actual system, and the 

simulation model was considered valid (Law and Kelton, 2000). 

 

6.10  Stage 2: line schedule validation 

In stage two, the schedules were evaluated using real-world data without actually 

disturbing the real-world production line, so called mock run. In the mock run, 

schedules based on real production data were created but not used on the production 

floor, simply in order to ascertain whether good schedules can be created in various 

real-world situations. In Figure 6.20, the process of one of the methods used in the 

mock runs is shown. 

 

Figure 6.20 Validation of a mock run. 

The scheduling period was set to one week to avoid sub-optimal schedules. According 

to Figure 6.20, data was collected each day of the scheduling period. On the first day, 

all this data came from the real production line. An optimisation was started and the 

best schedule was chosen. Then one day that included information from the production 
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floor, e.g., failures, was simulated with the chosen schedule. The next day, the 

scheduling process continued except that parts of the data collected, i.e., WIP and 

production results came from the simulation. The result of the experiment, in this case 

the number of parts produced, can be seen in Figure 6.21. 

 

Figure 6.21 Comparison of results from OSS with actual output from the real line. 

After one week of production, the results of the simulation-based scheduling were 

compared with the results of the real production system. The outcome indicates that the 

simulation-based scheduling can generate better schedules than the ones used from real 

production.  

 

6.11  Stage 3: workstation schedule validation 

When only the web-based simulation optimisation system is used, there is no real-time 

dispatching. The reason for testing this part of the system was to see whether this part of 

the system was sufficient for decision support and whether the predictive schedules are 

good enough when used in daily real-world production. Only the web-based simulation 

optimisation part was evaluated in this stage, which omits the OIS. Instead of using the 

OIS, the workstation schedules were printed and attached at the machines. Since this 
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application introduced a new mode of operation to the production scheduler, operators 

and production engineers, real-world test weeks were needed to thoroughly examine its 

applicability. An example of a predictive workstation schedule used during the test is 

shown in Figure 6.22.   

 

Figure 6.22 A workstation schedule. 

The workstation schedule shows the predictive times of jobs being produced, setups to 

be made, and unplanned periods. Several scenarios and trial weeks were tested and the 

results were promising. Better schedules were found when it was compared to the 

scheduler’s prediction of makespan. The importance of including many real-world 

constraints in the model representation of the scheduling problem was found to be 

significant. For example, the predictive schedule looked odd because a machine was 

unscheduled for the first two hours for some reason, even though the right jobs were 

available. The production personnel and scheduler thought that something was wrong 

with the schedule, but the number of carriers in the second carrier loop was limited and 

caused exactly the same behaviour in the real-world. However, the work procedure was 

found to be impracticable for three reasons: (1) the data collection was too time-

consuming each time a rescheduling was needed; (2) distributing the machine schedules 
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in the production line was time-consuming; (3) system nervousness due to system 

reconfiguration at the implementation of a new schedule. The operators also thought 

that the schedule generated had a too high mix of product variants. This matter was 

partly solved by having variant and setup grouping in the genetic algorithm, which has 

been studied further in Chapter 5. It has been demonstrated qualitatively that OSS has 

actually solved many of the problems identified here. 

 

6.12  Stage 4: rescheduling validation 

When a predictive schedule is created, it is the same schedule being realised (the 

realised schedule), as long as there is no deviation or disturbance. In reality, things do 

not go entirely as planned, creating a situation where there is not a scheduling problem, 

but rather a rescheduling one (Graves, 1981). From a scheduling system point of view, 

the optimisation of the predictive schedule is only one part of the solution. Being able to 

actually use the schedule when the real production line is subject to different 

disturbances, resulting in the realised schedule, is another important feature of the 

industrial application. The whole system needs to be tested both off-line and on-line in 

the real-world production. In order to test the system off-line, a virtual environment is 

needed that simulates the real-world production.  

 

Kempf et al., (2000) present different ways of comparing schedules. The method used 

to find out whether good schedules have been found or not is the relative comparison to 

the real-world result. Furthermore, a dynamic measurement is used here where the 

predictive schedule is tested in the real environment subject to disturbances. The 

disturbances used in this test are historical data from five successive weeks, using a 

trace-driven simulation approach (Law and Kelton, 2000). The schedule measurements 

are multiple objectives and the state measurement is handled through the 

implementation of simulation-optimisation target levels. Examples of a state 

measurement that has been included here are FGI target levels, also included in the 

optimisation objectives, and WIP target levels that are not included in the optimisation 

objective. The WIP target levels are still important, since leaving a production line with 

levels that are too low or with the wrong kind of WIP may lead to a problem later on. 
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Consequently, the overall production target will not be reached until the WIP target 

levels have been achieved. 

 

The multiple objectives used to compare the simulated realised schedule to the real-

world realised schedule are somewhat different from the objectives used at the 

optimisation, due to measurability issues in the real world. The virtual environment 

used here not only tests whether a good realised schedule has been attained, but also 

parts of the communication, such as the communication with OIS. Hence, the whole 

OSS system is tested as well. The experimental settings can be found in the next sub-

section and all quantitative results of the experiment, including those from the reactive 

scheduling tests, are presented in Chapter 7.  

 

6.12.1.1 Simulation environment and experimental procedure 

In the simulation environment test, extensive and detailed data was gathered for five 

successive weeks from the real-world production line. This test was similar to a 

validation with historical data, i.e., an actual historical record is used to drive the 

simulation model (trace-driven simulation) and then the model output is compared with 

the system data. Following is a list of the important data collected through OSS: 

 WIP status of the line at the start of the period. (See Appendix G, Table G.9) 

 FGI status over time.  

 Demand forecasts. The forecasted demand (e.g., Appendix G, Table G.14) is not 

the same as the actual historical record (see Section 3.1) and therefore the 

forecasted demand is updated once per day when used for the SBO. 

 Unplanned disturbances, e.g., breakdowns/failures of machines (See Section 

3.1). Failures (about 20 hours per week), demands, and processing time 

uncertainties were considered. 

 Processing times. The processing times used for SBO is based on historical data 

whilst the data used for the simulation environment is actual historical records 

(see quality of data in Section 3.1). 
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 Working hours. Two shifts, 7.30 a.m.-3.48 p.m. and 3.48 p.m.-12. 00 midnight.  

 Planned maintenance: Mondays 10.00 a.m.-10.30 a.m., Mondays 5.00 p.m.-5.30 

p.m., Thursdays 10.00 a.m.-12.00 noon and Thursdays 5.00 p.m.-7.00 p.m. 

 Real world results. 

 

The transient status of the line, i.e., machine settings, calendar information, WIP status, 

and so forth, on the Monday morning of week number one was used as input to start an 

optimisation. The demand forecast obtained the same day was used to generate the 

necessary jobs to be started in order to satisfy the demand. Disturbances, such as 

failures, were estimated and based on earlier production follow-ups. 

 

A specific input data file that takes into account actual current state and future events 

based on forecasts was created in Excel for the SBO. The simulation-based-optimisation 

was executed and the best schedule was selected to be used in the simulation 

environment. Another input data file that takes into account actual current state and 

future events based on actual real-world outcomes for a specific week was created in 

Excel for the simulation environment. The results of that week consist of actual 

demand, which is different from the forecasted demand, and those disturbances, i.e., 

short and long machine stops, which occurred during that week. However, the schedule 

from the optimisation was used for the schedule execution in the simulation 

environment. The procedure of the simulation environment test can be seen in Figure 

6.23. 
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Figure 6.23 The procedure of the simulation environment rescheduling test. 

The procedure of the rescheduling to test the realised schedule is as follows: 

1. SBO uses the transient line status from the real world. The transient line status is 

the WIP information, current machine failures, possible changes, forecast 

information on demands, estimated machine availability, and so forth. This is 

done only when starting an experiment. 

2. The best schedule is chosen and transferred to the simulation environment. The 

schedule reconfiguration program is used to make sure that possible deviations 

to schedule are taken care of. 

3. The simulation in the simulation environment runs for one day (a periodic 

rescheduling is used and set to 24 hours). During this day, the simulation 

communicates with OIS just as if the actual PDAs were being used (expert 

suggestions, WIP messages, etc.). In the simulation environment, actual real-

world data is used, which is in contrast to the optimisation where only forecasted 

and estimated data is used. 

4. A forecast simulation is run using the current status of the simulation 

environment, but using forecasted machine availability instead.  
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5. Simulation-based optimisation is carried out using the transient line status from 

the simulation environment and “frozen jobs” from the forecast simulation. The 

forecast information is updated and the optimisation is started. 

6. Repeat from step 2 until sufficient days have been tested. 

 

Even though the system has the capability to carry out a rescheduling whenever needed, 

the real-world case study does not allow a full integration and automation of system 

data in the stages of proving the concept. Therefore, these tests were conducted on the 

assumption that a new schedule is created, according to the current procedure, once a 

day, i.e., every 24
th

 hour. If rescheduling is done more frequently, or, even better, if it is 

triggered by events, then realised schedules can be generated more effectively. 

However, the periodic rescheduling each day will make no false assumptions that 

rescheduling may be carried out at any other times. While the SBO uses the ordinary 

simulation model to find good schedules, the trace-driven simulation is of another kind. 

The trace-driven simulation does not only use different data, it acts just as if it was the 

real-world system, regarding PDA communications. Each one of the machines in this 

simulation model will send a signal, whenever this is triggered, to the OIS, which will 

in turn send an expert suggestion back to the machine through the schedule dispatcher 

program. The reason for providing this functionality is to be able to validate the entire 

system in a single test run, when a rescheduling is carried out.  

 

In order to clarify how the test works, an example replication of one of the schedule 

testing weeks in a simulation environment can be seen in Table 6.2. 

Table 6.2 Simulation environment test. 

Evaluation Shutdown time Reached target levels Target level precision (percentage) 

SBO Monday Friday 2.30p.m. 7 out of 7 101% 

SBO Tuesday Friday 2.15p.m. 7 out of 7 100% 

SBO Wednesday Thursday 10.45p.m. 7 out of 7 100% 

SBO Thursday Thursday 10.45p.m. 7 out of 7 100% 

SBO Friday NA NA NA 

Sim. environment Thursday 9.30p.m. 7 out of 7 110% 
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Real-world result Friday 11.30p.m. 5 out of 7 121% 

 

The results from the first week of one of the replications show that the SBO application 

is able to find good solutions, even though the situation changes. As shown in the 

simulation environment, all production targets are reached (see Section 6.1.2), which in 

this case are also better than the real-world results. The actual demand was 26 % less for 

the whole week, compared to the forecasted demand on Monday, which is why there is 

such an over-production in both the simulation environment and the real line. The 

update on the Wednesday forecast seems to have the right volume and, therefore, the 

shutdown time can take place almost one full day earlier than forecasted. Each one of 

the optimisations generates a schedule for two weeks ahead, in order to avoid sub-

optimal schedules. The simulation environment uses the SBO Monday schedule on 

Monday to Tuesday, the SBO Tuesday schedule on Tuesday to Wednesday, and so on. 

The simulation environment seems to have managed this week’s schedule in a good 

way, even though long disturbances in excess of 20 hours from machine stops occurred 

and a direct approach was used which allowed no space for deviations from the 

sequence. Complete results from this evaluation can be found in Chapter 7. 

 

6.13  Stage 5: PDA program validation 

In the PDA evaluation, the whole system was used to generate schedules, distribute 

them through the PDAs, and evaluate the working procedure of the system. The test was 

executed off-line, i.e., not directly in the line, but in meeting rooms at the university or 

at the company. The organisation of the machines was setup in a flow line production 

which uses a product layout where production stages are arranged in sequence. Each 

production stage may consist of several parallel workstations. The parts, in this case bar 

code flags, were physically moved through the sequence of machines, of which each 

will process a small amount of the total work needed for the product to be completed, 

see Figure 6.24. 
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Figure 6.24 One production stage in a PDA-program validation test. 

At each production stage, there is a buffer holding the parts that are available to be 

produced at each stage. In order to speed up the work procedure, bar codes of the 

workstations were used as well. Each workstation has one “input” bar code and one 

“output” bar code. Participants from different levels of the company, such as operator 

and IT consultants, and university staff were recruited to realise the tests. A clock was 

also implemented so that a time factor could be set to speed up time or pause it when 

necessary. The main target of such an evaluation was the working procedure with the 

PDA program. Overall, the result of the test was successful, even though some 

necessary changes were identified in the PDA program to make it more robust and 

intuitive. Real-time dispatching fault control of soft and hard constraints (Higgins, 

1996) was identified as particularly important. Soft constraint violations, such as job 

selection deviation from expert suggestion, gave a warning sound and a popup window 

that needed to be confirmed. Attempting to violate the hard constraints, such as trying to 

start a job in an invalid machine, was successfully hindered by the PDA program. 

Furthermore, the users of the PDAs do not always do as they are told and handling those 

“disturbances” was identified as being important. 
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6.14  Stage 6: real-world validation 

Realising the real-world validation was a huge project. About two years were needed to 

prepare just for this part, although the PDA implementation and validation was carried 

out in the meantime. The preparation was much about the IT-issues and 

implementation, since larger industries have comprehensive IT-regulations. Due to the 

fact that the OSS was a web-based system that uses both internal and external 

communication, the system had to be approved in several IT-gates, on the basis of 

architecture and integration reviews, in order to be authorized for on-line testing in the 

production line. When something in a production line is tested on-line, nothing can be 

left to chance, because causing production to stop could be very costly. Therefore, 

detailed fall-back plans were established that could be executed whenever needed, to 

ensure continued function in the system. Furthermore, several documents were created 

to support known “What-if scenarios”, i.e., instructions in how to handle certain 

situations. Additionally, responsibilities during the test were assigned to different 

personnel.  

 

The test was finally executed in the real-world production line during a production 

week, and the results were mainly good. The operators had never had such good support 

from the PDAs and the production monitoring programs. How the PDAs handled the 

soft and hard constraints was positive and the operators and shift leaders were 

impressed by the line status program. Furthermore, the schedules generated were good 

and the operators could successfully use them. However, the fact that it was not possible 

to accomplish full system integration, due to technical constraints of the machine 

equipment, resulted in a delay of disturbance information. Rescheduling was therefore 

sometimes started too late, because the manual input of data made the predictive 

schedule inaccurate when a direct approach was used. Consequently, the main 

deficiency of this implementation was the integration with the shop floor system. Apart 

from the integration, the system as a whole worked well: the SBO quickly delivered 

good and valid schedules and the OIS was responsive and accurate. 
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There are alternatives to solving the issue of integration with the shop floor system. The 

most important information that is missing in the implementation of OSS is the failure 

of machines data. A full integration with the machines would be desirable, but 

additional information could be needed anyway. An operator should be able to inform 

the system about the estimated time of failure, in the event of a more serious failure, so 

that the system can take this into account when generating a new schedule. Therefore, a 

future simple solution to the problem could be to add this task to the PDA-program.  

 

6.15  Concluding remarks 

The deployment of the system architecture, as proposed in Chapter 4, has demonstrated 

the applicability of the architecture and given further insight into industrial real-world 

scheduling problems. For example, the stage to test machine schedules identified the 

importance of grouping jobs, which is one of the contributions described in the 

optimisation algorithm in Chapter 5 and furthermore tested in Chapter 7. The 

deployment of the system in a real-world environment also confirms the importance of 

supporting the real-time scheduling task, rather than only generating a schedule in off-

line mode. Furthermore, various user-interfaces were identified as important in Chapter 

3 and have been demonstrated necessary here to support the scheduling task. For 

example, shop floor nervousness has been avoided by distributing new schedules 

electronically, with consideration to the previous schedule. Additionally, the 

deployment stages of the scheduling system OSS were described, in order to explain 

how and what stages were executed to implement the OSS architecture. Furthermore, 

the reactive scheduling stage was identified as important, the results of which are 

presented in Chapter 7. 
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Chapter 7 

7 Quantitative Results and Analyses 

This chapter presents the experimental results of applying the hybrid genetic 

representation, described in Chapter 5, to the real-world, crankshaft machining line case 

study presented in Chapter 6. All of the results included in this chapter were obtained 

from the OSS implementation on the real machining line.      

 

The chapter is divided into four main parts: (1) general optimisation problem 

formulation; (2) setup reduction experiments; (3) predictive scheduling results, and (4) 

reactive scheduling results. The first section addresses the general experimental settings 

applied to various scheduling scenarios. Thereafter, the results of the setup reduction 

experiments through the mutation operators embedded in the optimisation method are 

presented. In the predictive scheduling, different scheduling approaches for finding 

good schedules are analysed in detail. Lastly, the results of the reactive scheduling are 

analysed and compared to the real-world findings. 

 

7.1 General settings 

Different experiments have different purposes, but a description of the main shared 

settings follows. In addition, further settings specifically assigned to each experiment 

are described under each sub-section. 

 

7.1.1 Weighted-sum objective function  

Recall that the real-world scheduling case study, described in Chapter 6, is by nature a 

multi-objective and multi-properties scheduling problem of a hybrid flow shop with 

parallel machines and by-pass. Therefore, a weight-based objective function was used, 

because the production scheduler needed to obtain the result quite quickly and the user 

had no time to study separate sub-targets. According to Kempf et al., (2000), the 

scheduling objectives will and should vary from one organisation to another. However, 
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the scheduling objectives presented here are variants of commonly used objectives, such 

as makespan, throughput rate, and tardiness. Fitness is the sum of all the sub-targets’ 

fitness values.  

 

 th sh tl sa stF f f f f f    
                                                   

(7.1) 

 

where, F is fitness, thf  is the fitness of Throughput, 
shf  is the fitness of Shortage, 

tlf  is 

the fitness of the Target Levels, 
saf  is the fitness of Stopped in Advance, and stf  is the 

fitness value of the Setup Time. Throughput is the number of products produced per 

hour measured for the whole simulation period. It is important to increase the overall 

throughput of the system. Apart from the mean throughput value, the fitness function 

needs to take its standard deviation into account, because a high variability could cause 

losses. Therefore, the objective function for throughput (
th

f ), Equation (7.2), was 

created according to the values of experts of the system.  

 

                                              
  th

f w k    
                                           

 (7.2) 

 

where, w is the objective weight for Throughput,   is the mean value of Throughput, 

  is the target level of Throughput,   is the standard deviation, and k  is the weight of 

the standard deviation. An essential objective for the machining line was maintaining 

the security levels of the variants in the finished goods inventory (FGI). If a variant’s 

FGI level falls under the security level, it results in a momentary shortage in equation 

(7.3). 
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where, ms  is a momentary shortage, cl is the current stock level, and sl is the security 

level of one product variant. All momentary shortages are totalled and, at the end of the 

simulation, the variant shortage is calculated. 
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where, vs is variant shortage and n  is the total number of measures carried out. A 

robust schedule is requested, so based on a quadratic loss function (Sanchez, 2000), the 

fitness of shortage in Equation (7.5) is a good approximation in the representation of 

this objective, as it penalises small values of deviation to target minimally, but penalises 

large ones considerably. 

 2 2
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(7.5) 

where,   is the performance mean and    is the standard deviation, w  is the product 

variant’s weight, and n  is the total number of product variants. The fitness of target 

levels measures the ability to reach necessary targets for different product variant 

groups. Target levels are measured in FGI once a week and the best result is when a 

variant is equivalent to the target level. A measured level that is less than the target level 

is given a higher penalty than one that is over the target level. 
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                                                (7.6) 

where,   is the performance mean,    is the standard deviation, n  is the number of 

target levels, and w  is penalty weight,  which depends on whether the measured value 

is above or below the actual target level. Stopped in advance is based on when the 

production is shut down each week, and is referred to as makespan, since it is the same 

thing. Machines can shut down when the corresponding shortage and target levels that 

the machine produces are reached for the week.  

sa
f w 

                                                      
(7.7) 

where, w  is the objective weight and   is the performance mean of ´Stopped in 

Advance´ of all machines. The fitness of setup time is included, since it is important to 

reduce the total setup time because it will reduce the workers’ time at the machine.  

( )st
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st w
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 (7.8) 

where, w  is the objective weight, 
st

  is the mean value of the total setup time of all 

machines, and 
w

  is the mean value of the total processing time of all machines.  
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By comparing the graph of the fitness value with the graphs of the different objectives, 

i.e., throughput, shortage, target levels, makespan, and setup, it is possible to see how 

the optimisation is carried out, see Figure 7.1.  

 

Figure 7.1 Simulation-based optimisation progress. 

At first, the optimisation focus is on producing the right variants at the right time by 

decreasing the shortage, in order to reach target levels and at the same time minimise 

makespan, the focus thereafter is on increasing the throughput and minimising setup 

time. In this Scenario, the shortage is at very low levels, which makes the optimisation 

focus on the other objectives. The setup time objective is mostly in conflict with all 

other objectives, because it tries to produce as many product variants of the same type, 

consecutively. It is in conflict with the shortage and target levels, because these 

objectives usually need a schedule where the variants are in accordance to current 

demand, which could be a very mixed order. The productivity of a bottleneck stage may 

benefit from the setup reduction, but system throughput per hour usually needs a 

specific variant mix, in order to utilise the system in an efficient way, which would 

make throughput a conflicting objective to setup reduction as well. 
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7.1.2 Scheduling scenarios 

Two scenarios based on real-world data were tested, in order to study how the 

optimisation methods perform in different circumstances. There are two main product 

groups, namely, product group A and product group B (see Section 6.1.2), that mostly 

do not share the same type of resources. The first Scenario is a typical, stable production 

state in which the product mix is fairly low. The theoretical system load in Scenario 1 is 

about 80% for the two production weeks. The system load is calculated on the number 

of parts divided by the capacity of the primary bottlenecks. The first week has a system 

load of 90% and the other a load of 70%. Only a few batches (6%) have a short 

deadline, i.e., deadlines for already started jobs (WIP) within one day and jobs not yet 

started within two days, and there are no rush orders, i.e., deadlines for jobs not yet 

started within one day. Products with short deadlines are common, due to sudden 

demand changes or quality problems. It is simply Work-In-Process (WIP) or material 

that needs to be somewhat prioritised, in order to be produced on time. Rush orders are 

rare, e.g., they can occur when  large numbers of parts of the same product variant need 

to be scrapped or reworked, due to quality issues.  Rush orders must be prioritised or 

there will be a deficit of the product in the Finished Goods Inventory (FGI).  The 

theoretical system load calculated on the primary bottlenecks in Scenario 2 is 

approximately 82.5% for the two production weeks. The first week has a system load of 

95% and the other has a load of 70%, which is normal and due to demand fluctuations. 

The second Scenario is a variant of the first one, but has more products with a short 

deadline (10%) and some products (4%) that are rush orders in the first week. This has 

been accomplished by increasing the demand of some variants in product group A, 

which also indirectly results in a higher mix of product variants over a short-term 

period. The second Scenario is common in production for several reasons, e.g., demand 

fluctuations actually increase demand, there are scrapped parts or blocked parts that 

need rework, and are therefore important and relevant for testing as an additional 

scheduling Scenario. The shorter deadlines of some product variants may cause 

additional sequence-dependent setups, since there may be no time to avoid setups by 

producing larger batches and at the same time reaching the target levels or avoiding 
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shortage of the product variants. Both scenarios simulate two weeks of production, in 

order to avoid sub-optimal schedules for a short time period. 

7.1.3 General optimisation settings 

The optimisations of each optimisation method, described in Chapter 5, used ten 

replications in order to obtain reliable results. For hypothesis testing, the Mann-Witney 

test was chosen instead of the 2-sample t-test, due to the relatively small number of 

replications and since it is not known whether the results are normally distributed. The 

exact results of the hypothesis tests can be seen in Appendix F. Each replication used 

the maximum time limit of 20 minutes, which is a reasonable requirement with regard 

to the scheduling of these types of problems, e.g., when the operating time of a job ID 

(batch) in a processing step is from about 20 minutes. The requirement will make sure 

that not much has happened in the production line during the scheduling. Although the 

optimisation itself is stochastic, each evaluation in the simulation model is 

deterministic. The genetic algorithm settings are a mutation rate of 20%, crossover rate 

of 80%, and population size of 50 individuals. Each mutation type has the same chance 

of being chosen and there is a 50% chance of doing another mutation after a successful 

mutation. 

 

7.2 Results with setup-reduction mutation 

In these experiments, the results show the importance of good genetic algorithm 

operators when using a direct approach. The operators, variant-grouping and setup-

grouping, which have been tested here, are described in detail in Chapter 5. The two 

different optimisation methods used are permutation schedule (PS) and non-permutation 

schedule (NPS), in order to be able to see how much they affect the fitness objectives. 

The experiment includes the following:  

 Scheduling scenarios: Two different scheduling scenarios, as previously 

described. 

 Optimisation methods: permutation schedule (PS) and non-permutation schedule 

(NPS). 
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 Mutation type: “single batch”, “variant groups” and “setup groups”. The single 

batch mutation is the most straightforward implementation, since it will try to 

move one batch at a time. The variant groups have been implemented, because 

batches of the same product variant can be grouped into larger batches to reduce 

setup times and to prevent frequent changes of the product variant occurring at 

the machines. The setup groups are similar to the variant groups, with the 

difference that larger numbers of batches belonging to the same product family 

are grouped together. The setups between different product families are typically 

longer than the setups between product variants within the same product family. 

See Chapter 5 for more information. 

 

The results of both scenarios are presented in the following way: “mean value (standard 

deviation)”. The results of Scenario 1 can be seen in Table 7.1. 

Table 7.1 Setup reduction for scenario 1. 

Scenario 1 Single batch Single batch, variant groups 

Single batch, variant groups, 

setup groups 

  PS NPS PS NPS PS NPS 

Shortage 3(5) 3(3) 76(59) 50(47) 70(53) 52(37) 

Target levels 0(0) 6(14) 0(0) 0(0) 0(0) 0(0) 

Makespan -27436(593) -26471(410) -30439(390) -29228(468) -30441(711) -29720(875) 

Setup time 11808(613) 12677(485) 9442(602) 10888(769) 9416(447) 10571(905) 

Throughput 19867(524) 20697(315) 16821(1142) 18523(495) 16773(881) 18120(999) 

Total fitness 4244(1392) 6914(928) -4098(885) 233(960) -4179(1188) -975(1387) 

  

Both the PS and NPS show they are able to reach the targets in Scenario 1, using the 

single batch mutation. When the variant group mutation is used together with the single 

batch mutation, a huge improvement can be observed. The makespan, setup time, and 

throughput are much improved. The last mutation type setup groups were tested 

together with variant groups and single batch mutations. This only shows a small 

improvement compared to the variant groups and single batch experiment. However, the 

setup group mutation is significantly better than variant group mutation, when using the 

NPS optimisation method, see Appendix F. The results of Scenario 2 can be seen in 

Table 7.2.  
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Table 7.2 Setup reduction for scenario 2. 

Scenario 2 Single batch Single batch, variant groups 

Single batch, variant groups, 

setup groups 

  PS NPS PS NPS PS NPS 

Shortage 1149(760) 1679(1204) 537(192) 720(213) 500(217) 513(284) 

Target levels 9952(5806) 18116(5813) 407(180) 4579(1604) 364(126) 911(986) 

Makespan -1446(87) -646(557) -1729(118) -1205(366) -1775(98) -1562(184) 

Setup time 23764(1664) 27381(1196) 12799(624) 19812(1298) 10414(969) 17506(1532) 

Throughput 25306(462) 26218(316) 21117(464) 25032(719) 20140(813) 22980(1098) 

Total fitness 58725(7195) 72747(6289) 33131(1001) 48939(3059) 29644(1099) 40350(3430) 

 

Both the PS and NPS show they are not able to reach the targets in Scenario 2, using the 

single batch mutation. When the variant group mutation is used together with the single 

batch mutation, a huge improvement can be observed. All of the objectives have been 

improved, but the target levels and setup time show the greatest improvements. The last 

mutation type setup groups were tested together with variant groups and single batch 

mutations. The setup group mutation is significantly better than variant group mutation 

for both PS and NPS.  

 

7.2.1 Analysis 

The two types of mutation variant groups and setup groups show a significant 

improvement in the results. The mutations reveal a great improvement with regard to 

both Scenario 1 and Scenario 2. The results demonstrate that Scenario 1 has been 

improved from an already acceptable level. PS and NPS do not reach their targets when 

only the single batch mutation in Scenario 2 is used. Consequently, further complexity 

of the scheduling Scenario increases the need to use variant group mutation and setup 

group mutation. Overall, the setup group mutation is significantly better than the other 

two mutation operators, probably because the search space is efficiently reduced, 

without constraining it, which leads to reaching good solutions via a shorter path.  
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7.3 Results of the predictive scheduling 

In the predictive scheduling, different scheduling approaches for finding good schedules 

are evaluated. However, an analysis of why a certain approach is better than another is 

also evaluated with the help of bottleneck analyses, performance graphs, and 

dispatching rule frequency analysis.  

7.3.1 Bottleneck analysis 

The bottleneck analysis is carried out to facilitate analysing the results of the different 

approaches and their attendant optimisation methods. The optimisation methods used in 

the bottleneck analysis were PDR and PS, in order to obtain a reasonable fair resource 

utilisation of parallel machines at the production stages. Ten replications were used for 

each of the scheduling scenarios and the optimisation methods. In addition, each 

scheduling Scenario was run for two weeks, which is a really short time period, when it 

comes to a bottleneck analysis. However, generating a short-term period schedule is the 

result and, therefore, the short-term period bottlenecks are of interest. The bottleneck 

analysis used here comprises two methods: (1) active duration and (2) shifting 

bottleneck analysis (Roser et al., 2002). The notation “production stage: parallel 

workstation number” is used, i.e., 1:1 means production stage 1 and parallel workstation 

number 1. In Scenario 1, the active duration shows that production stage 1 is probably 

the bottleneck stage, see Figure 7.2. 

 

Figure 7.2 Active duration of scenario 1. 
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Furthermore, the shifting bottleneck analysis reveals that the bottlenecks are shifting 

bottlenecks most of the time and sole bottlenecks only a fraction of the time. It also 

confirms that production stage 1 is the primary bottleneck and, in particular, 

workstations 1 and 4, see Figure 7.3.  

 

Figure 7.3 Shifting bottleneck analysis of scenario 1. 

Both these types of analysis identify almost the same bottlenecks, although the order is 

different.  The two main product variant groups, A and B, are of particular interest here. 

Two main product groups usually do not share resources, but this is an ever-changing 

process, since a demand change six months ahead could mean that more resources need 

to be shared. Therefore, the bottleneck analysis is important for a scheduling 

application, since balancing and setups may change the bottleneck situation completely. 

However, workstations 1:1 and 1:4 are configured to process product variants of group 

A and workstations 1:2 and 1:3 can only process product variants of group B. One could 

therefore conclude that the production of product variants in group A is a limiting 

factor. This can be further strengthened by the fact that the next four workstations on the 

active duration graph all produce group A products. Workstations 6:4 and 4:3 produce 

both group A and group B product variants, while workstations 5:3, 6:5, and 6:6 only 

produce group A product variants. Production stage six is identified as a possible 

secondary bottleneck stage. On the other hand, it has three parallel resources and, 

therefore, stage five may be a more sensitive point or, more specifically, workstation 

5:3. In Scenario 1, production stage 1 is the primary bottleneck for both product group 
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A and product group B, mainly because the workstations have a high level of utilisation 

due to long processing times.  

 

In Scenario 2, product group A demand is increased and some of the orders are rush 

ones. The result is similar, although the order of some of the workstations is different. 

Production stage 1 is no longer the primary bottleneck, as it is in Scenario 1, see Figure 

7.4. 

 

Figure 7.4 Active duration of scenario 2. 

The active duration shows that 5:3 seems to be the primary bottleneck, followed by 

production stages one and six. The outcome of the shifting bottleneck analysis shows 

similar results in Figure 7.5. 
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Figure 7.5 Shifting bottleneck analysis of scenario 2. 

The shifting bottleneck analysis identifies workstation 5:3 as the primary bottleneck, 

followed by production stage one. Production stage one is the secondary bottleneck for 

the same reason as in Scenario 1, namely, long processing times. Production stage five, 

or more specifically workstation 5:3, is the primary bottleneck in Scenario 2, mostly for 

another reason. The workstation has long, sequence dependent setup times, partly 

because 10% of the orders have short deadlines, but mostly because 4% are rush orders. 

The bottleneck analyses of the two scenarios are important, when the experiments of the 

different optimisation methods are entered. 

 

7.3.2 Different optimisation methods 

Different optimisation methods are tested, in order to identify which one performs best 

with regard to two different scenarios. The optimisation methods for each approach are 

as follows: 

 Direct approach: 

o Permutation schedule (PS) 

o Non-permutation schedule (NPS) 

 Indirect approach: 

o Priority dispatching rules (PDR). The full set of results can also be found 

in Andersson (2011). 

 Hybrid approach: 
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o Direct approach in the first stage and priority dispatching rules in the other 

stages. (HYB) 

o Free hybrid, in which the direct approach or indirect approach is chosen 

by the optimisation algorithm for all stages (FHYB). 

 

7.3.3 Results of different optimisation methods 

The results of both scenarios are presented in the following way: “mean value (standard 

deviation)”. All averages and standard deviations are rounded to an integer value. The 

results of Scenario 1 can be seen in Table 7.3. 

Table 7.3 Results of scenario 1. 

  PS NPS PDR HYB FHYB 

Shortage 70(53) 52(37) 99(127) 106(99) 32(16) 

Target levels 0(0) 0(0) 329(67) 137(64) 35(54) 

Makespan -30441(711) -29720(875) -29415(456) -31528(93) -30934(591) 

Setup time 9416(447) 10571(905) 17937(845) 11027(1139) 9964(919) 

Throughput 16773(881) 18120(999) 12281(272) 10764(676) 10696(544) 

Total fitness -4179(1188) -975(1387) 1233(830) -9493(1773) -10206(1114) 

 

The results of Scenario 1 show that FHYB is the best among the different optimisation 

methods, but not with a statistically significant difference compared to HYB.  It 

performs well on all sub-objectives, but is surpassed by the permutation scheduling (PS) 

with regard to setup time and by HYB with regard to makespan. All optimisation 

methods demonstrate quite good results in Scenario 1, with regard to shortage, target 

levels, and makespan. The results of Scenario 2 can be seen in Table 7.4.  

Table 7.4 Results of scenario 2. 

  PS NPS PDR HYB FHYB 

Shortage 500(217) 513(284) 67342(34514) 3252(2471) 607(248) 

Target levels 364(126) 911(986) 31157(14855) 10235(1903) 779(242) 

Makespan -1775(98) -1562(184) -1612(155) -1710(53) -1754(91) 

Setup time 10414(969) 17506(1532) 31035(5886) 21726(1482) 11654(1640) 

Throughput 20140(813) 22980(1098) 21859(2321) 21280(288) 19129(246) 

Total fitness 29644(1099) 40350(3430) 149783(33409) 54783(5337) 30417(1832) 

 

The results of Scenario 2 show that PS is the best among the different scheduling 

methods, but not with a statistically significant difference compared to FHYB, see 
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Appendix F. However, FHYB is significantly better than PS, when these are compared 

to Scenario 1. FHYB is the most successful optimisation method overall, followed by 

the PS algorithm that performs well on the more difficult scheduling in Scenario 2. 

 

7.3.3.1 Direct scheduling approaches 

When comparing the two methods of the direct scheduling approaches, it is obvious 

which method is the best one. Permutation (PS) scheduling outperforms non-

permutation scheduling (NPS) on total fitness. In Scenario 1, PS performs better 

because it is superior regarding makespan, setup time, and throughput. In Scenario 2, 

the difference between PS and NPS is even greater. Whilst both of them succeed in 

avoiding a large shortage and reach the target levels, PS outperforms NPS on the other 

sub-objectives. The reason why PS is better than NPS is that NPS has a much larger 

search space, since the order of batches needs to be changed at all production stages. PS 

only needs to change the order at the first production stage, which makes it beneficial 

for a complex scheduling problem such as this, due to the time constraints. 

 

7.3.3.2 Indirect scheduling approach 

The indirect scheduling approach optimisation method of priority dispatching rules 

(PDR) does not perform very well in either of the two scenarios. In Scenario 1 it obtains 

good results on all sub-objectives except setup time. This is quite natural, since 

dispatching rules usually do not have the same ability to group product variants into 

larger batches and wait for the right product variants to arrive, as a direct approach. The 

PDRs utilise the workstations quite extensively and obtain a really good throughput. 

When it comes to Scenario 2, which is a slightly tougher Scenario, the PDRs really fail 

in generating a good schedule. For the same reason, they are not able to reduce setup 

time in Scenario 1, they also fail in prioritising rush orders, which finally also makes 

them fail in shortage and reaching target levels. Dispatching rules are local at the 

workstations, making them functional for utilising workstations, but they therefore also 

suffer from not being able to act in a more global perspective. 
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7.3.3.3 Hybrid approaches 

The HYB optimisation method of the hybrid approach uses a direct schedule at the first 

production stage and dispatching rules at the following stages, which is interesting since 

it combines the strengths of PS and PDR. In Scenario 1, HYB is the second best 

scheduling method after FHYB, although there is no significant difference between the 

two methods. HYB seems to utilise the workstations and produces a high throughput, 

but it is worse than PS and NPS with regard to setup time, although HYB maintains it at 

an acceptable level. With regard to Scenario 2, HYB shows its inability to prioritise 

batches in the line, similar to the PDR approach. Furthermore, it does not reach the 

target levels, obtains high shortage, as well as long setup times.  

 

In the FHYB optimisation method of the hybrid approach, the optimisation was able to 

freely select suitable representation (direct or indirect) at each production stage. FHYB 

generated the best schedules overall, compared to all the other methods. The reason 

seems to be that the optimisation algorithm may decide for itself where to make a 

detailed schedule of the direct representation and where to make an indirect schedule 

with dispatching rules. Therefore, it is able to focus its powers where necessary, e.g., at 

a bottleneck stage.  

 

7.3.4 Dispatching rule frequency 

In this section, there is an analysis of the type of dispatching rules selected in the 

different optimisation replications. The frequency tables show the results of both 

Scenarios divided into the different production stages. This analysis was only made for 

PDR, HYB and FHYB, since only these approaches end up with a set of rules including 

sequence (SEQ) as one of those rules. The dispatching rules are sorted in descending 

order starting with the most frequently used on the left side. The number of times a 

dispatching rule is used is displayed within the parenthesis. The different rules used for 

these experiments are sequence (SEQ) for HYB and FHYB, as well as all the different 

dispatching rules used by all three methods, namely: “First Come First Served” (FCFS), 

“Earliest Due Date” (EDD), “Shortest Processing Time” (SPT), “Longest Processing 

Time” (LPT), and “same Variant lowest Setup time earliest Due date” (VSD).  
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7.3.4.1 PDR  

The PDR method selected FCFS in the first production stage for Scenario 1, see Table 

7.5. The reason is probably that all jobs are sorted by deadline and product variant, as 

the initial solution. Consequently, FCFS uses this exact order. Production stages 2 and 4 

have many different types of rules and the reason is that those stages are not as 

important as the other ones. Production stages 3, 5, 6, and 7 seem to be dominated by 

the VSD rule which prioritises those jobs of the same type or low setup time and is 

secondary on deadline. The VSD will reduce the setup time, but it will also be able to 

finish on time, since Scenario 1 is fairly easy. 

Table 7.5 Dispatching rules frequency PDR scenario 1. 

Stage 1 FCFS(10)         

Stage 2 FCFS(3) EDD(3) LPT(3) VSD(1)  

Stage 3 VSD(7) LPT(2) EDD(1)   

Stage 4 FCFS(3) SPT(3) EDD(2) VSD(2)  

Stage 5 VSD(10)     

Stage 6 VSD(10)     

Stage 7 VSD(9) LPT(1)       

 

Scenario 2 is harder to schedule, since there are rush jobs that need to be finalised as 

soon as possible. FCFS was selected for production stage 1, for the same reason as in 

Scenario 1, see Table 7.6. Production stages 2, 3, and 4 are not that important, although 

setups seem to be avoided in stage 3. The length of the setup times in production stage 3 

is not a big issue; however, by grouping the batches, setups may be avoided at other 

production stages, e.g., production stage 6 which could be affected by the order from 

stage 3. Production stage 5, which is the bottleneck stage in this Scenario according to 

the bottleneck analysis, seems to struggle with conflicting objectives. In 6/10, it selects 

EDD in order to prioritise the rush orders and in 4/10 it tries to avoid long, sequence 

dependent setup times by using the VSD rule.  
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Table 7.6 Dispatching rules frequency PDR scenario 2. 

Stage 1 FCFS(10)         

Stage 2 FCFS(4) LPT(2)  SPT(2) EDD(1) VSD(1) 

Stage 3 VSD(6) EDD(2) LPT(1) SPT(1)  

Stage 4 LPT(6) VSD(3) FCFS(1)   

Stage 5 EDD(6) VSD(4)    

Stage 6 LPT(6) VSD(3) FCFS(1)   

Stage 7 LPT(5) SPT(4) FCFS(1)     

 

7.3.4.2 HYB 

The HYB method is the same as the PDR approach, with the exception that SEQ was 

selected for the first production stage. In Scenario 1 (Table 7.7), production stages 2 and 

4 are not as important as the other stages. Production stage 3 seems to benefit from 

reducing the number of setups or keeping batches together, by using the VSD rule. 

Production stage 5 has VSD and EDD as the most frequently used rules. Whilst VSD 

reduces setups, EDD may help in prioritising the right kind of jobs, in order to obtain a 

shorter makespan. Production stages 6 and 7 are dominated by the VSD rule.  

Table 7.7 Dispatching rules frequency HYB scenario 1. 

Stage 1 SEQ(10)         

Stage 2 EDD(6) SPT(3) LPT(1)   

Stage 3 VSD(10)     

Stage 4 SPT(8) FCFS(2)    

Stage 5 VSD(5) EDD(4) FCFS(1)   

Stage 6 VSD(10)     

Stage 7 VSD(10)         

 

In Scenario 2 (Table 7.8), the sequence (SEQ) in production stage 1 determines the 

order of jobs to be started. In production stages 2 and 4, the algorithm has a hard time 

determining the rules. The variety of rules selected for production stage 3 in Scenario 2 

is rather hard to explain, but is an effect that can be observed for all optimisation 

methods. Production stage 3 is not a bottleneck stage, but the rules were probably 

selected to support other production stages. Production stage 5 is a bottleneck stage in 

Scenario 2 and EDD was selected in order to ensure the right jobs are chosen when they 

queue up in front of the workstations.  



Chapter 7 Quantitative Results and Analyses 

 
 

171 

 

Table 7.8 Dispatching rules frequency HYB scenario 2. 

Stage 1 SEQ(10)         

Stage 2 FCFS(5) EDD(2) LPT(2) SPT(1)  

Stage 3 LPT(7) VSD(3)    

Stage 4 LPT(4) VSD(4) FCFS(1) SPT(1)  

Stage 5 EDD(10)     

Stage 6 LPT(7) VSD(3)    

Stage 7 VSD(9) FCFS(1)       

 

7.3.4.3 FHYB 

The FHYB method has the choice of freely selecting between all dispatching rules 

including the SEQ. In Scenario 1 (Table 7.9), the bottlenecks in production stage 1 have 

selected SEQ as the dispatching rule, since the sequence is able to control what jobs 

start on the line in a good way. Production stage 3 also seems to benefit from the 

sequence, as it was selected in 7/10. Production stages 5, 6 and 7 benefit from selecting 

VSD as the primary rule, since it will reduce the total setup time at those stages.  

Table 7.9 Dispatching rules frequency FHYB scenario 1. 

Stage 1 SEQ(10)         

Stage 2 VSD(3) EDD(2)  FCFS(2) SPT(2) LPT(1) 

Stage 3 SEQ(7) VSD(3)    

Stage 4 LPT(5) FCFS(2) EDD(1) SPT(1) VSD(1) 

Stage 5 VSD(7) SEQ(3)    

Stage 6 VSD(9) FCFS(1)    

Stage 7 VSD(10)         

 

In Scenario 2 (Table 7.10), SEQ was selected for production stage 1 for the same reason 

as before. However, what is most remarkable is that SEQ was selected for production 

stage 5 in 9/10 replications. In the case where VSD was selected for stage 5, the other 

production stages upstream compensated that by having SEQ selected. SEQ is able to 

reduce the setup whilst making sure that the right product variants, i.e., rush orders, are 

prioritised. 
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Table 7.10 Dispatching rules frequency FHYB scenario 2. 

Stage 1 SEQ(10)         

Stage 2 FCFS(4) VSD(3) SPT(2) SEQ(1)  

Stage 3 SEQ(5) LPT(4) VSD(1)   

Stage 4 LPT(8) SEQ(1) SPT(1)   

Stage 5 SEQ(9) VSD(1)    

Stage 6 LPT(9) VSD(1)    

Stage 7 VSD(5) LPT(4) FCFS(1)     

 

7.3.5 Performance analysis 

When it comes to a real-world scheduling problem, there is limited time in which a 

schedule must be found. The various optimisation methods converge towards their best 

solutions at a different pace. Figure 7.6 shows the optimisation progress of the different 

optimisation methods in Scenario 1.  

 

Figure 7.6 Algorithm performance in scenario 1. 

There are two clear groups of methods: (1) those that only use the direct approach and 

(2) those that use the indirect approach in some or all of the production stages. The 

latter group obtains better initial solutions, due to the use of dispatching rules that 

dramatically decrease the search space.  When it comes to the first group, the 

permutation schedule (PS) converges faster towards good solutions compared to the 
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non-permutation schedule (NPS). Both direct approaches generate a better schedule 

compared to the priority dispatching rules approach (PDR) which seems to cease its 

improvement after the first rapid improvement down to a total fitness of 7000. The two 

remaining approaches, the hybrid (HYB) and the free hybrid (FHYB), are both fast at 

the beginning and continue to converge towards better solutions. With regard to 

Scenario 2, the optimisation methods perform differently, see Figure 7.7.  

 

Figure 7.7 Algorithm performance in scenario 2. 

Among the approaches, the direct approach is still the worst one at the beginning of the 

optimisation run, but PS and NPS improve quite rapidly, compared to most of the other 

methods. PDR is clearly the worst method, probably due to its inability to prioritise rush 

jobs and reduce setup times. HYB converges towards better solutions, but do not reach 

satisfactory levels of the different optimisation goals. NPS obtains good solutions for all 

the objectives except setup time, which is quite long compared to PS and FHYB. The 

PS and FHYB optimisation methods are the two which obtain the best results after 20 

minutes. In the first five minutes, FHYB is faster because it is able to use dispatching 

rules and therefore concentrates its resources at the bottlenecks.  

 

It seems that combining the direct and the indirect approaches, i.e., to form a hybrid 

approach, is successful. Particularly the FHYB method is good, since it seems to be able 
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to handle different scenarios in different ways and use the detailed scheduling (direct 

representation) where it is needed. However, the direct approaches still obtain good 

results in both scenarios and, in particular, the PS method, since it seems to reduce the 

search space into what is feasible with a limited time period. The direct approaches 

seem to be good when some jobs need to be prioritised, e.g., rush orders.  

Consequently, FHYB is fast in converging towards good solutions and efficiently 

focusing on the bottleneck stages.  FHYB’s flexibly can handle that bottlenecks shift 

over time.  

 

7.4 Results with reactive scheduling 

How to measure a schedule is based on Kempf et al., (2000) where several issues are 

discussed in order to obtain a good schedule. Here, a dynamic measurement is used 

where the predictive schedule is tested in the real environment with regard to 

disturbances. The result of the dynamic test is the realised schedule. The disturbances 

used in this test are historical data from five successive weeks, applying a trace-driven 

simulation approach as described in Chapter 6. The schedule measurements are multiple 

objectives and the state measurement is handled through the implementation of 

simulation-optimisation goals (target levels). The multiple objectives used to compare 

the simulated realised schedule with the real-world realised schedule are somewhat 

different from the objectives used at the optimisation, due to measurability issues in the 

real-world.  

 

7.4.1 Experimental settings 

Detailed historical data from five successive weeks in 2010 was used as input and 

output data. One rescheduling Scenario comprised five successive weeks and a total of 

23 possible working days, which means 23 periodic rescheduling points (optimisations). 

Ten replications were carried out for each rescheduling Scenario, in order to obtain 

reliable results. Output data from the rescheduling Scenario is compared with the real 

world result from the same period. More details regarding how the experiment, i.e., 

rescheduling validation, was carried out are included in Chapter 6. 
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7.4.1.1 Output measures 

It was not possible to collect all the data from the real world and, therefore, three factors 

are compared quantitatively: (1) makespan, (2) missed target levels, and (3) the number 

of shortage hours. The fourth factor that is measured, but not compared with the real-

world result due to measurability issues in the real-world, is the setups at workstations. 

The data format is not the same, due to a lower level of detail in the data measured. All 

results are presented on the basis of their average value per week. A more detailed 

description of the outputs follows: 

 Missed TL stands for number of target level groups that did not reach their target 

levels. See Section 6.1.2 for more information. 

 Makespan rel stands for the makespan difference (hrs) compared to the real-

world result. The reason for not using the actual makespan value is that the only 

interesting value is the remaining production time that could be saved (or lost) 

when using the simulation-based optimisation. The production time remaining is 

not simply the remaining time, but the active production time after subtracting 

possible planned maintenance and other activities from the remaining time.  

 Shortage hours stand for the total number of hours that jobs were below the 

different FGI security levels. For example, if three parts are below the security 

levels for two hours and one part is below the security level for six hours, it is 

added up to a total of twelve (3x2+1x6) hours. See Section 6.1.2 for more 

information. 

 Setup time stands for the total setup time (hrs). The setup time is measured for 

all workstations in the production line, but cannot be compared to the real-world 

result, since the production line was not able to collect that data.  
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7.4.1.2 Scheduling approaches 

Unfortunately, each replication takes several days to execute and, furthermore, the 

manual processing of output data is needed, which takes additional time. Consequently, 

the number of scheduling approaches tested was reduced to only a few.  

When comparing the results of the optimisation methods of the different approaches for 

the predictive scheduling, it can be concluded that the FHYB method was the best 

approach, followed by the PS method, and both obtained really good results for the two 

scenarios. The PDR optimisation method was the worst one, but still the only indirect 

approach tested. The three methods mentioned were selected to see how they would 

perform when the actual schedules were realised, i.e., with regard to variability 

(dynamic measurement). The PS method optimises the predictive schedule using a 

direct schedule (direct approach using sequences) and the same schedule as input for the 

reactive scheduling. Hence, each rescheduling cycle will update the schedule used in 

OIS for the reactive scheduling. The PDR method uses the same rules as those for the 

predictive scheduling experiment, namely, FCFS, SPT, LPT, EDD, and VSD. In the 

same manner as the PS method, the PDR approach optimises the predictive schedule 

using an indirect approach and the same schedule as input for the reactive scheduling. 

 

The FHYB method uses a combination of direct and indirect representation on the 

production stages decided by the optimisation methods NPS and PDR. The hybrid 

approach is nearly the same as the one presented as “Free Hybrid” (FHYB) in the 

previous sub-section, which obtained the best results overall. It is the same method 

when the optimisation is run to generate the predictive schedule, however, when the 

schedule is to be realised in the reactive scheduling, there is a difference. The difference 

is that the hybrid scheduling rule “hybrid setup non-blocking sequence” (HSNBS) is 

used. The scheduling rule selects jobs according to sequence, as long as the buffer is not 

full. If the input buffer is full and the next job in sequence is not available, the PDR 

VSD will be used to select jobs. The rule is mainly used to avoid a deadlock caused by 

disturbances.  
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7.4.2 Indirect approach 

The results, i.e., the simulated realised schedule, of the indirect approach (PDR) are 

compared to the real-world findings, as shown in Table 7.11. 

Table 7.11 Results of real-world compared to PDR. 

  Real-world PDR 

Missed TL 1.0 0.6 (0.2) 

Makespan rel 0.0 -12 (2) 

Shortage hours 0.0 7480.4 (12971.2) 

Setup time NA 25.2 (2.1) 

  

The real-world production did not reach the minimum target levels of 14.3% average 

each week, i.e., one of totally seven target levels. The PDR method obtained a better 

result which revealed that only 8.6% of the target levels were below the minimum level 

each week. The makespan, when all the products were finalised in one week, of the real-

world result was much higher compared to the average result of the PDR method. The 

PDR method was able to finalise 12 hours before the real-world production, which 

could result in huge savings, since about eight to fifteen operators work simultaneously 

on the production line. However, the number of shortage hours is the worst aspect about 

the results of the PDR method, revealing an average of 7480 hours per week, which is 

the same as declaring that 10% of the products are each six hours late. The setup time 

cannot be compared to the real-world result, since it was not collected from the 

production line.  

 

7.4.3 Direct approach 

The results, i.e., the simulated realised schedule, of the direct approach (PS) are 

compared to the real-world findings, as shown in Table 7.12. 

Table 7.12 Results of real-world compared to PS. 

  Real-world PS 

Missed TL 1.0 0,4 (0,1) 

Makespan rel 0.0 -6,5 (1,1) 

Shortage hours 0.0 0 (0) 

Setup time NA 23,8 (1,6) 
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The result of the PS method is better overall compared to the real-world findings. The 

simulation obtained a much better result which revealed that only 5.7% (0.4/7) of the 

target levels were below the minimum level each week. The makespan, when all the 

products were finalised in one week, of the real-world result was much higher compared 

to the average result of the direct approach. The PS method was able to finalise 6.5 

hours before the real-world production. Neither the real-world nor the PS method was 

below the security stock levels. The setup time cannot be compared to the real-world 

result, since it was not collected from the production line.  

 

7.4.4 Hybrid approach 

The results, i.e., the simulated realised schedule, of the hybrid approach (FHYB) are 

compared to the real-world findings. This FHYB method used either sequence or 

dispatching rules on the different production stages. The results can be seen in Table 

7.13.  

Table 7.13 Results of real-world compared to FHYB. 

  Real-world FHYB 

Missed TL 1.0 0.4 (0) 

Makespan rel 0.0 -7.8 (1.2) 

Shortage hours 0.0 0 (0) 

Setup time NA 27.5 (1.2) 

  

The result of the FHYB method is better overall compared to the real-world findings. 

The simulation obtained a much better result which revealed that only 5.7% of the target 

levels were below the minimum level each week.  The FHYB method was able to 

finalise 7.8 hours before the real-world production. Neither the real-world nor the 

FHYB method was below the security stock levels. The setup time cannot be compared 

to the real-world result, since it was not collected from the production line.  
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7.4.5 Comparison of the optimisation methods 

All three optimisation methods have a shorter makespan and missed less target levels 

compared to the real-world result, see Table 7.14. 

Table 7.14 Comparison of different optimisation methods. 

  Real-world PDR PS FHYB 

Missed TL 1.0 0,6 (0.2) 0.4 (0.1) 0.4 (0) 

Makespan rel 0.0 -12 (2) -6.5 (1.1) -7.8 (1.2) 

Shortage hours 0.0 

7480.4 

(12971.2) 0 (0) 0 (0) 

Setup time NA 25.2 (2.1) 23.8 (1.6) 27.5 (1.2) 

 

The PDR method obtained the best result for makespan, but is ruled out due to the 

shortage which means that products are late. The PDR method seems to be able to 

utilise the resources in a good way with regard to disturbances, but fails in prioritising 

the right product variants at the right time. Both the PS and the FHYB methods obtained 

better results overall compared to the real-world findings and both approaches avoided 

any shortage, i.e., late parts.  

 

The best result in each sub-objective is compared to the second best value using the 

Mann-Witney test, see Appendix F, and if it is statistically significant with a 95% 

confidence level, it is marked in bold. The PS method was better than the hybrid 

approach in setup time, because a completely strict schedule is better at controlling this 

aspect, which is similar to the results of the predictive scheduling. The setup time of the 

PS method is marked in bold, because the difference is significant compared to the 

FHYB method. The makespan of the FHYB method is marked in bold, because the 

difference is significant compared to the PS method. When the PS method is compared 

to the FHYB approach, the latter is the slightly better one due to the importance of 

makespan. The FHYB method has a makespan that is approximately 1.3 hours better 

than the PS method and 7.8 hours better than the real-world finding, which could mean 

huge savings, since about eight to fifteen operators work simultaneously on the 

production line.  

 



Chapter 7 Quantitative Results and Analyses 

 
 

180 

 

7.5 Comparison of predictive and reactive scheduling results 

When comparing the results of the different approaches and their optimisation methods 

for the predictive scheduling, it can be concluded that the FHYB approach was the best 

one, followed by the PS method, and both obtained really good results for the two 

scenarios. The PDR method was the worst one. Both FHYB and PS performed well on 

makespan, target levels, setups, and shortage, but a deeper analysis revealed that FHYB 

was better at minimising makespan and PS was better at reducing setup time. In 

contrast, the PDR method was not able to produce on target and at the same setup times. 

Additionally, makespan and shortage was high. The three methods mentioned were 

selected to see how they would perform when the actual schedules were realised, i.e., 

with regard to variability (dynamic measurement). The variability was based on real-

world data gathered during a five week period from the targeted production line, in 

order to obtain reliable results.  

 

What can be concluded here is that the PS method performs well on all objectives for 

both the predictive and reactive scheduling. The FHYB method is the best one for both 

the predictive and reactive results. The PDR method actually performs better in the 

reactive scheduling compared to the results of the predictive scheduling, since it is able 

to adapt to those disturbances that arise. However, with the PDR method, parts were late 

(shortage) in both the predictive and reactive scheduling experiments. FHYB is a 

combination of PS and PDR, which is also reflected in the results since it has lower 

makespan than PS, but is worse on setup.  

 

The results of the predictive experiments show clear similarities to the results of the 

reactive experiments. The PDR rule and FHYB method show that there is a potential in 

reaching even better solutions when adapting to those changes that arise, e.g., machine 

failures.  
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7.6 Discussions 

The main focus of this system is to support the scheduling task in real-world production 

lines, in which the scheduling operation is one part of the system. The proposed 

scheduling system, including the proposed hybrid genetic algorithm, has been 

demonstrated effective when implemented in a real-world production system (Chapters 

6 and 7). Important functions to include in a scheduling system architecture are 

summarized in Section 3.4, and the procedure of the scheduling method, based on the 

system architecture, is described in Sections 4.4.3 and 4.4.4. Furthermore, identified 

steps and implementing lessons learned, e.g., the importance of integration, and a web-

based simulation-based scheduling system, are described in Sections 6.8-6.14. The 

scheduling system architecture of OSS and the hybrid genetic algorithm is intended to 

be used for hybrid flow shop (see Section 1.4 and Section 2.3) production lines, such as 

machining lines similar to the automotive components production line described in 

Section 6.1.2. The hybrid genetic algorithm and the system architecture are not limited 

to automotive production lines, because similar problems may be found in various 

areas, such as in food or semi-conductor production. However, there may be specific 

constraints and features that need to be considered, e.g., constraints to be included in a 

discrete event simulation model. For example, job shop production is outside the scope 

of this study because the hybrid genetic algorithm is designed for hybrid flow shops, 

even though the system architecture is capable of handling other types of production 

flows.  

 

7.7 Concluding remarks 

The experimental results of the scheduling of a real-world, complex hybrid flow shop 

scheduling problem are presented in this chapter. The setup reduction experiments 

prove that the approach of handling groups of batches, proposed in Chapter 5, is very 

successful in generating better schedules. The novel hybrid genetic representation for 

real-world, complex hybrid flow shop scheduling problems, described in Chapter 5, was 

used to test different scheduling approaches. This way of generating schedules, the 

hybrid approach and more specifically the FHYB optimisation method, has 
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demonstrated to be the best among the methods for both the predictive scheduling and 

reactive scheduling results. Furthermore, the analysis of the predictive scheduling 

results shows that FHYB is flexible in different scheduling scenarios and efficiently 

uses the computing resources where needed, e.g., at the bottleneck operation. 
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Chapter 8 

8 Conclusions and Future Work 

This Chapter presents the overall conclusions of the thesis (Section 8.1), a summary of 

the contributions to knowledge (Section 8.2), and identifies possible areas of future 

research (Section 8.3). 

 

8.1 Conclusions 

The overall thesis of this work can be stated as follows:  

“In order to advance the research and development of manufacturing scheduling 

systems which can more effectively address the problems found in a complex, real-

world manufacturing flow shop, an approach which is a combination of systems 

engineering and algorithmic design with verifications from empirical experiments using 

real-world scenarios and data is paramount.” 

 

The hypothesis stated in Chapter 1 that existing scheduling approaches and algorithms 

are inadequate to effectively address the problems found in a complex, real-world 

manufacturing flow shop, has found its support based on the comprehensive literature 

review carried out in this study. Particularly, the review pinpoints the fact that a 

scheduling system with real-time and reactive support is badly needed in order to 

effectively address the uncertainty in real-world problems. Following are the detailed 

conclusions summarised based on the literature review on production scheduling 

conducted in this study: 

 In order to diminish the gap between theory and practice, more complex 

scheduling problems need to be considered. Furthermore, in order not to make 

the same unrealistic assumptions (see Section 2.4.1) that seem to have been a 

natural part of theoretical scheduling research, real-world problems must be 

studied. See Section 2.5. 

 Discrete-event simulation models have the capability to represent complex real-

world systems in detail, as well as cope with several constraints and multiple 
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objectives.  Furthermore, many real-world optimisation problems can only be 

treated by simulation models. See Section 2.4.5. 

 Simulation is not an optimisation tool and GA is appropriately combined with 

simulation, because quite a few evaluations are needed, in order to search a large 

area of the solution space (see Section 2.4.5). Combining GA with dispatching 

rules has been identified by several researchers as a successful approach (see 

Section 2.4.5), and a hybrid method proposed in this thesis efficiently enhances 

the simulation-based optimisation in both the predictive and reactive scheduling. 

 Solving the sequencing problems is not adequate, since the real-world 

schedulers are faced with day-to-day challenges of uncertainty (see Section 3.2). 

In order to handle the scheduling task including uncertainty, an efficient 

scheduling system is needed (see Section 3.3), not only an efficient algorithm.  

 

From a system engineering perspective, a new, generic, simulation-based, optimisation 

system framework for solving real-world complex scheduling problems has been 

proposed (see Section 4.4) and implemented in a real-world industrial environment (See 

Chapter 6). The main focus of this system is to support the scheduling task in real-world 

production lines, in which the scheduling operation is one part of the system. The users 

of such an application are mainly the production scheduler and operators on the shop 

floor, but also the production engineers to some extent. The following points summarise 

the support offered to the scheduler: 

 The system generates valid schedules (see Section 2.4.5 and Section 6.14) for 

the short-term scheduling horizon, which reduces the risk that the schedules are 

adjusted manually.  

 The system supports the scheduler in creating schedules based on partial data 

(see Section 3.2.1), and the system does not require the availability of complete 

data input, i.e., match-up scheduling and right-shift scheduling may be carried 

out in reaction events (see Section 4.4.2.5).  

 The system supports the scheduler in monitoring schedule execution (see 

Section 6.5) and performs necessary changes (see Section 4.4.4) when needed, 
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in order to fulfil scheduling targets. Hence, the scheduler is in direct control to 

answer questions and give directions. 

 The system supports the scheduler to be proactive using what-if scenarios (see 

Section 3.4) and forecast simulation (see Section 4.4.4), by offering easy access 

to experimentation using the OPTIMISE platform (see Section 4.3).  

 The system supports the scheduler by being accessible for use anytime, 

anywhere, through Web Services technology (see Section 4.3).  

 

The transparency offered by the system, e.g., through the monitoring capability (see 

Section 6.5), is also important for the operators at the production line (see Section 

3.3.1). The system supports the operators in maintaining control by offering schedule 

execution monitoring (see Section 6.5.1) through user interface applications, because it 

is the operators that execute the schedules in a semi-automatic or manual system. The 

system is reactive, since it deals with the dispatching decisions (see Section 4.4.2) in 

soft real-time based on the current status of the system. Furthermore, the dispatching 

client supports both flexibility and fault control (see Section 6.13), because it allows the 

breaking of soft constraints, but not the breaking of hard constraints. Production 

engineers need to keep the simulation model up to date and are supported by user 

interfaces to do so (see Section 6.3.1). Additionally, production engineers may use the 

scheduling system to test future physical configurations and product changes, i.e. 

running what-if scenarios.  

 

In terms of contributions in algorithmic design (see Chapter 5 and Section 5.2) for 

complex production scheduling problems, a novel hybrid approach (see Section 5.2.2) 

that may be able to handle a wider range of problems and lead to more general systems 

has been proposed in this thesis. The hybrid approach is believed to be unique compared 

to other hybrid representations, because it allows using different representation (direct, 

indirect or hybrid) at different production stages. Other approaches usually apply a 

hybrid representation to all production stages. An optimisation method using this hybrid 

approach has been demonstrated to enhance the efficiency of SBO, when evaluated on a 

real-world setting in both the predictive (see Section 7.3) and reactive scheduling (see 

Section 7.4). A scheduling method that can handle a wider range of problems is 



Chapter 8 

 
 

186 

 

important, because changes due to product mix and production volume modifications 

are very frequent (see Section 1.1.1) on a real-world production shop floor. For 

example, when the product mix and volume are changed from week to week, a 

workstation previously identified as the bottleneck may shift to another production stage 

and it has been shown that the hybrid approach is particularly efficient in dealing with 

this problem (see Section 7.3), compared to the other approaches tested in this thesis.  

 

8.2 Contributions to knowledge 

In order to cope with the challenges faced by manufacturing companies today, a new, 

generic, simulation-based, optimisation system framework for solving real-world, 

complex scheduling problems has been proposed. Furthermore, a hybrid meta-heuristic 

scheduling algorithm that combines priority dispatching rules and genetic encoding 

which efficiently enhance the simulation-based optimisation has been proposed. The 

proposed system has been implemented in a real-world industrial environment and the 

novel, hybrid genetic representation has been demonstrated effective for a complex 

scheduling problem using real-world data. The scientific contributions to knowledge 

from this research include the following: 

 The research study has shown that the contextual conditions (see Chapter 6) are 

indeed important for real-world scheduling problems. Industrial companies are 

not only facing complex scheduling problems, but also need a new toolset to 

support their daily scheduling tasks. Scheduling algorithms need to be integrated 

into a scheduling system and the algorithms may in fact be affected by the 

contextual conditions of the real-world scheduling deployment, such as 

deviations in updating a schedule (see Section 6.7) or operators requesting a low 

variant mix not directly related to the sequence-dependent setup times (see 

Section 6.11). 

 A new, web services-based industrial scheduling system, called OSS (see 

Chapter 4 and Section 4.4), has been proposed and its applicability demonstrated 

by a comprehensive industrial implementation and evaluation (see Chapter 6). 

The research has gone beyond existing studies of simulation-based scheduling 

applications, as OSS is ready to be used for further research of reactive 
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scheduling decision support systems and optimisation methods using discrete-

event simulation. Particularly, OSS supports further comparisons of new 

scheduling algorithms, because more algorithms can be added to the algorithm 

library and evaluated utilising the OPTIMISE platform. 

 This study has proposed a generic, novel hybrid genetic representation (see 

Chapter 5 and Section 5.2.1) for real-world, complex, hybrid flow shop 

scheduling problems that combines the GA with dispatching rules. Such a 

hybrid GA representation is believed to be unique, as it has the capability to 

cope with direct, indirect, and hybrid approaches flexibly. This flexibility is 

important since different scheduling approaches may be advantageous in 

different scheduling problems. Furthermore, current scheduling problems may 

change over time in real-world production systems due to their requirement to 

be flexible and, therefore, scheduling approaches previously shown to be 

outstanding may no longer be suitable under the new conditions. The proposed 

optimisation algorithm can use the different scheduling approaches within the 

same algorithm and may be kept generic and intact upon changes, due to the fact 

that most changes will be made to a discrete-event simulation model. 

Furthermore, it has been shown that the proposed hybrid approach efficiently 

and flexibly enhances the simulation-based optimisation for both predictive (see 

Section 7.3) and reactive scheduling (see Section 7.4) based on scenarios using 

real-world data.  

 

The contributions to knowledge and practice from an industrial perspective could be 

summarised with the words: validity, generality, simplicity, and flexibility. These terms 

are further explained and presented as follows: 

 Demonstrated that characteristics of real-world scheduling problems, such as 

multiple objectives and multiple constraints, can all be considered (see Section 

6.1) when using simulation-based optimisation within a reasonable time period 

(see Chapter 6 and Chapter 7).  

 The OSS (see Section 4.4), as implemented on top of the generic OPTIMISE 

platform (see Section 4.3), supports near optimal and real-time scheduling with 

the help of SBO. OSS utilises the existing core components to support running 
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the parallel and distributed simulation evaluations via the Internet and enable 

both SMEs and multinational enterprises, with or without simulation resources, 

to utilise the system. 

 The common users of the system do not need to consider which scheduling 

approach the system uses, because the functionality remains the same (see 

Section 6.6). 

 The OSS supports experimentation not directly related to the scheduling, i.e., 

what-if scenarios, which would extend the use of simulation models built for 

scheduling. This is an important aspect to the scheduling as well, because real-

world production systems tend to change over time. Furthermore, the cost of 

building simulation models for scheduling is reduced in relation to its use. (See 

Section 4.1 and Section 4.3) 
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8.3 Future work 

There are two possible future research directions, based on the results of this research 

study:  

 

8.3.1 Benchmark problems 

Future research within production scheduling needs to consider more complex 

scheduling problems, in order to reduce the gap between theory and practice. 

Consequently, there is a need for a standardised set of complex, hybrid flow shop 

scheduling problems based on real-world characteristics, so that researchers can 

compare and evaluate the effectiveness of their algorithms. The hybrid flow shops 

considered would need to have multiple production stages, parallel machines, multiple 

scheduling objectives, multiple constraints, and characteristics such as sequence-

dependent setup times, i.e., without the unrealistic simplifications usually made. This 

kind of benchmark problem resembles the use of benchmark functions in optimisation 

algorithm design and benchmark data sets in data mining research, but will be more 

specific to real-world complex production scheduling. 

   

8.3.2 Schedule robustness and hybrid methods 

This research has proposed a system architecture that is divided into two parts: the 

predictive schedule created by the simulation-based optimisation and the real-time 

reactive dispatching. The scheduling robustness methodologies used in this research are 

mainly the predictive-reactive approach with the periodic rescheduling, but also the 

complete reactive approach with dispatching rules. A possible extension of this work is 

to consider scheduling robustness, compare and investigate proactive (robust 

schedules), completely reactive (heuristics), predictive-reactive, and hybrid approaches 

for complex hybrid flow shops, preferably on benchmark problems as mentioned above.  

Furthermore, research could be carried out to gain insight into how hybrid methods 

could efficiently use predictive schedule information from the simulation-based 
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optimisation together with reactive heuristics that take care of the immediate 

dispatching. 

 

8.3.3 Integration 

Scheduling systems integration with information systems (e.g., ERP systems) and shop 

floor systems (e.g. machines) has been identified as important, but is outside the 

immediate scope of this research. However, it is no easy task, because production 

systems may have old equipment or restrictions to do so. Full integration with the shop 

floor is desired to overcome the difficulties of information delay, e.g., not being reactive 

enough in response to machine failures. However, additional information may be 

needed, such as the estimated time of failure, so that the system can take this into 

account when generating a new schedule. Consequently, research into how to execute 

the integration and what information from the systems is important to acquire in order 

to find different alternatives of system integration is needed.  
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Appendix A: Carrier Flag Client 

The carrier flag client holds all of the current job information (already produced, 

currently produced and not yet started) by communicating with OIS, see Figure A. 1.  

 

Figure A. 1 Carrier flag program. 

The carrier flag is important because it lets the user print those carrier flags that hold the 

job information. The carrier flags have some necessary production information and a 

barcode of the job ID. Once the carrier flags have been printed, the batches will be 

tagged with “available for production” at the first production stage. In order to control 

that duplicates of the same flag have not been printed, the program will set an attribute 

to each flag printed.  
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Appendix B: Dispatching Client User-interface 

 

Start screen 

The start screen, displayed in Figure B. 1, shows the different options used by the 

operators in the production line.  

Start a job

Stop a job

Move a job

Scrap parts

Block parts

Stocktaking

Information

Settings

Exit
 

Figure B. 1 Start screen. 

The most frequently used options are the first two buttons, i.e., to start or stop a job in a 

machine. It is possible move a job or parts of a job to other destinations, scrap parts, 

block parts, do stocktaking or fetch information about a job. The last two buttons are 

used for system settings and to exit the program. Report start and stop of a job can 

almost entirely be handled only using the barcode scanner. The other options, which are 

not used as frequently, may use barcode scanning for the jobs’ id numbers.  

 

Start or stop a job 

When the operator needs to start jobs at the machines, no consideration needs to be 

taken whether a direct-, indirect- or hybrid representation is used at the machine. The 

operator gets the same behaviour no matter what. The screens of starting a job can be 

seen in Figure B. 2.  
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Variant 1

Variant 1Variant 1

 

Figure B. 2 Start a job screen. 

When the operator selects a machine, e.g., by barcode scanning, the expert suggestion is 

displayed for the operator in the green field on the left side in the figure. The colour 

green means that the job is available at the production stage and the colour red means 

that the job is not available. The first number “216” stands for the job ID number and 

the second text string “Variant 1” is the name of the product variant. The selection of 

the job to start, e.g., by scanning a barcode of the carrier, is shown on the right side in 

Figure B. 2. The screens used for stopping jobs are similar to the screens for starting 

jobs. 

 

Confirm screens 

Confirm screens, e.g., Figure B. 3, show an example of a confirmation screen, in which 

the operator may see the settings made and confirm the decisions.  

Variant 1

 

Figure B. 3 Confirm screen. 
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Move a job 

The operations to move a job depend on the area from which the move is made, because 

different areas contain different levels of details for the jobs, see Figure B. 4. 

 

Figure B. 4 Move a job. 

The first option relates to the information that can be found when moving a job from the 

first part of the line, i.e., production stages 1-7, as described in Chapter 6. The only 

information needed is the job ID and to which destination the parts will be moved. The 

other two options relate to parts at the end of the line and depend on whether the 

product variants are going to be moved to an existing carrier or onto a new carrier. The 

different options require a different level of information detail, because some stages do 

not have information about the job ID-number (partial information). This is also the 

case in the following screenshots for other menus. 
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Scrap parts 

The screens of scrapping parts can be seen in Figure B. 5.  

 

Figure B. 5 Confirm screen. 

The first choice made by the operator is to decide whether the scrapped parts depend on 

processing errors (“Arbetsfel”) or material quality problems (“Materialfel”). The 

decision priamarily depends on who is going to pay for the scrapped parts, the company 

or the supplier. The next step is to select the area in the production line from which the 

parts are located, and depending on this choice, screens will be displayed with a 

different level of detail.  
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Block parts 

When parts need to be blocked (put on hold) for quality control or adjustments, two 

options are possible: (1) parts from the first part of the line or (2) parts from the last part 

of the line, as displayed top left in Figure B. 6. 

 

Figure B. 6 Block parts. 

When the quality of parts has been approved, there are three options that the operator 

may choose: (1) if the parts are to be moved to a new carrier at the beginning of the line, 

(2) if the parts are to be moved to an existing carrier at the beginning of the line or (3) if 

the parts are to be moved to the end of the line. 
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Fault control and robustness 

When the soft constraints are broken by the operators, e.g., trying to override an expert 

suggestion as displayed in Figure B. 7, a warning will appear at the screen together with 

a loud beep. 

Variant 2

 

Figure B. 7 Warning when trying to break soft constraints. 

When the hard constraints are broken, e.g., trying to start a job with the wrong tooling 

equipment, a similar warning will appear at the screen that will inform the user that the 

chosen operation is not valid. There is also some robustness implemented in the PDA-

program and information about the PDA-status, see Figure B. 8. 

 

Figure B. 8 Robustness and PDA-status. 

The “buffer” displays the number of in queue messages to be sent to OIS, which is 

usually zero, unless the wireless connection displays something other than “Connected”. 

There is also a log-file of the last messages sent to OIS. Furthermore, if the PDA loses 

its power or if it for some reason becomes deadlocked and the PDA needs to be 

restarted, all information is saved onto the hard-drive which will automatically be 

executed upon restart. 
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Stocktaking 

Maintaining control of the WIP in the production line is important and an efficient way 

to do a quick stocktaking has been implemented, see Figure B. 9. 

 

Figure B. 9 Stocktaking menus. 

Similar to the other menues, the level of detail is different depending on the area in 

which the stocktaking is being carried out. There are currently three areas: (1) beginning 

of the line, (2) end of the line and (3) adjustments area (parts on hold). The stocktaking 

was carried out in a manual manner before, and the barcode scanner makes this process 

faster and more detailed.  
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Information 

The information function allows the user to control the status of the production line, see 

Figure B. 10. 

Variant 3

 

Figure B. 10 Information menu. 

On the left side of Figure C.10 there are three options available: (1) machine 

information, (2) production stage information, and (3) job ID information. The first two 

options are supported by the line status program and are therefore not supported directly 

in the PDA at the moment. The last option, job ID information, is supported in the PDA 

because it gives the user the possibility to check information about a job. When a job ID 

is scanned by the barcode reader, information about the position (machine or production 

stage), variant name and number of parts on the carrier (job ID) is displayed for the 

user, as shown on the right in Figure B. 10. This helps the shift leader to maintain 

control over the WIP, in case a carrier has been misplaced or if there is a desire just to 

control that the operators have followed the work procedure properly. 
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Appendix C: Predictive Scheduling Performance 

Results Scenario 1 

The results of scenario 1 of all replications of the predictive scheduling are presented 

here.  

 

Figure C. 1 FHYB performance on scenario 1. 
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Figure C. 2 HYB performance on scenario 1. 

 

 

Figure C. 3 PDR performance on scenario 1. 
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Figure C. 4 PS performance on scenario 1. 

 

 

Figure C. 5 NPS performance on scenario 1. 
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Appendix D: Predictive Scheduling Performance 

Results Scenario 2 

The results of scenario 2 of all replications of the predictive scheduling are presented 

here.  

 

Figure D. 1 FHYB performance on scenario 2. 
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Figure D. 2 HYB performance on scenario 2. 

 

 

 

Figure D. 3 PDR performance on scenario 2. 
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Figure D. 4 PS performance on scenario 2. 

 

 

Figure D. 5 NPS performance on scenario 2. 
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Appendix E: Reactive Scheduling Replication Results 

The results on a weekly basis of all replications of the reactive scheduling divided into 

the four objectives are presented here. The first objective is presented in Table E. 1, 

which is the number of missed target levels per week. There are totally seven target 

levels. 

Table E. 1 Reactive scheduling results for the objective missed target levels. 

Missed TL Real-world Indirect Direct FHYB 

Replication 1 1.0 0.6 0.4 0.4 

Replication 2 NA 0.4 0.4 0.4 

Replication 3 NA 0.8 0.6 0.4 

Replication 4 NA 0.8 0.4 0.4 

Replication 5 NA 0.8 0.4 0.4 

Replication 6 NA 0.6 0.4 0.4 

Replication 7 NA 0.6 0.4 0.4 

Replication 8 NA 0.8 0.4 0.4 

Replication 9 NA 0.6 0.4 0.4 

Replication 10 NA 0.4 0.4 0.4 

Average(σ) 1.0 0.6 (0.1) 0.4 (0.1) 0.4 (0) 

 

The second objective is presented in Table E. 2 and comprises the relative makespan 

compared to the real-world result. A positive number means the number of hours 

(production time) saved when using a certain approach. 

Table E. 2 Reactive scheduling results for the objective makespan. 

Makespan rel Real-world Indirect Direct FHYB 

Replication 1 0.0 14.1 6.6 8.7 

Replication 2 NA 12.2 4.8 8.7 

Replication 3 NA 9.0 7.5 9.0 

Replication 4 NA 13.0 5.4 7.7 

Replication 5 NA 11.2 7.8 6.3 

Replication 6 NA 13.5 6.4 7.2 

Replication 7 NA 13.7 7.0 9.5 

Replication 8 NA 12.8 5.5 7.6 

Replication 9 NA 12.4 6.3 5.7 

Replication 10 NA 8.0 8.2 7.8 

Average(σ) 0.0 12 (1.9) 6.5 (1.1) 7.8 (1.1) 
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The third objective is presented in Table E. 3  and comprises the total number of hours 

that jobs have been below the different FGI security levels. A positive number means 

that parts have been late. 

Table E. 3 Reactive scheduling results for the objective shortage hours. 

Shortage hours Real-world Indirect Direct FHYB 

Replication 1 0.0 3015.3 0 0 

Replication 2 NA 43923.5 0 0 

Replication 3 NA 3765.2 0 0 

Replication 4 NA 3765.2 0 0 

Replication 5 NA 3765.2 0 0 

Replication 6 NA 2415.3 0 0 

Replication 7 NA 708.9 0 0 

Replication 8 NA 3765.2 0 0 

Replication 9 NA 1265.4 0 0 

Replication 10 NA 8415.3 0 0 

Average(σ) 0.0 

7480.5 

(12305.5) 0 (0) 0 (0) 

 

The fourth objective is presented in Table E. 4 and comprises the total setup time (hrs).  

Table E. 4 Reactive scheduling results for the objective setup time. 

Setup time Real-world Indirect Direct FHYB 

Replication 1 NA 28.7 24.9 28.6 

Replication 2 NA 23.4 23.4 26.2 

Replication 3 NA 26.6 23.9 27.2 

Replication 4 NA 24.1 25.0 26.5 

Replication 5 NA 23.2 24.9 28.4 

Replication 6 NA 27.4 24.7 27.2 

Replication 7 NA 26.1 24.9 25.4 

Replication 8 NA 25.6 24.7 28.4 

Replication 9 NA 22.1 21.4 29.2 

Replication 10 NA 24.5 20.6 28.2 

Average(σ) NA 25.2 (2) 23.8 (1.5) 27.5 (1.2) 
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Appendix F: Predictive and Reactive Scheduling 

Hypothesis Tests 

Since combined dispatching rules at different stages have been demonstrated to perform 

better than simple PDRs according to the literature review, the PDR optimisation 

method was used to test real-world complex scheduling scenarios. At the same time, 

PDRs are good at adapting to situations where there are uncertainties and still keep the 

machines utilised. In the literature review, it has also been found that direct 

representations (PS and NPS) are better than indirect representations of using PDRs for 

complex scheduling scenarios. Hybrids between direct- and indirect representations 

have shown better results compared to dispatching rules, especially with increasing shop 

complexity. Furthermore, Burke at al., (2003) mean that hyper-heuristics are able to 

handle a wider range of problems and may lead to more general systems. A Genetic 

Algorithm was proposed that handles direct-, indirect- and hybrid representations within 

the same genetic representation, i.e., a hybrid genetic representation, which handles 

different scheduling approaches. The scheduling problem is complex, so it is believed 

that direct representations will be good and that hybrid representations may be able to 

handle a wider range of problems. Furthermore, it is believed that grouping jobs in the 

genetic algorithm may lead to better schedules, especially when there are sequence-

dependent setup times. 

 

Since the results of the FHYB and PS are quite close in both the predictive and realised 

scheduling results, hypothesis tests are made. These tests will show to what degree of 

confidence one is better than the other using a directional test, or to determine if the 

result of one method is different from the other, i.e., bi-directional test. The samples are 

independent and randomly selected from the population. The Mann-Whitney test is used 

since there are relatively few samples, i.e., replications. However, to complement the 

Mann-Whitney test, the two-sample t-test is also used for hypothesis testing to show the 

outcome, if the data is assumed to be normally distributed. If the p-value is higher than 

0.05 (5%) the hypothesis is rejected, i.e., null hypothesis is true.  
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Setup reduction mutation 

Different settings on the setup reduction mutation are tested. The results are compared 

between variant group mutation and setup group mutation for both the optimisation 

methods PS and NPS. The first hypothesis test is for total fitness on scenario 1, which 

clearly shows that it is not possible to prove that one is better than the other when using 

PS, see Table F. 1. 

Table F. 1 PS setup reduction hypothesis test for scenario 1. 

Hypothesis test, H1: Setup groups is not equal to variant groups on scenario 1 

Total fitness 

PS variant 

groups 

PS setup   

groups 

p-value Mann-

Whitney  

p-value Two-

Sample T-Test 

Replication 1 -4018.6 -3772.1 

0.9698 0.864 

Replication 2 -4757.7 -3125.9 

Replication 3 -4949.1 -3527.7 

Replication 4 -5173.8 -5326.1 

Replication 5 -4922.8 -3349.5 

Replication 6 -4122.6 -5885.1 

Replication 7 -2485.1 -2989.1 

Replication 8 -3646.8 -5927.6 

Replication 9 -3907.9 -4818.1 

Replication 10 -2997.7 -3076.9 

 

The second hypothesis test is for total fitness on scenario 1, which shows that using 

setup group mutation is better than variant group mutation for NPS, see Table F. 2. 

There is a probability of 0.0226 (2.3%) that the hypothesis is not true. 

Table F. 2 NPS setup reduction hypothesis test for scenario 1. 

Hypothesis test, H1: Setup groups is better (lower) than variant groups on scenario 

1 

Total fitness 

NPS variant 

groups 

NPS setup   

groups 

p-value Mann-

Whitney  

p-value Two-

Sample T-Test 

Replication 1 -536.8 -27.3 

0.0226 0.019 

Replication 2 720.5 -1426.0 

Replication 3 -491.3 177.2 

Replication 4 1131.4 89.9 

Replication 5 1110.2 -4131.4 

Replication 6 298.7 -873.9 

Replication 7 -1155.2 -704.5 

Replication 8 -238.9 -1448.5 
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Replication 9 1909.7 -1996.7 

Replication 10 -409.0 586.8 

 

The third hypothesis test is for total fitness on scenario 2, which shows that using setup 

group mutation is clearly better than variant group mutation for PS, see Table F. 3.  

Table F. 3 PS setup reduction hypothesis test for scenario 2. 

Hypothesis test, H1: Setup groups is better (lower) than variant groups on scenario 

2 

Total fitness 

PS variant 

groups 

PS setup   

groups 

p-value Mann-

Whitney  

p-value Two-

Sample T-Test 

Replication 1 33235.6 29844.7 

0.0001 0.000 

Replication 2 33054.7 29505.1 

Replication 3 33670.0 30362.4 

Replication 4 32242.3 29999.2 

Replication 5 33000.9 30843.9 

Replication 6 33780.1 29435.6 

Replication 7 34561.4 28617.3 

Replication 8 31212.3 31082.4 

Replication 9 32354.0 29467.4 

Replication 10 34205.6 27290.1 

 

The fourth hypothesis test is for total fitness on scenario 2, which shows that using setup 

group mutation is clearly better than variant group mutation for NPS, see Table F. 4.  

Table F. 4 NPS setup reduction hypothesis test for scenario 2. 

Hypothesis test, H1: Setup groups is better (lower) than variant groups on scenario 

2 

Total fitness 

NPS variant 

groups 

NPS setup   

groups 

p-value Mann-

Whitney  

p-value Two-

Sample T-Test 

Replication 1 52237.5 45148.5 

0.0002 0 

Replication 2 46915.4 38260.0 

Replication 3 43882.7 36453.4 

Replication 4 52144.2 35305.7 

Replication 5 46833.0 40703.4 

Replication 6 49991.5 40704.9 

Replication 7 46797.3 40834.3 

Replication 8 52037.0 38806.0 

Replication 9 46683.6 46227.2 

Replication 10 51875.3 41057.3 
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Predictive scheduling 

The first hypothesis test is for total fitness on scenario 1 for FHYB and HYB, which 

clearly shows that it is not possible to prove that one is better than the other, see Table 

F. 5.  

Table F. 5 Predictive scheduling hypothesis test for scenario 1. 

Hypothesis test, H1: FHYB is not equal to HYB on scenario 1 

Total fitness HYB FHYB 

p-value Mann-

Whitney  

p-value Two-

Sample T-Test 

Replication 1 -6807.5 -9714.2 

0.4274 0.299 

Replication 2 -11530.6 -9437.8 

Replication 3 -10861.6 -11975.7 

Replication 4 -8995.2 -11901.5 

Replication 5 -10790.5 -10516.2 

Replication 6 -9598.6 -8777.4 

Replication 7 -11860.4 -10678.6 

Replication 8 -9194.3 -8901.6 

Replication 9 -7088.1 -9729.6 

Replication 10 -8203.8 -10428.2 

  

The second hypothesis test is for total fitness on scenario 1, which clearly shows that 

FHYB is better than PS, see Table F. 6.  

Table F. 6 Predictive scheduling hypothesis test for scenario 1. 

Hypothesis test, H1: FHYB is better (lower) than PS on scenario 1 

Total fitness PS FHYB 

p-value Mann-

Whitney  

p-value Two-

Sample T-Test 

Replication 1 -3076.9 -9714.2 

0.0001 0.000 

Replication 2 -4818.1 -9437.8 

Replication 3 -5927.6 -11975.7 

Replication 4 -2989.1 -11901.5 

Replication 5 -5885.1 -10516.2 

Replication 6 -3346.1 -8777.4 

Replication 7 -5326.1 -10678.6 

Replication 8 -3527.7 -8901.6 

Replication 9 -3125.9 -9729.6 

Replication 10 -3772.1 -10428.2 
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The third hypothesis test is for total fitness on scenario 2 for FHYB and PS, which 

clearly shows that it is not possible to prove that one is better than the other, see Table 

F. 7. 

Table F. 7 Predictive scheduling hypothesis test for scenario 2. 

Hypothesis test, H1: PS is not equal to FHYB on scenario 2 

Total fitness PS FHYB 

p-value Mann-

Whitney  

p-value Two-

Sample T-Test 

Replication 1 27290.1 28710.9 

0.7337 0.274 

Replication 2 29467.4 34123.5 

Replication 3 31082.4 28964.1 

Replication 4 28617.3 31346.7 

Replication 5 29435.6 31745.1 

Replication 6 29505.1 29006.4 

Replication 7 30843.9 29285.3 

Replication 8 29999.2 32237.1 

Replication 9 30381.6 29578.6 

Replication 10 29844.7 29173.4 

 

Reactive scheduling 

The following hypothesis test is for the setup time which clearly shows that PS is better 

than FHYB, see Table F. 8.  

Table F. 8 Reactive scheduling hypothesis test for the objective setup time. 

 Hypothesis test, H1: PS is better (lower) than FHYB 

Setup time PS FHYB 

p-value Mann-

Whitney  

p-value Two-

Sample T-Test 

Replication 1 24.9 28.6 

0.0001 0.000 

Replication 2 23.4 26.2 

Replication 3 23.9 27.2 

Replication 4 25.0 26.5 

Replication 5 24.9 28.4 

Replication 6 24.7 27.2 

Replication 7 24.9 25.4 

Replication 8 24.7 28.4 

Replication 9 21.4 29.2 

Replication 10 20.6 28.2 
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The second hypothesis test is for the makespan, which clearly shows that FHYB is 

better than PS, see Table F. 9. There is a probability of 0.0156 (1.6%) that the 

hypothesis is not true. 

Table F. 9 Reactive scheduling hypothesis test for the objective makespan. 

Hypothesis test, H1: FHYB is better (higher) than PS 

Makespan rel PS FHYB 

p-value Mann-

Whitney  

p-value Two-

Sample T-Test 

Replication 1 6.6 8.7 

0.0156 0.011 

Replication 2 4.8 8.7 

Replication 3 7.5 9.0 

Replication 4 5.4 7.7 

Replication 5 7.8 6.3 

Replication 6 6.4 7.2 

Replication 7 7.0 9.5 

Replication 8 5.5 7.6 

Replication 9 6.3 5.7 

Replication 10 8.2 7.8 
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Appendix G: Simulation model data 

The settings and data described in this Appendix is the data used for the simulation 

model described in Chapter 6 and the data used in the experiments presented in Chapter 

7. 

 

Production variant information 

Product variants product groups (A or B), their affiliated target levels and their security 

levels in the finished goods inventory. 

Table G. 1 Product variant information 

Variant Group Setup group 
Target level 
group Security level 

Variant 1 A 1 TL2 73 

Variant 2 A 2 TL1 0 

Variant 3 A 2 TL1 0 

Variant 4 A 2 TL1 68 

Variant 5 A 2 TL1 68 

Variant 6 A 2 TL1 0 

Variant 7 A 3 TL1 0 

Variant 8 A 3 TL1 55 

Variant 9 A 4 TL2 55 

Variant 10 A 4 TL2 576 

Variant 11 A 4 TL2 507 

Variant 12 B 5 TL3 412 

Variant 13 B 6 TL4 498 

Variant 14 B 6 TL5 258 

Variant 15 B 6 TL6 258 

Variant 16 B 6 TL7 86 

 

Product variants production stages 

The different product variants mapping to their necessary production stages.  

Table G. 2 Product variants production stages 

Variants PS1 PS2 PS3 PS4 PS5 PS6 PS7 PS8 PS9 PS10 

Variant 1 YES - - YES YES YES YES YES YES YES 

Variant 2 YES - - YES YES YES YES YES YES YES 

Variant 3 YES - - YES YES YES YES YES YES YES 

Variant 4 YES - - YES YES YES YES YES YES YES 

Variant 5 YES - - YES YES YES YES YES YES YES 

Variant 6 YES - - YES YES YES YES YES YES YES 

Variant 7 YES - - - YES YES YES YES - YES 

Variant 8 YES - - - YES YES YES YES - YES 

Variant 9 YES - - YES YES YES YES YES YES YES 

Variant 10 YES - - YES YES YES YES YES YES YES 

Variant 11 YES - - YES YES YES YES YES YES YES 

Variant 12 YES YES YES YES YES YES YES YES YES YES 

Variant 13 YES - YES - YES YES YES YES - YES 

Variant 14 YES - YES YES YES YES YES YES YES YES 

Variant 15 YES - YES - YES YES YES YES - YES 

Variant 16 YES - YES YES YES YES YES YES YES YES 
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Machine settings 

The following table shows whether the machines, e.g., PS1M1 (production stage 1, 

parallel machine 1), are on or off and what product variants they are set to produce.  

Table G. 3 Machine settings 

Variants PS1M1 PS1M2 PS1M3 PS1M4 PS1M5 PS2M1 PS3M1 PS4M1 PS4M2 PS4M3 

Operation-status ON ON ON ON OFF ON ON ON ON ON 

Variant 1 YES - - YES YES - - YES YES YES 

Variant 2 YES - - YES YES - - YES YES YES 

Variant 3 YES - - YES YES - - YES YES YES 

Variant 4 YES - - YES YES - - YES YES YES 

Variant 5 YES - - YES YES - - YES YES YES 

Variant 6 YES - - YES YES - - YES YES YES 

Variant 7 YES - - YES YES - - - - - 

Variant 8 YES - - YES YES - - - - - 

Variant 9 YES - - YES YES - - YES YES YES 

Variant 10 YES - - YES YES - - YES YES YES 

Variant 11 YES - - YES YES - - YES YES YES 

Variant 12 - YES YES - - YES YES - - YES 

Variant 13 - YES YES - - - YES - - - 

Variant 14 - YES YES - - - YES - - YES 

Variant 15 - YES YES - - - YES - - - 

Variant 16 - YES YES - - - YES - - YES 

 
                    

Variants PS5M1 PS5M2 PS5M3 PS6M1 PS6M2 PS6M3 PS6M4 PS6M5 PS6M6 PS6M7 

Operation-status ON ON ON OFF OFF ON ON ON ON ON 

Variant 1 - - YES - YES - YES YES YES - 

Variant 2 - - YES - YES - YES YES YES - 

Variant 3 - - YES - YES - YES YES YES - 

Variant 4 - - YES - YES - YES YES YES - 

Variant 5 - - YES - YES - YES YES YES - 

Variant 6 - - YES - YES - YES YES YES - 

Variant 7 - - YES - YES - YES YES YES - 

Variant 8 - - YES - YES - YES YES YES - 

Variant 9 - - YES - YES - YES YES YES - 

Variant 10 - - YES - YES - YES YES YES - 

Variant 11 - - YES - YES - YES YES YES - 

Variant 12 YES - - - - - - - - YES 

Variant 13 - YES - YES - YES YES - - - 

Variant 14 - YES - YES - YES YES - - - 

Variant 15 - YES - YES - YES YES - - - 

Variant 16 - YES - YES - YES YES - - - 

 
                    

Variants PS7M1 PS7M2 PS7M3 PS8M1 PS9M1 PS9M2 PS10M1 PS10M2     

Operation-status ON ON ON ON ON ON ON ON     

Variant 1 YES YES - YES YES YES YES YES     

Variant 2 YES YES - YES YES YES YES YES     

Variant 3 YES YES - YES YES YES YES YES     

Variant 4 YES YES - YES YES YES YES YES     

Variant 5 YES YES - YES YES YES YES YES     

Variant 6 YES YES - YES YES YES YES YES     

Variant 7 YES YES - YES - - YES YES     

Variant 8 YES YES - YES - - YES YES     

Variant 9 YES YES - YES YES YES YES YES     

Variant 10 YES YES - YES YES YES YES YES     

Variant 11 YES YES - YES YES YES YES YES     

Variant 12 - - YES YES YES YES YES YES     

Variant 13 - YES - YES - - YES YES     

Variant 14 - YES - YES YES YES YES YES     

Variant 15 - YES - YES - - YES YES     

Variant 16 - YES - YES YES YES YES YES     
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Machine availability 

The availability of machines is presented here. However, the experiments executed in 

Chapter 7 used deterministic settings, i.e., the processing time of the machines was 

divided by the availability number, as shown in the Table.  

Table G. 4 Availability of machines 

Operation MTBF (min) MTTR (min) Availability 

PS0M1 90 15 0.85714 

PS0M2 90 10 0.90000 

PS0M3 170 10 0.94444 

PS1M1 72 8 0.90000 

PS1M2 55 10 0.84615 

PS1M3 60 15 0.80000 

PS1M4 72 12 0.85714 

PS1M5 72 8 0.90000 

PS2M1 72 8 0.90000 

PS3M1 80 8 0.90909 

PS4M1 50 10 0.83333 

PS4M2 50 8 0.86207 

PS4M3 50 12 0.80645 

PS5M1 60 8 0.88235 

PS5M2 80 14 0.85106 

PS5M3 60 14 0.81081 

PS6M1 65 25 0.72222 

PS6M2 60 15 0.80000 

PS6M3 68 12 0.85000 

PS6M4 60 7 0.89552 

PS6M5 50 12 0.80645 

PS6M6 60 25 0.70588 

PS6M7 60 15 0.80000 

PS7M1 68 12 0.85000 

PS7M2 68 12 0.85000 

PS7M3 70 10 0.87500 

PS8M1 150 5 0.96774 

PS9M1 140 6 0.95890 

PS9M2 140 7 0.95238 

PS10M1 72 8 0.90000 

PS10M2 72 8 0.90000 
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Processing times 

Table G. 5 Processing times (seconds) of product variants at different machines 

  Variant 1 Variant 2 Variant 3 Variant 4 Variant 5 Variant 6 Variant 7 Variant 8 

PS1M1 84.575 84.3 84.3 84.3 84.3 84.3 97.55 97.075 

PS1M2 91 91.25 91.25 91.25 91.25 91.25 102 102 

PS1M3 86 86.5 86.5 86.5 86.5 86.5 101.5 101.5 

PS1M4 78.65 81 81 81 81 81 96.675 96.675 

PS1M5 78.75 78.75 78.75 78.75 78.75 78.75 193.9 193.9 

PS2M1 - - - - - - - - 

PS3M1 - - - - - - - - 

PS4M1 58.525 57.5 57.5 57.5 57.5 57.5 - - 

PS4M2 58.225 63.5 63.5 63.5 63.5 63.5 - - 

PS4M3 61 63.5 63.5 63.5 63.5 63.5 - - 

PS5M1 - - - - - - - - 

PS5M2 - - - - - - - - 

PS5M3 39.6 39.6 39.6 39.6 39.6 39.6 38.91 38.91 

PS6M1 - - - - - - - - 

PS6M2 88.5 85.125 85.125 85.125 85.125 85.125 85.625 85.625 

PS6M3 - - - - - - - - 

PS6M4 80 80 80 80 80 80 80 80 

PS6M5 138 152.9 152.9 152.9 152.9 152.9 159 159 

PS6M6 69.6 69.55 69.55 69.55 69.55 69.55 69.75 69.75 

PS6M7 - - - - - - - - 

PS7M1 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 

PS7M2 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 

PS7M3 - - - - - - - - 

PS8M1 13.6 15.4 15.4 15.4 15.4 15.4 13.6 13.6 

PS9M1 32 32.5 32.5 32.5 32.5 32.5 - - 

PS9M2 32 30.9 30.9 30.9 30.9 30.9 - - 

PS10M1 30.4 32.5 32.5 32.5 32.5 32.5 32.7 32.7 

PS10M2 24.4 24.4 24.4 24.4 24.4 24.4 23.5 23.5 

                  
  Variant 9 Variant 10 Variant 11 Variant 12 Variant 13 Variant 14 Variant 15 Variant 16 

PS1M1 84.575 84.575 84.575 - - - - - 

PS1M2 91 91 91 95 99.75 88 100.5 99.75 

PS1M3 86 86 86 87.5 96.5 84.5 97 96.5 

PS1M4 78.65 78.65 78.65 - - - - - 

PS1M5 157.5 157.5 157.5 185 180 180 180 180 

PS2M1 - - - 123.9 - - - - 

PS3M1 - - - 48.11 48.47 51.5 48.47 48.47 

PS4M1 58.525 58.525 58.525 - - - - - 

PS4M2 58.225 58.225 58.225 - - - - - 

PS4M3 61 61 61 61.4 - 61.2 - 61.2 

PS5M1 - - - 49.25 43.1 43.1 43.1 43.1 

PS5M2 - - - - 43.2 43.2 43.2 43.2 

PS5M3 40.1 40.1 40.1 - - - - - 

PS6M1 - - - - 206.4 206.4 206.4 206.4 

PS6M2 88.5 88.5 88.5 - - - - - 

PS6M3 - - - - 111 105.5 105.5 111 

PS6M4 80 80 80 - 80.5 86.5 88 80.5 

PS6M5 138 138 138 - - - - - 

PS6M6 69.6 69.6 69.6 - - - - - 

PS6M7 - - - 98.5 - - - - 

PS7M1 33.3 33.3 33.3 - - - - - 

PS7M2 33.3 33.3 33.3 - 44 44 44 44 

PS7M3 - - - 54.65 44.5 49.8 49.8 44.5 

PS8M1 13.6 13.6 13.6 13.6 13.6 13.6 13.6 13.6 

PS9M1 32 32 32 32.5 - 32 - 32 

PS9M2 32 32 32 32 - 32 - 32 

PS10M1 30.4 30.4 30.4 42 37 37 37 37 

PS10M2 24.4 24.4 24.4 42 37 23.5 37 37 
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Sequence-dependent setup times 

The sequence-dependent setup times (minutes) are presented here. Some of the 

sequence-dependent setup times will not be used because the product variants may not 

be allowed to be produced in the machines due to the “machine settings” presented 

earlier. The setup times for the bottleneck production stages are presented in detail. 

The sequence-dependent setup times for production stage 1 and machine 2 can be seen 

in the Table. All of the machines in production stage 1 have the same sequence-

dependent setup times.  

Table G. 6 Sequence-dependent setup time production stage 1 

PS1M2 V 1 V 2 V 3 V 4 V 5 V 6 V 7 V 8 V 9 V 10 V 11 V 12 V 13 V 14 V 15 V 16 

V 1 0 11.7 11.7 11.7 11.7 11.7 11.7 11.7 11.7 11.7 11.7 60 60 60 60 60 

V 2 11.7 0 11.7 11.7 11.7 11.7 11.7 11.7 11.7 11.7 11.7 60 60 60 60 60 

V 3 11.7 11.7 0 11.7 11.7 11.7 11.7 11.7 11.7 11.7 11.7 60 60 60 60 60 

V 4 11.7 11.7 11.7 0 11.7 11.7 11.7 11.7 11.7 11.7 11.7 60 60 60 60 60 

V 5 11.7 11.7 11.7 11.7 0 11.7 11.7 11.7 11.7 11.7 11.7 60 60 60 60 60 

V 6 11.7 11.7 11.7 11.7 11.7 0 11.7 11.7 11.7 11.7 11.7 60 60 60 60 60 

V 7 11.7 11.7 11.7 11.7 11.7 11.7 0 11.7 11.7 11.7 11.7 60 60 60 60 60 

V 8 11.7 11.7 11.7 11.7 11.7 11.7 11.7 0 11.7 11.7 11.7 60 60 60 60 60 

V 9 11.7 11.7 11.7 11.7 11.7 11.7 11.7 11.7 0 11.7 11.7 60 60 60 60 60 

V 10 11.7 11.7 11.7 11.7 11.7 11.7 11.7 11.7 11.7 0 11.7 60 60 60 60 60 

V 11 11.7 11.7 11.7 11.7 11.7 11.7 11.7 11.7 11.7 11.7 0 60 60 60 60 60 

V 12 60 60 60 60 60 60 60 60 60 60 60 0 11.7 11.7 11.7 11.7 

V 13 60 60 60 60 60 60 60 60 60 60 60 11.7 0 6 6 6 

V 14 60 60 60 60 60 60 60 60 60 60 60 11.7 6 0 6 6 

V 15 60 60 60 60 60 60 60 60 60 60 60 11.7 6 6 0 6 

V 16 60 60 60 60 60 60 60 60 60 60 60 11.7 6 6 6 0 

Production stage 2 has no sequence-dependent setup time. Production stage 3 has 5 

minutes setup time between the two different product variants. Production stage 4 has 

6.1 minutes setup time between products within the same product group (A or B) and 

the setup time between the groups is 20 minutes. Setup times for production stage 5 can 

be seen in Table  

Table G. 7 Sequence-dependent setup time production stage 5 

PS5M1 V 1 V 2 V 3 V 4 V 5 V 6 V 7 V 8 V 9 V 10 V 11 V 12 V 13 V 14 V 15 V 16 

V 1 0 5 5 5 5 5 5 5 5 5 5 1440 1440 1440 1440 1440 

V 2 5 0 5 5 5 5 5 5 5 5 5 1440 1440 1440 1440 1440 

V 3 5 5 0 5 5 5 5 5 5 5 5 1440 1440 1440 1440 1440 

V 4 5 5 5 0 5 5 5 5 5 5 5 1440 1440 1440 1440 1440 

V 5 5 5 5 5 0 5 5 5 5 5 5 1440 1440 1440 1440 0 

V 6 5 5 5 5 5 0 5 5 5 5 5 1440 1440 1440 1440 1440 

V 7 5 5 5 5 5 5 0 5 5 5 5 1440 1440 1440 1440 1440 

V 8 5 5 5 5 5 5 5 0 5 5 5 1440 1440 1440 1440 1440 

V 9 5 5 5 5 5 5 5 5 0 5 5 1440 1440 1440 1440 1440 

V 10 5 5 5 5 5 5 5 5 5 0 5 1440 1440 1440 1440 1440 

V 11 5 5 5 5 5 5 5 5 5 5 0 1440 1440 1440 1440 1440 

V 12 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 0 90 90 90 90 

V 13 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 90 0 6 6 6 

V 14 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 90 6 0 6 6 

V 15 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 90 6 6 0 6 

V 16 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 90 6 6 6 0 
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PS5M2 V 1 V 2 V 3 V 4 V 5 V 6 V 7 V 8 V 9 V 10 V 11 V 12 V 13 V 14 V 15 V 16 

V 1 0 5 5 5 5 5 5 5 5 5 5 1440 1440 1440 1440 1440 

V 2 5 0 5 5 5 5 5 5 5 5 5 1440 1440 1440 1440 1440 

V 3 5 5 0 5 5 5 5 5 5 5 5 1440 1440 1440 1440 1440 

V 4 5 5 5 0 5 5 5 5 5 5 5 1440 1440 1440 1440 1440 

V 5 5 5 5 5 0 5 5 5 5 5 5 1440 1440 1440 1440 7.5 

V 6 5 5 5 5 5 0 5 5 5 5 5 1440 1440 1440 1440 1440 

V 7 5 5 5 5 5 5 0 5 5 5 5 1440 1440 1440 1440 1440 

V 8 5 5 5 5 5 5 5 0 5 5 5 1440 1440 1440 1440 1440 

V 9 5 5 5 5 5 5 5 5 0 5 5 1440 1440 1440 1440 1440 

V 10 5 5 5 5 5 5 5 5 5 0 5 1440 1440 1440 1440 1440 

V 11 5 5 5 5 5 5 5 5 5 5 0 1440 1440 1440 1440 1440 

V 12 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 0 1440 1440 1440 1440 

V 13 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 0 6 6 6 

V 14 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 6 0 6 6 

V 15 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 6 6   6 

V 16 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 6 6 6   

                                  

PS5M3 V 1 V 2 V 3 V 4 V 5 V 6 V 7 V 8 V 9 V 10 V 11 V 12 V 13 V 14 V 15 V 16 

V 1 0 120 120 120 120 120 120 120 5 5 5 1440 1440 1440 1440 1440 

V 2 120 0 5 5 5 5 120 120 120 120 120 1440 1440 1440 1440 1440 

V 3 120 5 0 5 5 5 120 120 120 120 120 1440 1440 1440 1440 1440 

V 4 120 5 5 0 5 5 120 120 120 120 120 1440 1440 1440 1440 1440 

V 5 120 5 5 5 0 5 120 120 120 120 120 1440 1440 1440 1440 7.5 

V 6 120 5 5 5 5 0 120 120 120 120 120 1440 1440 1440 1440 1440 

V 7 120 120 120 120 120 120 0 5 120 120 120 1440 1440 1440 1440 1440 

V 8 120 120 120 120 120 120 5 0 120 120 120 1440 1440 1440 1440 1440 

V 9 5 120 120 120 120 120 120 120 0 5 5 1440 1440 1440 1440 1440 

V 10 5 120 120 120 120 120 120 120 5 0 5 1440 1440 1440 1440 1440 

V 11 5 120 120 120 120 120 120 120 5 5 0 1440 1440 1440 1440 1440 

V 12 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 0 120 120 120 120 

V 13 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 120 0 120 120 120 

V 14 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 120 120 0 120 120 

V 15 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 120 120 120 0 120 

V 16 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 120 120 120 120 0 

 

Production stage 6 has a setup time of 7.5 minutes between product variants within the 

product group A, 5-15 minutes between product variants within product group B and 15 

minutes between the groups. Production stage 7 has a setup time of 0.4 minutes between 

product variants within the product group A, 0 minutes between product variants within 

product group B and 45 minutes between the groups. Production stage 8 has no setup 

time. Production stages 9 and 10 have a setup time of 0.4 minutes between different 

product variants.  
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Machine-dependent setup times 

The machine-dependent setup times (minutes) are loading times (only affects some of 

the machines) and start up time required when a machine has been empty in between 

products. 

Table G. 8 Machine-dependent setup times 

  Loading time Start-up time 

PS0M1 0 0 

PS0M2 0 0 

PS0M3 0 0 

PS1M1 0 0 

PS1M2 0 0 

PS1M3 0 0 

PS1M4 0 0 

PS1M5 0 0 

PS2M1 0 0 

PS3M1 0 0 

PS4M1 0 0 

PS4M2 0 0 

PS4M3 0 0 

PS5M1 0 10 

PS5M2 0 10 

PS5M3 0 10 

PS6M1 0.66666667 0 

PS6M2 0.66666667 0 

PS6M3 0.66666667 0 

PS6M4 0.66666667 0 

PS6M5 0.66666667 0 

PS6M6 0.66666667 0 

PS6M7 0.66666667 0 

PS7M1 0.66666667 0 

PS7M2 0.66666667 0 

PS7M3 0.66666667 0 

PS8M1 2 0 

PS9M1 2 0 

PS9M2 2 0 

PS10M1 2 0 

PS10M2 2 0 
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Work in process 

The first table shows the work in process in the production line at the start of the 

simulation (Scenario 1 and Scenario 2 in Chapter 7). The second table shows the target 

levels of WIP. 

Table G. 9 Work in process 

Production stage Variant Number   Production stage Variant Number 

PS10 Variant 5 50   PS6 Variant 14 50 

PS10 Variant 5 50   PS6 Variant 14 50 

PS10 Variant 10 50   PS6 Variant 14 50 

PS10 Variant 10 50   PS6 Variant 14 50 

PS10 Variant 12 50   PS5 Variant 10 50 

PS9 Variant 5 50   PS5 Variant 11 50 

PS9 Variant 5 50   PS5 Variant 11 50 

PS9 Variant 11 50   PS5 Variant 11 50 

PS9 Variant 12 50   PS5 Variant 11 50 

PS8 Variant 10 50   PS5 Variant 13 50 

PS8 Variant 15 50   PS5 Variant 13 50 

PS8 Variant 15 50   PS5 Variant 13 50 

PS8 Variant 15 50   PS5 Variant 13 50 

PS8 Variant 15 50   PS5 Variant 13 50 

PS7 Variant 5 50   PS5 Variant 13 50 

PS7 Variant 5 50   PS5 Variant 13 50 

PS7 Variant 10 50   PS5 Variant 13 50 

PS7 Variant 11 50   PS5 Variant 13 50 

PS7 Variant 12 50   PS5 Variant 14 50 

PS7 Variant 12 50   PS5 Variant 14 50 

PS7 Variant 12 50   PS5 Variant 14 50 

PS7 Variant 12 50   PS5 Variant 14 50 

PS7 Variant 15 50   PS5 Variant 14 50 

PS7 Variant 15 50   PS5 Variant 14 50 

PS7 Variant 15 50   PS4 Variant 10 50 

PS7 Variant 15 50   PS4 Variant 10 50 

PS6 Variant 4 50   PS4 Variant 10 50 

PS6 Variant 4 50   PS4 Variant 10 50 

PS6 Variant 4 50   PS4 Variant 12 50 

PS6 Variant 4 50   PS4 Variant 12 50 

PS6 Variant 10 50   PS4 Variant 12 50 

PS6 Variant 10 50   PS4 Variant 12 50 

PS6 Variant 10 50   PS4 Variant 12 50 

PS6 Variant 10 50   PS3 Variant 12 50 

PS6 Variant 10 50   PS3 Variant 12 50 

PS6 Variant 10 50   PS3 Variant 12 50 

PS6 Variant 10 50   PS3 Variant 12 50 

PS6 Variant 10 50   PS3 Variant 12 50 

PS6 Variant 10 50   PS2 Variant 12 50 

PS6 Variant 12 50   PS2 Variant 12 50 

PS6 Variant 12 50   PS2 Variant 12 50 

PS6 Variant 12 50   PS2 Variant 12 50 

PS6 Variant 12 50   PS2 Variant 12 50 

PS6 Variant 14 50         

 

Table G. 10 Target levels for WIP 

Targets WIP Week 1 Week 2 

Group Number Number 

A 1900 1900 

B 2450 2450 
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Finished goods inventory 

Information regarding the finished goods inventory is presented here.  

 

Table G. 11 Physical maximum of the FGI 

Group Number 

A 9600 

B 115000 

 

Table G. 12 Number of parts in FGI at start of simulation 

Variant Number 

Variant 1 374 

Variant 2 0 

Variant 3 0 

Variant 4 222 

Variant 5 148 

Variant 6 0 

Variant 7 0 

Variant 8 461 

Variant 9 547 

Variant 10 715 

Variant 11 669 

Variant 12 1020 

Variant 13 2210 

Variant 14 1190 

Variant 15 1190 

Variant 16 680 

- - 

Totally 9052 

 

Table G. 13 Target levels of the finished goods inventory 

Target Levels FGI Week 1 Week 2 

Variant Number Number 

TL1 380 380 

TL2 2421 2421 

TL3 1673 1673 

TL4 2022 2022 

TL5 1045 1045 

TL6 1045 1045 

TL7 348 348 

- - - 

Totally 8934 8934 
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Demands 

The following demands were used for the two production weeks of Scenario 1. 

Table G. 14 Demands Scenario 1 

Week 1 Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

Variant Demand Demand Demand Demand Demand Demand Demand 

Variant 1 72.65 36.32 42.38 36.32 133.19 0.00 0.00 

Variant 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Variant 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Variant 4 66.59 36.32 30.27 36.32 36.32 0.00 0.00 

Variant 5 66.59 36.32 30.27 36.32 36.32 0.00 0.00 

Variant 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Variant 7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Variant 8 90.81 54.49 42.38 60.54 48.43 0.00 0.00 

Variant 9 90.81 54.49 42.38 60.54 48.43 0.00 0.00 

Variant 10 371.31 297.66 347.10 286.56 496.43 0.00 0.00 

Variant 11 334.99 261.33 304.72 250.23 363.24 0.00 0.00 

Variant 12 0.00 343.06 0.00 514.59 0.00 0.00 0.00 

Variant 13 0.00 514.59 0.00 514.59 0.00 0.00 0.00 

Variant 14 0.00 514.59 0.00 514.59 0.00 0.00 0.00 

Variant 15 0.00 514.59 0.00 514.59 0.00 0.00 0.00 

Variant 16 0.00 171.53 0.00 0.00 0.00 0.00 0.00 
                

Week 2 Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

Variant Demand Demand Demand Demand Demand Demand Demand 

Variant 1 24.22 12.11 12.11 12.11 0.00 0.00 0.00 

Variant 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Variant 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Variant 4 36.32 36.32 30.27 48.43 24.22 0.00 0.00 

Variant 5 36.32 36.32 30.27 48.43 24.22 0.00 0.00 

Variant 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Variant 7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Variant 8 48.43 42.38 66.59 85.77 0.00 0.00 0.00 

Variant 9 48.43 42.38 66.59 85.77 0.00 0.00 0.00 

Variant 10 357.19 304.72 308.75 229.04 199.78 0.00 0.00 

Variant 11 332.97 292.61 296.65 216.94 199.78 0.00 0.00 

Variant 12 0.00 343.06 0.00 514.59 0.00 0.00 0.00 

Variant 13 0.00 343.06 0.00 686.12 0.00 0.00 0.00 

Variant 14 0.00 171.53 0.00 171.53 0.00 0.00 0.00 

Variant 15 0.00 171.53 0.00 171.53 0.00 0.00 0.00 

Variant 16 0.00 171.53 0.00 0.00 0.00 0.00 0.00 
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The following demands were used for the two production weeks of Scenario 2. 

Table G. 15 Demands Scenario 2 

Week 1 Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

Variant Demand Demand Demand Demand Demand Demand Demand 

Variant 1 72.65 36.32 42.38 36.32 133.19 0.00 0.00 

Variant 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Variant 3 100.00 100.00 0.00 0.00 0.00 0.00 0.00 

Variant 4 66.59 36.32 30.27 36.32 36.32 0.00 0.00 

Variant 5 66.59 36.32 30.27 36.32 36.32 0.00 0.00 

Variant 6 100.00 100.00 0.00 0.00 0.00 0.00 0.00 

Variant 7 100.00 100.00 0.00 0.00 0.00 0.00 0.00 

Variant 8 490.00 54.49 142.00 60.54 48.43 0.00 0.00 

Variant 9 90.81 154.00 42.38 60.54 48.43 0.00 0.00 

Variant 10 371.31 297.66 347.10 286.56 496.43 0.00 0.00 

Variant 11 334.99 261.33 304.72 250.23 363.24 0.00 0.00 

Variant 12 0.00 343.06 0.00 514.59 0.00 0.00 0.00 

Variant 13 0.00 514.59 0.00 514.59 0.00 0.00 0.00 

Variant 14 0.00 514.59 0.00 514.59 0.00 0.00 0.00 

Variant 15 0.00 514.59 0.00 514.59 0.00 0.00 0.00 

Variant 16 0.00 171.53 0.00 0.00 0.00 0.00 0.00 

                
Week 2 Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

Variant Demand Demand Demand Demand Demand Demand Demand 

Variant 1 24.22 12.11 12.11 12.11 0.00 0.00 0.00 

Variant 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Variant 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Variant 4 36.32 36.32 30.27 48.43 24.22 0.00 0.00 

Variant 5 36.32 36.32 30.27 48.43 24.22 0.00 0.00 

Variant 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Variant 7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Variant 8 48.43 42.38 66.59 85.77 0.00 0.00 0.00 

Variant 9 48.43 42.38 66.59 85.77 0.00 0.00 0.00 

Variant 10 357.19 304.72 308.75 229.04 199.78 0.00 0.00 

Variant 11 332.97 292.61 296.65 216.94 199.78 0.00 0.00 

Variant 12 0.00 343.06 0.00 514.59 0.00 0.00 0.00 

Variant 13 0.00 343.06 0.00 686.12 0.00 0.00 0.00 

Variant 14 0.00 171.53 0.00 171.53 0.00 0.00 0.00 

Variant 15 0.00 171.53 0.00 171.53 0.00 0.00 0.00 

Variant 16 0.00 171.53 0.00 0.00 0.00 0.00 0.00 
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Buffers and carriers 

As explained in Chapter 6, there are three different buffers, production stage buffers, 

input buffers at the machines and output buffers at the machines. There are also a 

number of carriers transporting the products variants for different parts of the 

production line. 

Table G. 16 Production stage buffers 

PS buffer Number 

PS1 0 

PS2 750 

PS3 750 

PS4 750 

PS5 1500 

PS6 1500 

PS7 800 

PS8 500 

PS9 500 

PS10 500 

 

Table G. 17 Input and output buffers at the machines (number of carriers) 

Machine Input buffer Output buffer 

PS1M1 2 15 

PS1M2 2 15 

PS1M3 2 15 

PS1M4 2 15 

PS1M5 2 15 

PS2M1 15 15 

PS3M1 15 15 

PS4M1 15 15 

PS4M2 15 15 

PS4M3 15 15 

PS5M1 15 2 

PS5M2 15 2 

PS5M3 15 2 

PS6M1 3 3 

PS6M2 3 3 

PS6M3 3 3 

PS6M4 3 3 

PS6M5 3 3 

PS6M6 3 3 

PS6M7 3 3 

PS7M1 2 5 

PS7M2 2 5 

PS7M3 2 5 

PS8M1 15 15 

PS9M1 15 15 

PS9M2 15 15 

PS10M1 15 15 

PS10M2 15 15 

 

Table G. 18 Number of carriers 

Carrier loops Number 

PS1-PS5 66 

PS6-PS7 34 

PS8-PS10 20 
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Appendix H: Simulation model in C# 

The simulation model was built in C#. A flow chart shows how the simulation model 

has been built. Example code (pseudo code) has also been included in this Appendix. 

The simulation model is built on the basics of discrete event simulation, in which the 

event list is used to drive the simulation model, see event list pseudo code below. 

 

Eventlist pseudo code 

while (eventQueue.Count > 0) 

{ 

    SimulationEvent se = (SimulationEvent)eventQueue.Dequeue(); 

    if (se.Time >= timeToSimulate) 

    { 

 /* We have reached the end of the simulation horizon */ 

break; 

    } 

    OnEventPreExecution(se); 

    se.Execute(se.Time); 

    OnEventPostExecution(se); 

} 

 

Different events are executed, before or after the deletion of events, from the list of 

events until the simulation horizon, i.e., two weeks, is reached. The different events 

currently available in the simulation model are: 

 ProductVariantArrivedAtMachineEvent 

 ProductVariantArrivedAtProductionStageEvent 

 ProductionStartedEvent 

 ProductionCompletedEvent 

 SetupCompleteEvent 

 WarmupCompleteEvent 

 FgiPickoutEvent 

 ControlBuffersEvent 

 

The ProductionStartedEvent, i.e., to the event that starts jobs at the machines, will be 

explained further. When the ProductionStartedEvent is executed, it will retrieve 

information about which machine it is and use the rule set for the production stage, i.e., 

a “schedule” (direct representation) or “dispatching rule” (indirect or hybrid 
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representation). When the rule is “schedule”, the correct variant (next in sequence) has 

to be available at the input buffer or else try to start a job the next time it is triggered. If 

a dispatching rule is used, it will select a job (“machine.StartProductVariant”) based on 

the jobs available in front of the machines, e.g., first-come-first-served (FCFS). After 

the selection has been made, it is deleted from the list of jobs. 

ProductionStartedEvent pseudo code 

/* This event is triggered when a product variant arrives at a production stage, when the machine is complete, etc 

public class ProductionStarted : public SimulationEvent 

{ 

   private Machine machine; 

   public ProductionStarted(Machine machine) 

   { 

            this.machine = machine; 

            public override void Execute(float elapsedSimulationTime) 

            Buffer buffer = machine.ProductionStage.Buffer; 

            DispatchRule dispatch = machine.ProductionStage.DispatchRule; 

            if (dispatch == "schedule") 

            { 

                        /* Get the next product variant in the schedule */ 

                        ProductVariant nextProductVariant = GetNextProductVariant(); 

                        foreach (ProductVariant productVariant in buffer) 

                        { 

                                    if (productVariant == nextProductVariant) 

                                    { 

                                                buffer.Remove(productVariant); 

                                                machine.StartProductVariant(productVariant); 

                                    } 

                        } 

            } 

            else 

            { 

                        /* Choose a production variant from the buffer with the current dispatching rule. */ 

                        ProductVariant productVariant = machine.ChooseProductGroup(buffer, dispatch); 

                        /* Make sure that a product variant has been selected */ 

                        if (productVariant != null) 

                        { 

                                    buffer.Remove(productVariant); 

                                    machine.StartProductVariant(productVariant); 

                        } 

            } 

   } 

} 
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When the job has been selected, it will execute 

machine.StartProductVariant(productVariant) in the machine code. If a sequence-

dependent setup time is required, the event SetupComplete will be added to the event 

list with the time required for the sequence-dependent setup time and then exit the 

method. The machine will be triggered again from the SetupCompleteEvent. 

 

Machine pseudo code 

public class Machine 

{ 

   ProductVariant currentProductVariant; 

   string name; 

   public Machine(string name) 

           { 

                        this.name = name; 

                        currentProductVariant = null; 

            } 

            public void SetCurrentProductVariant(ProductVariant productVariant) 

            { 

                        currentProductVariant = productVariant; 

            } 

            public void StartProductVariant(ProductVariant productVariant) 

            { 

                        if (productVariant != currentProductVariant) 

                        { 

                                    double setupTime = getSetupTime(productVariant, currentProductVariant); 

                                    SetupComplete setup = new SetupComplete(this, productVariant); 

                                    /* Add the event to the event queue. */ 

                                    AddEvent(setupTime,setup); 

                                    return; 

                        } 

                        ProductionCompleted productionCompleted = new ProductionCompleted(this, productionVariant); 

                        double procTime = getProcTime(productVariant); 

                        AddEvent(procTime, productionCompleted); 

            } 

} 
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The SetupCompleteEvent is triggered from the machine code of StartProductVariant. 

This event will set the current product variant (machine.SetCurrentProductVariant) to 

the product variant that the machine is about to start. Then the method 

StartProductVariant is executed once again and the job can be started in the machine. A 

ProductionCompletedEvent is added to the event list. 

 

SetupCompleteEvent pseudo code 

public class SetupComplete : public SimulationEvent 

{ 

            private Machine machine; 

            private ProductVariant productVariant; 

            public SetupComplete(Machine machine, ProductVariant productVariant) 

            { 

                        this.machine = machine; 

                        this.productVariant = productVariant; 

            } 

            public override void Execute(float elapsedSimulationTime) 

            { 

                        machine.SetCurrentProductVariant(productVariant); 

                        machine.StartProductVariant(productVariant); 

            } 

} 
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Appendix I: Genetic Algorithm 

In this Appendix, the example code of the Genetic Algorithm is presented. The Genetic 

Algorithm has been described in detail in Chapter 5. This pseudo code describes the 

procedure of the dispatching rule mutation operator.  

 

Genetic algorithm pseudo code for the dispatching rule mutation operator 

/* Mutate dispatching rules. 

*  Scenario is the static(does not change between mutations) input data. 

*  SimInput is the current schedule that we want to change. 

*/ 

void DispatchingRuleMutation(Scenario scenario, SimInput mutant) 

{ 

            /* Select a random production stage. */ 

            int i = ListUtility.RandomIndex(scenario.operationGroups); 

            /* Make sure that are at least two allowed dispatching rule. */ 

            if (scenario.operationGroups[i].allowedDispatchingRules.Count > 1) 

            { 

                        int newDr; 

                        do 

                        { 

                                    /* Randomly select a new dispatching rule. */ 

                                    newDr = ListUtility.RandomElement(scenario.operationGroups[i].allowedDispatchingRules); 

                                    /* Try again if we selected the same dispatching rule. */ 

                        } while (newDr == mutant.dispatchingRules[i]); 

                        /* Set the new dispatching rule. */ 

                        mutant.dispatchingRules[i] = newDr; 

            } 

} 
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Appendix J: List of Publications 

The publications made during the research study are listed below. The papers with 

Andersson or Frantzén
1
 are marked in bold.  
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1
 The author changed his name from Andersson to Frantzén in fall 2008 
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