
Order acceptance and scheduling in a single-machine
environment: exact and heuristic algorithms

F. Talla Nobibon, J. Herbots and R. Leus

DEPARTMENT OF DECISION SCIENCES AND INFORMATION MANAGEMENT (KBI)

Faculty of Business and Economics

KBI 0904

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6304303?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Order acceptance and scheduling in a single-machine

environment: exact and heuristic algorithms

Fabrice Talla Nobibon∗, Jade Herbots and Roel Leus

Department of Decision Sciences and Information Management
Faculty of Business and Economics

Katholieke Universiteit Leuven, Belgium

In this paper, we develop exact and heuristic algorithms for the order acceptance and
scheduling problem in a single-machine environment. We consider the case where a
pool consisting of firm planned orders as well as potential orders is available from
which an over-demanded company can select. The capacity available for processing
the accepted orders is limited and orders are characterized by known processing times,
delivery dates, revenues and the weight representing a penalty per unit-time delay be-
yond the delivery date promised to the customer. We prove the non-approximability
of the problem and give two linear formulations that we solve with CPLEX. We
devise two exact branch-and-bound procedures able to solve problem instances of
practical dimensions. For the solution of large instances, we propose six heuristics.
We provide a comparison and comments on the efficiency and quality of the results
obtained using both the exact and heuristic algorithms, including the solution of the
linear formulations using CPLEX.

Keywords: order acceptance, scheduling, single machine, branch-and-bound, heuris-
tics, firm planned orders.

1 Introduction

Many organizations give no formal consideration to either order acceptance or rejection.
Instead, an order-entry process is operated that tacitly accepts all orders. In today’s
competitive manufacturing environment, an organization must respect order deadlines
agreed to with customers, but order acceptance often takes place without consideration
of the effect on the planning of the other jobs in the order portfolio. This is often the
consequence of the functional separation between the order acceptance decision, which is
made by the sales department, and capacity planning, which usually lies in the hands of
the production department. These two departments generally have conflicting objectives:
in order to boost sales, sales departments try to accept as many projects as possible, while
production attempts to live up to promised delivery dates. This divergence of interests can
result in considerable delays, violated due dates and/or excessive use of highly expensive
non-regular capacity such as overtime and temporary labor. It is therefore essential that
project selection and planning be integrated [17, 19, 42].

Order acceptance has gained increasing attention over the past decade. As clearly
described by Rom and Slotnick [33], this decision is intricate because it should strike
a balance between the revenue obtained from an accepted order on the one hand, and

∗Corresponding author. E-mail: Fabrice.TallaNobibon@econ.kuleuven.be. Tel. +32 16 32 69 60. Fax
+32 16 32 66 24.

1

the (opportunity) costs of capacity as well as potential tardiness penalties on the other
hand. This paper examines the simultaneous order acceptance and sequencing decision.
Order acceptance refers to the selection decision an over-demanded company has to make;
sequencing determines the order in which jobs are executed. More specifically, the focus of
this paper is on the order acceptance and scheduling decisions of an organization that has
a pool consisting of firm planned orders as well as potential orders to choose from, while
orders have known processing times, delivery dates and revenues. The capacity available
for processing the accepted orders is limited. In addition, the urgency of individual
orders may be emphasized by the importance of the client: even though some orders
by themselves may not be very lucrative, they may still have strategic value for future
business with the client. An order delivered past the agreed-upon delivery date incurs a
penalty that is proportional to the overrun; there is no reward nor penalty, however, for
order delivery before the promised date.

The selection of orders from a pool containing both firm planned orders as well as
potential orders, which is the problem studied in this article, is a generalization of two
boundary problems. The first of these two is the order acceptance and sequencing problem
with weighted tardiness penalties studied by Slotnick and Morton [37]. Here, the pool of
firm planned orders is empty and all tasks are eligible for rejection. The second boundary
problem is the pure sequencing problem with weighted tardiness as solved by e.g. Potts
and Van Wassenhove [31], where the pool of orders coincides with the pool of firm planned
orders.

In practice, the sales department needs to have a clear insight into the relationship
between the available resource capacities, possible workloads and the resulting manufac-
turing lead times in order to be able to quote realistic customer-order due dates. The
lead time of an order can be defined as the difference between the promised due date
of an order and its arrival time. Hence, quoting a lead time is equivalent to quoting a
due date. Recent lead-time-related research has developed in multiple directions, includ-
ing lead-time reduction [20, 38], predicting manufacturing lead times, the relationship
between lead times and other elements of manufacturing such as lot sizes and inventory
[15, 22, 29], and due-date management. The goal of due-date management is to develop
a combined due-date setting and sequencing policy. This means that, in contrast with
most of the scheduling literature, due dates are set endogenously; surveys in this area
include [3, 8, 23].

In this article, we adopt an operational scheduling viewpoint and consider the due
dates to be exogenous: they are the outcome of negotiations with the client and are
fixed before a detailed workplan is to be developed. We examine order acceptance and
planning on a specialized scarce resource, which is represented as a single machine and
which constitutes the bottleneck of the manufacturing environment. We devise various
exact and heuristic algorithms to solve the problem of deciding which non-planned orders
to retain and which to reject for profit maximization, and we simultaneously determine
the processing order of the accepted jobs. By means of computational experiments on
a number of benchmark datasets, we show that we improve upon the performance of
previously published exact algorithms and show the good behavior of our heuristics.

The contributions of this article are the following: we propose a new model for job
selection and scheduling that builds a bridge between two well-known problems, namely
single-machine scheduling to minimize total weighted tardiness and job selection and

2

sequencing with total weighted tardiness penalties. We prove the non-approximability of
the problem and present two mixed-integer linear formulations. We develop two exact
branch-and-bound algorithms able to solve medium-size instances and six heuristics for
solving large instances.

The remainder of this article is structured as follows. First, we survey the existing
literature in Section 2. In Section 3, we provide a formal description of the problem
that we wish to solve. Section 4 contains the proof of the non-approximability result
and the two linear formulations. Section 5 is devoted to the development of exact algo-
rithms. In Section 6, we propose a number of heuristics. We comment the results of the
computational experiments in Section 7 and we conclude in Section 8.

2 Literature review

Excellent literature surveys on the topic of order acceptance and scheduling are pro-
vided by Rom and Slotnick [33], Guerrero and Kern [17], Keskinocak and Tayur [23] and
Roundy et al. [34]. The objective of this section is therefore not to provide an exhaustive
listing of the existing literature, but rather to survey the different perspectives that have
been developed on the topic by different researchers, with a particular focus on the work
in single-machine environments. As mentioned before, the pure sequencing problem with
weighted tardiness has been solved by Potts and Van Wassenhove [31]. This review will
therefore only discuss the most closely related articles on the subject of order acceptance
and scheduling. First, we discuss the objective of minimizing the total weighted tardi-
ness; subsequently, we briefly consider alternative objective functions and on-line decision
making.

Slotnick and Morton study the single-machine job selection and sequencing problem
with deterministic job processing times and job rewards; their objective is to maximize
the rewards in case of lateness [36] and tardiness [37] penalties. A pseudo-polynomial-time
algorithm to solve the former problem was developed by Ghosh [14]. The problem was
extended in [27] to multiple periods for the case where rejecting a job will result in the loss
of all future jobs from that customer. An exact approach for solving the single-period
weighted tardiness problem was developed in [37]. Since the proposed algorithm can
only deal with very moderately sized problem instances (at most ten jobs), suboptimal
algorithms were also presented. Other heuristics include genetic algorithms [33] and
greedy algorithms for selection and ordering problems [2]. Yang and Geunes [40] consider
an extension of the problem where job processing times are reducible at a cost and every
job has a release time. In their paper, Yang and Geunes develop an optimal algorithm for
maximizing schedule profit for a given sequence of jobs, along with heuristics to solve the
entire problem. Sengupta [35] studies a special case of the problem where the weight of
each job is one. Both an MIP formulation as well as a branch-and-bound algorithm are
described in the very brief article of Yugma [41]; he reports results in reasonable time via
MIP for up to 15 jobs, and up to 30 using branch-and-bound. Finally, Bilginturk et al.
[6] look into a generalization of this problem with release times, deadlines and sequence-
dependent setup times; they conclude that an MIP solution is not attainable for problem
sizes exceeding ten jobs and resort to simulated annealing.

Other objective functions for the selection and sequencing problem have been consid-

3

ered in literature. Engels et al. [11] seek to minimize the sum of the weighted completion
times of the scheduled jobs and the total rejection penalty of the rejected jobs. A related
objective function is used in [28] for the unbounded parallel batch machine scheduling
problem with release dates. A parallel batch machine can process a number of jobs si-
multaneously, so that the makespan is the same for all jobs in a batch. A different but
related problem is the job-interval selection problem (JISP) where a job is determined
by a set of intervals. In [9], some special cases of the JISP are considered. The paper
develops algorithms that aim to maximize the number of jobs scheduled between their
release dates and deadlines. Another objective function was examined by Gupta et al.
[18], who develop an efficient polynomial-time dynamic-programming method that solves
the project selection and sequencing problem (a fixed number of projects is selected from
a set) while maximizing the net present value of the total return. De et al. [10] study
the sequencing problem and minimize the weighted number of tardy jobs. In [10], a
project-dependent cost is charged when starting the execution of a project so that it
becomes a selection problem. It is assumed that a revenue is reaped at the completion
of a project. The goal is to maximize the expected rewards of a selection of jobs with
random processing times and random deadlines. Baptiste et al. [4] study a related prob-
lem with unit durations inspired by a practical case of a satellite launcher, and describe
polynomial-time dynamic-programming recursions for some special cases.

The on-line problem, in which projects arrive dynamically over time and need to
be selected or rejected upon arrival, has been studied by several authors for a broad
range of objective functions. For dynamic arrivals with a single resource constraint,
Kleywegt and Papastavrou [24] studied a dynamic and stochastic knapsack problem,
where the size of the knapsack represents the deterministic available resource quantity.
Each arrival demands some amount of the resource, and a reward (unknown prior to the
job arrival) is received upon acceptance. They provide an optimal acceptance policy that
maximizes expected profits. For the batch process industry, Ivănescu et al. [21] develop
policies that focus on delivery reliability, while keeping utilization rates up. Epstein et
al. [12] consider a single-machine on-line job selection and scheduling problem with job-
dependent rejection penalties. Their algorithm aims to minimize the total completion
time of accepted jobs plus job rejection penalties.

3 Problem statement

A set of jobs N = {1, 2, . . . , n} with durations pi (i ∈ N) is to be scheduled on a single
machine; all jobs are available for processing at the beginning of the planning period.
Each job i has a due date di and a revenue Qi; the weight wi represents a penalty per
unit-time delay beyond di in the delivery to the customer. The pool N of jobs consists
of two disjoint subsets F and F̄ (N = F ∪ F̄ and F ∩ F̄ = ∅), for which F comprises the
firm planned orders and its complement F̄ contains the ‘optional’ jobs (the ones that can
still be rejected). Our objective is to maximize total net profit, that is, the sum of the
revenues of the selected jobs minus applicable total weighted tardiness penalties incurred
for those jobs.

There are two decisions to be made: which jobs in F̄ to accept, and in which order
to process the selected subset. We call M the set of jobs selected for processing, so

4

F ⊆M ⊆ N . If we let m = |M |, the sequencing decisions can be represented by a
bijection π : {1, 2, . . . ,m} 7→ M , where π(t) is the index of the job in position t in the
sequence. Each such bijection is in one-to-one correspondence with a total order on set
M . The objective is thus

max
M,π

m∑
t=1

Qπ(t) − wπ(t)(Cπ(t) − dπ(t))
+, (1)

where Ci is the completion time of job i, i.e. Ci =
∑π−1(i)

t=1 pπ(t), and s+ = max{s, 0}.
Formulation (1) also models a special case of scheduling with subcontracting options [7]
where the subcontractor has an unlimited capacity. In the sequel, we refer to (1) as either
the objective function or the problem formulation when no confusion can be made.

When N = F , the pool of firm planned orders is equal to the set of mandatory jobs and
the problem reduces to the single-machine total weighted tardiness problem 1||

∑
wiTi.

Although this problem is strongly NP-hard [25, 26], Potts and Van Wassenhove [31] have
developed a branch-and-bound algorithm that efficiently solves problems with up to 50
jobs.

On the other hand, when N = F̄ , the problem is equivalent to the selection and
sequencing problem discussed in [33, 37], which is akin to a number of other recently
examined optimization problems, as discussed in the literature review. This problem
contains the scheduling problem; it is therefore strongly NP-hard. The branch-and-bound
procedure in [37] only solves relatively small problem instances (at most ten jobs) and is
primarily used as a benchmark for evaluating the performance of heuristics.

4 Non-approximability and linear formulations

In this section, we show that it is unlikely that a constant-factor approximation algorithm
can be developed for problem (1). We present two mixed-integer linear formulations of
(1) that can be solved using the IP solver of CPLEX.

The next result shows that (1) is difficult to solve even approximately. We prove this
non-approximability result by showing that any polynomial-time constant-factor approx-
imation algorithm for solving (1) can be used to solve the following variant of Partition
(see [13]; by adding |A| dummy elements of size 0 to an instance of the usual Partition
problem, one easily sees that this variant of Partition is as hard as the original problem):
INSTANCE: A finite set A = {1, 2, . . . , 2q} (where q is an integer greater than 0) with
size s(i) ∈ Z+ for each i ∈ A, and K = 1

2

∑
i∈A s(i).

QUESTION: Does there exist a subset A′ ⊂ A with |A| = q and
∑

i∈A′ s(i) = K?

Theorem 1. Unless P = NP , there is no polynomial-time algorithm that guarantees a
constant-factor approximation for solving the problem (1).

Proof: For a given arbitrary instance of Partition, consider the following polynomial
time reduction to an instance of (1) with n = 2q + 2 jobs. The set of firm planned
orders F = {2q + 1, 2q + 2} and we let δ = 2K + 1. The properties of each job are
the following: for job i = 1, . . . , 2q we have a revenue Qi = δs(i), the processing time
pi = δ + s(i), the due date di = qδ + K + 2 and the weight wi = s(i)(δ + 1). For the

5

last two jobs, we have Q2q+1 = Q2q+2 = δ, p2q+1 = p2q+2 = 1, d2q+1 = d2q+2 = 1 and
w2q+1 = w2q+2 = δ(K+ 2). We prove that by solving this instance of (1) with a constant-
factor approximation algorithm, we can infer the answer to the Partition instance.

If the instance of Partition is a YES instance then an appropriate set A′ exists. By
selecting the jobs in A′ (jobs built from the elements in A′) plus those in F and by
scheduling them optimally (for example, schedule job 2q + 1 first, job 2q + 2 second and
the jobs in A′ in any order thereafter) we achieve an optimal profit of 0. Therefore, a
constant-factor approximation algorithm will always provide an optimal solution, from
which we can easily infer A′.

Conversely, if a constant-factor approximation algorithm leads to an objective value
different from 0, we conclude that the instance of Partition is a NO instance. �

We next present two mixed-integer linear formulations for our job selection and
sequencing problem. For the first formulation, we use the binary decision variable
yi ∈ {0, 1} (i ∈ N), which takes the value 1 if job i is accepted and 0 otherwise. Notice
that each job in F must be accepted. This constraint translates into:

yi = 1, ∀i ∈ F. (2)

The second set of binary variables xit ∈ {0, 1} (i ∈ N , t ∈ {1, . . . , n}) is used to identify
the position of the accepted jobs. The variable xit is equal to 1 if job i is accepted and is
the tth job processed, and to 0 otherwise. Clearly, the following set of equality constraints
holds:

yi =
n∑
t=1

xit, i = 1, . . . , n. (3)

The set of constraints (3) allows to relax the integrality constraints on the variable yi and
to use 0 ≤ yi ≤ 1, i = 1, . . . , n.

The capacity constraints entail that a given position can be attributed to at most one
job; this is enforced by adding the following set of constraints.

n∑
i=1

xit ≤ 1, t = 1, . . . , n. (4)

To linearize the objective function of (1), we introduce the binary variable zji ∈ {0, 1}
(i 6= j), which is equal to 1 if both jobs i and j are accepted and job j is executed before
job i, otherwise zji takes the value 0. Since both jobs i and j must be accepted when
zji = 1, we have

zji ≤ yi, zji ≤ yj, i, j = 1, . . . , n, i 6= j. (5)

We add the following set of constraints to enforce the fact that if job i is accepted and
job j is processed before job i (meaning that job j is also accepted) then zji = 1:∑

q<t

xjq +
∑
q≥t

xiq ≤ 1 + zji, i, j, t = 1, . . . , n, i 6= j, t 6= 1. (6)

6

To complete our formulation, we need a real variable Ti ≥ 0 representing the tardiness of
job i = 1, . . . , n, satisfying

Ti ≥
n∑
j=1

pjzji + piyi − di, i = 1, . . . , n. (7)

The objective function is

maximize
n∑
i=1

(Qiyi − wiTi) . (8)

We refer to the mixed-integer linear formulation given by the objective function (8) and
the constraints (2–7) as MIP. The following result shows that MIP is equivalent to (1).

Theorem 2. From any solution to MIP, we can infer a solution to the problem (1) with
the same objective value and vice versa.

Proof: ⇒) Suppose that there is a solution yi, xit, zji and Ti to MIP. Consider M =
{i ∈ N : yi = 1}; it holds that F ⊆ M . Each job i ∈ M has a unique value t that
represents its position, namely t for which xit = 1. The function π that orders the jobs
in M according to increasing position is a bijection. Choices M and π form a feasible
solution to (1) and it is easy to see that this solution has the same objective value as
yi, xit, zji, Ti.
⇐) On the other hand, suppose that we have a solution (M,π) to (1), then take xit = 1
if i ∈M and π(t) = i, otherwise set xit = 0. We can easily infer yi, zji and Ti. Moreover,
this solution is feasible and has the same objective value as (M,π). �

The formulation MIP can be strengthened by adding the following inequalities:

(Cuts)
n∑
i=1

xit+1 ≤
n∑
i=1

xit, t = 1, . . . , n− 1.

These inequalities enforce that there should be no empty position between the execution
of two consecutive jobs. We refer to these inequalities as ‘cuts’, although a number of
integer solutions to MIP are also eliminated.

The following result states that we can relax the integrality constraints on the variables
zji without harm. Let MIP′ be the formulation MIP in which the domain {0, 1} of the
variables zji is replaced by [0, 1].

Proposition 1. In any feasible solution to MIP′, each zji ∈ {0, 1}.

Proof: Consider a given optimal solution yi, xit, zji and Ti to MIP′ and suppose that
there exists a variable zji with 0 < zji < 1. Due to constraints (5), yi = yj = 1, and
from (3), there are two distinct positions ti, tj with ti 6= tj to which i, respectively j, are
assigned. The constraints (6) then imply that either zji or zij equals 1, and the other
variable will then be 0 due to constraint (7). �

7

The second linear formulation is a time-indexed formulation [5, 39]. It is based on a
discretization of the time horizon [0, T] into T one-unit time buckets, where T =

∑
i∈N pi

and the bucket t is the time interval [t − 1, t]. The decision variables are the binary
quantities xjt ∈ {0, 1} with j = 1, . . . , n and t = 1, . . . , T − pj + 1, which equal 1 if
job j is selected and its execution starts in bucket t, and 0 otherwise. We let cjt =
max{t + pj − dj − 1; 0}, the tardiness of job j associated with the decision xjt. The
time-indexed formulation is given by:

(TIF) max
n∑
j=1

T−pj+1∑
t=1

xjt (Qj − wjcjt) (9)

subject to

T−pj+1∑
t=1

xjt = 1 j ∈ F, (10)

T−pj+1∑
t=1

xjt ≤ 1 j ∈ F̄ , (11)

n∑
j=1

t∑
s=t−pj+1

xjt ≤ 1 t = 1, . . . , T, (12)

xjt ∈ {0, 1} j = 1, . . . , n, t = 1, . . . , T − pj + 1. (13)

The set of constraints (10) specifies that each job j ∈ F is processed only once, the set
of constraints (11) states that each job j ∈ F̄ can be selected or not and if selected it is
executed only once. The set of constraints (12) avoids the processing of more than one
job at the same time.

5 Implicit-enumeration algorithms

In this section, we present two branch-and-bound (B&B) algorithms for solving our prob-
lem. These algorithms are inspired by the work of Slotnick and Morton [37]. The first
B&B algorithm is hierarchical, in that it performs selection and scheduling separately.
At each node of the branching tree, the B&B algorithm developed by Potts and Van
Wassenhove [31] is used to schedule the set of selected jobs. The second B&B algorithm
performs both selection and scheduling simultaneously. In what follows, these two B&B
algorithms are called two-phase and direct, respectively.

We will use the same example instance to illustrate the working of the two algorithms.
This instance has four jobs and the firm has planned to certainly accept the last job, so
F = {4}. The properties of each job are given in Table 1.

5.1 Two-phase B&B algorithm

In what follows, we describe in detail each step of the two-phase B&B algorithm.

5.1.1 Removable set

We wish to distinguish a set R̄ of jobs for which we are certain that they are part of each
optimal solution, we call these jobs non-removable. By symbol R, we denote the set of

8

Job 1 2 3 4
Qi 5 4 5 6
wi 3 2 1 4
pi 2 3 2 2
di 4 4 3 2

Table 1: Job properties for the example.

removable jobs: R = N \ R̄. Slotnick and Morton [37] propose a procedure to identify R
when F = ∅: given an optimal sequence of all the jobs and given a job j, if removing job
j from the sequence decreases the net profit then j ∈ R̄, otherwise j ∈ R. The following
result is a generalization for arbitrary F .

Theorem 3. For a given instance of problem (1) and a removable set A for the corre-
sponding instance with F = ∅, the set R of removable jobs of our problem is given by
R = A \ F .

Proof: This follows from the reasoning given by Slotnick and Morton [37] for the total
weighted lateness penalties and the fact that jobs in F must be selected. �

In the sequel, we denote the jobs in R byJ1, . . . , J|R|.

5.1.2 Branching strategy

Figure 1 depicts the branching tree explored by the two-phase B&B algorithm for the
example instance. The top node (node 0) in Figure 1 represents the scheduling instance

Figure 1: Illustration of the two-phase B&B algorithm. The highlighted path leads
from the root node to the optimal solution.

with total weighted tardiness penalties containing all the jobs in M0 = R̄, in the example

9

R̄ = F = {4}. The solution of this scheduling instance provides us with a lower bound
(LB) of 6 on the optimal objective function value; at the same time, the solution of an
assignment problem leads to an upper bound (UB) of 13 (more details on UB are provided
in Subsection 5.1.6). Each node u at the next level of the search tree represents a new
scheduling instance in which one extra job Jj ∈ R is added, leading to Mu = M0 ∪ {Jj}.
At each subsequent level, one job is added to Mu, so at level k of the branching tree, each
node corresponds with the selection of |R̄|+ k jobs. To avoid repetition, a removable job
Jj is added to a set of selected jobs if and only if its index j is greater than the highest
index of a removable job already selected. Observe that the branching tree is strongly
unbalanced and that for some nodes, we do not need to compute a UB.

5.1.3 Scheduling algorithm

In each node u, we use the B&B algorithm developed by Potts and Van Wassenhove [31]
to schedule the set of jobs Mu to minimize the total weighted tardiness.

5.1.4 Node selection

We visit the branching tree in a best-first search (BFS) manner. At any point in time, a
list of unfathomed nodes is kept in non-increasing order of their UB. The first node in
the list is the next node to investigate. When a new node is created, the list is updated
by inserting that node at the appropriate position such that the non-increasing-UB order
is preserved.

5.1.5 Lower bound

At a given node u of the branching tree with the set Mu of selected jobs, a LB is given
by the objective value of an optimal schedule.

5.1.6 Upper bound

At a given node u, a UB is computed if J|R| /∈Mu. We have implemented two UBs. The
first one is the output of an assignment problem; this bound is inspired by Slotnick and
Morton [37]. The second bound is based on the solution to a job selection and sequencing
problem with total weighted lateness penalties.

Assignment bound This approach divides each job into joblets with a duration of one
time unit. A UB is found by solving an assignment problem that assigns joblets to
unit-duration time buckets, so the corresponding schedule may be preemptive. At
node u, we include dummy joblets and dummy positions to allow for the rejection
of joblets stemming from jobs not in Mu.

Consider a node u at level l of the search tree and with Jk the last added job; it
holds that k ≥ l. Set Su = N \ ({J1, . . . , Jk−1} \Mu) contains the jobs that can still
be selected in the children of u; let K =

∑
i∈Su

pi. The assignment of any joblet to
a time instant larger than K and of any dummy joblet receives a return of zero. A
non-dummy joblet assigned to a time bucket with index lower than or equal to K
corresponds with acceptance of that joblet; the contribution of such a combination

10

to the objective function is determined based on the per-joblet reward, weight and
due date. The per-joblet reward and weight are obtained by dividing the original
job’s reward and weight by the job’s processing time; the due date of a joblet is a
function of the position of the joblet (within the job) and the job’s due date [33].

The assignment problem is solved using a cost-scaling algorithm [1, 16] and the
opposite of its optimal value is used as UB.

Lateness bound At the node u, the total net profit is

max
Mu⊆M,π

∑
t∈M

Qπ(t)−wπ(t)(Cπ(t)− dπ(t))
+ ≤ max

Mu⊆M,π

∑
t∈M

Qπ(t)−wπ(t)(Cπ(t)− dπ(t)).

The latter problem is a variant of the job selection and sequencing problem with
total weighted lateness penalties [14, 36]. This variant imposes the selection of some
jobs (namely those in Mu). The pseudo-polynomial-time dynamic-programming
algorithm proposed by Ghosh [14] can be modified to solve this problem. The
optimal objective value is then a UB for our problem.

Combinations Two combinations of the above UBs are tested in Section 7. The first
combination (comb. 1) with a parameter α (0 < α ≤ 1) proceeds as follows: at the
root node, an assignment bound is computed. At any subsequent node, a lateness
bound is computed first; if its value is less than or equal to α times the UB of its
parent node then an assignment bound is computed, in an attempt to prune the
node. The second combination (comb. 2) is based on similar principles but the value
of α now varies during the search: α now equals the number of jobs accepted at the
parent node divided by the number of jobs accepted at the child node. Notice that
when the number of jobs accepted at the parent node increases, α tends to one.

5.2 Direct B&B algorithm

The main steps of the direct B&B algorithm are described in this section.

5.2.1 Branching strategy

Figure 2 depicts a part of the search tree explored by the direct B&B algorithm when
applied to the example instance presented earlier. The top node in the figure has a LB
of 6, a UB of 13 and represents the situation where no job has yet been accepted. The
LB corresponds with the heuristic solution that accepts all the jobs in F , sequenced in
increasing job index; Subsection 5.2.3 provides more details on the UB computation. At
level 1, n new nodes are created (four, in the example) representing n (possibly partial)
solutions, each generated by selecting a single job and scheduling it at the first position.
Given a parent node at level k − 1 (k ≥ 1), we create n− k + 1 child nodes each with k
jobs selected with known position: the job added at level k takes position k. At a given
node u of our branching tree with Mu ⊆ N the set of selected jobs, we denote by M̄u its
complement N \Mu. Similarly to the two-phase algorithm, the branching tree is explored
in a BFS manner.

11

Figure 2: Illustration of the direct B&B algorithm. The highlighted path leads from
the root node to the optimal solution.

5.2.2 Lower bound

At a given node u of the branching tree, let Vu be the return (net profit) obtained for the
scheduled set Mu of jobs. Two cases can occur: (1) F ⊆ Mu, in which case Vu is a LB;
(2) F * Mu, and then a LB is obtained by appending the jobs in F \Mu to the rear of
the sequence in increasing order of their indices.

5.2.3 Upper bound

We have implemented the two UBs that were discussed in Section 5.1.6 also for the direct
B&B. Notice that the contribution to the objective function of the jobs in Mu is known
exactly; therefore, only the contribution of jobs in M̄u needs to be upper-bounded. As
the |Mu| selected jobs are scheduled at the first |Mu| positions, the due date of each job
in M̄u is updated accordingly by subtracting

∑
i∈Mu

pi, we refer to this new value as d̄.

Assignment bound This UB is similar to the one in [37], apart from the updated due
dates. Our UB is the sum of Vu and the objective function value of the assignment
problem.

Lateness bound At node u, the unscheduled jobs can achieve a net profit of

max
M⊆M̄u,π

∑
t∈M

Qπ(t)−wπ(t)(Cπ(t)−d̄π(t))
+ ≤ max

M⊆M̄u,π

∑
t∈M

Qπ(t)−wπ(t)(Cπ(t)−d̄π(t)) = ∆,

where F \Mu ⊆M . The UB is then ∆ + Vu.

Combinations In Section 7, experimental results are reported for four combinations of
these UBs. The first (comb. 1) and the second combination (comb. 2) correspond
with those described for the two-phase B&B algorithm. The third combination

12

(comb. 3) is a variant of comb. 1 where the assignment bound is computed when
the value of the LB (instead of UB) is less than or equal to α times the LB (rather
than UB) of its parent node. The fourth combination (comb. 4) is a similar variation
of comb. 2.

5.2.4 Dominance rules

Below, we outline some global and local dominance rules that can be used as pruning
devices for the direct B&B algorithm.

Global dominance rules The global dominance rules presented here are extensions of
Emmons’ rules [5, 32]. The goal of these rules is to identify for each job j a set
Bj, containing jobs that can be processed before job j, and Aj, the set of jobs that
can be executed after job j. Let BF

j be the set of jobs in F that must be processed
before job j, and AFj the set of jobs in F that must be processed after job j. Both
BF
j and AFj are initially empty, and the rules below are applied iteratively.

Global rules: If job i and job j are selected, then there is an optimal sequence in
which job i is processed before job j, if one of the following conditions holds:
Rule 1: pi ≤ pj, wi ≥ wj and di ≤ max{dj, pj +

∑
h∈BF

j
ph}.

Rule 2: wi ≥ wj, di ≤ dj and dj + pj ≥
∑

h∈N\AF
i
ph.

Rule 3: dj ≥
∑

h∈N\AF
i
ph.

Remark that when F = N these three rules are exactly Emmons’ rules [32].

The proof of these three rules follows from a slight modification of the proof pro-
posed by Rinnooy Kan et al. [32]. These three rules are used to construct a pre-
decessor graph. However, the implementation of transitivity is slightly different
because we also need to select jobs as well as schedule them. In our case, we use
the following implementation.
Transitivity: whenever we identify a new relation “job j precedes job k” we dis-
tinguish two cases.
Case 1: If job j ∈ F then we make sure that job k and each job coming after k
come after job j and any job coming before j.
Case 2: If job k ∈ F then we enforce that job j and each job coming before j come
before job k and any job coming after k.

Local dominance rules At each node of the branching tree, we use two local dominance
rules as pruning devices. The adjacent-job interchange rule is used as a scheduling
rule. The following lemma presents the selection criterion. At node u, let Ju be
the last job selected and scheduled at position |Mu| and tu the start time of the
execution of job Ju.

Lemma 1. At a given node u of the branching tree, let ji ∈ M̄u \ F .
(1) If Qji−wji(tu+pju +pji−dji) ≤ 0 then the child node of u obtained by selecting
and scheduling the job ji at the position |Mu| + 1 can be pruned without losing all
optimal solutions.
(2) If F ∩ M̄u 6= ∅, let B = Qji − wji(tu + pju + pji − dji) > 0, t1 = tu + pju + pji
and t2 = tu + pju. Consider two optimal schedules of all jobs in F ∩ M̄u after time

13

t1 and time t2 respectively with optimal value T1 and T2. If B + T1 ≤ T2 then the
child node of u obtained by selecting and scheduling job ji at the position |Mu| + 1
can be pruned without losing all optimal solutions.

Proof: The proof follows from the fact that selecting job ji will lead in the best
case to a net profit equal to the optimal net profit obtained when job ji is not
selected. �

6 Heuristics

In this section, we present six heuristics for solving problem (1). These heuristics are
developed based on the structure of the problem and the exact algorithms presented in
Section 5. The first is a slightly modified version of the myopic heuristic proposed by
Rom and Slotnick [33]; the modification allows to take into account the jobs in F . The
second heuristic is an improvement of the first. The third heuristic is based on the LP
relaxation of formulation MIP′ while the fourth heuristic is based on the LP relaxation of
TIF. Heuristic 5 is a depth-first B&B heuristic based on the two-phase B&B algorithm
and the last one is a truncated direct B&B heuristic.

6.1 Heuristic 1

This is a slightly modified version of the myopic heuristic presented by Rom and Slotnick
[33]. This heuristic is described by Pseudocode 1.

Pseudocode 1
1: calculate the profit when all jobs are accepted and ordered in increasing job index
2: decompose the jobs into joblets with unit processing time, apportion the weights and revenues accordingly,

and use the assignment algorithm of Section 5.1.6 to find the optimal sequence of this relaxation by
maximizing the return of accepting or rejecting each joblet while making sure that the firm planned orders
are accepted

3: accept all jobs in F̄ that have at least 75% of their joblets accepted in the relaxed solution
4: sequence these (reassembled) jobs in ascending order of completion time (the completion time of the

latest component joblet scheduled in the assignment solution) minus processing time, and calculate the
profit of this set

5: order the remaining jobs using the Rachamadugu-and-Morton heuristic for weighted tardiness [30], place
them after the previously accepted jobs in 4 above, and calculate the profit of this set

6: return the best solution of 1, 4 and 5 above

6.2 Heuristic 2

Heuristic 2 is an improvement of Heuristic 1. Here, an exact algorithm is used at line
4: to schedule the accepted set of jobs, namely the B&B developed by Potts and Van
Wassenhove [31].

6.3 Heuristic 3

This heuristic is based on the LP relaxation of MIP′. Given a solution to the LP relax-
ation, if that solution is integer then it is the output of our heuristic; otherwise, we round

14

the variables yi, i = 1, . . . , n, to integer values as follows. If i ∈ F then yi = 1. On the
other hand, if i ∈ F̄ and there exists t ∈ {1, 2, . . . , n} such that xit ≥ 1

4
we set yi = 1,

otherwise yi = 0. The jobs i ∈ N with yi = 1 form the set of selected jobs. To limit
the running time, the LP relaxation is solved as follows: for an instance with n jobs, we
impose a time limit of 5n seconds. Subsequently, we apply the B&B of Potts and Van
Wassenhove [31] to produce an optimal schedule for the selected jobs. We mention that
the parameter 1

4
used in this heuristic was chosen after many trials.

6.4 Heuristic 4

This heuristic is based on the LP relaxation of TIF. Given a solution xjt, j = 1, . . . , n, t =
1, . . . , T − pj + 1, to the LP relaxation, there are two possibilities: either the solution is
integer, in which case it is the output of the heuristic, or it is fractional and we select
the jobs to execute in the following way. Job j is selected if j ∈ F or if there exists
t ∈ {1, . . . , T} such that

∑t
s=t−pj+1 xjt ≥

1
4
. As for Heuristic 3, a time limit of 5n seconds

is set for the LP relaxation and selected jobs are again scheduled with an exact algorithm.

6.5 Heuristic 5

This heuristic is a depth-first B&B heuristic; it is a variant of the two-phase B&B algo-
rithm. Pseudocode 2 depicts the steps followed by Heuristic 5.

Pseudocode 2
1: schedule all jobs to minimize total weighted tardiness
2: identify the set R of removable jobs
3: order the jobs in R in decreasing order of their effect on the net profit
4: compute a LB at the root node
5: add jobs in a greedy fashion; keep a job if and only if it increases the net profit

6.6 Heuristic 6

Heuristic 6 is a truncated direct B&B heuristic: the algorithm is halted when a time limit
is reached. We impose a time limit of 10n seconds when solving instances with n jobs.

7 Computational experiments

All algorithms have been coded in C using Visual Studio C++ 2005; all the experiments
were run on a Dell Optiplex GX620 personal computer with Pentium R processor with
2.8 GHz clock speed and 1.49 GB RAM, equipped with Windows XP. CPLEX 10.2
was used for solving the linear formulations. Below, we first provide some details on the
generation of the datasets and subsequently, we discuss the computational results.

7.1 Data generation

The B&B algorithms and the heuristics are tested on randomly generated instances with
n jobs, for n = 10, 20, 30, 40 and 50. For each job i, an integer processing time pi and

15

integer weight wi are drawn from the discrete uniform distribution on [1, 10].
To diversify the test instances, we follow Potts and Van Wassenhove [31] and use

different relative ranges of due dates r and different average tardiness factor T . The
values chosen for r are 0.3, 0.6 and 0.9; the same values apply for T . For given values
of r and T and with P =

∑n
i=1 pi, we select for each job i an integer due date di from

the uniform distribution with support the set of integers in the interval [max{P (1− T −
r
2
), pi},max{P (1 − T + r

2
) − 1, pi}]. In this way, we avoid the creation of instances in

which some jobs can be processed last without being late, if all jobs are executed. Each
job revenue Qi is an observation of a lognormal distribution with an underlying normal
distribution with mean 0 and standard deviation 1, rounded to the nearest integer. This
reflects a situation in which job characteristics are fairly similar but where the potential
revenue of a job may vary widely (see Slotnick et al. [36, 37]).

For every value of n and for each of the nine pairs of values of r and T , one instance
is generated. These instances are subsequently modified by randomly selecting the firm
planned orders out of the n jobs as follows. Two extreme cases considered are |F | = 0
and |F | = n. We also consider the intermediary choices with |F | equal to 0.2n, 0.4n,
0.6n and 0.8n. For each of the latter values for |F |, we make two choices for F , and we
make sure that each smaller set F is embedded in the larger F of another instance. This
means, for example, that for a given instance with a set F1 of firm planned orders with
|F1| = 0.2n, there exists an instance with a set of firm planned orders F2 with |F2| = 0.4n
such that F1 ⊂ F2. For a given value of n, we have 9 × (2 + 2 × 4) = 90 test instances,
yielding 5× 90 = 450 instances in total.

Moreover, to study the effect of processing-time variability on the developed algo-
rithms, we have also generated a set of 90 instances with n = 10 jobs each, following the
methodology described above but with larger processing times: the pi are generated from
the discrete uniform distribution on [10, 100].

7.2 Computational results

In this section, computation time is referred to as Time and is expressed in seconds;
Nodes is the number of nodes explored in the search tree of the considered algorithm.
Furthermore, each cell in the tables appearing in this section is (unless mentioned oth-
erwise) the average of either nine values (corresponding to the cells with |F | equal to
100%n and 0%n) or 18 values (corresponding to the cells with 80%, 60%, 40% and 20%).
Some tables contain rows entitled Unsolved, which indicate the number of instances of
each group that remained unsolved when the time limit was reached.

7.2.1 Size n = 10

Table 2 displays the output of the mixed-integer linear formulations for the dataset with
n = 10 and processing times between 1 and 10. The table shows the domination of the
time-indexed formulation (TIF) over the other linear formulations (when solved using
CPLEX). As for the other formulations, we observe that MIP′ dominates MIP+Cuts,
which is the formulation MIP with the addition of cuts. Moreover, CPLEX solves MIP′

faster than MIP′+Cuts for instances with at least 60% of firm planned orders. On the
other hand, for instances with at most 40% of firm planned orders, the running time of

16

Firm planned orders 100% 80% 60% 40% 20% 0%

MIP+Cuts Nodes 96680 (2) 120075 97140 48417 59467 51417
Time 505.58 657.61 548.21 342.52 401.73 378.15

MIP′ Nodes 17870 17920 21137 14935 15256 19118
Time 123.46 91.28 97.30 70.97 78.40 118.30

MIP′+Cuts Nodes 30556 10058 16110 7339 6315 6989
Time 194.94 99.89 107.67 61.06 52.42 54.39

TIF Nodes 0 0 7 0 1 0
Time 0.05 0.07 0.07 0.08 0.07 0.07

Table 2: Linear formulations for n = 10 with small processing time.

MIP′ is greater than that of MIP′+Cuts. With the addition of cuts to MIP, there are
two instances with 100% of firm planned orders that CPLEX was not able to solve within
the time limit of one hour (indicated by the number 2 between brackets).

Table 3 reports the output of the two-phase B&B algorithm for the dataset with n = 10
and small processing times, including the two UB procedures and the two combinations
described in Section 5. The two-phase B&B algorithm with assignment bound is identified
by assign. while lateness refers to the algorithm with the lateness bound. The entry
min. is used to indicate the best (minimum computation time) of the two foregoing
implementations. The first combination of these two bounds with constant factor α
identified by comb. 1 is implemented for four different values of α, namely 1, 0.9, 0.8
and 0.7. From Table 3, we see that the assignment bound leads to a branching tree with
quite fewer nodes than the lateness bound. However, it turns out that the computation
time required for the assignment bound is considerable; this can be observed in the
row corresponding to min., which contains exactly the result obtained with the lateness
bound. With respect to the combinations of the UB procedures, comb. 2, which is the
combination with a variable factor α, seems to behave rather well. The number of nodes
explored by comb. 1 seems to increase when α decreases.

Table 4 reports the results of the direct B&B algorithm for n = 10 with processing

Firm planned orders 100% 80% 60% 40% 20% 0%

two-phase

assign. Nodes 0 1 4 12 20 39
Time 0.00 0.02 0.05 0.13 0.21 0.41

lateness Nodes 0 2 10 34 125 442
Time 0.00 0.00 0.00 0.00 0.01 0.04

min. Nodes 0 2 10 34 125 442
Time 0.00 0.00 0.00 0.00 0.01 0.04

comb. 1

1 Nodes 0 2 7 19 38 79
Time 0.00 0.01 0.04 0.10 0.21 0.41

0.90 Nodes 0 2 8 22 66 206
Time 0.00 0.01 0.03 0.07 0.13 0.26

0.80 Nodes 0 2 8 27 99 301
Time 0.00 0.01 0.03 0.06 0.09 0.17

0.70 Nodes 0 2 9 29 108 342
Time 0.00 0.01 0.02 0.05 0.07 0.13

comb. 2 Nodes 0 2 8 26 96 367
Time 0.00 0.01 0.03 0.06 0.11 0.16

Table 3: Two-phase B&B algorithm for n = 10 with small processing time.

17

Firm planned orders 100% 80% 60% 40% 20% 0%

direct

assign. Nodes 61 33 31 38 45 84
Time 0.23 0.16 0.21 0.32 0.39 0.59

lateness Nodes 58 56 82 138 267 579
Time 0.00 0.00 0.01 0.02 0.05 0.13

min. Nodes 58 56 82 138 267 579
Time 0.00 0.00 0.01 0.02 0.05 0.13

comb. 1

1 Nodes 64 36 40 51 72 148
Time 0.14 0.11 0.15 0.25 0.37 0.64

0.90 Nodes 63 36 39 51 72 147
Time 0.15 0.11 0.15 0.25 0.39 0.64

0.80 Nodes 63 38 48 55 80 165
Time 0.16 0.11 0.16 0.26 0.39 0.68

0.70 Nodes 63 44 50 73 127 251
Time 0.16 0.11 0.16 0.28 0.44 0.76

comb. 2 Nodes 63 44 54 76 133 288
Time 0.15 0.11 0.16 0.28 0.45 0.80

comb. 3

1 Nodes 61 34 37 53 109 579
Time 0.20 0.14 0.17 0.21 0.26 0.14

0.90 Nodes 63 39 55 113 250 579
Time 0.17 0.08 0.07 0.11 0.10 0.14

0.80 Nodes 63 40 56 114 250 579
Time 0.17 0.08 0.07 0.10 0.09 0.14

0.70 Nodes 63 40 58 117 251 579
Time 0.17 0.08 0.07 0.10 0.08 0.14

comb. 4 Nodes 63 40 55 95 227 579
Time 0.17 0.09 0.09 0.11 0.10 0.14

Table 4: Direct B&B algorithm for n = 10 with small processing time.

time between 1 and 10. Just as for the two-phase B&B algorithm, the best computation
time here is obtained using the lateness bound. A number of combinations of the two
UB procedures are described in Section 5; the combinations comb. 1 and comb. 2 seem
to have no positive effect on the direct B&B algorithm as the running times generally
increase. Options comb. 3 and comb. 4, although usually better than comb. 1 and comb.
2, are still dominated by the lateness bound.

Overall, two observations can be made. When using either the two-phase B&B or
the direct B&B for small instances (n = 10), the lateness bound seems to display the
best ratio quality/time. Moreover, the two-phase B&B algorithm with lateness bound

Firm planned orders 100% 80% 60% 40% 20% 0%

MIP′
Unsolved − − − − − −

Nodes 23875 20054 31021 36362 58677 48539
Time 214.50 88.88 105.12 141.57 202.97 179.38

MIP′+Cuts
Unsolved all − − − − −

Nodes 39134 9699 9192 11663 7064 13548
Time 284.14 78.53 78.13 75.12 66.41 124.38

TIF
Unsolved − 1 2 3 3 1

Nodes 0 2585 1033 3202 1348 1395
Time 7.08 228.04 54.03 38.06 15.74 27.38

Table 5: Linear formulations for n = 10 with large processing time.

18

Firm planned orders 100% 80% 60% 40% 20% 0%

two-phase

assign. Nodes 0 1 3 9 25 53
Time 0.00 1.54 3.93 8.13 18.79 40.59

lateness Nodes 0 2 10 44 178 722
Time 0.00 0.01 0.01 0.02 0.03 0.08

min. Nodes 0 2 10 44 178 722
Time 0.00 0.01 0.01 0.02 0.03 0.08

comb. 1

1 Nodes 0 2 7 17 47 110
Time 0.00 0.92 3.21 7.95 17.85 41.51

0.90 Nodes 0 2 8 29 99 318
Time 0.00 0.93 2.61 6.16 11.70 28.76

0.80 Nodes 0 2 9 33 130 446
Time 0.00 0.93 2.38 5.32 9.36 21.76

0.70 Nodes 0 2 9 36 144 553
Time 0.00 0.92 2.09 4.17 7.76 15.91

comb. 2 Nodes 0 2 9 32 133 598
Time 0.00 0.92 2.47 5.56 9.97 18.03

Table 6: Two-phase B&B algorithm for n = 10 with large processing time.

appears to have the best computation times. Remark that the average computation time
of the worst exact algorithm presented so far (linear formulations included) is far better
than the average computation time reported by Slotnick and Morton [37] for n = 10.

Firm planned orders 100% 80% 60% 40% 20% 0%

direct

assign. Nodes 67 31 25 34 52 93
Time 13.87 8.88 10.45 15.46 24.57 41.17

lateness Nodes 53 55 87 155 259 536
Time 0.00 0.01 0.01 0.03 0.07 0.20

min. Nodes 53 55 87 155 259 536
Time 0.00 0.01 0.01 0.03 0.07 0.20

comb. 1

1 Nodes 74 35 32 48 78 144
Time 9.74 6.40 7.52 11.76 19.18 31.97

0.90 Nodes 70 34 32 48 78 145
Time 10.44 6.58 7.83 12.10 19.22 33.03

0.80 Nodes 69 34 33 50 84 156
Time 11.47 6.75 7.97 10.86 17.37 29.16

0.70 Nodes 69 35 34 57 94 178
Time 10.93 5.95 7.08 10.96 16.15 27.55

comb. 2 Nodes 69 36 38 63 110 217
Time 9.92 5.74 6.84 10.53 15.18 25.32

comb. 3

1 Nodes 67 31 28 43 113 536
Time 10.86 7.12 8.59 12.12 15.43 2.83

0.90 Nodes 67 35 43 83 231 536
Time 11.69 6.85 7.15 8.49 5.98 2.83

0.80 Nodes 67 36 44 87 214 536
Time 11.71 6.98 7.12 8.32 5.90 2.84

0.70 Nodes 67 36 45 88 216 536
Time 11.86 7.02 6.94 8.03 5.52 2.84

comb. 4 Nodes 67 35 44 81 205 536
Time 11.49 6.91 7.20 8.75 6.99 2.84

Table 7: Direct B&B algorithm for n = 10 with large processing time.

19

Firm planned orders 100% 80% 60% 40% 20% 0%

TIF
Unsolved − 2 2 − − −

Nodes 14 9255 19288 192019 4129 1677
Time 0.54 19.45 27.11 703.54 6.25 4.21

two-phase

assign.
Unsolved − − − − − −

Nodes 0 5 20 70 140 315
Time 0.00 0.23 0.90 3.11 6.39 13.32

lateness
Unsolved − − − − − −

Nodes 0 13 162 2461 35565 471566
Time 0.00 0.02 0.16 1.39 12.87 208.35

min.
Unsolved − − − − − −

Nodes 0 13 162 2461 140 315
Time 0.00 0.02 0.16 1.39 6.39 13.32

comb. 1

1
Unsolved − − − − − −

Nodes 0 9 41 168 401 977
Time 0.00 0.20 1.08 4.42 11.21 26.94

0.90
Unsolved − − − − − −

Nodes 0 12 107 1029 8671 72900
Time 0.00 0.13 0.77 4.70 26.21 110.44

0.80
Unsolved − − − − − −

Nodes 0 12 135 1871 23456 275274
Time 0.00 0.12 0.57 4.77 34.15 212.77

0.70
Unsolved − − − − − −

Nodes 0 12 145 2238 31922 395154
Time 0.00 0.12 0.52 3.85 25.54 244.56

comb. 2
Unsolved − − − − − −

Nodes 0 12 91 853 11725 239363
Time 0.00 0.14 0.88 5.24 36.17 244.69

Table 8: Results for n = 20 with exact algorithms.

Next, we study the effect of the processing time on the exact algorithms. Table 5
contains a comparison of the two linear formulations when processing times range from
10 to 100. In this table, we do not include the formulation MIP+Cuts as this setting
is dominated by the formulation MIP′ (see Table 2). The results of Table 5 indicate a
strong dependency of the formulation TIF on the scale of the processing time. Both by
the formulation MIP′ and MIP′+Cuts, all the instances are solved within a timespan of
less than three times the running time needed for the instances with small processing
time. For the formulation TIF, on the other hand, CPLEX was not able to solve some
instances within the time limit of one hour and the computation time for instances solved
within the time limit are more than 1000 times the running time reported in Table 2.
Tables 2 & 5 suggest to use TIF when the processing time are small while either MIP′ or
MIP′+Cuts is preferable for instances with large processing time.

Table 6 reports the results of the two-phase B&B algorithm for n = 10 with large
processing time. We observe that the two-phase B&B algorithm with the lateness bound
is almost insensible to the variation in processing times, with running times comparable
to those for small pi. Unlike the lateness bound, the assignment bound leads to a marked
increase in running times. The behavior of the combinations (comb. 1 and comb. 2)
observed in Table 3 remains unchanged.

Table 7 presents the results of the direct B&B for n = 10 and large processing times.
In line with the two-phase algorithm, the direct B&B with lateness bound is insensible to

20

Firm planned orders 100% 80% 60% 40% 20% 0%

direct

assign.
Unsolved − − − − − −

Nodes 182 412 249 621 1446 2948
Time 2.60 4.52 6.12 15.52 34.63 65.66

lateness
Unsolved − − − − 2 5

Nodes 1138 3412 11028 64553 416139 904924
Time 0.01 0.43 2.98 40.42 1346.03 2332.84

min.
Unsolved − − − − − −

Nodes 1138 3412 11028 621 1446 2948
Time 0.01 0.43 2.98 15.52 34.63 65.66

comb. 1

1
Unsolved − − − − − −

Nodes 220 491 335 961 2767 7050
Time 1.53 3.62 5.38 16.75 49.58 161.96

0.90
Unsolved − − − − − −

Nodes 228 566 372 1091 3104 7815
Time 1.83 3.59 4.82 16.40 52.18 169.53

0.80
Unsolved − − − − − −

Nodes 244 839 1797 8807 36239 150594
Time 1.79 3.36 8.64 54.50 284.38 1374.04

0.70
Unsolved − − − − − 4

Nodes 263 1189 5807 34494 213449 176995
Time 1.91 4.32 21.19 135.69 902.26 1141.85

comb. 2
Unsolved − − − − − −

Nodes 222 651 664 2602 12450 61122
Time 1.72 3.76 7.94 39.42 219.59 1048.19

comb. 3 1
Unsolved − − − − − 4

Nodes 194 427 289 1387 29417 891555
Time 2.03 3.84 5.29 14.56 148.86 2125.73

comb. 4
Unsolved − − − − − 4

Nodes 212 644 3692 39971 323021 891555
Time 1.92 2.98 5.60 36.68 837.02 2164.71

Table 9: Results for n = 20 with exact algorithms (continued).

the variation of the processing time, while the assignment bound increases the running
times and the combinations of these two bounds display the same behavior as in Table 4.

Overall, both B&B algorithms (two-phase and direct) outperform CPLEX for in-
stances with large processing time.

7.2.2 Size n = 20

Tables 8 & 9 display the results of the exact algorithms for the instances with n = 20.
Table 8 contains the results of the time-indexed formulation and the two-phase B&B
algorithm. CPLEX seems to solve extreme instances (100% and 0%) faster than the
intermediary cases. Moreover, four instances (two with 80% and two with 60% of firm
planned orders) are not solved within the time limit of two hours. The two-phase B&B
solves all instances, regardless of the UB procedure or the combination used. The best
computation time (represented by min.) is obtained by the lateness bound when the
percentage of firm planned orders is greater than or equal to 40%, and by the assignment
bound for the other cases. This observation is different from our analysis of the ten-job
instances, where the lateness bound was unconditionally recommended.

21

The results for the direct B&B can be found in Table 9. Using the lateness bound,
there are two (respectively five) instances in the set with 20% (respectively 0%) of firm
planned orders that are not solved within the time limit of two hours, while the assignment
bound solves all the instances. Exactly as for the two-phase B&B, the best computation
time is obtained by the lateness bound, respectively by the assignment bound, dependent
on whether or not the percentage of firm planned orders is at least 60%. The combinations
of the two UB procedures do not seem to present any real advantage.

7.2.3 Size n = 30, 40 and 50

Firm planned orders 100% 80% 60% 40% 20% 0%

TIF
Unsolved − 2 2 2 − 1

Node 5 1334 4486 3223 4855 25063
Time 2.44 14.99 26.43 15.90 25.21 115.33

two-phase

assign.
Unsolved − − − − − −

Nodes 0 7 61 174 765 1385
Time 0.30 1.06 5.40 16.66 72.83 128.60

lateness
Unsolved − − − − 8 7

Nodes 0 33 1742 98302 416965 0
Time 0.30 2.43 21.60 585.66 560.51 0.00

min.
Unsolved − − − − − −

Nodes 0 7 61 174 765 1385
Time 0.30 1.06 5.40 16.66 72.83 128.60

direct

assign.
Unsolved − − − 3 3 2

Nodes 14279 9807 9907 5441 13441 6146
Time 408.47 192.93 166.30 149.44 336.47 300.42

lateness
Unsolved − − 3 11 15 7

Nodes 15088 89888 192703 516127 267993 257571
Time 0.50 132.66 293.13 1207.88 619.58 1055.19

min.
Unsolved − − − 3 3 2

Nodes 15088 89888 9907 5441 13441 6146
Time 0.50 132.66 166.30 149.44 336.47 300.42

Table 10: Results for n = 30 with exact algorithms.

The results of the exact algorithms for n = 30 are gathered in Table 10. Although
the time limit is now three hours, the number of unsolved instances for the TIF increases
compared to Table 8. The two-phase B&B with assignment bound displays the best run-
ning time amongst the B&B algorithms and solves all the instances. The TIF formulation
does better only for the set of instances with 20% of firm planned orders.

In Table 11, we find the output of the two-phase B&B algorithm and the TIF formu-
lation for n = 40 and of the two-phase B&B algorithm for n = 50. A two-hour time limit
is applied. For the 40-job instances, the two-phase B&B algorithm solves all the instances
within the time limit. Using the linear formulation TIF, the number of instances unsolved
increases up to six out of 18 for some settings. For the 50-job dataset, the two-phase
B&B algorithm is able to solve all but one of the instances within two hours.

Table 12 exhibits the outcomes of the heuristics for n = 30. Here, GAP equals
|zH−zOP |

zOP
× 100%, where zOP is the optimal objective value and zH is the objective value

obtained by the heuristic. GAP is computed only for the instances for which zH and
zOP have the same sign and zOP 6= 0. For each cell in the table, Comp. counts the

22

Firm planned orders 100% 80% 60% 40% 20% 0%
40 jobs

TIF Unsolved − 6 4 6 5 1
Time 7.73 169.24 222.80 122.98 320.44 182.19

two-phase Unsolved − − − − − −
Time 8.96 105.01 107.87 178.76 290.79 533.76

50 jobs

two-phase Unsolved − − − − 1 −
Time 24.51 345.38 379.71 878.53 1334.96 2091.59

Table 11: Results for n = 40 and n = 50 with exact algorithms.

Firm planned orders 100% 80% 60% 40% 20% 0%

Heuristic 1 Comp. 1 − 1 − − −
GAP 52.11 80.62 16.64 15.51 7.68 4.96
Time 0.08 0.12 0.15 0.19 0.23 0.31

Heuristic 2 Comp. − − 1 − − −
GAP 0.00 3.77 3.16 8.28 2.61 1.31
Time 0.37 0.13 0.16 0.20 0.23 0.29

Heuristic 3 Comp. − − 1 1 − −
GAP 0.00 10.18 23.25 50.16 72.03 99.63
Time 30.18 27.26 28.76 27.09 32.66 30.60

Heuristic 4 Comp. − − − 1 − −
GAP 0.00 3.55 3.28 8.69 3.40 4.36
Time 0.59 0.29 0.17 0.13 0.11 0.10

Heuristic 5 Comp. − − − − − −
GAP 0.00 0.32 1.72 12.59 20.98 30.24
Time 0.28 0.38 0.31 0.29 0.28 0.29

Heuristic 6 Comp. 4 2 3 2 2 −
GAP 4.96 29.62 41.65 17.70 22.18 39.69
Time 0.00 4.40 76.59 120.12 144.00 186.06

Table 12: Comparison of heuristics for n = 30.

number of instances for which we have zH < 0 and zOP ≥ 0. From Table 12, we see
that Heuristic 1 is dominated by Heuristic 2, which shows the importance of using an
exact algorithm for scheduling the selected set of jobs. Heuristic 4 dominates Heuristic
3, which might be explained by the better behavior of the time-indexed formulation
compared to the formulation MIP′ for instances with small processing time. Finally,
Heuristic 5 dominates Heuristic 6 both in computation time and based on GAP. Below,
only Heuristic 2, Heuristic 4 and Heuristic 5 are used for the datasets with 40 and 50
jobs per instance.

Table 13 shows that the heuristics perform quite well for the 40-job and 50-job in-
stances. Although GAP and the running time increase with the number of jobs, they are
still reasonable. For the one instance with 50 jobs for which the two-phase B&B could
not guarantee an optimal solution within the time limit, we use the UB provided by the
solution to the LP relaxation to compute the GAP. For n = 50, there are two instances
with 80% of firm planned orders for which the three heuristics are unable to produce an
objective value with the same sign as the optimal value.

23

Firm planned orders 100% 80% 60% 40% 20% 0%
40 jobs

Heuristic 2 Comp. − − − − − −
GAP 0.00 3.73 3.91 4.25 4.12 4.33
Time 10.10 0.28 0.24 0.31 0.35 0.42

Heuristic 4 Comp. − − − − − −
GAP 0.00 4.60 4.58 5.13 4.77 5.55
Time 8.97 0.56 0.40 0.31 0.34 0.33

Heuristic 5 Comp. − − − − − −
GAP 0.00 3.61 4.54 8.61 14.37 23.12
Time 10.46 83.56 100.72 101.84 102.53 99.38

50 jobs

Heuristic 2 Comp. − 2 − − − −
GAP 0.00 10.14 7.18 12.47 10.98 12.28
Time 25.97 1.25 0.42 0.50 0.60 0.71

Heuristic 4 Comp. − 2 − − − −
GAP 0.00 10.42 16.96 10.00 10.21 10.05
Time 26.78 1.21 0.70 0.49 0.46 0.45

Heuristic 5 Comp. − 2 − − − −
GAP 0.00 0.76 5.16 7.48 14.76 28.09
Time 25.96 340.56 287.77 286.36 286.18 286.13

Table 13: Comparison of heuristics for n = 40 and n = 50.

8 Summary and conclusions

In this paper, we have modeled the order acceptance and scheduling problem taking into
account both firm planned orders as well as potential orders, where the latter are orders
that can still be rejected. Our results show that it is unlikely that a constant-factor
approximation algorithm can be developed for this problem. We have presented two
mixed-integer linear formulations that are solved using the IP solver of CPLEX. The
first of these formulations is rather intuitive, the second is a time-indexed formulation.
Our results indicate that the IP solver of CPLEX solves the latter formulation faster than
the former one even with the addition of cuts when the processing time of each job is
relatively small. In case of larger processing times, however, we recommend the use of
the former formulation.

Our linear formulations turn out to perform better (in term of computation time)
than the exact B&B algorithm presented by Slotnick and Morton [37]. In this paper, we
have also developed two new B&B algorithms that produce optimal solutions to the order
acceptance and scheduling problem. The first B&B algorithm is hierarchical and performs
selection and scheduling separately, while the second integrates these two decisions. Two
upper-bound procedures have been implemented, one based on an assignment problem
and one that uses a job selection problem with lateness penalties. Our experimental
results demonstrate the good behavior of these two B&B algorithms. For small instances
(with a low number of jobs), the implementation with the lateness bound is the most
efficient; the full benefit of the assignment bound is achieved for instances with more than
20 jobs. Overall, the two-phase B&B algorithm with assignment bound dominates the
other exact algorithms.

Both the linear formulations and the exact B&B algorithms are suited especially

24

for solving small and medium-sized instances. To extend the application to large-size
instances with considerably more jobs, we have presented six heuristics. The first one
is a slightly modified version of the myopic heuristic described by Rom and Slotnick
[33], the second is an improvement of the first and the others are derived from the linear
formulations and the exact algorithms. Based on our experimental results, we recommend
the use of either the improved myopic heuristic (Heuristic 2), the heuristic based on the LP
relaxation of the time-indexed formulation (Heuristic 4) or the depth-first B&B heuristic
based on the two-phase B&B algorithm (Heuristic 5).

An important research direction that might be pursued in the future is an extension
of this work to on-line scheduling, where not all jobs are available at the beginning of the
planning horizon but arrive dynamically throughout time. A second obvious extension
that deserves attention is the case where the manufacturing capacity consists of multiple
machines in parallel.

References

[1] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows: Theory, Algorithms,
and Applications. Prentice-Hall, Inc. NJ, 1993.

[2] B. Alidaee, G. Kochenberger, and M. Amini. Greedy solutions of selection and
ordering problems. European Journal of Operational Research, 134:203–215, 2001.

[3] K.R. Baker. Sequencing rules and due-date assignments in a job shop. Management
Science, 30:1093–1104, 1984.

[4] P. Baptiste, P. Chrétienne, J. Meng-Gérard, and F. Sourd. On maximizing the profit
of a satellite launcher: selecting and scheduling tasks with time windows and setups.
Discrete Applied Mathematics, to appear.

[5] L.-P. Bigras, M. Gamache, and G. Savard. Time-indexed formulations and the total
weighted tardiness problem. INFORMS Journal on Computing, 20:133–142, 2008.

[6] Z. Bilginturk, C. Oguz, and S. Salman. Order acceptance and scheduling deci-
sions in make-to-order systems. In P. Baptiste, G. Kendall, A. Munier-Kordon, and
F. Sourd, editors, Proceedings of the 3rd Multidisciplinary International Conference
on Scheduling: Theory and Applications (MISTA), pages 80–87, Paris, France, 28-31
August 2007.

[7] Z-H. Chen and C-L. Li. Scheduling with subcontracting options. IIE Transactions,
40:1171–1184, 2008.

[8] T.C.E. Cheng and M.C. Gupta. Survey of scheduling research involving due date
determination decisions. European Journal of Operational Research, 38(2):156–166,
1989.

[9] J. Chuzhoy, R. Ostrovsky, and Y. Rabani. Approximation algorithms for
the job interval selection problem and related scheduling problems. In IEEE
Symposium on Foundations of Computer Science, pages 348–356, 2001. cite-
seer.ist.psu.edu/chuzhoy01approximation.html.

25

[10] P. De, J.B. Ghosh, and C.E. Wells. On the minimization of the weighted number
of tardy jobs with random processing times and deadline. Computers & Operations
Research, 18(5):457–463, 1991.

[11] D.W. Engels, D.R. Karger, S.G. Kolliopoulos, S. Sengupta, R.N. Uma, and J. Wein.
Techniques for scheduling with rejection. Journal of Algorithms, 49:175–191, 2003.

[12] L. Epstein, J. Nogab, and G.J. Woeginger. On-line scheduling of unit time jobs
with rejection: minimizing the total completion time. Operations Research Letters,
30:415–420, 2002.

[13] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman and Co., 1979.

[14] J.B. Ghosh. Job selection in a heavily loaded shop. Computers & Operations Re-
search, 24(2):141, 1997.

[15] P. Glasserman and Y. Wang. Leadtime-inventory trade-offs in assemble-to-order
systems. Operations Research, 46:858–871, 1998.

[16] A.V. Goldberg and R. Kennedy. An efficient cost scaling algorithm for the assignment
problem. Mathematical Programming, 71:153–177, 1995.

[17] H.H. Guerrero and G.M. Kern. How to more effectively accept and refuse orders.
Production and Inventory Management Journal, 4:59–62, 1998.

[18] S.K. Gupta, J. Kyparisis, and C.-M. Ip. Project selection and sequencing to maximize
net present value of the total return. Management Science, 38:751–752, 1992.

[19] J. Herbots, W. Herroelen, and R. Leus. Dynamic order acceptance and capacity
planning on a single bottleneck resource. Naval Research Logistics, 54(8):874–889,
2007.

[20] W.J. Hopp and M.L. Spearman. Factory Physics. Foundations of Manufacturing
Management. McGraw-Hill, 2001.

[21] V.C. Ivănescu, J.C. Fransoo, and J.W. Bertrand. A hybrid policy for order accep-
tance in batch process industries. OR Spectrum, 28:199–222, 2006.

[22] U. Karmarkar. Lot sizes, manufacturing lead times and throughput. Management
Science, 33:409–418, 1987.

[23] P. Keskinocak and S. Tayur. Due date management policies. In D. Simchi-Levi,
S.D. Wu, and Z.J. Shen, editors, Handbook of Quantitative Supply Chain Analysis:
Modeling in the E-Business Era, chapter 12, pages 485–547. Kluwer, 2004.

[24] A.J. Kleywegt and J.D. Papastavrou. The dynamic and stochastic knapsack problem
with random sized items. Operations Research, 49(1):26–41, 2001.

[25] E.L. Lawler. A “pseudopolynomial” algorithm for sequencing jobs to minimize total
tardiness. Annals of Discrete Mathemathics, 1:331–342, 1977.

26

[26] J.K. Lenstra, A.H. Rinnooy Kan, and P. Brucker. Complexity of machine scheduling
problems. Annals of Discrete Mathemathics, 1:343–362, 1977.

[27] H.F. Lewis and S.A. Slotnick. Multi-period job selection: planning work loads to
maximize profit. Computers & Operations Research, 29:1081–1098, 2002.

[28] L. Lu, L. Zhang, and J. Yuan. The unbounded parallel batch machine scheduling with
release dates and rejection to minimize makespan. Theoretical Computer Science,
396:283–289, 2008.

[29] Y.D. Lu, J.S. Song, and D.D. Yao. Order fill rate, leadtime variability, and ad-
vance demand information in an assemble-to-order system. Operations Research,
51(2):292–308, 2003.

[30] T.E Morton and R.M. Rachamadugu. Myopic heuristics for the single machine
weighted tardiness problem. Working Paper 30-82-83, Graduate School of Industrial
Administration, Carnegie Mellon University, Pittsburgh, 1982.

[31] C.N. Potts and L.N. Van Wassenhove. A branch and bound algorithm for the total
weighted tardiness problem. Operations research, 33(2):363–377, 1985.

[32] A.H.G. Rinnooy Kan, B.J. Lageweg, and J.K. Lenstra. Minimizing total cost in
one-machine scheduling. Operations Research, 23:908–927, 1975.

[33] W.O. Rom and S.A. Slotnick. Order acceptance using genetic algorithms. Computers
& Operations Research, 36(6):1758–1767, 2009.

[34] R. Roundy, D. Chen, P. Chen, M. Cakanyildirim, M.B. Freimer, and V. Melkonian.
Capacity-driven acceptance of customer orders for a multi-stage batch manufacturing
system: models and algorithms. IIE Transactions, 37:1093–1105, 2005.

[35] S. Sengupta. Algorithms and approximation schemes for minimum lateness/tardiness
scheduling with rejection. Lecture Notes in Computer Science, 2748:79–90, 2003.

[36] S.A. Slotnick and T.E. Morton. Selecting jobs for a heavily loaded shop with lateness
penalties. Computers & Operations Research, 23:131–140, 1996.

[37] S.A. Slotnick and T.E. Morton. Order acceptance with weighted tardiness. Com-
puters & Operations Research, 34(10):3029–3042, 2007.

[38] R. Suri. Quick Response Manufacturing. A Companywide Approach to Reducing
Lead Times. Productivity Press, 1998.

[39] J.M. Van Den Akker, C.A.J. Hurkens, and M.W.P. Savelsbergh. Time-indexed for-
mulations for single-machine scheduling problems: column generation. INFORMS
Journal on Computing, 12:111–124, 2000.

[40] B. Yang and J. Geunes. A single resource scheduling problem with job-selection
flexibility, tardiness costs and controllable processing times. Computers & Industrial
Engineering, 53:420–432, 2007.

27

[41] C. Yugma. Dynamic management of a portfolio of orders. 4OR: A Quarterly Journal
of Operations Research, 3:167–170, 2005.

[42] W.H.M. Zijm. Towards intelligent manufacturing planning and control systems. OR
Spektrum, 22:313–345, 2000.

28

