9 research outputs found

    Job selection in heavily loaded shop

    Get PDF
    Cataloged from PDF version of article.Recently, Slotnick and Morton address a job selection problem in a heavily loaded shop, where a tradeoff is sought between the reward obtained when a job is accepted for processing and the lateness penalty incurred when such a job is actually delivered. They provide a branch and bound algorithm and a couple of heuristics for the problem's solution. They do not;however, resolve the issue of problem complexity. In this note. we first establish that the problem is NP-hard. We then go on to provide two pseudo-polynomial time algorithms which also show that the problem is solvable in polynomial time if either the job processing times or the job weights for the lateness penalty are equal. We further provide a fully polynomial time approximation scheme which always generates a solution within a specified percentage of the optimal. Copyright © 1997 Elsevier Science Lt

    Project portfolio management: capacity allocation, downsizing decisions and sequencing rules.

    Get PDF
    This paper aims to gain insight into capacity allocation, downsizing decisions and sequencing rules when managing a portfolio of projects. By downsizing, we mean reducing the scale or size of a project and thereby changing the project's content. In previous work, we have determined the amount of critical capacity that is optimally allocated to concurrently executed projects with deterministic or stochastic workloads when the impact of downsizing is known. In this paper, we extend this view with the possibility of sequential processing, which implies that a complete order is imposed on the projects. When projects are sequenced instead of executed in parallel, two effects come into play: firstly, unused capacity can be shifted to later projects in the same period; and secondly, reinvestment revenues gain importance because of the differences in realization time of the sequenced projects. When project workloads are known, only the second effect counts; when project workloads are stochastic, however, the project's capacity usage is uncertain so that unused capacity can be shifted to later projects in the same period. In this case, both effects need to be taken into account. In this paper, we determine optimal sequencing rules when the selection and capacity-allocation decisions for a set of projects have already been made. We also consider a combination of parallel and sequential planning and we perform simulation experiments that confirm the appropriateness of our capacity-allocation methods.Project portfolio management; Downsizing; Sequencing;

    Order acceptance and scheduling in a single-machine environment: exact and heuristic algorithms.

    Get PDF
    In this paper, we develop exact and heuristic algorithms for the order acceptance and scheduling problem in a single-machine environment. We consider the case where a pool consisting of firm planned orders as well as potential orders is available from which an over-demanded company can select. The capacity available for processing the accepted orders is limited and orders are characterized by known processing times, delivery dates, revenues and the weight representing a penalty per unit-time delay beyond the delivery date promised to the customer. We prove the non-approximability of the problem and give two linear formulations that we solve with CPLEX. We devise two exact branch-and-bound procedures able to solve problem instances of practical dimensions. For the solution of large instances, we propose six heuristics. We provide a comparison and comments on the efficiency and quality of the results obtained using both the exact and heuristic algorithms, including the solution of the linear formulations using CPLEX.Order acceptance; Scheduling; Single machine; Branch-and-bound; Heuristics; Firm planned orders;

    Order Acceptance and Scheduling: A Taxonomy and Review

    Get PDF
    Over the past 20 years, the topic of order acceptance has attracted considerable attention from those who study scheduling and those who practice it. In a firm that strives to align its functions so that profit is maximized, the coordination of capacity with demand may require that business sometimes be turned away. In particular, there is a trade-off between the revenue brought in by a particular order, and all of its associated costs of processing. The present study focuses on the body of research that approaches this trade-off by considering two decisions: which orders to accept for processing, and how to schedule them. This paper presents a taxonomy and a review of this literature, catalogs its contributions and suggests opportunities for future research in this area

    A Single-Machine Scheduling Problem with Uncertainty in Processing Times and Outsourcing Costs

    Get PDF
    We consider a single-machine scheduling problem with an outsourcing option in an environment where the processing time and outsourcing cost are uncertain. The performance measure is the total cost of processing some jobs in-house and outsourcing the rest. The cost of processing in-house jobs is measured as the total weighted completion time, which can be considered the operating cost. The uncertainty is described through either an interval or a discrete scenario. The objective is to minimize the maximum deviation from the optimal cost of each scenario. Since the deterministic version is known to be NP-hard, we focus on two special cases, one in which all jobs have identical weights and the other in which all jobs have identical processing times. We analyze the computational complexity of each case and present the conditions that make them polynomially solvable

    Available-to-promise (ATP) systems: a classification and framework for analysis

    Get PDF
    Available-to-promise (ATP) systems deal with a number of managerial decisions related to order capture activities in a company, including order acceptance/rejection, due date setting, and resource scheduling. These different but interrelated decisions have often been studied in an isolated manner, and, to the best of our knowledge, no framework has been presented to integrate them into the broader perspective of order capture. This paper attempts to provide a general framework for ATP-related decisions. By doing so, we: (1) identify the different decision problems to be addressed; (2) present the different literature-based models supporting related decisions into a coherent framework; and (3) review the main contributions in the literature for each one of these. We first describe different approaches for order capture available in the literature, depending on two parameters related to the application context of ATP systems, namely the inclusion of explicit information about due dates in the decision model, and the level of integration among decisions. According to these parameters, up to six approaches for ATP-related decisions are identified. Secondly, we show the subsequent decision problems derived from the different approaches, and describe the main issues and key references involving each one of these decision problems. Finally, a number of conclusions and future research lines are discussed.Ministerio de Ciencia e Innovación DPI2007-6134

    An order acceptance using FAHP and TOPSIS methods: A case study of Iranian vehicle belt production industry

    Get PDF
    Decisions related to acceptance or rejection of orders play an important role in companies engaged in make-to-order production. The incoming orders have a specific delivery date by which the customer expects the due date to be met and the order delivered. In some cases the level of input orders exceeds beyond the existing capacity. In such situations the main concern is to decide which orders must be accepted and which ones rejected taking into account the available production capacity. This paper prioritises the input orders according to a comprehensive and systematic multi criteria decision making (MCDM) model. It then proceeds with making decisions to either accept or reject orders according to the calculated prioritises and production constraints. Ultimately the optimum list of orders for acceptance is determined. The proposed model is a combination of two techniques of Fuzzy Analytical Hierarchy Process (FAHP) and Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS). In this model FAHP is used to determine the weights of criteria and TOPSIS is used for prioritizing the orders. Finally the proposed model is tested for its efficiency by application to a real case

    Branch and Price Solution Approach for Order Acceptance and Capacity Planning in Make-to-Order Operations

    Get PDF
    The increasing emphasis on mass customization, shortened product lifecycles, synchronized supply chains, when coupled with advances in information system, is driving most firms towards make-to-order (MTO) operations. Increasing global competition, lower profit margins, and higher customer expectations force the MTO firms to plan its capacity by managing the effective demand. The goal of this research was to maximize the operational profits of a make-to-order operation by selectively accepting incoming customer orders and simultaneously allocating capacity for them at the sales stage. For integrating the two decisions, a Mixed-Integer Linear Program (MILP) was formulated which can aid an operations manager in an MTO environment to select a set of potential customer orders such that all the selected orders are fulfilled by their deadline. The proposed model combines order acceptance/rejection decision with detailed scheduling. Experiments with the formulation indicate that for larger problem sizes, the computational time required to determine an optimal solution is prohibitive. This formulation inherits a block diagonal structure, and can be decomposed into one or more sub-problems (i.e. one sub-problem for each customer order) and a master problem by applying Dantzig-Wolfe’s decomposition principles. To efficiently solve the original MILP, an exact Branch-and-Price algorithm was successfully developed. Various approximation algorithms were developed to further improve the runtime. Experiments conducted unequivocally show the efficiency of these algorithms compared to a commercial optimization solver. The existing literature addresses the static order acceptance problem for a single machine environment having regular capacity with an objective to maximize profits and a penalty for tardiness. This dissertation has solved the order acceptance and capacity planning problem for a job shop environment with multiple resources. Both regular and overtime resources is considered. The Branch-and-Price algorithms developed in this dissertation are faster and can be incorporated in a decision support system which can be used on a daily basis to help make intelligent decisions in a MTO operation

    Order acceptance under uncertainty in batch process industries

    Get PDF
    XIV+140hlm.;24c
    corecore