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who helped me to feel almost at home. I also want to mention the members of
the HocHabet fencing club who substantially contributed to the improvement of my
Dutch and took care that I will not work too hard and skip the nice activities they
organize.

Finally, I wish to express my sincere thanks to my family who have always been there
for me, offering their unconditional love. Last but not least, I thank Terry for his
continuing emotional support during hard times and practical support during busy
times, especially during the last phase of my project.

Cristina Ivănescu,
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Chapter 1

Introduction

1.1 Research topic and motivation

In this thesis we study the order acceptance function in a multi-resource production
system with overlapping processing steps, no-wait restrictions among processing steps
and stochastic processing times. The motivation for studying such a system originated
from process industries.

In the process industries one finds a large variety of businesses ”that add value to
materials by mixing, separating, forming, or chemical reactions” (Wallace, 1984).
The American Production and Inventory Control Society (APICS)’s definition of the
process industry distinguishes between two types of process industries, stating ”...Pro-
cesses may be either continuous or batch...” (Wallace, 1984). Flow process industries
are characterized by one (or very few) processing steps, the same processing routings
for all products, a divergent material flow, and a low added value. Examples of flow
process industries include the oil and steel industry, glass manufacturing, and paper
production. Batch process industries, in contrary, are characterized by a large num-
ber of processing steps, different product routings, a convergent material flow, and
a high added value. Examples of batch process industries include the food industry,
specialty chemicals, and the pharmaceutical industry. In this thesis, we consider only
batch process industries.

Process industries generally use a capacity-oriented planning and scheduling frame-
work, which - in contrast to fabrication and assembly industries - schedules capacity
before raw materials. One reason is the small variety of raw materials that process
industries use in large quantities. The raw materials have low values by themselves,
but the cost of adding value to them is high. The capacity-oriented planning and
scheduling framework consists of resource requirements planning, production plan-
ning, and scheduling (Taylor et al., 1981). Stated briefly, the resource requirements
planning develops the long term strategic plans to acquire the resources necessary
for future operations. Production planning is concerned with adapting the capacity
requirements over time to the available capacity, and allocating sufficient resources to

1



2 1. Introduction

deal with the incoming demand in the medium term. Finally, scheduling determines
the short term detailed specifications of what is required, when it should be produced,
and where it is produced.

Order acceptance is the decision function which is responsible for the coordination of
capacity requirements due to customer orders and the available capacity over time.
Basically, it deals with accepting or rejecting customer orders. It may also deal with
related decisions, such as due dates setting and price determination.

The order acceptance process differs significantly for various manufacturing environ-
ments. In a production-to-stock environment, customer orders are generally accepted
with a short delivery time if there is sufficient inventory of the demanded product. If
not, a later delivery date is agreed with the customer, based upon the expected stock
fill rate. In production-to-order environments, orders should be accepted in such a
way that capacity utilization and delivery reliability are maximized.

Markets in which batch process industries operate are characterized by an increas-
ing demand uncertainty, both in product mix and in product volume. The markets
demand an increasing diversity of products (product proliferation). Due to this in-
creased product variety and an increased demand for customer specific products,
batch process industries show a tendency towards increasing production-to-order, as
opposed to forecast driven production (Ten Kate, 1994).

Given this increasing competitive pressure in the marketplace, the key to success for a
production-to-order company lies in consistently meeting delivery promises to win and
keep satisfied customers. When demand exceeds available capacity, it might appear at
first glance that the company should expand capacity or schedule overtime to obtain
dependable delivery performance. Although this could be a viable long-term option,
it is not a feasible option in the short-term. This is due to the high capital investment
in resources and the need for a highly skilled labor force. Hence, with on-time delivery
as an important aspect of the company’s competitive strategy, it becomes necessary
to balance the capacity requirements (or demand) and the available capacity over
time. This may be done by carefully assessing which customer orders to accept and
how to allocate the available capacity to the accepted orders over time.

Customer orders arrive irregularly over time and the acceptance decision can be made
upon arrival of each order or upon a number of orders that have arrived in a specific
decision period. There are several aspects to be considered for the acceptance or
rejection of customer orders; most important are the following two:

• the availability of resources and materials, and

• the cost and revenues that result from accepting the order.

In this thesis, we develop models that evaluate on-line for each arriving order the
implications of accepting the order for production. The acceptance decision is based
on the availability of capacity to complete the order and the already accepted orders
before their requested due dates.

Order acceptance has a large influence on the performance of a company. On one
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hand, rejecting too many orders leads to low capacity utilization. In addition, reject-
ing a customer order may have further repercussions for future customer relations.
On the other hand, accepting too many orders leads to an over-loaded production en-
vironment, where lead times increase and orders are increasingly delivered late. And
promising to deliver an order to a customer by a certain date and failing to do so may
again result in lost of goodwill. A good method to support order acceptance decisions
is, therefore, essential to solve these problems. In developing an adequate order ac-
ceptance method for batch process industries, their specific characteristics should be
considered explicitly. In the following section, we discuss the typical characteristics
of batch process industries (see Section 1.2.1) and their consequences for planning
and scheduling (see Section 1.2.2). We also present a brief overview of the available
literature on planning and scheduling in batch process industries (see Section 1.2.3).
In Section 1.3, we evaluate the available literature and we further elaborate on the
motivation for this research. In the last two sections of this chapter (sections 1.4 and
1.5), we address our research questions, we discuss the methods we use to answer
these questions, and we introduce the subject of each chapter of this thesis.

1.2 Planning and scheduling in batch process indus-
tries

According to Kallrath (2003), planning and scheduling is part of company-wide lo-
gistics and supply chain management. He further states that planning in process
industries is used to ”create production, distribution, sales and inventory plans based
on customer and market information while observing all relevant constraints”. Plan-
ning is typically associated with a longer term horizon and involves less detail, whereas
scheduling defines the precise timing and sequencing of individual operations as well
as the assignment of the required resources over a short period of time. Planning
and scheduling are closely related as the decisions made at the planning level have a
strong influence on scheduling.

1.2.1 Distinctive features of batch process industries

Batch process industry can be considered as a specific domain within planning and
scheduling. This is due to a number of specific characteristics, which have been well
documented (see e.g., Hayes & Wheelwright, 1979; Taylor et al., 1981; Fransoo &
Rutten, 1994) and will be discussed in this section.

Production characteristics The process equipment for batch process industries
consists of tanks, mixers or reactor vessels which are linked by a network of pipelines
and transfer units. We can distinguish two basic types of process equipment: multi-
product which is used to produce different variants of a basic product type following
the same routing (cf. a flow shop), and multipurpose which allows diverse processing
tasks to be carried out by a particular equipment unit (cf. a job shop) (Reklaitis,
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1996). In this thesis, we focus on batch process industries using multipurpose equip-
ment.

Production in multipurpose batch process industries is described by the following
dominant characteristics (Raaymakers, 1999):

• multipurpose resources,

• high product variety,

• long, divergent routings,

• overlapping processing steps, and

• waiting time restrictions.

Production is carried out by multipurpose resources that may be used to perform a
variety of different processing steps. As a result, for each processing step a number
of similar resources are available, which may be used as alternatives. The availability
of multipurpose resources is a necessary condition to be flexible to produce a large
variety of products.

Production occurs in discrete batches. The batch size is limited by the equipment unit
that can handle the smallest batch. Batch processing times are not highly correlated
with the size of the batch in a particular unit. The chemical reaction time is often
independent of the amount of chemical in the unit. Thus, it will often take the same
amount of time to process a half filled or a completely filled unit.

A number of subsequent operations has to be carried out to produce a product. Each
operation results in a stable intermediate product, which can be stored. The number
of operations required may vary for each final product, but total production lead
times are generally long, up to one year. Routings may be divergent, which means
that intermediate products resulting from the same operation may be used to produce
different finished products. An example of a routing is given in Figure 1.1.

Figure 1.1: Routing example
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Each operation consists of one or more processing steps. By definition, intermediate
products are not stable during an operation and, therefore, must be further processed
without delay. This results in no-wait restrictions between processing steps of an
operation. A processing step is defined such that for each processing step exactly one
resource is required. Processing steps of an operation may be overlapping in time.
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The product being processed is generally a fluid or powder that needs to be kept by
a resource at any time during production. Therefore, processing steps are directly
succeeding or overlapping in time. An example of an operation is given in Figure 2.3.

Demand characteristics Demand in multipurpose batch process industries is best
described by the following dominant characteristics:

• low demand volume per product,

• small number of customers per product, and

• high variability and dynamics of demand.

The demand volume for each individual product is relatively small. The turnover
of a company may still be considerable due to the large range of high added-value
products, for example ingredients for pharmaceutics or flavors & fragrances. Each
product is produced for a small number of customers. Demand for individual products
is often lumpy because of the low order frequency in combination with minimum order
quantities used by customers.

Demand is usually highly variable and dynamic. The product assortment changes rel-
atively quickly, and the rate at which new products are introduced increases steadily
(Wera, 2002). It is therefore difficult to provide accurate and reliable demand fore-
casts. In the pharmaceutical industry, acquisition and expiration of patents and the
introduction to new markets influence the demand volumes for products over time. In
other types of industry, seasonal effects may have an important additional influence
on demand volumes.

1.2.2 Consequences for planning and scheduling

The large product variety in combination with variable demand results in capacity
requirements that are variable over time. This variation applies to both the total ca-
pacity requirements, and to the capacity requirements for different resources. Often
bottlenecks are not stable over time. Production planning is, therefore, mainly con-
cerned with the coordination of capacity requirements and the available capacity over
time and with allocating sufficient resources to deal with the incoming demand. For
multipurpose process industries, the level of available capacity is relatively inflexible
due to high capital investments in resources and highly skilled labor force. Conse-
quently, production planning aims at smoothing the capacity requirements. Order
acceptance decisions are made to smooth capacity requirements over time.

The no-wait restrictions between processing steps have a considerable impact on pro-
duction planning and scheduling. Production orders - called jobs - are related to a
single operation in the routing of a product. Consequently, several subsequent jobs
are required to produce a specific product. Jobs consist of several processing steps,
each requiring exactly one resource. The number, type, and sequence in which these
resources are required may differ among jobs. In order to meet the no-wait restrictions
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between processing steps, the scheduler has to make sure that all required resources
are available at the right time before the processing of a job can start.

1.2.3 Literature review

To position our research, we now discuss related work on production planning and
scheduling in multipurpose batch process industries. Multipurpose batch process in-
dustries are characterized by (i) their flexibility and ability to produce a large number
of different products in different qualities so as to satisfy the customer’s demand, and
(ii) the possibility of considering alternate production paths for the same product in
order to reduce costs. This high degree of flexibility is one of the major sources of
complexity in production planning and scheduling problems. In the last decades, a
considerable amount of research has been carried out on production planning and
scheduling issues arising in process industries. Comprehensive reviews on this subject
are provided by Reklaitis (1996) and Kallrath (2003).

Most of the publications on multipurpose batch process industries have focused on de-
veloping better models for scheduling alone, without involving planning. It is beyond
the scope of this thesis to give even a selected survey on the existing literature on
scheduling in multipurpose batch process industries. We only outline here the most
common solution methods and asses the approaches with respect to the modelling
effort. Among the numerous models and solution approaches proposed in the liter-
ature (see Kallrath (2003) for an extensive overview), we found that mathematical
optimization techniques and stochastic search techniques are the most common ones.

Most of the approaches that make use of mathematical optimization techniques may
be classified on the basis of the time representation followed. Early research (see e.g.
Kondili et al., 1993; Shah et al., 1993) discretized the time horizon into a number
of intervals of equal durations and assumed that events only happen at the bound-
aries of these time intervals. The problem is formulated as a mixed-integer linear
programming (MILP) model using the state-task network (STN) representation. The
main limitations of the time discretization models are that (i) they correspond to
an approximation of the time horizon and (ii) they result in an unnecessary increase
of the number of binary variables in particular and of the overall size of the mathe-
matical model (Ierapetritou & Floudas, 1998). Therefore, in more recent work, both
the state-task network (STN) and the resource-task network (RTN) representations
are considered in continuous time (see e.g. Pinto & Grossmann, 1995; Dimitriadis
et al., 1997; Bok & Park, 1998; Ierapetritou & Floudas, 1998; Schilling & Pantelides,
1999; Kim et al., 2000). However, despite the improved formulations, and the re-
cent improvements in computer hardware and optimization software, the short-term
scheduling of STN or RTN multipurpose batch plants in continuous time remains a
difficult problem to solve (Maravelias & Grossmann, 2003).

Given that most scheduling problems belong to the class of NP-complete problems -
even when simplifications in comparison to real life problems are introduced - it is often
argued that only the use of problem specific heuristics can lead to efficient solution
procedures. Among the stochastic search techniques, simulated annealing (SA) and
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genetic algorithms (GA) are the most used techniques to solve the scheduling problem
of multipurpose batch process industries under various storage policies (see e.g. Ku
& Karimi, 1991; van Bael, 1999; Raaymakers & Hoogeveen, 2000; Bernal-Haro et al.,
2002). These techniques have the disadvantage that no measure of quality can be
given to judge their solutions (i.e. they usually lack the proof of optimality). The
main advantage is that these algorithms incorporate problem specific knowledge which
often leads to good solutions, which are obtained in an acceptable amount of time.

A significant amount of work has also been dedicated to developing production plan-
ning models for multipurpose batch process industries. The most common approach
is the campaign planning. A campaign mode of operation dedicates all plant resources
to a single product or a small subset of products with similar processing requirements
over a period of time (the ”campaign”) and thus reduces the cost of changeovers.
Two different classes of approach can be further distinguished within the campaign
planning literature: hierarchical (also called ”sequential”) (see e.g. Mauderli & Rip-
pin, 1979; Wellons & Reklaitis, 1991; Papageorgiu & Pantelides, 1993, 1996; Grunow
et al., 2002) and simultaneous (see e.g. Shah & Pantelides, 1991; Voudouris & Gross-
mann, 1993). A general mathematical formulation of campaign planning problem
and a comprehensive literature review of both approaches are given by Papageorgiu
& Pantelides (1996). However, a noteworthy observation of Papageorgiu & Pantelides
is that campaign planning is particularly appropriate when stable demand patterns
over a long planning horizon are observed.

A different approach to the production planning problem in multipurpose batch pro-
cess industries is proposed by Raaymakers (1999). Within a hierarchical production
planning framework, she addresses the capacity estimation problem. The complex
capacity structure in batch process industries in combination with variable and dy-
namic demand result in variable bottlenecks over time. This makes it difficult to
determine which part of the available capacity can be effectively used for production.
Raaymakers uses regression analysis to estimate the output that can be realized by
the production system. She demonstrated that in static and deterministic situations,
the makespan of a given set of jobs (i.e. the completion time of the last job) can be
estimated reliably with a regression model including only a small number of param-
eters (explanatory variables). This regression model is further used to support the
order acceptance decisions in a setting with random order arrivals and deterministic
processing times.

In some publications, the production planning and scheduling problems are integrated
and defined as sub-problems in the design of batch chemical plants. Subrahmanyan
et al. (1995) and Subrahmanyan et al. (1996) consider a Design Super Problem (DSP)
which handles aggregate decisions and a number of detailed scheduling problems.
These problems are all formulated as MILPs. A solution for DSP does not necessarily
result in feasible solutions for the scheduling problems. Therefore, the DSP and the
scheduling problems are solved iteratively, until feasible solutions are found. This is
done prior to deciding on the design of the plant. The decomposition of the overall
problem into sub-problems is done for computational reasons. Demand uncertainty is
considered in the DSP as a set of scenarios. Each scenario provides a given demand
over a relatively long horizon.
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Zhu & Majozi (2001) proposes a novel procedure for the integration of production
planning and scheduling in multiplant operations. This procedure entails decomposi-
tion of the overall planning and scheduling problem into two levels. At the first level
the planning model is formulated and solved for the optimal allocation of raw mate-
rials to individual processes. At the second level, the raw material targets obtained
from the planning model are incorporated in the scheduling models for individual
processes. These models are then solved independently.

1.3 Contributions of this thesis

The literature review in the previous section reveals that there are many research
contributions to production planning and scheduling problems in multipurpose batch
process industries. However, we saw that most of the contributions focus on the
scheduling problem. With respect to the production planning problem in batch pro-
cess industries, two shortcomings may be identified. First, the methods proposed in
the literature assume that detailed and accurate information on demand and pro-
duction is available. However, multipurpose batch plants often operate in a dynamic
stochastic environment and the assumption that all orders are known in advance is
not very realistic. Furthermore, production disturbances may occur, which affect the
future status of the production system. We may distinguish two types of produc-
tion disturbances. The first type is caused by uncertainty of the resource availability.
In industrial practice, breakdowns of resources may occur. However, in process in-
dustries such breakdowns do not occur frequently. Therefore it seems reasonable to
assume uninterrupted resource availability. The second type of production uncer-
tainty is caused by uncertainty in the production process. Processing times may vary
as well as the product quality. Quality variations may result in rework, for which
additional capacity is required. In batch process industries, fluctuations in the qual-
ity of raw materials, catalyst, or fluctuation of cleanness of equipment result in high
degree of processing time variation (Ishii & Muraki, 1996). Therefore, processing time
uncertainty should be taken into consideration.

Second, except for the contribution of Raaymakers (1999), no attention has been
payed to the order acceptance function in the planning and scheduling literature
in batch process industries. Due to the dynamics and variability of demand, the
capacity requirements may vary considerably over time. Given that the available
capacity is generally fixed in the medium term in this type of industry, smoothing the
capacity requirements to the available capacity is becoming essential. This may be
done by carefully selecting which customer orders to accept, based on the availability
of capacity to complete the orders before their requested due date.

Different policies may be used to evaluate whether sufficient capacity is available to
produce an order before the due date requested by the customer. Generally, the order
acceptance policies used in industry are workload based, in the case where the capacity
complexity is low or sufficient slack exists in the system, or schedule based in the case
of less slack in the system or increased complexity (Raaymakers et al., 2000b). Due
to the high scheduling complexity and many interrelations between processing steps
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in batch process industries, schedule based evaluations are very time consuming. An
alternative is to use aggregate information. However, the main problem resulting from
neglecting detailed scheduling information is that many of the accepted orders cannot
be completed in the planned period. This results in low delivery reliability and many
replanning activities. The idea is to capture the complexity of the scheduling task
through an aggregate model which can accurately estimate the production output that
can be realized with the available capacity. Previous research (Raaymakers, 1999) has
yielded new insights with respect to the possibility of using statistical methods for
this purpose. This thesis is an extension of her work. However, contrary to the
environment studied by Raaymakers, we consider settings with stochastic processing
times.

In some cases, it may be fairly straightforward to estimate whether sufficient capac-
ity is available to produce an order before the due date requested by the customer.
This is for instance the case in flow process industries, where a single resource is
dominant in determining the available capacity (Fransoo, 1993). If the level of in-
teraction between jobs and resources and between jobs themselves is high - as in the
case of batch process industries - the estimation process becomes very complex. In
traditional job shops, capacity loading decisions - which are closely related to order
acceptance decisions because the availability of sufficient capacity is the main crite-
rion for accepting an order - are generally addressed using queueing theory (Buzacott
& Shantikumar, 1993). A shortcoming of queueing analysis is that it is hostage to its
assumptions: practical production problems seldom satisfy the assumptions needed
to obtain analytical results. While these results can often be used for simple produc-
tion systems, the need for alternative approaches increases as production complexity
increases. Such an alternative may be based on regression analysis.

Statistical methods have a long tradition in the field of Operations Research (OR).
Empirical studies by Ford et al. (1987) and Lane et al. (1993) indicate that statistical
methods - especially regression analysis - is one of the top-three OR techniques that
OR educators teach and practitioners find most useful. Besides its major role in sensi-
tivity analysis, regression analysis is also used in forecasting and prediction problems
in many areas, including manufacturing planning and control, projecting workforce
requirements, and development of project costs and cash flows. For example, simple
and multiple linear regression analyse are common approaches in the due-date assign-
ment literature. Researchers used a variety of job-related and shop-related factors
as independent variables to predict the flowtime (i.e. the total throughput time of
a job in the production system, which consists of processing time and waiting time)
for arriving jobs, and for setting the due date accordingly (see e.g. Ragatz & Mabert,
1984; Cheng & Gupta, 1989; Vig & Dooley, 1991, 1993; Gee & Smith, 1993). However,
when compared to other approaches such as mathematical programming or queueing
networks, the use of regression analysis to support planning decisions is limited.



10 1. Introduction

1.4 Problem statement and research questions

The research described in this thesis is meant to contribute to the development of
models to support order acceptance decisions and to provide insight into the benefits
of using regression techniques to support these decisions in stochastic settings in
multipurpose batch process industries. In order to meet these goals, the following
research questions are used to direct the research project:

1. How do aggregate regression models perform compared with detailed scheduling
models, when used to support order acceptance decisions in settings with random
order arrivals and processing times?

2. Can the strengths of both aggregate regression-based policies and detailed scheduling-
based policies be combined in an improved order acceptance policy?

3. To what extent can regression analysis be used if only limited historical data is
available?

The research methodology that is used to answer these questions is discussed in the
next section.

Raaymakers (1999) showed that regression modelling provides the decision makers
with a powerful and relatively straightforward tool for supporting customer order
acceptance decisions in multipurpose batch process industries under deterministic
problem settings. Although the performance of her aggregate regression-based policy
is surprisingly good in a deterministic situation, there is still considerable difference in
performance between the aggregate regression-based policy and a detailed scheduling-
based order acceptance policy. Multipurpose batch plants often operate in a dynamic
stochastic environment where demand may be both variable and uncertain, and pro-
duction disturbances may occur. We may expect that the performance of determinis-
tic order acceptance policies will deteriorate under stochastic production conditions.
For example, in a stochastic environment, we may expect the performance of the
detailed scheduling-based policy to be affected by the uncertainty in the processing
times, since the ex ante schedule constructed upon order acceptance is not anymore
an exact representation of the future status of the production system. On the other
hand, an aggregate regression-based policy may be less sensitive to uncertainty.

These considerations triggered the first research question. It makes sense therefore to
develop order acceptance policies that account for processing time uncertainty and to
investigate the performance that can be obtained by using such policies under stochas-
tic conditions. Besides measuring their performance, we also aim at understanding
how these policies contribute to this performance. Only such an understanding can
lead to constructive design of a new, improved policy to answer the second research
question. By ”improved” we refer not only to improved system performance, but also
to the robustness of such a policy, i.e. making it less sensitive to specific production
conditions.

While the first two research questions relate to the scientific relevance of this re-
search, the third research question address its practical relevance. Application of
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regression-based order acceptance policies in real life requires that sufficient historical
data (regarding customer orders and production system) are available to estimate the
coefficients of the regression models with acceptable accuracy. In real life, however,
there may be only a limited amount of historical data available. It is therefore worth-
while to investigate what is the impact of limited historical data on the performance
of the policies, and how this limited data problem can be solved.

1.5 Thesis outline

This section describes the steps that will be followed to answer the research questions
stated in the previous section. Six steps are identified, namely:

1. Developing aggregate regression models that account for processing time uncer-
tainty to estimate the production output that can be realized with the available
capacity.

2. Evaluating the performance of these models as methods to support order accep-
tance decisions.

3. Identifying the characteristics that affect this performance.

4. Developing improved models by combining the strengths of both detailed scheduling-
and aggregate regression-based policies.

5. Developing a procedure to solve the problem of limited data.

The first two steps are related to research question 1 in the previous section. Research
question 2 is addressed in steps 3 and 4. Research question 3 is addressed in step 5.

When developing order acceptance policies, the main issue is to accurately estimate
the production output that can be realized with the available capacity. In the first
step, we develop aggregate regression-based models that estimate the completion time
(or makespan) of a given set of jobs that has to be completed on a given resource con-
figuration. These regression-based estimation models are based on regression analysis
and use a few aggregate characteristics of the job set. We conduct controlled com-
puter simulation experiments to determine the relationship between the makespan of
a set of jobs and the characteristics of this job set. Computer experiments are used
because a large number of different job sets can be evaluated in this way. The pa-
rameters in the simulations are varied such that the job sets generated resemble the
characteristics of the job sets in industry, as identified in the empirical study of Raay-
makers (1999). We use multiple linear regression analysis to determine the relation
between the job set characteristics and the makespan of a job set. The development
of aggregate regression-based models is presented in Chapter 3.

In the second step, we examine the performance that can be obtained by using such
aggregate makespan estimation models, as compared with detailed scheduling-based
models, when used to support customer order acceptance decisions. We develop two
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order acceptance policies: the regression policy and the scheduling policy. The re-
gression policy uses the aggregate makespan estimation models developed in Chapter
3 to estimate the actual makespan of an order set. The scheduling policy, uses simu-
lated annealing techniques and a statistically determined slack to estimate the actual
makespan of an order set. This slack is added in order to cope with the effects of
processing time uncertainty. We conduct a simulation study to collect and analyze
the performance of these two order acceptance policies. These experiments simu-
late a hierarchical planning situation with the upper control level deciding about the
composition of job sets, and the lower control level scheduling these job sets within
the available time frame. The performance evaluation is carried out under a realistic
setting, i.e., random order arrivals and processing times. The performance is evalu-
ated based on (i) the ability to control the delivery performance and (ii) the realized
capacity utilization. These results are presented in Chapter 4.

In the third step, we perform a detailed analysis of those aspects that influence the
performance of both the regression policy and the scheduling policy. Order acceptance
procedures have a considerable impact on the mix of jobs that need to be scheduled,
by refusing specific jobs from the total demand. However, by refusing jobs with
specific characteristics in order to, for example, maximize the resource utilization,
an important and often unforeseen side-effect occurs, namely that the mix of orders
changes in such a way that the expected delivery reliability is no longer met. We
investigate this selectivity property and its impact on the system performance for
both policies in Chapter 5.

The insight gained at the third step is used in the fourth step to develop a new order
acceptance policy, called the hybrid policy. The hybrid policy combines the strengths
of both the scheduling policy and the regression policy. We discuss the development of
this policy in Chapter 6. Both simulated annealing techniques and regression analysis
are used to develop the hybrid policy. We also evaluate the performance of the hybrid
policy and we compare it with the performance of both the regression policy and the
scheduling policy. A simulation study is again performed for this evaluation. These
experiments are similar to the experiments performed at the second step.

In the fifth step, we investigate to what extent regression analysis can still be used to
support customer order acceptance decisions if limited historical data are available.
Application in real life of the order acceptance policies we developed assumes that
sufficient historical data are available in order to estimate the parameters of the mod-
els. However, in real life there may be a limited amount of historical data available,
or not all the available data may be relevant. And limited data may not be sufficient
to estimate the parameters of the models with acceptable accuracy. We refer to this
problem as the limited data problem. For solving the problem of limited data, we use
bootstrapping (Monte Carlo re-sampling with replacement of the available data). The
performance of this bootstrap procedure is evaluated by simulation. These results are
presented in Chapter 7.

In Chapter 8, we conclude this thesis with an overview of our results and directions
for further research.



Chapter 2

Production environment

The objective of this chapter is to describe the production environment assumed in
this thesis, and to justify the assumptions we made to limit the size - but not the scope
- of the research project. This chapter is organized as follows. Section 2.1 considers
the production planning framework we assume in this thesis. Section 2.2.1 introduces
the order stream assumptions. Section 2.2.2 considers the shop layout. Section 2.2.3
describes the job set scheduling and execution process.

2.1 Planning and scheduling framework

The objective of this thesis is to develop models to support order acceptance decisions
in multipurpose batch process industries with random order arrival and processing
times. In this section we provide the context in which the order acceptance decisions
are made.

We consider the hierarchical planning and scheduling framework developed by Raay-
makers (1999) for batch process industries. She distinguishes the following decision
functions: capacity adaptation, order acceptance and capacity loading, and resource
allocation. Capacity adaptation is a medium- to long-term decision function and
deals with adapting the levels of both machine capacity and operator capacity in
multipurpose batch process industries. Order acceptance and capacity loading is a
medium-term decision function and decides upon accepting or rejecting customer or-
ders and - in case of acceptance - allocating the resulting job to a specific planning
period. Resource allocation is a short-term decision function and deals with the oper-
ational use of resources. This type of hierarchical framework is quite common, both
in industrial and theoretical settings (see, e.g. Hax et al., 1980; Bertrand et al., 1990;
Schneeweiß, 1995).

We argued in Chapter 1 that batch process industries are characterized by very com-
plex processes and process structures. In addition, many sequencing constraints dic-
tate the operational scheduling of jobs, such as sequences with no-wait restrictions

13
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among them. These complex characteristics make the overall planning and scheduling
problem over the entire planning horizon computationally intractable and lead to a
necessity to decompose it. Another reason for decomposing the overall planning and
scheduling problem into an aggregate and a detailed problem is that at the time the
aggregate decisions are made, detailed decisions for the same period cannot or need
not yet be made. For example, order acceptance decisions may need to be made at a
moment when not all information is available on the future status of the production
system. Decisions on the actual execution of a job are made later, when detailed
information is available. Moreover, several production and demand disturbances may
occur between the aggregate and detailed decision making times. These disturbances
influence the detailed decision.

Figure 2.1: Planning and scheduling framework
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Figure 2.1 displays the hierarchical planning and scheduling framework we consider
in this thesis. At the first level (the order acceptance level) there is the planner who
accepts or rejects orders that are requested by the market for delivery at the end of a
specified planning period. The order acceptance decision is based on the availability
of sufficient capacity to complete the order before its requested due date. At the
second level (the resource allocation level) there is the scheduler who allocates the
processing steps of a job (the accepted order) to specific resources and determines the
exact sequence and timing of the (planned) execution of the processing steps on the
resources.

An essential characteristic of this production planning framework is the use of plan-
ning periods. Planning periods are introduced in order to cope with the distinctive
features of multipurpose batch process industries. As we mentioned in Section 1.2.1,
no-wait restrictions exists among the processing steps of a job. Due to this feature,
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the resource allocation is done by scheduling the jobs. Other methods for allocating
resources, such as dispatching, are not suitable because this will not guarantee that
all the no-wait restrictions are met. In the literature, job shops are often considered
as queuing networks (see e.g. Buzacott & Shantikumar, 1993). Jobs that need to be
processed on a specific resource are waiting in a queue until the resource becomes
available. Then one job in the queue is dispatched to the available resource based
on some priority rule. Although multipurpose batch process industries have much in
common with job shops, the latter type of resource allocation is not possible here.
In order to meet all the no-wait restrictions, we have to ensure that - prior to the
start of the first processing step of a job - all the requested resources will be available
at the requested time. This can be best realized by scheduling a number of jobs in
the same time. Therefore, the planning horizon (say) H is divided into nH planning
periods or time buckets. A planning period t (t = 1, ..., nH) always starts with an
empty system; at the end of each period the system must be empty again. This is a
reasonable assumption if there is no production during the weekends. If production
is performed round-the-clock, this will lead to some start-up and shut-down losses in
each period. If the length of the planning period is sufficiently large, then these losses
are expected to be small.

The overall planning and scheduling objective is to maximize the resource utilization,
while maintaining a minimum service level. In a hierarchical structure this overall
objective is decomposed into separate objectives for each hierarchical level. The
objective of the order acceptance level is to determine job sets for each planning
period that are achievable and realize high capacity utilization. By ”achievable” we
mean that the total workload and job mix in the job set is such that at the lower
decision level a resource allocation can be made that completes all jobs before their
due dates. The delivery reliability and capacity utilization realized are determined by
this decision function. The objective of the resource allocation level is to construct
a schedule for the released job sets, such that all jobs are completed in that period.
Therefore, the criterion used is the minimization of the job set makespan. Jobs are
executed by the production system according to this schedule.

2.2 System characteristics

We assume a single production department that produces to customer order. Pro-
duction to order seems to be a logical choice because of low demand frequency per
product and the variability and dynamics in demand in batch process industries.
As explained in the previous section, we consider a setting with independent plan-
ning periods. During a planning period t, customer orders arrive at the production
department at random points in time. We assume that the requested due date is
non-negotiable and is equal to the end of the next period, t + 1. Each customer
order is evaluated on line, immediately upon its arrival. An order is accepted only
if sufficient capacity is expected to be available to complete both the new order and
the orders already accepted before their requested due date. Orders that fail this test
are rejected and leave the system (see Figure 2.2). Let Jt,t+1 denote the set of orders
that are accepted in period t and are due at the end of period t + 1.
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Figure 2.2: Decision moments in the system
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2.2.1 Order characteristics

We assume that each customer order consists of exactly one job (j, j = 1, ..., |Jt,t+1|).
Thus, throughout the remainder of this thesis, order and job are interchangeable
terms. We also assume no precedence relations among the jobs. In industrial prac-
tice, however, a number of subsequent operations has to be carried out to produce a
product. This means that a customer order may result in several consecutive jobs.
However, the empirical study of Raaymakers (1999) indicates that it is common to
generate a single job for every operation in the routing of a product. Furthermore,
subsequent operations of a product often are performed in different production de-
partments. If we develop a method that supports order acceptance for single jobs,
then this can be extended relatively easily to multiple jobs per customer order as
long as each job is allocated to a different job set. Therefore, it seems reasonable to
assume that each order results in a single job. We also assume that customer orders
are not combined, which is reasonable due to the low demand frequency per product.

For each job j, a specific number of no-wait processing steps (sj) is required. No-wait
restrictions are generally modelled as finish to start relationships, i.e. each processing
step of a job has to start exactly at the time its immediate predecessor is completed
(Pinedo, 1995). In this thesis, we use a more general definition of no-wait restrictions,
namely the start of the first processing step determines the exact start times of all
the other processing steps of the same job. We need this extended definition in order
to allow for overlapping processing steps.

In multipurpose batch process industries, the processing steps of a job may have an
overlap in time. The overlap is due to the fact that two resources are needed simulta-
neously. The product being processed is generally a fluid that needs containerization
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in order to be stored. If there are two consecutive processing steps, these could be
decoupled by storing the product in a silo or bin, but this is often not possible due to
the lack of stability of the product. As a consequence, the product is transferred from
one resource to the next (e.g., from a reactor to a distillation unit). The product will
then occupy both units during some time. Figure 2.3 gives an example of a job that
consists of four processing steps.

Figure 2.3: Job example

time

p1jR1

p2jR2 ¾ -δ2,j

p3jR3 ¾ -δ3,j

p4jR4 ¾ -δ4,j

Each processing step i requires pij

time units on a resource of a specific
type. The no-wait restrictions be-
tween the processing steps are given
by the fixed time delay (δi,j) between
the start time of the processing step
i (i = 2, ..., sj) relative to the start
time of the first processing step.

We assume that, upon arrival of an
order j, the number of processing
steps, and the timing and the se-
quencing constraints on the process-
ing steps are known. Let us now turn to the modelling issues of the processing time’s
distribution and the planner/scheduler’s knowledge of processing times. We assume
that, upon order arrival, the planner/scheduler knows for each processing step i of
each order j the expected processing time E[Pij ] and the probability density function
(p.d.f.) of the processing time Pij (we use capital letters to denote random variables,
and lower case letters to denote their realizations, e.g. pij). We further assume that
each processing step may be different and may have a different expected processing
time E[Pij ]. We modelled this by considering E[Pij ] as a random variable uniformly
distributed. Actual production data obtained from a batch chemical processing de-
partment in industry showed that the distribution of processing times is close to being
Erlang-distributed. Thus, in this thesis, the processing times Pij are assumed to be
Erlang distributed with mean E[Pij ] and shape parameter k. We also assume the
same Erlang shape parameter k for each processing step i of every job j.

Set-up times are assumed to be sequence independent and are therefore included in
the processing times. This is a reasonable assumption because of the low production
frequency per product.

2.2.2 Shop layout

The shop environment consists of a stable number of resources of some specified type.
This is called the resource configuration. A resource configuration is determined by the
number of resource types M and the number of resources per type nm,m = 1, ..., M .
In this thesis, jobs are scheduled on a fix resource configuration. This is a reasonable
assumption since the configuration of resources in a production department remains
unchanged in the medium term.

The following assumptions regarding the resources are made:
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• resources are available from the start of the planning period;

• each processing step has to be performed without preemption on exactly one re-
source of a specific resource type;

• more than one processing step of a job may require a resource of the same resource
type. These processing steps have to be performed on different resources of that
type if they overlap; that is, resources of the same type are identical. The empirical
study of Raaymakers (1999) indicates that in industrial practice resources are gen-
erally not identical, though similar resources can be used as alternatives. Therefore,
it seems reasonable to assume that resources of the same type are identical.

2.2.3 Scheduling and execution of job sets

At the start of each period t + 1, a job set Jt,t+1 is released to be scheduled and
executed by the production system. The scheduler constructs a schedule (SJt,t+1)
based on the expected processing times, i.e. by assuming deterministic processing
times equal to their expectation. The no-wait job shop scheduling problem considered
here is NP-hard in the strong sense (Lenstra et al., 1977). We can therefore not
expect to find optimal solutions to realistic instances within reasonable time. Heuristic
methods are used to obtain near-optimal solutions. We chose for simulated annealing
(SA) because it has proven to be an effective local search procedure that can be easily
applied to different types of problems (van Laarhoven & Aarts, 1987; Raaymakers &
Hoogeveen, 2000). SA is a randomized neighborhood search algorithm that accepts
worse-cost solutions with a certain probability (Aarts & Lenstra, 1997). As a result,
this provides the opportunity to escape from local optima. A drawback of SA is
that considerable computation time is generally required. An overview of the SA
algorithm is given in Appendix A and we refer to Raaymakers & Hoogeveen (2000)
for further details on the algorithm. The makespan associated with the schedule
SJt,t+1 is denoted by Cex ante

max (SJt,t+1) and is referred as the ex ante makespan in the
remainder of this thesis.

Jobs are released to be executed in the sequence of this schedule. Since the actual
processing times are not known until realized, non-feasibility problems may occur
during execution - so rescheduling may be needed. The rescheduling procedure used
in this thesis is a ”right-shift” control policy (Leon et al., 1994) that entails a right-
shifting of the schedule in order to restore the feasibility on the resources while always
maintaining the original sequence, and can be used for locally revising the schedule
in real time. In the remainder of this section, we present our rescheduling procedure.

At the end of the planning period t + 1, we have the realized schedule and its corre-
sponding actual makespan (or ex post makespan), which is denoted by Cmax(SJt,t+1).
Since the jobs that arrive in a planning period are always due at the end of the next
planning period, for simplicity we suppress the subscripts that refer to the planning
periods. So, we refer to a job set Jt,t+1 by J and to the schedule SJt,t+1 by SJ . Note
that Cmax(SJ) is a random variable determined by the schedule and by the individual
processing times Pij .
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Rescheduling procedure The scheduler monitors the schedule progress and re-
views the schedule such that any new information on the actual processing time is
taken into consideration. If at a review moment τ , the actual processing time of a
particular processing step is larger than the expected processing time, then infeasibil-
ity may occur. The right-shift rescheduling procedure delays processing if necessary,
while maintaining the processing order of the initial schedule. Therefore, all the
processing steps that have a scheduled starting time larger than or equal to τ , are
delayed by one time unit - until full information about the actual processing time of
that particular processing step becomes available to the scheduler. On the other hand,
if the actual processing time is smaller than the expected processing time, then the
starting time of all remaining jobs may be decreased while maintaining the no-wait
restrictions.

One of the difficulties in no-wait job shop scheduling is that changes in the job se-
quence on one resource are likely to affect several other resources. If the actual
processing times are not exactly known at the time the schedule is determined, it
is impossible to satisfy all the no-wait restrictions throughout the job set execution,
because the actual processing times only become known over time. Violations of the
no-wait restrictions may cause product quality problems, therefore violations are un-
desirable. This is measured by the feasibility performance, defined as one minus the
fraction of processing steps that violate the no-wait restrictions.

To illustrate the proposed rescheduling procedure, an example problem with four jobs
to be processed on five machines is shown in Table 2.1.

Table 2.1: Job parameters for the example problem

Job Processing step Expected Actual Time delay
processing time processing time

1 1 25 36 0
2 23 24 12
3 26 28 24

2 1 9 2 0
2 38 34 4
3 35 36 23

3 1 14 6 0
2 29 32 7
3 22 8 22

4 1 44 38 0
2 29 25 22
3 2 2 36

The Gantt chart of the schedule obtained by using simulated annealing algorithm is
shown in Figure 2.4(a). Numbers inside the blocks represent the job number and the
associated processing steps (e.g., 4.1 means the first processing step of job 4).

The right-shift procedure was applied to the example problem; the result is shown
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in Figure 2.4(b). The first non-feasibility problem occurs when on machine 2, the
actual processing time of processing step 3.2 is longer than the expected processing
time. Because the completion time of processing step 3.2 was changed, at time τ = 36
the starting time of all the other processing steps that had a scheduled starting time
larger than or equal to 36 were delayed - until complete information about the actual
processing time of processing step 3.2 is known. Next, at time τ = 38, the actual
processing time of processing step 4.1 is less than the expected processing time, so, the
starting time of job 2 is decreased (from 40 to 38) such that the no-wait restrictions
are not violated. Finally, at time τ = 39, the processing step 3.2 is completed, and
the processing step 4.3 can start. But delaying the starting time of the processing
step 4.3 (from 36 to 39) violates the no-wait restrictions within job 4.

Figure 2.4: Gantt chart for the example in Table 2.1
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Chapter 3

Predicting the makespan of a
job set

3.1 Introduction

In the hierarchical planning and scheduling framework described in Chapter 2, plan-
ners are responsible for balancing the capacity requirements (due to customer orders)
and the available capacity on medium-term. They plan the various jobs over time
and load them into time buckets and onto processing departments. Therefore, the
planners are expected to make an adequate assessment of the feasibility of the job
set - which requires a fairly detailed insight into the constraints on the shop floor in
the processing departments. In addition, the planners have to be able to estimate if
the jobs in the job set can be delivered on time. In a situation with discrete planning
periods, this means being able to predict the makespan of a job set.

Raaymakers (1999) showed that, in settings with deterministic processing times, ac-
curate estimates for the makespan of a job set may be obtained by using a regression
model with a limited number of aggregate job set and resource characteristics, in
addition to the workload of the job set. In this chapter 1, we extend this work and in-
vestigate whether similar aggregate job set characteristics may be used for predicting
the makespan of a job set in settings with stochastic processing times.

The structure of this chapter is as follows. In Section 3.2 we provide an overview of
the literature on makespan estimation. In Section 3.3 we discuss the formulation of
the prediction model. In Section 3.5 we present the regressors of the prediction model.
In Section 3.4 we address the data generation process. In Section 3.6 we elaborate on
the building and evaluation of the regression models. In Section 3.7 we present our
conclusions.

1Earlier versions of the content of this chapter and Chapter 4 are joint work with J.C. Fransoo
and J.M.W. Bertrand, and have been published in Ivanescu et al. (2002) and Ivanescu et al. (2003a).

21
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3.2 Review of literature on makespan estimation

The literature on makespan estimation is limited. Fransoo et al. (1994) made a first
attempt to estimate the job set makespan for a flexible manufacturing system (FMS)
by using queuing models. For each period a makespan estimate is provided for the
job set to be processed, based on the number of jobs, the average throughput time
per job, and the number of product carriers in the system. Simulation experiments
showed a low correlation between estimated and realized makespan (R2 = 0.27). This
may be caused by the fact that queueing models, that describe long term stationary
behavior, are used to estimate short term behavior that may not be stationary. The
interesting part of their research, however, is the idea to use makespan estimation -
based on aggregate models - in order to estimate the likeliness of completing a job set
within a given period.

Raaymakers (1999) addressed the makespan estimation problem in multipurpose
batch process industries. She developed aggregate models for predicting the makespan
of a job set assuming deterministic processing times, in a setting with discrete plan-
ning periods. She identified five aggregate characteristics of the job set and resources
that influence the completion time of a job set: (1) the average number of processing
steps per job, (2) the average overlap of processing steps, (3) the standard deviation
of the processing time, (4) the average number of identical resources per type, and (5)
the workload balance per resource type. She used these characteristics, in addition to
the workload of a job set, to accurately predict the makespan of a job set, by means
of multiple linear regression analysis.

Related to the job set makespan estimation is the problem of estimating the time re-
quired to perform a given set of activities (i.e. a project), which has been investigated
in the context of project management and scheduling since the early papers proposing
the Program Evaluation and Review Technique (PERT) (Battersby, 1967). A PERT
network, also known as a stochastic activity network, is based on the concept that a
project is divided into a number of activities that are carried out concurrently subject
to precedence constraints and limitations on some critical resources (such as skilled
labor, equipment, utilities). Two major problems may be distinguished: modelling
the duration of each activity, and studying the distribution of the total duration of
a project under uncertainty conditions. Determination of the exact distribution of
the total duration of a project is complicated by the fact that different paths in the
network are correlated, and also because of the need to find the maximum of a set
of random variables (Dodin, 1985). Three major approaches have been developed to
overcome this problem: (1) approximate estimation of the distribution of the total du-
ration; (2) computing lower or upper bounds for this distribution; and (3) estimation
of bounds for the expected project total duration (Tavares, 1999). Exact methods are
not easy to find, therefore simulation methods are use to obtain desired statistics for
networks with specified distributions for the activities. Tavares et al. (1999) studied
the statistical distribution of the total duration of a project for small networks under
specific assumptions regarding the distribution of the duration of each activity. By
using six indicators of the morphology of the network, they developed a model to
predict the statistical parameters of the total duration of a project.
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A companion of the problem of makespan estimation is the problem of estimating the
flowtime of jobs consisting of a linear structure of processing steps, which has received
considerable attention in the literature. The flowtime is the total throughput time
of a job in a production system, which consists of processing time and waiting time.
Because flowtime estimation is used to assign order due dates, the problem has been
mostly studied in the context of due date assignment. Most due date literature
concentrates on establishing flow allowances for arriving jobs, in order to accurately
reflect their actual completion times and setting the due date accordingly. For an
overview of the results published up to the end of the 1980s we refer to Cheng &
Gupta (1989), while we refer to Gordon et al. (2002) for a review of more recent
results.

Two basic approaches have been used to establish the relationships needed to predict
flowtimes: the analytical approach and the simulation approach. There are advan-
tages and disadvantages associated with each approach. The analytical approach,
usually based on queuing theory, proposes an exact way of determining mean and
variances of flowtime estimates. However, the dynamic and stochastic nature of pro-
duction systems makes it difficult to develop realistic analytical models. On the other
hand, a simulation approach may need many computer runs to obtain accurate and
precise estimates. Since these two approaches are complementary in nature, the lit-
erature has been developed in both directions. The approach used in this thesis is
simulation. Thus, we next discuss in more detail the simulation related literature.
For the analytical studies, we refer to Miyazaki (1981), Baker & Bertrand (1981b),
Baker & Bertrand (1981a), Bertrand (1983a), Bertrand (1983b), Cheng (1985), Cheng
(1986), Adam et al. (1993), Lawrence (1995), and Bertrand & van de Wakker (2002).

Research using the simulation approach is due to Conway (1965), Eilon & Chowdhury
(1976), Weeks (1979), Ragatz & Mabert (1984), Fry et al. (1989), Enns (1993, 1994,
1995), Gee & Smith (1993), and Vig & Dooley (1991, 1993). Most of these studies
used simulation to generate innitial data required to develop the flowtime relationships
used in further experimentation. Conway (1965) compares four flowtime estimation
methods: total work content (TWK), number of operations (NOP), constant (CON),
and random (RDM). The results of this study indicate that the methods that utilize
job information perform better than the others. Eilon & Chowdhury (1976) use
shop congestion information to estimate flowtimes. In their work, TWK is compared
with three other methods: jobs in queue (JIQ), delay in queue (DIQ), and modified
total work content (MTWK). They used regression analysis to establish due-date rule
parameters in order to minimize the deviations between the completion times and due-
dates. Their results indicate that JIQ, which employs shop congestion information,
outperforms other methods. Weeks (1979) proposes a method that combines job and
shop information. This method performs very well for performance metrics such as
mean lateness, mean earliness, and number of tardy jobs.

Ragatz & Mabert (1984) tested a number of due-date setting procedures to determine
which one predicts most accurately the flowtimes. Regression analysis was again used.
They concluded that using shop load data related to individual job’s routings was
more beneficial than using overall shop load data.

Fry et al. (1989) also investigate the job and shop characteristics that affect a job’s



24 3. Predicting the makespan of a job set

flowtime in a multistage job shop. They construct two linear and two multiplica-
tive nonlinear models to estimate the regression coefficients of the factors. This study
shows that (i) models using product structure and shop conditions estimate flowtimes
better than the others, (ii) their linear models are superior to their multiplicative mod-
els, and (iii) the predictive ability of the models improves as the utilization increases.

Enns (1993) and Vig & Dooley (1991) examine dynamic models of varying complexity
to predict flowtimes. Vig & Dooley (1993) note that due date setting with dynamic
shop information tends to be more sensitive to changes in the environmental con-
ditions, resulting in nervousness (over- or under-compensation). They proposed a
weighted approach that combines static information - which enhances robustness of
due dates - with dynamic information - which lead to improved accuracy. Enns (1995)
proposes a forecasting model based on dynamic shop load information. In this model,
due dates are set by monitoring the distribution of the flowtime estimation errors and
by providing safety allowances for target levels of delivery performance. His results
suggest that for a desired service level, due date based dispatching minimizes lead
time.

Gee & Smith (1993) propose an iterative procedure for estimating flowtimes when
due date dependent dispatching rules are used. Two flow time estimation methods
are employed, one based on job related information and one based on both job and
shop related information. Their results indicate that the second method yields better
results.

From this literature review on flowtime estimation and due date setting we conclude
that both job and shop information need to be considered. A common characteristic
of the papers we mentioned above is that flowtime estimation rules are developed for
a job shop system with queues in front of resources. In such a situation, the jobs are
immediately released to the shop floor and processed according to some dispatching
rules. In our situation, however, queueing is not possible due to no-wait restrictions
between the processing steps of a job. As we explained in Chapter 2, we assume that
a set of jobs is periodically scheduled and released to the shop floor. Consequently,
we do not concentrate on the completion time of individual jobs but on the makespan
of a set of jobs. In this respect, our approach to makespan estimation is related to
the approach of Fransoo et al. (1994), and builds on the work of Raaymakers (1999).

3.3 Prediction model formulation

The makespan of a job set is clearly influenced by its workload. The workload of a
job set is the quantity of capacity needed to complete the job set. More specifically,
the workload on the bottleneck resource type puts a lower bound on the makespan.
The bottleneck resource type is the resource type that has the highest utilization.
This lower bound - which we denote by LB(J) - is a single resource lower bound on
the makespan which is computed for each job set by dividing the workload on the
bottleneck resource type by the number of resources of that type (Carlier, 1987). We
may round this value upwards, because all processing times are integer values and no
pre-emption is allowed.
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However, because of job interactions (timing and no-wait sequencing constraints) at
the scheduling level, the minimal makespan for which a feasible schedule is realized
will often exceed this lower bound. Job interaction results from relations between ca-
pacity requirements on different resources and from scarcity of capacity. The capacity
requirements for different resources have a fixed offset in time for each job, due to
the fixed time delay for each processing step (see Figure 2.3). To obtain a feasible
schedule, some idle time on the resources can generally not be avoided. The job in-
teraction is measured by the interaction margin. For a given schedule SJ associated
to a job set J , the interaction margin - denoted by I(SJ) - is defined as the relative
difference between the realized makespan and the lower bound (Raaymakers, 1999):

I(SJ) =
Cmax(SJ)− LB(J)

LB(J)
(3.1)

Given a job set we are interested - without actually constructing the schedule for the
job set - in estimating the amount of job interaction that is expected to be realized
if the schedule would have been constructed. Obviously, given a job set J , the exact
amount of job interaction cannot be determined without the actual construction of
the schedule. Therefore, following the work of Raaymakers (1999), we determine an
estimate for the average interaction margin. We use a multiple linear regression model
to predict the interaction margin - the response variable - based on a limited number
of aggregate job set characteristics - the predictor variables or regressors. Figure 3.1
schematically shows the development of our prediction model.

Figure 3.1: Development of the prediction model
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We assume the existence of a number of job sets, say nJS , that have been scheduled
and executed on a given resource configuration. These may be real (historical) data of
the production department or simulated data, obtained from a pilot simulation study.
Although the problem we address is inspired by real life, we develop models based
on simulated data. Job set generation is discussed in Section 3.4. For the scheduling
and execution of these job sets, we use the simulated annealing algorithm and the
rescheduling procedure described in Section 2.2.3.

For each job set J , J = 1, ..., nJS , we determine the aggregate job set characteristics,
i.e. the regressors in our regression model. Furthermore, the result of scheduling
and execution of the job set is the ex post makespan Cmax(SJ) which allows us
to determine the interaction margin (see equation 3.1) - our response variable. We
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determine the regression model using a two-step process that can be found in most
statistics textbooks (e.g. Montgomery & Peck, 1992): model building and model
evaluation. In the model building step, a regression equation is determined that
provides the best fit to the available data. In the remainder of this thesis, these data
will be called the construction data set.

In the model evaluation step we distinguish between model adequacy checking and
model validation. Model adequacy checking investigates the fit of the regression
model to the construction data set using residual analysis. However, there is no
assurance that the equation that provides the best fit to these data will be a successful
predictor. Therefore, the predictive performance of the model has to be tested. The
cross validation method is employed (or data splitting according to Montgomery &
Peck, 1992) for evaluating the model. In the cross validation method, a sample of
approximately 80% is taken from the available data for obtaining the construction
data set, whereas the rest (20%) is used to test the model. The latter set of data will
be called the testing data set in the remainder of this thesis.

Through the estimated regression equation we can predict the average interaction
margin for a given job set J . This estimate may be used to predict the expected
makespan of the job set. Formally, this may be expressed as follows:

Ĉmax(J) = (1 + Î(J))LB(J) (3.2)

where the hat denotes an estimate of a variable. Note that both Ĉmax(J) and Î(J)
depend only on the job set, since a schedule S is not yet constructed.

3.4 Data generation

In this section we discuss the data generation process. The setting for our research is
a hypothetical production department in the batch process industry. The simulated
shop consists of five resource types, with two identical resources per type. Two reasons
determined the choice of this particular resource configuration. First, regarding the
size (10 resources), this is a realistic size of a production department (Raaymakers,
1999). Second, the size of the scheduling problem remains reasonable with respect to
the computational time for the simulation experiments.

The following factors are considered for generating the job sets: the number of jobs in
the job set nJ , the number of processing steps per job sj , the overlap of the processing
steps gj , the probability that the processing steps are executed on a particular resource
type pm (m = 1, 2..., 5), and the probability distribution function which gives the
expected processing times FE[p]. The number of jobs in the job set nJ is obtained
by drawing a number from the uniform distribution on the interval [25, 65], rounded
upwards to an integer value. The values for the lower and upper bounds of the uniform
distribution are chosen such that the job sets consist of a realistic number of jobs (see
Raaymakers et al., 2000a).

The rest of the experimental factors are varied at two levels, as presented in Table
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3.1. A full factorial design is used to generate the job sets, so eight combinations of
different factor levels are possible. For each combination, 50 job sets are generated.
This results in a total of 400(= nJS) job sets. These job sets form the core of the
data set.

Table 3.1: Experimental factors levels for generating job sets

Factors L H
sj U(4, 7) ∗ U(1, 10)
pm 0.3, 0.25, 0.20, 0.15, 0.10 0.2 for m = 1, ..., 5

FE[p] U(15, 35) U(1, 49)
∗ U(a, b) denotes the uniform probability distribution on the interval [a, b]

Each job j (j = 1, ..., nJ) requires sj processing steps determined according to an
uniform probability distribution (see Table 3.1). The overlap of the processing steps
is obtained by determining the time delay (δi,j) between the start time of processing
step i relative to the start time of job j. The time delay is determined as follows.
A number r between 0 and 1 is randomly generated. Then, the time delay of the
current processing step is the time delay of the previous processing step plus r times
the processing time of the previous processing step. The time delay is then rounded
upwards to an integer value.

The processing time Pij for each processing step i of a job j is generated by a two-
step sampling procedure. First, a value is generated from the distribution FE[p]. This
value represents the expected processing time of the processing step i of the job j
(E[Pij ]). Given that a deterministic schedule is constructed by using these values,
we round them up to an integer for computational easiness. Second, another value
is generated by sampling from an Erlang distribution with the mean equal to E[Pij ]
and the shape parameter k. The result is made integer to give the actual number of
time units required for the processing step. The processing times Pij are independent
identically distributed random variables.

We model different levels of uncertainty in the processing times by considering nine
levels for the Erlang shape parameter, from 2 to 10. Each job set J (J = 1, ..., 400) is
scheduled and executed by the production department. All the processing times in J
are stochastic (e.g., Erlang distributed with the same shape parameter k). A single
simulated execution of the job set would not be sufficient to properly capture the
effect of stochastic processing times when developing the regression models. Thus,
we repeat the execution of each job set several times. Additional experiments showed
that, for each Erlang shape parameter k, 250(= nrepl) replications are necessary to
reduce the variability in the results. This would result in a 400× 9× 250 = 900 000
observations. In order to keep the size of the data set at a manageable level, we
consider only one uncertainty level for each job set. Moreover, it is realistic to assume
that different job sets may experience different levels of uncertainty at the shop floor.
Consequently, we randomly allocate an Erlang shape parameter to each job set. This
resulted in a data set with a total of 400× 250 = 100 000 observations.

We randomly split the core data set (i.e. the 400 job sets) into two parts: about
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80% of the data - namely 319(= ncons
JS ) job sets - form the construction data set

whereas the remaining 81(= ntest
JS ) job sets form the testing data set. We chose to

split the core of the data set and not the whole data set, because the latter contains
replicates of the same job set characteristics. If these replicates were not eliminated,
the construction and testing data sets would be quite similar and this would not
necessarily test the models severely enough. In conclusion, the construction data
set contains 319 × 250 = 79 750 observations, whereas the testing data set contains
81× 250 = 20 250 observations.

3.5 Regressors in the prediction model

Raaymakers (1999) identified the following job set characteristics that proved to be
responsible for the difference between the minimal makespan and the lower bound
in a setting with deterministic processing times: the number of identical resources
per resource type, the workload balance of resource types, the average number of
processing steps per job in a job set, the average overlap of processing steps in a
job set, and the standard deviation of processing times. These aggregate job set
characteristics - referred as interaction margin variables in the remainder of this
thesis - will play the role of regressors in the linear regression model. Note that
since we consider a fixed resource configuration, the number of identical resources
per resource type interaction margin variable will have a constant value, so it is not
further considered in our study. In addition, we consider the number of jobs in the
job set to be one of the regressors.

Contrary to the deterministic setting of Raaymakers, two types of variation should be
consider with respect to the processing times. The first type is due to the fact that
each generated job may be different, so each processing step within the job set may
be different. We measure this variation by the expected processing times variation
in the job set cv2

E[p], which indicates the dissimilarity degree of the processing steps
with respect to the expected processing times. The second type of variation is due
to the randomness of the processing times (i.e. the actual (realized) processing times
may differ from their expected value). Therefore, we include the squared coefficient
of variation of the actual processing times cv2

p to be one of the regressors.

For reasons of self-containedness, we briefly discuss each of the interaction margin
variables, and we refer to Raaymakers (1999) for details. Note that, although these
variables are determined for a given job set J , we suppress the dependence of these
variables on J for notational simplicity.

Workload balance of resource types Scarcity of capacity is a cause for job
interactions. If excess capacity exists for some resource types, it is expected that there
will be less job interactions, because a feasible schedule for these resources may be
easily constructed. However, if capacity requirements are equally high for all resource
types, many job interactions are expected to occur, because each of the resources
may become bottleneck. Therefore, the balance of the workload distribution over
different resource types is expected to influence the interaction margin. As a measure
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of workload balance we use the maximum utilization if the makespan is equal to the
lower bound. The maximum utilization ρmax of a job set gives the utilization realized
if a feasible schedule is constructed with a makespan equal to the lower bound LB(J):

ρmax =
L̄

LB(J)
(3.3)

where

L̄ =
1
N

M∑
m=1

nm∑
n=1

Ln (3.4)

and N is the total number of resources:

N =
M∑

m=1

nm (3.5)

The number of jobs in the job set The flexibility at the scheduling level increases
with a higher number of jobs in the job set. This may influence the interaction margin.
Therefore, we consider the number of jobs in the job set nJ to be one of the regressors
in the prediction model.

Average number of processing steps per job in a job set Job interaction
arises because several resources are required simultaneously or successively for each
job. It may be expected that jobs with a larger number of processing steps cause a
higher interaction margin, since they require more resources. The average number of
processing steps µs is defined as follows:

µs =
1
nJ

nJ∑

j=1

sj (3.6)

Average overlap of processing steps in a job set In process industries the
processing steps may have an overlap in time (see Section 2.2.1). Jobs may differ
in the amount of overlap between processing steps. The amount of overlap between
processing steps influences the time between the start and the completion of a job.
For each job j the overlap gj is computed as follows:

gj =
1

sj − 1

sj∑

i=1

(1− δi,j − δi−1,j

E[Pi−1j ]
) (3.7)

Figure 3.2 illustrates two jobs with the same number of processing steps and processing
times, but different overlap.

Next, the average overlap of processing steps in a job set is obtained as follows:

µg =
1
nJ

nJ∑

j=1

gj (3.8)
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Figure 3.2: Job overlap example
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Expected processing times variation in a job set The lower bound on the
makespan is based on the workload of the resource types, but does not take into
account the variation of the expected processing times in the job set. This variation
arises as each job may be different, so each processing step may also be different
and may have a different expected processing time. This variation indicates the
dissimilarity of the processing steps in the job set and may influence the interaction
margin. We measure this variation by the expected processing times variation in a
job set cv2

E[p], defined as follows:

cv2
E[p] =

σ2
E[p]

µ2
E[p]

(3.9)

where µE[p] denotes the average of the expected processing time over all processing
steps in the job set:

µE[p] =
1
S

nJ∑

j=1

sj∑

i=1

E[Pij ] (3.10)

and σ2
E[p] denotes the variance of the expected processing times in the job set:

σ2
E[p] =

1
S − 1

nJ∑

j=1

sj∑

i=1

(E[Pij ]− µE[p])
2 (3.11)

S denotes the total number of processing steps in the job set:

S =
nJ∑

j=1

sj (3.12)

Squared coefficient of variation of the processing times The actual (real-
ized) processing times pij may differ from their expected value E[Pij ], therefore, we
may expect that this uncertainty to influence the interaction margin. The squared
coefficient of variations of the processing times cv2

p is computed as follows:
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cv2
p =

(b− a)2

3 · (b + a)2
+

4 · (b2 + a · b + a2)
3 · k · (b + a)2

(3.13)

where a and b are the lower and upper bounds of the uniform distribution for the
expected processing time (see Table 3.1), and k is the shape parameter of the Erlang
distribution. The derivation of cv2

p is included in Appendix B, along with the density
function and the first two moments of the processing times.

3.6 Makespan estimation model: building and
evaluation

3.6.1 Interaction margin estimation models

The six interaction margin variables we discussed in Section 3.5 are used in this section
to construct the regression models. These models are generated by means of multiple
linear regression techniques, as follows. We used the SPSS statistical software package
for our analysis.

First, we construct an estimation model (A) that contains only the main effects of
the interaction margin variables. We use backward regression to eliminate variables
that did not show a significant contribution. Second, we construct estimation models
that included two-way interactions. The number of possible two-way interactions is
15 and hence, the number of regressor variables is 21. We use stepwise regression to
determine the estimation models. All the estimation models are determined using the
ordinary least squares (OLS) technique.

We examine the regression models for multicollinearity, because a high degree of mul-
ticollinearity makes the parameter estimates in the model not stable. Multicollinearity
exists whenever an independent variable is highly correlated with one or more of the
other independent variables and it can be detected by using variance inflation factors
(VIF’s). The variance inflation factor for the r -th regressor variable is determined as
follows (Montgomery & Peck, 1992):

V IFr =
1

1−R2
r

, (3.14)

where R2
r is the coefficient of multiple determination obtained by regressing the r -

th regressor variable on the other regressor variables. In other words, the value
for R2

r indicates if there is a strong linear relationship between regressor variable r
and the other regressor variables. VIFs larger than 10 imply serious problems with
multicollinearity. Among the regression models found by stepwise regression we only
consider those models that do not have VIFs exceeding 10.

To test the adequacy of the regression models, we perform a residual analysis. The
standardized residuals versus the standardized predicted values plots presented in
Appendix C.1 show the tendency of increased variability as the dependent variable
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increases. This indicates that the variances of the errors are not constant (i.e. het-
eroscedasticity). The assumption of constant variance is a basic requirement of OLS.
It is important to detect and correct a nonconstant error variance. If this problem
is not eliminated, the OLS estimators will still be unbiased, but they will no longer
have the minimum variance propriety. The usual approach for dealing with inequality
of variance is to apply a suitable transformation to the response variable. A linear
regression model is then fitted, and its validity is tested, provided that the necessary
assumptions regarding residuals apply after transformation. This process is described
in most statistics books (see e.g. Montgomery & Peck, 1992). We apply the natu-
ral logarithm transformation to the interaction margin variable. Let us denote the
transformed interaction margin variable by:

Y = ln(I(SJ)). (3.15)

We then fit a multiple linear regression model for this new response variable. Diag-
nostic checks on the subsequent models confirm the appropriateness of this transfor-
mation.

Table 3.2 gives the name, the regressor variables, the adjusted coefficient of multiple
determination (adj. R2) and the standard error of regression (σ̂) of the subsequent
regression estimation models. The latter two statistics are measures of fit of the
regression model.

Table 3.2: Log-transformed interaction margin estimation models

Model Regressor variables adj. R2 σ̂
A µs, µg, cv

2
E[p], cv

2
p, ρmax, nJ 0.77 0.107

B cv2
p · ρmax 0.36 0.177

C cv2
p · ρmax, µs · ρmax 0.61 0.138

D cv2
p · ρmax, µs · ρmax, cv

2
E[p] · nJ 0.74 0.113

E cv2
p · ρmax, µs · ρmax, cv

2
E[p] · nJ , µs · cv2

E[p] 0.75 0.111

The coefficient of multiple determination (R2) measures how much of the total vari-
ation is explained by the estimated regression equation. R2 is defined by

R2 = 1−
∑ncons

i=1 (Yi − Ŷi)2

∑ncons

i=1 (Yi − Y )2
(3.16)

where ncons is the number of observations: ncons = ncons
JS · nrepl. However, R2 always

increases when variables are added to the model. Therefore, we use the adjusted R2,
which corrects for the number of variables d in the model:

adj. R2 = R2 − d(1−R2)
ncons − d− 1

(3.17)

Whereas the adj. R2 is a measure of relative fit, the standard error of regression (σ̂)
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is an absolute measure of the fit of a model because its value is dependent on the
scale of the response variable. This σ̂ specifies the amount of error incurred when the
least-squares regression equation is used to predict values of the dependent variable:

σ̂ =

√∑ncons

i=1 (Yi − Ŷi)2

ncons − d− 1
(3.18)

The smaller the standard error of regression, the closer the estimate is likely to be to
the actual value of the dependent variable.

For each of the estimation models, we use an F -test to test the significance of the
model as a whole. The null hypothesis tested by this F -test is that all coefficients of
the regression model, except for the intercept, are equal to zero. For the models in
Table 3.2, the P-value is 0.000, indicating that this null hypothesis is rejected.

Except for models B and C, the performance measures (adj. R2 and σ̂) look quite
good, so we consider only the models A, D and E for further analysis. Table 3.3
shows the regression parameters’ least squares estimates for these three models. We
perform a two-tailed t-test to test the significance of the individual regressor variables.
The null hypothesis tested by this test is that the individual coefficient is either
significantly higher or lower than zero. Table 3.3 also gives the t-statistic value (see
the values in parentheses). A comparison of the absolute values of the t-statistic with
t1−α/2,n−(d+1) (i.e. the 1−α/2 upper critical point of the t distribution with n−d−1
degrees of freedom) implies that all the regressor variables in Table 3.3 are significant,
at α = 0.01 level of significance.

Table 3.3: OLS parameters’ estimates (t-statistic in parentheses)

Regressors Model
A D E

Intercept -1.984 (-210.854) -1.152(-343.590) -1.130(-343.417)
µs 0.111 ( 99.586)
µg -0.130 ( -12.604)
cv2

E[p] -0.883 (-208.429)
cv2

p 0.911 ( 347.897)
ρmax 1.466 ( 282.278)
nJ -0.003 ( -79.485)
cv2

p · ρmax 1.020( 338.379) 1.085(347.491)
µs · ρmax 0.177( 236.292) 0.172(235.115)
cv2

E[p] · nJ -0.016(-197.854) -0.009(-64.782)
µs · cv2

E[p] -0.083(-62.452)

The predictive performance of the A, D and E models is further evaluated through
the testing data set. The quality of these models was quantified by the mean pre-
diction error (ME) and square root of the mean square prediction error (

√
MSE).

Additionally, the percentage of variability in the new data explained by the model
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(R2
pred) is compared with the R2 of the building model, where R2

pred is computed as

follows:

R2
pred = 1−

∑ntest

i=1 (Yi − Ŷi)2

∑ntest

i=1 (Yi − Y )2
(3.19)

where ntest is the number of observations: ntest = ntest
JS · nrepl.

The results are presented in Table 3.4. The mean prediction error is nearly zero for all
the considered models, so the estimation models produce unbiased predictions. Table
3.4 reveals that the adj. R2 for the new data explained by the model is less than the
adj. R2 for the construction phase. Furthermore, the σ̂ values in Table 3.2 (which
may be thought of as the standard deviation of the residuals from the fit) is smaller
than

√
MSE. This indicates that the regression models do not predict new data as

good as they fit the existing data. However, the degradation in performance is not
severe.

Table 3.4: Predictive quality of the log-transformed interaction margin regression
models in the testing data set

Model ME
√

MSE R2
pred

A 0.02 0.111 0.72
D 0.00 0.115 0.71
E 0.01 0.115 0.71

We conclude that our regression models are likely to provide good predictions for
new observations. Although the three models have similar predictive performance,
model A is slightly better, using as criteria MSE and R2

pred. However, comparison
of the prediction performance of the makespan estimation models on the testing data
set will provide us with a basis for final model selection. This is address in the next
section.

3.6.2 Makespan estimation models

The models developed in the previous section are used for predicting the mean inter-
action margin, given a job set and a resource configuration. In this section, makespan
estimates are obtained by using a lower bound on the makespan and an interaction
margin estimate, as described in Section 3.3 (see equation 3.2)

The interaction margin estimation models provide predicted values for the interaction
margin in a log-transformed scale. Therefore, to obtain makespan estimates, it is
necessary to convert the predicted values back to the original units. Unfortunately
applying the inverse transformation directly to the predicted values gives an estimate
of the median of the distribution of the response instead of the mean (Montgomery &
Peck, 1992). Thus, following Miller (1984), we introduce the adjustment factor σ̂2/2
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to remedy this bias:

Î(J) = eŶ +σ̂2/2 (3.20)

where Ŷ denotes the estimate of the mean of the transformed interaction margin.

The quality of the makespan estimation models is evaluated through both the con-
struction and the testing data sets. Two characteristics of importance are investigated
when the ”quality” of a makespan estimate is considered: accuracy and precision. Ac-
curacy refers to how close, on average, the individual estimates are to their true values.
This is the same quantity as the expected value of the estimation errors (ε), which are
defined as the difference between the actual (ex post) makespan and the estimated
makespan:

ε = Cmax(SJ)− Ĉmax(J). (3.21)

Precision refers to the variability of the estimation errors. These two characteristics
are quantified by the mean estimation error (ME) and the standard deviation of the
estimation error (SDE). The results are presented in Table 3.5.

Table 3.5: Quality of the makespan estimation models

Construction data set Testing data set
Model ME SDE ME SDE

A -0.14 74.08 11.83 68.70
D -2.72 76.10 -2.78 70.12
E -2.38 68.04 0.68 70.21

Table 3.5 suggests that the three makespan estimation models have similar perfor-
mance levels. However, we chose model A for further use to support customer order
acceptance decisions in a situation with random order arrivals. Two reasons deter-
mined our choice. First, recall that for the interaction margin, model A proved to have
a slightly better performance. Second, simpler models, including only main effects,
are easier to understand and may be more robust (Raaymakers, 1999).
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3.7 Conclusions

Previous research (Raaymakers, 1999) showed that, in settings with deterministic
processing times, accurate estimates for the makespan of a job set may be obtained
by using a limited number of aggregate job set and resource characteristics. In this
chapter, we extended this work by considering Erlang distributed processing times.
We investigated the statistical relationship between the interaction margin (i.e. the
relative difference between the realized makespan of a job set and the lower bound on
the makespan) and the following aggregate job set characteristics:

• workload balance of resource types ρmax,

• average number of processing steps per job in the job set µs,

• average overlap of processing steps in the job set µg,

• expected processing times variation in the job set cv2
E[p],

• the number of jobs in the job set nJ ,

• squared coefficient of variation of the processing times cv2
p.

Simulation showed that there is little doubt that linear regression between the in-
teraction margin and the regressor variables is statistically discernible. As in the
deterministic case, we realized a high explanatory value - measured by adj. R2 - with
only these six aggregate job set characteristics. This means that we identified the most
important job set characteristics that influence the interaction margin. By means of
multiple regression analysis, we developed both simple models, which only include
the main effects, and more complex models, which include main effects and two-way
interactions between these characteristics. Among the models we developed to pre-
dict the average interaction margin, the simplest model appears to be the ”best”; i.e.,
it has the highest adj. R2 value (0.77), and the lowest σ̂ on both the construction
data set (0.107) and testing data set (0.111). In addition, the simple model has the
advantage of being easier to understand.

We used the estimated interaction margin - in addition to the workload - to predict
the makespan of the job set. From a production point of view, the makespan of a job
set is more interesting than the interaction margin, because the estimated makespan
indicates whether a job set can be completed within a given planning period. In-
vestigations of both the construction data set and the testing data set showed that
accurate predictions for the makespan may be obtained. To support order acceptance
decisions, it is necessary to have an accurate model of what workload and job mix
can be realized by a production department in a given planning period. The use of
the estimation models developed in this chapter, in a situation with random order
arrivals, is the subject of the following chapter.



Chapter 4

Dynamic order acceptance

4.1 Introduction

In this chapter1 we develop models to support order acceptance decisions. In Chap-
ter 2, we defined order acceptance as the decision function that accepts or rejects
orders based on the availability of sufficient capacity to complete the orders before
their requested due date. Different policies may be used to evaluate whether suffi-
cient capacity is available to produce an order before the due date requested by the
customer. Most of the order acceptance literature (see Section 4.2) focuses on the use
of either aggregate information or detailed information. This resembles the policies
used in industry, which are generally workload based if the capacity complexity is low
or sufficient slack exists in the system, or detailed scheduling based if less slack exists
in the system or increased complexity (Raaymakers, 1999). Batch chemical plants
can be considered as complex job shops with additional constraints. Due to the high
scheduling complexity and high interrelations between jobs in multipurpose batch
chemical shops, schedule based evaluations are very time consuming. On the other
hand, the main problem resulting from neglecting detailed scheduling information is
that many of the accepted orders cannot be completed in the planned period. This
results in low delivery reliability and many replanning activities.

Previous research (Raaymakers, 1999) showed that a regression model that uses a
small number of job set characteristics to estimate the makespan of the job set may
be successfully used to support customer order acceptance decisions. However, she de-
veloped and tested the model under deterministic production conditions. Recognizing
that in a real life production situation there is no such thing as deterministic process-
ing times, we developed a regression model in the previous chapter that accounts for
the processing times uncertainty. In this chapter, we examine the appropriateness of
using such a regression model to support customer order acceptance decisions in the
presence of production uncertainty.

1Earlier versions of the content of this chapter and Chapter 3 are joint work with J.C. Fransoo
and J.M.W. Bertrand, and have been published in Ivanescu et al. (2002) and Ivanescu et al. (2003a).
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The main advantage of an order acceptance policy based on aggregate information is
that it is quick. Most customers may receive a quick confirmation of the order. Fur-
thermore, a regression model is easy to apply. Thus, it makes sense to investigate the
performance that can be obtained by using such a model for aggregate planning pur-
poses as compared to detailed scheduling-based models, in a hierarchical production
situation as outlined in Chapter 2. For this purpose, we conduct extensive simulation
experiments to compare a detailed scheduling-based acceptance procedure, referred
as the scheduling policy, and an aggregate acceptance procedure, the regression policy.

The remainder of this chapter is organized as follows. We provide an overview of
the order acceptance literature in Section 4.2. In Section 4.3 we introduce the order
acceptance policies: the regression policy in Section 4.3.1 and the scheduling pol-
icy in Section 4.3.2. In Section 4.4 we perform simulation experiments to evaluate
the performance of these two order acceptance policies. In Section 4.5 we give our
conclusions.

4.2 Review of literature on order acceptance

Order acceptance has received limited attention in the literature. Research on order
acceptance is reported by Guerrero & Kern (1988); Kern & Guerrero (1990); Wester
et al. (1994); Ten Kate (1994); Wang et al. (1994); Akkan (1997); Raaymakers et al.
(2000a) and Raaymakers et al. (2000b).

In the literature, order acceptance decisions are often based on the workload that has
already been accepted, compared to the available capacity. For example, Guerrero &
Kern (1988) and Kern & Guerrero (1990) consider an assemble-to-order situation that
is controlled by Material Requirements Planning(MRP)-II. The available capacity
in a planning period is either allocated to customer orders, reserved for assembling
available-to-promise products, or non-allocated. Guerrero & Kern (1988) distinguish
between front loading and back loading; for both policies the workload allocated to
each period should not exceed the available capacity. In front loading the earliest
available capacity is allocated to the orders, whereas in back loading the order is
produced as late as possible while not violating its due date. In a more recent paper,
Kern & Guerrero (1990) present a mathematical model in which orders are accepted
and jobs are allocated in such a way that the total workload per planning period does
not exceed the available capacity. Furthermore, their model considers the availability
of the materials required for assembly. Wang et al. (1994) also accept orders based
on the workload already accepted. They consider an over-demanded job shop with
non-negotiable due-date requirements. In their policy, customer orders are collected
and prioritized. The acceptance decision is made for each customer order following
the priority list. Orders may be accepted as long as the accepted workload for both
machines and operators does not exceed the available capacity in a given period.

Another policy commonly found in the literature is order acceptance based on detailed
scheduling. For example, Akkan (1997) considers a single resource production system
for which orders are accepted only if they can be included in the schedule such that
they can be completed before their due date, without changing the schedule for the



4. Dynamic order acceptance 39

orders already accepted. So rescheduling is not allowed; the authors propose several
heuristics that create good schedules without any rescheduling. Some of these heuris-
tics aim at decreasing the ”fragmentation of the time-line”, which means that there
exist many (small) gaps between the processing steps scheduled. If the time-line is less
fragmented, it is easier to include orders with long processing times. The performance
measure used is total present value of lost contribution due to rejected orders and cost
of earliness. Simulations show that basic backward and forward scheduling heuristics
perform significantly worse than heuristics that aim at decreasing fragmentation of
the time-line.

Wester et al. (1994) consider a single resource production system with setup-times
and orders for a limited number of product types. They compare three customer or-
der acceptance policies: the monolithic policy, the hierarchic policy, and the myopic
policy. The monolithic policy accepts orders based on a detailed schedule, which is
constructed each time an order arrives. An order is rejected if acceptance of the order
would lead to violating the requested due date for any order already accepted. The
hierarchic policy accepts orders based on the total workload of all accepted orders.
Orders may be accepted as long as the total workload does not exceed a maximum
workload, which is determined by trial and error. The value for the maximum work-
load is selected such that no lateness occurs, in order to make a fair comparison with
the monolithic policy. The myopic policy accepts orders using the same criterion as
the hierarchic policy. The difference between the policies is that in the hierarchic
policy a detailed schedule is constructed for selecting the order to be executed next,
whereas in the myopic policy dispatching rules are used to select the next order. Sim-
ulation results show that the hierarchic and myopic policies perform worse than the
monolithic policy if the setup times are sufficiently large and the due dates sufficiently
tight. In cases with loose due dates, the monolithic policy appears to perform slightly
worse than the other two policies. The results further show hardly any difference
between the performances of the hierarchic and myopic policy.

Ten Kate (1994) also compares different order acceptance policies for single resource
production systems with setup times. Processing times are assumed fixed and equal
for each order of the same product type. Furthermore, due dates are set with fixed
lead times. Two policies are considered: the hierarchical and the integrated policy. In
the hierarchical policy, the order acceptance decision is based on the total work load
of the orders already accepted. In the integrated policy, order acceptance and detailed
scheduling are integrated. The order acceptance decision is based on a schedule, that
is constructed each time an order arrives. Simulation experiments show that the
performances of both policies shows little difference with respect to four performance
measures: average cost, average lateness, fraction of tardy orders, and average batch
size. The integrated policy performs better only in situations with extremely high
utilization levels and tight due dates.

Raaymakers et al. (2000a) study the performance of workload rules for order accep-
tance in batch chemical manufacturing. They consider the total workload and the
workload per work center. It turns out that these methods do not perform well in
their specific setting. Raaymakers et al. (2000b) compare a regression based makespan
estimation policy with both a workload-based policy and a detailed scheduling-based
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policy for batch chemical manufacturing in a setting with deterministic processing
times. When the utilization is high and there is a high variety in the job mix, the
regression-based model outperforms the workload-based model.

A body of literature closely related to the literature on customer order acceptance in
production systems whith demand exceeding the available capacity is the job selection
literature (see e.g. Duenyas & Hopp, 1995; Duenyas, 1995; Slotnick & Morton, 1996;
Ghosh, 1997; Lewis & Slotnick, 2002). The job selection problem addressed in Slotnick
& Morton (1996) and Ghosh (1997) is how to maximize total net profit (total profit
minus lateness costs), for a given set of customer orders - with different due dates,
processing times, and revenues - that have to be processed on a single resource with
a given capacity. Lewis & Slotnick (2002) extend the one-period deterministic model
studied in Slotnick & Morton (1996) to a multi-period setting. Duenyas & Hopp
(1995) and Duenyas (1995) develop queueing models that allow customers to leave if
the due-date offered by the firm is too late. The objective is to maximize profit; the
decisions concern sequencing and due-date setting.

Balakrishnan et al. (1996) develop a single period heuristic model called ”capacity
rationing” for allocating capacity between two product classes - one class yielding a
higher profit contribution per unit of capacity allocated to it than the other class - to
maximize overall profit. Using a decision-theory based approach, they demonstrate
that a make-to-order firm encountering expected total demand in excess of installed
capacity can increase its profit substantially (compared to a model that implements
no capacity rationing) by selectively rejecting orders for the lower-profit product class.
Barut & Sridharan (2004) extend this model to a multi-product, multi-period setting.

There are four important differences between the production situations considered
in the literature and the situation considered in this thesis. First, the production
situations in the studies mentioned above are relatively simple, with respect to the
number of resources and the number of different products. The production situation
in multipurpose batch process industries is considerably more complex. We consider a
production system that contains a number of resource types and one or more identical
resources per type. Each order may concern a different product so the processing
structure for each job that needs to be executed may be different. However, we do
not consider set-up times in our situation. Second, deterministic processing times are
assumed in those studies. As mentioned in Chapter 1, in most real life situations,
the processing times are uncertain. In this thesis we study settings with Erlang-
distributed processing times. Third, we consider the use of discrete planning periods,
whereas in the literature continuous time is considered. In our situation, orders are
accepted and the resulting jobs are allocated to these periods. Fourth, in contrast
to the job selection or the capacity rationing problem, we assume that all arriving
customer orders generate the same revenue per unit of capacity consumed.

4.3 Order acceptance policies

In this section, we develop methods to assist the planner in his or her decision on
accepting or rejecting customer orders such that a high resource utilization is reached
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by the production department and a high service level is realized for the customers.
Specifically, upon an order arrival, these methods estimate the completion time (i.e.
makespan) of the job set that results by adding this order to the orders already
accepted. The new order is accepted only if sufficient capacity is expected to be
available to complete the resulting job set such that a pre-specified delivery reliability
is achieved. Orders that fail this test are rejected and leave the system.

Given that we consider a stochastic environment, the estimate of the completion
time has to account for its stochastic nature. One possibility would be to consider
the expected value of the makespan. However, assuming a symmetric makespan
distribution, using the expected value as the criterion for order acceptance implies a
job set service level (defined as the probability of on-time job set completion) of only
0.5, which is rarely acceptable. We propose two order acceptance policies that aid
decision makers to determine job sets that maximize the resource utilization under a
job set service level constraint. The two policies require different levels of detail of
information. The regression policy uses aggregate information - namely the regression
model we developed in the previous chapter - to estimate the makespan of the job
set. The scheduling policy uses detailed information - namely a simulated annealing
algorithm and an empirically determined slack - to estimate the makespan of the job
set. The remainder of this section gives a detailed and formal description of these two
policies.

4.3.1 Regression policy

In the previous chapter we developed a multiple linear regression model to predict
the interaction margin - the response variable defined in (3.1). Under the regression
policy, the regression model is used dynamically, i.e. it is used each time an order
arrives to investigate the consequences of accepting this order in addition to the orders
already accepted. In other words, we use a lower bound on the makespan (LB(J)) and
the estimated interaction margin (Î(J)) to determine an estimate for the makespan
of a job set (see equation (3.2)). Then, orders are accepted if

Ĉmax(J) ≤ T. (4.1)

The regression equation (3.1) estimates the mean interaction margin of a given job set
J . Assuming normally distributed errors, and using this estimated interaction margin
to estimate the makespan of a job set, the probability that the realized (ex post)
makespan exceeds the estimated makespan given by (3.2) is only 0.5. Consequently,
if a job set is obtained with an estimated makespan that equals the period length, then
50% of these job sets would not be achievable, implying a service level of 0.5. In this
thesis, however, we aim at a job set service level target equal to 1−α À 0.5. Therefore,
instead of the mean interaction margin, we consider the 100(1−α)% upper prediction
bound for the interaction margin, denoted by U1−α. This gives the following formula
for the makespan estimate:

Ĉ1−α
max (J) = (1 + U1−α)LB(J) (4.2)
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The way a one-sided prediction bound for multiple linear regression is determined can
be found in most statistics textbooks (see e.g. Hahn & Meeker, 1991; Montgomery &
Peck, 1992). We give here the formula for the upper 100(1− α)% prediction bound,
and we refer to these textbooks for more details. Furthermore, note that this bound
provided by the estimated regression equation developed in the previous chapter is in
a log-transformed scale. Therefore, when determining the bound for the interaction
margin, it is necessary to convert this bound back to the original units. Hence, the
100(1− α)% upper prediction bound for the interaction margin is given by:

U1−α = exp
(

Ŷ + tα,n−(d+1) · σ̂ ·
√

1 + xT∗ (XT X)−1x∗

)
(4.3)

where
Ŷ = the estimated mean value of the transformed interaction margin;
tα,df = the required critical value of Student’s t distribution with df

degrees of freedom;
σ̂ = the standard error of regression;
X = the n× (d + 1) matrix of the values of the regressor variables;
x∗ = the row vector identifying the coordinates at which the prediction

is to be made;
n = the number of observations;
d = the number of regressors variables.
Note that if the sample size is large, the term xT

∗ (XT X)−1x∗ is negligible (so the
square root factor in (4.3) can be ignored).

In summary, under the regression policy, orders are accepted as long as

(1 + U1−α) · LB(J) ≤ T. (4.4)

4.3.2 Scheduling policy

Under the scheduling policy, the planner investigates the consequences of accepting
an arriving order by constructing a detailed schedule for the resulting job set (i.e.,
the job set that contains all the orders already accepted and the order that just
arrived). In a deterministic situation, the ex ante makespan of a constructed detailed
schedule is identical to the actually realized (ex post) makespan, and is therefore the
best estimate possible. This is not the case in a stochastic situation. Portougal &
Trietsch (2001) demonstrated by simulation that, when jobs have random processing
times, using only the ex ante makespan for planning purposes may cause low service
levels because it neglects part of the effect of processing time variation on the actual
makespan: the ex ante makespan is only a lower bound for the actual (ex post)
makespan that can be realized by the production system. Therefore, the planner
should also account for the processing times variation when deciding on accepting an
order, if appropriate delivery performance is desired. This may be done by including
extra slack time in the ex ante schedule to compensate for the stochastic nature of
the environment. Given that we are concerned with the makespan of a scheduled
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set of jobs and not with the individual job completion times, we use a slack time
proportional to the deterministic ex ante makespan.

Formally, an order arriving in period t is accepted for execution in period t+1 as long
as an ex ante schedule of the resulting job set J can be constructed and the following
holds:

(1 + γ1−α
k ) · Cex ante

max (SJ) ≤ T (4.5)

where γ1−α
k · Cex ante

max (SJ) is the slack time needed to compensate for the stochas-
tic processing times; γ1−α

k denotes the slack factor which is determined under the
constraint that a minimum target service level equal to 1− α should be reached.

Slack factor estimation Upon each order’s arrival, given the resulting job set and
its corresponding deterministic ex ante makespan, the planner has to be able to esti-
mate how much slack needs to be added to compensate for the stochastic processing
times. The planner may either ask the experts for their (subjective) estimate for the
value of the slack factor γ1−α or he may use real (historical) or simulated data to
determine this estimate. As said before, the research presented in this thesis is simu-
lation based; the same construction data set used to determine the coefficients of the
regression model for the regression policy is now used to estimate the slack factor.

For a given job set J in the construction data set and its corresponding deterministic
ex ante schedule SJ , the need for slack is measured by the makespan increase, denoted
by δ(SJ). The makespan increase is defined as the relative difference between the ex
post makespan and the ex ante makespan of the job set:

δ(SJ) =
Cmax(SJ )− Cex ante

max (SJ)
Cex ante

max (SJ )
(4.6)

Since the actual makespan Cmax(SJ) is a random variable determined by the schedule
SJ and by individual durations Pij , δ(SJ) is also a random variable. The slack factor
is directly determined from the empirical distribution of δ(SJ). The size of the slack
factor is determined by the target level of the delivery performance.

Given that the Erlang shape parameter k is assumed the same for all the processing
times in the job set, we can obtain, from the construction data set, an empirical
distribution of δ(SJ ) for each different value of k. Furthermore, we determine an
estimate for the 100(1 − α)th quantile of the distribution of δk(SJ), for each Erlang
shape parameter k. We use the direct-simulation quantile estimator implemented in
the SPSS statistical package to compute this estimate, denoted by δ̂1−α

k (SJ ):

δ̂1−α
k (SJ) = δk;(dnrepl·(1−α)e)(SJ) (4.7)

where dxe denotes the smallest integer that is greater than or equal to x and δk;(1)(SJ) ≤
δk;(2)(SJ) ≤ ... ≤ δk;(nrepl)(SJ ) are the order statistics obtained by sorting the obser-
vations {δk;i(SJ) : i = 1, ..., nrepl} in ascending order.
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Then, for each Erlang shape parameter k, the estimated slack factor is given by

γ1−α
k =

∑ncons
JS; k

J=1 δ̂1−α
k (SJ)

ncons
JS; k

(4.8)

where ncons
JS; k denotes the number of job sets in the construction data set that have been

allocated to the Erlang shape parameter k. For α = 0.05 we found that the estimated
slack factor has the values 0.61, 0.46, 0.38, 0.33, 0.30, 0.27, 0.25, 0.23, 0.21 where each
value corresponds respectively to an Erlang shape parameter k taking values from 2
to 10.

4.4 Performance comparison by simulation

In this section we conduct simulation experiments to compare the performance of the
two order acceptance policies in a setting with random order arrivals and processing
times. This section is organized as follows. Subsection 4.4.1 discusses the design of
the experiments. Subsection 4.4.2 introduces the performance measures. Subsection
4.4.3 presents the experimental results.

4.4.1 Experimental design

In this subsection, we discuss both the general settings of the simulation experiments
and the parameters that are varied. The following assumptions are made with respect
to the simulation experiments:

• the shop consists of 10 resources of 5 types, and

• exogenously determined due date for all orders.

The simulated shop is composed of 5 resource types, each containing 2 identical
resources. This resource configuration has also been used to develop the interaction
margin estimation models in the previous chapter.

We assume that customer orders arrive with exponentially distributed inter-arrival
times. The order arrival process is not influenced by the outcome of an acceptance
decision. The arrival rate is determined by the ratio between required and available
capacity. All orders arriving in a planning period have a given due date, which is
equal to the end of the next planning period.

The performance of the two policies may be affected by the demand/capacity ratio,
job mix variety, workload balance, and the uncertainty level in the processing times.
A previous study (Raaymakers, 1999) comparing regression and scheduling policies
for order acceptance showed that the first three experimental factors significantly
affected the performance of these policies. This study, however, considered determin-
istic production situations. It is reasonable to expected that these factors will affect
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Table 4.1: Levels of the experimental factors

L H

Demand/capacity ratio 0.7 1.0
Job mix variety sj ∼ U(4, 7) sj ∼ U(1, 10)

FE[p] = U(15, 35) FE[p] = U(1, 49)
Workload balance pm ∈ {0.3, 0.25, 0.20, 0.15, 0.10} pm = 0.20, m = 1, ..., 5
Uncertainty level Pij ∼ Erlang-10 Pij ∼ Erlang-2

the performance of the order acceptance policies under stochastic production situa-
tions. We consider two levels for each of these experimental factors. We chose the
two levels in such a way that the difference between them allows us to properly assess
the influence of each of these factors on the performances of the order acceptance
policies. At the high level, the average demand requirements for capacity are equal to
the total available capacity per planning period. At the low level, the average demand
requirements for capacity are equal to 70% of the total available capacity per planning
period. As has been shown by Raaymakers et al. (2000a), the no-wait structure of
processing steps in each job implies capacity utilization levels between 50% and 60%.
Thus, both demand levels investigated represent situations where demand effectively
exceeds available capacity.

Each order consists of exactly one job with a specified structure of no-wait processing
steps. The job characteristics have been generated randomly upon arrival of the
order. Hence, each job arriving at the system may be different. The parameters
that determine the job mix variety are the number of processing steps per job and
the distribution that gives the expected processing times. In order to carry out a
realistic simulation study, the values of the parameters have an order of magnitude
similar to the one observed in reality. Moreover, the number of processing steps per
job cannot exceed the number of resources, because each processing step of a job
has to be performed on a different resource if the processing steps are overlapping.
Nevertheless, jobs in a job set may differ in the number of processing steps. In the
situation with high job mix variety (i.e. less homogeneous) the number of processing
steps per job is uniformly distributed between 1 and 10 and the expected processing
time is uniformly distributed between 1 and 49. In the situation with low job mix
variety, i.e. more homogeneous, the number of processing steps per job is uniformly
distributed between 4 and 7, and the expected processing time is uniformly distributed
between 15 and 35. Note that in both situations the average number of processing
steps and the average expected processing time is the same. We mentioned above that
the arrival rate of the incoming stream of orders is determined by the ratio between
the average demand requirements for capacity and the available capacity. Thus,

λ = demand/capacity ratio · N

E[sj ] · µE[p]

(4.9)

where N is the total number of resources, E[sj ] denotes the average number of pro-
cessing steps and µE[p] denotes the average expected processing times.
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When generating the jobs, each processing step is allocated at random to a resource
type. In situations with high workload balance, the allocation probability is the
same for each resource type. In situations with low workload balance, the allocation
probability is different for each resource type. On average 30, 25, 20, 15 and 10% of
the processing steps were allocated to the five different resource types respectively.

Given that we consider a setting with stochastic processing times, the level of uncer-
tainty in the processing times may affect the performance of the policies. We consider
two levels of uncertainty. At the low uncertainty level, the shape parameter k is equal
to 10; at the high uncertainty level, the shape parameter is equal to 2.

Note that for these experiments the jobs are generated with similar characteristics
as the jobs in the construction data set (see Table 3.1 for the values of sj , pm, and
FE[p]). Given that one of the policies uses a regression model, this is a necessary
requirement: when making predictions, the underlying regression assumption is that
the data for constructing the model and the future cases to be predicted are a sample
from the same population. However, in order to limit our computational effort, we
now combine the sj and FE[p] factors of Table 3.1 into one factor, namely the job
mix variety. Also, we consider here only two values for the Erlang shape parameter
k instead of the whole range (from 2 to 10) that was used for the construction data
set. Finally, a job set service level target value of 95% was chosen, i.e. α = 0.05.

Table 4.2: Scenarios: combinations of four experimental factors

Scenario demand/capacity job mix workload uncertainty
ratio variety balance level

1 H H H H
2 H H H L
3 H H L H
4 H H L L
5 H L H H
6 H L H L
7 H L L H
8 H L L L
9 L H H H
10 L H H L
11 L H L H
12 L H L L
13 L L H H
14 L L H L
15 L L L H
16 L L L L

We use a four-factor full factorial design. Table 4.2 gives the combinations of the
experimental factors. The 24 = 16 combinations will be referred to as scenarios in
the remainder of this thesis. In each scenario, common random numbers are used
to generate identical order arrivals for the two policies. Also, for different scenarios
we use common random numbers as a variance reduction technique. In total, we
performed 32 (=16 scenarios ×2 policies) simulation runs.
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We use a simulation run-length of 15 independent planning periods. A planning
period always starts with an empty system; at the end of the planning period, the
system must be empty again. The length of a planning period is chosen such that the
job set consists of a realistic number of jobs. The empirical study of Raaymakers et al.
(2000a) showed that a job set of 40 to 50 jobs is realistic for this type of industrial
process. To realize such job sets, we fix the length of the planning period at 1300
time units (as additional experiments indicate). The absolute length of the planning
period, however, depends on the average processing time per job which is chosen
arbitrarily. Each simulation run yields 15 independent job sets (see Section 2.2.3).
The execution of each job set is repeated 250 times; i.e. we perform 250 (= nrepl)
independent replications.

4.4.2 Performance measures

Order acceptance policies should accept orders such that a pre-specified delivery re-
liability is achieved, while maximizing resource utilization. Thus, the following three
measures are considered: the percentage job sets on time (POT ), the mean job set
tardiness (JST ), and the mean realized capacity utilization (RCU). A job set J is on
time if the actual (realized) job set completion time (i.e. Cmax(SJ)) does not exceed
the period length T .

POT =
∑nrepl

r=1 χr(J)
nrepl

(4.10)

where

χr(J) =
{

1 , if Cmax,r(SJ ) ≤ T
0 , otherwise. (4.11)

and Cmax,r(SJ) is the realized makespan corresponding to the r-th replication, r =
1, ..., nrepl.

Job set tardiness occurs when the actual job set completion time is greater than the
due-date (T ):

JSTr = (Cmax,r(SJ)− T )+ (4.12)

The realized capacity utilization per period is measured as follows:

RCUr =

∑nJ

j=1

∑sj

i=1 θpij

N · T (4.13)

where nJ denotes the number of jobs in the job set J , N denotes the number of
resources, and θpij is defined as

θpij =





pij , if stij ≤ T and cij ≤ T
pij − (cij − T ) , if stij ≤ T and cij > T
0 , if stij > T

(4.14)
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where stij is the start time and cij is the completion time of i-th processing step of
job j.

Given the definitions in equations (4.12) and (4.13), the mean job set tardiness and
the mean realized capacity utilization are as follows:

JST =
∑nrepl

r=1 JSTr

nrepl
(4.15)

RCU =
∑nrepl

r=1 RCUr

nrepl
(4.16)

Besides these three measures we also consider another internal measure, namely the
feasibility performance (FEP ). When using the right-shift procedure to restore the
feasibility on the resources, unavoidable violations of the no-wait restrictions may
occur when the job sets are executed. This may cause product quality problems, so
a small number of no-wait restrictions violations is preferred. We define the feasi-
bility performance as 1 − the fraction of processing steps that violate the no-wait
restrictions, from the start to the completion of the job set.

4.4.3 Experimental results

In this section we discuss the results of our simulation experiments. The criterion
for evaluating the order acceptance procedures was the ability to effectively meet the
customer requirements via the percentage of job sets on time (POT ) and the mean
job set tardiness (JST ). Two internal measures, namely the mean realized capacity
utilization (RCU) and the feasibility performance (FEP ) were also measured. In
Table 4.3 and Figure 4.1, we present the average of the 15 independent planning
periods.

Examining Table 4.3, we observe that the difference in performance between the
two policies is not the same for all scenarios. For example, for scenarios with high
job mix variety (1 through 4 and 9 through 12), the differences in performance are
considerably higher than for scenarios with low job mix variety. Also, we observe that
the difference in performance is smaller if a clear bottleneck resource type exists (i.e.
low workload balance scenarios: 3, 4, 7, 8, 11, 12, 15, and 16).

To confirm these observations formally, we investigate the main and interaction effects
of the four experimental factors (i.e. demand/capacity ratio (A), the job mix variety
(B), the workload balance (C), and the uncertainty level (D)) on the difference in
the primary performance measures (POT and RCU) of the two policies. Testing
hypotheses concerning the effects of various levels of a factor and detection of interac-
tions between factors is generally done by using analysis of variance (ANOVA). Given
that we used common random numbers across scenarios, the independence assump-
tion of ANOVA does not hold (see Maxwell & Delaney (1990), page 110). However,
the factorial design enables us to use the following procedure to detect significant
effects (Kleijnen, 2004). We transform each experimental factor to fall onto −1 and
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Table 4.3: Simulation results: POT , JST , and RCU measures for both the regression
policy and the scheduling policy

Scenario Regression policy Scheduling policy
POT JST RCU POT JST RCU

1 81.95 10.82 0.36 74.85 16.50 0.40
2 97.41 0.52 0.47 69.33 8.73 0.53
3 82.96 10.84 0.35 80.35 11.97 0.37
4 87.52 3.34 0.44 74.99 6.03 0.50
5 91.60 3.16 0.35 93.71 2.71 0.37
6 99.79 0.03 0.44 90.48 1.61 0.50
7 91.89 3.43 0.33 96.00 1.49 0.33
8 99.55 0.06 0.41 94.08 0.98 0.46
9 89.41 6.15 0.35 84.13 9.29 0.37
10 92.21 2.54 0.45 86.16 3.17 0.50
11 87.20 6.83 0.34 84.27 9.40 0.36
12 94.59 1.19 0.43 87.20 2.86 0.47
13 93.60 2.46 0.35 92.43 2.89 0.37
14 99.89 0.02 0.44 94.29 0.87 0.49
15 87.36 6.26 0.33 96.85 1.13 0.33
16 98.00 0.36 0.41 96.56 0.56 0.44

1 at their low and high values (see Law & Kelton (2000)). Following Law & Kelton
(2000), page 649, we use regression analysis to obtain a model that estimates the main
and two-way interaction effects for each planning period. Note that we use regression
only as an alternative way to compute the effects’ estimates using the SPSS statis-
tical package. Since we simulated 15 independent planning periods, we get 15 i.i.d.
least-squares estimators for each of the 10 effects (main and two-way interaction). We
further use a two-sided one-sample t-test to investigate whether the average of these
15 values is significantly different from zero. Table 6.7 presents the results of our 20
(=2 measures ×10 effects) one-sample t-tests.

Table 4.4 shows that all main effects are significant at 95% confidence level. Also,
some of the two-way interaction effects are significant; the demand/capacity ratio-
uncertainty level interaction (AD) is significant for both measures, whereas the job
mix variety-uncertainty level interaction (BD) significantly affects only the RCU
measure. We further see that the uncertainty level (factor D) is the most important
factor for both performance measures.

We next compare the performance of the two policies within each scenario. Because
common random numbers were used to generate identical order arrivals for the dif-
ferent policies, the paired t-test was selected as the most appropriate statistical tool
for determining the significance of performance variations. This technique tests the
significance of the differences between average responses of a performance measure
obtained by the scheduling policy versus the regression policy. Table 4.5 presents
the results of the 48(= 16 scenarios ∗ 3 performance measures) paired t-tests we per-
formed.
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Table 4.4: One-sample t-test results

Main and two-way POT RCU
interactions t statistic P-value t statistic P-value

A 2.397 0.031 -3.682 0.002
B 4.693 0.000 -3.627 0.003
C 3.900 0.002 -5.484 0.000
D -11.735 0.000 17.727 0.000

AB 1.167 0.263 0.427 0.676
AC 0.967 0.350 0.573 0.576
AD -3.280 0.005 3.944 0.001
BC 0.042 0.967 1.792 0.095
BD 0.042 0.967 -3.261 0.006
CD -0.266 0.794 -1.731 0.105

A: demand/capacity ratio, B: job mix variety, C: workload balance, D: uncertainty level

Table 4.5 shows that in all but six scenarios (namely scenarios 3, 5, 10, 11, 13 and 16)
there are significant differences (at 95% confidence level) between the two policies
with respect to the POT and JST measures. This indicates that only in 4 of the
8 scenarios corresponding to the case of high processing times uncertainty, we find
significant differences. Among the high uncertainty level scenarios (the odd numbered
scenarios) where significant differences are found, the regression policy outperforms
the scheduling policy in the case of high job mix variety and high workload balance
(scenarios 1 and 9). We discuss now the low uncertainty level scenarios (the even
number scenarios). We find significant differences between the two policies in all these
scenarios but two, namely scenarios 10 and 16. Examining the results in Table 4.3 we
observe that the regression policy outperforms the scheduling policy with respect to
POT and JST in the case of high job mix variety (scenarios 2, 4, and 12). However, in
the case of low job mix variety (scenarios 6, 8, and 14), although the regression policy
reaches POT values exceeding the target, the scheduling policy reaches performance
values closer to the target. We further observe that both policies have a relatively
poor control of the delivery performance. The results suggest that in terms of delivery
reliability (POT and JST ), the regression policy should be preferred if uncertainty
level is high, job mix variety is high and the workload is evenly balanced (i.e., there is
not a clear bottleneck). Under the remaining settings, the results are not conclusive.

With respect to the RCU performance measure, the t-test shows that in all scenarios
but two (namely scenarios 7 and 15) there are significant differences between the
two policies. Referring back to Table 4.3, for scenarios where we found significant
differences, we observe that the scheduling policy reaches a higher realized capacity
utilization than the regression policy. Note that the RCU is considerably higher if the
uncertainty level is low; this holds for both policies. This may be explained as follows:
in a situation with high uncertainty in the processing times more slack is needed to
be added to cope with this uncertainty, resulting in a lower number of accepted jobs
and therefore lower RCU values.

Table 4.3 shows that, if both the demand/capacity ratio and the job mix variety
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Table 4.5: Comparing scheduling and regression policies: paired t-test results

Scenario POT JST RCU

t-value P-value t-value P-value t-value P-value
1 -2.496 0.000 2.546 0.023 7.718 0.000
2 -7.786 0.000 6.747 0.000 12.791 0.000
3 -0.848 0.411 0.531 0.603 3.238 0.006
4 -2.871 0.012 2.024 0.062 9.888 0.000
5 1.179 0.258 -0.612 0.551 4.080 0.001
6 -8.263 0.000 5.930 0.000 13.846 0.000
7 2.808 0.014 -2.249 0.041 1.809 0.092
8 -7.543 0.000 6.839 0.000 12.878 0.000
9 -3.224 0.006 2.657 0.019 6.979 0.000
10 -1.051 0.311 0.290 0.776 8.381 0.000
11 -1.170 0.262 1.617 0.128 7.860 0.000
12 -2.394 0.031 2.031 0.062 8.450 0.000
13 -0.983 0.342 0.763 0.458 8.817 0.000
14 -4.976 0.000 4.308 0.001 14.992 0.000
15 4.286 0.001 -3.752 0.002 -1.459 0.167
16 -0.936 0.365 0.671 0.513 8.096 0.000

are high (scenarios 1 through 4), the scheduling policy reaches the highest capacity
utilization and the poorest performance with respect to POT . We conjecture that
this is due to the way this policy accepts the orders: by making use of detailed
information when accepting the orders, the scheduling policy selects only the jobs
that fit in well. The result of this selectivity is a tight schedule, which further results
in high RCU values. However, a too tight schedule seems to be detrimental to the
ability of effectively meeting the order set delivery performance target. This selectivity
issue is addressed in the next chapter.

The last performance measure we discuss is the feasibility performance. The feasi-
bility performance ranges between 0.76 and 0.82; see figure 4.1. We observe that
the scheduling policy is clearly outperformed by the regression policy in all sixteen
scenarios. This may also be the result of the way the procedures accept the or-
ders, as discussed above. Consequently, in order to maintain the feasibility under the
scheduling policy, additional slack may need to be included. Furthermore, the results
show that in case of low job mix variety a higher feasibility performance is obtained.
However, this holds for both order acceptance policies.

We conclude this section with a comment regarding the computational requirements
for the two order acceptance policies. The average CPU time on a Pentium 1.7 GHz
is about 18 seconds to evaluate a single order under the scheduling policy, whereas it
takes negligible time under the regression policy.
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Figure 4.1: Feasibility performance for both the regression policy and the scheduling
policy
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4.5 Conclusions

Raaymakers (1999) showed that a regression model performs reasonably well when
used to accept orders in a setting with deterministic processing times. In most real life
production situations, however, processing times are uncertain. Especially in process
industries, fluctuations of quality of raw materials result in high degree of processing
time variation.

In this chapter, we investigated the performance that can be obtained by using a
regression model for customer order acceptance decision support in the presence of
production uncertainty. We further compared the performance of the regression-
based model to the performance of a detailed scheduling-based model. These two
policies have been compared by means of simulation experiments with respect to
four performance measures: the mean percentage of accepted job sets completed on
time (POT ), mean tardiness of the job set (JST ), mean realized capacity utilization
(RCU) and feasibility performance (FEP ).

The detailed scheduling-based policy - called the scheduling policy - accepts orders
based on a detailed schedule that has to be constructed each time an order arrives.
In a stochastic situation, this schedule is only an estimate of what will be realized by
the production system. In order to cope with the uncertainty in the processing times,
a slack factor is introduced when the schedules are constructed upon order accep-
tance. Due to the great scheduling complexity and high interrelations between jobs
in multipurpose batch chemical shops (Raaymakers & Hoogeveen, 2000), acceptance
decisions based on detailed schedules are time consuming.

The regression-based order acceptance policy - called the regression policy - uses
aggregate information to support customer order acceptance decisions. More precisely,
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a regression model with a limited number of aggregate job set characteristics is used
- in addition to the workload - to investigate the consequences of accepting an order
given the orders already accepted. The main advantage of such an aggregate policy
is that it is quick. Customers may get a fast confirmation of their order.

The results of our simulation study indicate that the scheduling policy performs bet-
ter in situations with low job mix variety than the regression policy. Namely, this
policy determines job sets that result in higher capacity utilization values and in a
delivery performance closer to the pre-specified target. In the case of high job mix
variety, however, the regression policy manages to determine job sets that result in
a higher delivery performance and smaller job set tardiness than the scheduling pol-
icy. The scheduling policy, however, reaches higher capacity utilization values. We
argue that this is due to the fact that the scheduling policy accepts orders based on
detailed scheduling information, which allows for a better identification of orders that
fit in with the already accepted orders. In other words, we conjecture that this policy
accepts orders with specific characteristics in order to maximize the capacity utiliza-
tion. We also expect that this selectivity, if present, is most evident for scenarios
with high job mix variety and high demand/capacity ratio, since in those situations,
the heterogeneity of the arriving orders gives more opportunities to be selective. We
address this selectivity issues in the next chapter.

An important conclusion is that detailed scheduling information at the order accep-
tance level remains valuable also under stochastic production conditions. The bene-
ficial effects of using detailed scheduling information for supporting order acceptance
decisions has been previously established for deterministic production conditions (see
e.g. Wester et al., 1994; Ten Kate, 1994; Raaymakers et al., 2000b). In a determinis-
tic production situation, the schedule constructed upon order acceptance and used to
support the acceptance decision is the exact representation of what will be realized
later by the production department. In a highly stochastic environment, however,
we may expect the performance of the scheduling policy to be highly affected by the
uncertainty in the processing times, since the ex ante schedule constructed upon order
acceptance is no longer an exact representation of the future status of the production
system. This conjecture is confirmed by the results of our simulation study, only for
situations with high variation in the job mix.

The overall objective of the order acceptance function, as discussed in Chapter 2,
is to maximize the resource utilization while maintaining a minimum job set service
level. Consequently, we designed the two order acceptance policies such that a pre-
specified job set service level target is expected to be obtained. Our simulation study
however shows that neither the regression policy nor the scheduling policy meets the
pre-specified target for the job set service level. This poor control on the delivery
performance makes the comparison of the two policies difficult, if both the realized
capacity utilization and the realized job set service level criteria are considered. Ob-
viously, given that both a high capacity utilization and a high delivery reliability are
desired by the management of the production system, in a situation when both poli-
cies reach the pre-specified job set service level target, a comparison of the realized
capacity utilization would determine the choice of which of the two policies to be
used in a particular situation. However, in order to obtain the pre-specified job set
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service level target, a large number of experimental runs have to be made to tune
the parameters of both policies. This implies a substantial computational effort, es-
pecially for the scheduling policy. Recall that the CPU time needed on a Pentium
1.7 GHz is about 18 seconds to evaluate a single order acceptance decision based on
the scheduling policy. With an average of about 100 arriving orders per planning
period, and 15 planning periods, about 8 hours computer time is required for each
scenario. Instead of performing a large number of experiments, we chose to concen-
trate on understanding why both policies have such a poor control on the delivery
performance. This understanding can lead to constructive design of a new, improved
order acceptance policy that controls the delivery performance. We address theses
issues in Chapter 5 and Chapter 6 respectively.

We conclude this chapter with some additional considerations that may determine
the choice between the two order acceptance policies in a particular situation, rather
than their actual performance. First, if all data are available and reliable, and the
computational time is not important, it is clear that the scheduling policy should
be used for order acceptance under most circumstances. In case only general job
characteristics are available at the time when the acceptance/rejection decision has
to be made, it might be worth considering the regression policy, due to its good
performance with limited information. In a multi-period setting, in which orders
need to be allocated optimally to a particular planning period, it may also be better
to use the regression policy, since in that case multiple schedule alternatives (under
different allocations of jobs) need to be computed, leading to long response times
when using the scheduling policy for order acceptance.



Chapter 5

Selectivity of order
acceptance procedures

5.1 Introduction

Order acceptance policies should help decision makers to accept orders such that a
pre-specified delivery reliability is achieved, while maximizing resource utilization.
Furthermore, order acceptance policies have a considerable impact on the mix of jobs
that need to be scheduled, by refusing specific jobs from the total demand. If orders
are accepted on line from a stream of arriving customer orders, each order must be
evaluated for its effect on the delivery reliability of the set of accepted orders. By
selecting orders with specific characteristics that maximize resource utilization, an
important and often unforeseen side-effect occurs, namely the mix of orders changes
in such a way that the expected delivery reliability is no longer met. In this chapter1

we investigate this selectivity effect.

Two order acceptance policies, which differ with respect to the level of information
used, have been developed in the previous chapter. The first policy - called the
regression policy - uses regression models to estimate the actual makespan of an
order set. The second policy -called - the scheduling policy - uses simulated annealing
techniques and an empirically determined slack to estimate the actual makespan of an
order set. Orders are accepted as long as the estimated makespan does not exceed the
period length, with a pre-specified probability. In the simulation study we performed
in the previous chapter to compare these two policies, we assumed that the data from
which the models’ parameters are estimated (i.e. the regression coefficients and the
slack factor) and the data that result from the acceptance procedure, are samples
from the same population. This means we assumed that the orders are accepted in
a non-selective way. However, the results indicate that this may not be the case. In

1The content of this chapter is joint work with J.C. Fransoo and J.M.W. Bertrand and has
appeared in Ivanescu et al. (2003b).
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this chapter we investigate whether the policies are indeed selective. We also study
the impact of this selectivity, if proved present, on the system performance.

The remainder of this chapter is as follows. In Section 5.2 we investigate the possible
selectivity of both the scheduling policy and the regression policy. In Section 5.3 we
address the impact of selectivity on the performance of the two policies. We present
our conclusions in Section 5.4.

5.2 Selective acceptance

To investigate whether the two policies accept orders selectively, we collect data on the
following performance measures: the average workload per job set (µp), the average
overlap per job (µg), the average number of processing steps per job (µs), and the
acceptance rate (ACR). These measures are defined as follows. The average workload
per job set is given by:

µp =
1
nJ

nJ∑

j=1

sj∑

i=1

E[Pij ] (5.1)

where nJ denotes the number of jobs in the job set J , sj denotes the number of
processing steps of job j, and E[Pij ] denotes the expected processing time of the
processing step i of job j.

The average overlap per job and the average number of processing steps per job were
defined in Chapter 3 (see equations (3.8) and (3.6)). The acceptance rate is the
percentage of arrived orders that are accepted during one planning period. In the
remainder of this thesis, the first three performance measures are computed for both
the arriving jobs and the set of accepted jobs. We refer to these measures as the
characteristics of the arriving jobs / accepted job sets.

To investigate whether jobs with specific characteristics are systematically rejected
by the scheduling policy or the the regression policy, we compare the characteristics
of the job sets accepted by each policy with the characteristics of the arriving jobs
stream. If the policies do not accept jobs selectively, the accepted job sets and the
arriving jobs will have similar characteristics.

For each of the three characteristics, we compute the difference between the values
obtained for the arriving jobs - denoted by µarr

p , µarr
g , and µarr

s - and the values
obtained for the accepted job sets - denoted by µpolicy

p , µpolicy
g , and µpolicy

s where
policy ∈ {sched, regr} indicates the scheduling/regression policy. In Table 5.1, we
present this difference averaged over the 15 planning periods, across all sixteen simu-
lated scenarios (see columns 2 to 8). Columns 9 and 10 in Table 5.1 give the average
acceptance rate (ACR).

Table 5.1 implies that the job mix variety strongly influences the acceptance pro-
cedure. In the case of low job mix variety (scenarios 5 to 8, and 13 to 16), small
differences may be observed between the characteristics of the arriving jobs and the
characteristics of the job sets released to production. For each policy, each scenario,
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Table 5.1: Selectivity measures for the regression and the scheduling policies

Scenario µarr
p − µpolicy

p µarr
g − µpolicy

g µarr
s − µpolicy

s ACR
Regr Sched Regr Sched Regr Sched Regr Sched

1 33.90 31.64 -0.06 -0.05 1.22 1.15 0.47 0.52
2 24.99 22.51 -0.04 -0.03 0.87 0.79 0.57 0.63
3 31.93 25.30 -0.06 -0.04 1.15 0.90 0.45 0.47
4 23.41 22.94 -0.04 -0.04 0.84 0.83 0.52 0.60
5 -1.71 1.02 0.00 0.00 -0.06 0.02 0.35 0.38
6 -1.19 1.81 0.00 0.00 -0.03 0.06 0.45 0.51
7 -2.38 0.62 0.00 0.00 -0.07 0.00 0.33 0.34
8 -0.97 1.63 0.00 0.00 -0.03 0.06 0.40 0.47
9 23.47 21.47 -0.04 -0.03 0.86 0.78 0.57 0.62
10 14.66 11.47 -0.02 -0.01 0.54 0.43 0.69 0.76
11 21.91 21.49 -0.04 -0.03 0.80 0.82 0.56 0.60
12 15.41 13.41 -0.02 -0.02 0.57 0.50 0.67 0.73
13 0.00 2.12 0.00 0.00 0.00 0.06 0.51 0.55
14 1.44 1.94 0.00 0.00 0.04 0.05 0.66 0.72
15 0.34 1.95 -0.01 0.00 0.01 0.06 0.49 0.48
16 1.30 2.03 0.00 0.00 0.05 0.07 0.59 0.65

and each of the three characteristics, we use an one-sample t-test to detect if the av-
erage difference observed in Table 5.1 is significantly different from zero. An average
significantly different from zero indicates that the characteristics of the arriving jobs
and the characteristics of the job sets released to production are significantly different,
i.e., the policies are selective. We present the results of the 96 (= 16 scenarios * 2
policies * 3 characteristics) one-sample t-tests in Appendix D (see Table D.1). For
scenarios with low job mix variety, the one-sample t-test results show no significant
difference (at 95% confidence level) between the characteristics of the arriving jobs
and the characteristics of the jobs accepted by the regression policy. This indicates
that this policy accepts orders non-selectively for these scenarios. The scheduling
policy, however, is selective in three of the eight scenarios with low job mix variety,
namely scenarios 13, 14, and 16. Jobs with few processing steps are preferred to jobs
with many processing steps. Also the average workload per job is less than the average
workload of the arrival process.

A different picture emerges for the high job mix variety scenarios (1 to 4, and 9 to 12).
Large differences can be observed between the characteristics of the accepted jobs and
those of the arriving jobs, for both policies. This make sense since in the case of high
job mix variety, the arriving jobs are less homogeneous; so, the policies have more
opportunities to be selective. The two-tailed p-value of the one-sample t-tests (see
Appendix D) is equal to 0.00 for all the scenarios with high job mix variety, indicating
significant differences. We conclude that both policies are highly selective in case of
high job mix variety.

Furthermore, Table 5.1 shows that both policies seem to show a particular selective-
ness by accepting, on average, jobs with a smaller number of processing steps, higher
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overlap, and lower workload - compared to the arriving jobs.

Given this observed selectivity, we focus on the cases with high job mix variety, and
we investigate whether one policy is more selective than the other. In this context,
we define the concept of ”degree of selectivity”:

Given two policies P1 and P2, P1 is more selective than P2 if the distance between
the characteristics of the arriving jobs and the characteristics of the jobs accepted by
P1 is significantly larger than the distance between the characteristics of the arriving
jobs and the characteristics of the jobs accepted by P2.

We define the distance as the square root of the sum of squared relative differences:

d(xarr, xpolicy) =

√√√√
(

µarr
p − µpolicy

p

µarr
p

)2

+

(
µarr

g − µpolicy
g

µarr
g

)2

+

(
µarr

s − µpolicy
s

µarr
s

)2

(5.2)

where xarr (xpolicy) denotes the three-dimensional vector of the arriving jobs/job set
characteristics. Table 5.2 gives this distance for the scheduling and the regression
policies, for scenarios with high job mix variety.

Table 5.2: The distance for scenarios with high job mix variety

Scenario capacity workload uncertainty d(xarr, xregr) d(xarr, xsched)
ratio balance level

1 H H H 0.340 0.317
2 H H L 0.248 0.221
3 H L H 0.324 0.313
4 H L L 0.237 0.229
9 L H H 0.236 0.214
10 L H L 0.148 0.122
11 L L H 0.221 0.222
12 L L L 0.154 0.133

Table 5.2 shows that both policies are less selective in the case of a low arrival ratede-
mand/capacity ratio (scenarios 9 to 12). These results confirm our expectation that
the selectivity of the policies is most clear in situations with high demand/capacity
ratio and high job mix variety. Furthermore, we observe that in scenario 1, both
policies show the highest distance; i.e., both policies are most selective. This is to
be expected given the high heterogeneity of the arriving orders and the balanced
workload.

We use paired t-tests to detect significant statistical differences between the two
distances. The results presented in Appendix D (see Table D.2) show that, for all the
considered scenarios but two (scenarios 2 and 10) there are no significant differences
between the two distances. Thus, we may conclude that, in the case of high job mix
variety, the two policies are equally selective in accepting jobs that have, on average,
a smaller number of processing steps and a higher overlap than the average number
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of processing steps and average overlap of the arriving jobs.

When examining the acceptance rate (columns 8 and 9 of Table 5.1), we note that in
the case of high job mix variety, both policies reach a higher acceptance rate than in
the case of low job mix variety. This is due to the selective way in which the policies
accept jobs.

Table 5.1 shows that a higher acceptance rate is obtained in the case of low uncertainty
in the processing times (even number scenarios 2, 4, 6, etc.). This makes sense, since
in case of high uncertainty in the processing times a relatively large amount of slack
is needed to cope with this uncertainty, and therefore a smaller number of orders is
accepted.

The scheduling policy has the highest acceptance rate. Apparently, by rescheduling at
every order arrival and making use of the detailed information, the scheduling policy
can better identify the jobs that fit in.

5.3 Impact of selectivity on performance

In the previous section we saw that, in scenarios with high job mix variety, both
policies selectively accept orders. In this section we investigate the impact of this
selectivity on the performance of the two order acceptance policies. More precisely,
we compare performance measures obtained in situations where no selectivity was
present - i.e. the construction and the testing data sets - versus situations with random
order arrivals where the selectivity proved to be present. In terms of performance
measures, we consider only the percentage of on-time job sets and the realized capacity
utilization measures. However, given that in the case of both the construction data
set and the testing data set there are no planning periods of a fix length - both the
job sets and the number of jobs in each job set were randomly generated - we cannot
use these performance measures as defined in Chapter 4 (see page 47). Therefore, we
use here two related measures.

Instead of the percentage of on-time job sets, we now measure the Percentage of job
sets that are Completed before the Makespan Estimate (PCME). This performance
measure is obtained by replacing T in equation (4.11) by the makespan estimate, i.e.
(1 + γ1−α

k ) · Cex ante
max (SJ) for the scheduling policy and (1 + U1−α) · LB(J) for the

regression policy.

The realized capacity utilization is replaced by the effective realized capacity utiliza-
tion measure:

ECU =

∑nJ

j=1

∑sj

i=1 pij

N · Cmax(SJ)
(5.3)

Table 5.3 gives these performance measures for both the static case (the construction
and testing data sets) and the random order arrival case. The values in Table 5.3
represent the average over all generated job sets - in the case of both the construction
data set and the testing data set - and across all sixteen simulated scenarios - for the
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random order arrival case.

Table 5.3: Performance measures comparison: non-selective vs. selective acceptance

Policy Construction data set Testing data set Random order arrival
PCME ECU PCME ECU PCME ECU

Regression 95.02 0.4337 92.77 0.4377 90.96 0.4249
Scheduling 94.99 0.4337 94.92 0.4377 84.11 0.4492

Table 5.3 clearly shows that the control over the percentage of job sets completed
before the completion time estimate in case of random order arrivals is not as good as
in case of the construction and testing data sets. Remember that the job generation
process is the same for random order arrivals and the construction/testing data set.
The only difference is that under random order arrivals, the orders are accepted only if,
according to the policy used, sufficient capacity is expected to be available to complete
the resulting job set, whereas in the case of the construction and testing data sets,
the job sets are generated randomly. Thus, we conclude that this performance loss is
due to the selective way each policy accepts the orders in case of random arrivals.

Table 5.3 further shows that selectivity is most detrimental for the scheduling policy.
Although this policy obtains a higher ECU value in the random order arrival case
(0.4492) compared to the static case, it has a much lower delivery reliability. This may
be explained as follows. Under the scheduling policy, an order is accepted only if a
schedule can be constructed such that the resulting makespan plus an amount of slack
is less than the period length. This slack is necessary to cope with the uncertainty
in the processing times; it is a fraction of the ex ante makespan. This fraction -
called the slack factor - has been determined empirically from the construction data
set. By identifying jobs that, assuming deterministic processing times, ”fit in” with
the jobs already accepted, the scheduling policy selects a higher number of smaller
jobs, compared to the job sets in the construction data set. As a result, the empirical
distribution of the slack in the construction data set is different from the empirical
distribution of the slack in the job sets that result from the acceptance procedure; see
Figure 5.1.

To compare the distributions of the slack for random order arrival and static case, we
apply the Kolmogorov-Smirnov test (Hollander & Wolfe 1999). This test computes
the maximum difference between the distributions of the two samples. The maximum
distance is 0.22, for Erlang shape parameter 2 and 0.36 for the Erlang shape parameter
10. These results imply that there is a statistically significant difference between the
two distributions at the 95% confidence level, for each Erlang shape parameter.
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Figure 5.1: Density trace for the slack factor for the scheduling policy

5.4 Conclusions

Order acceptance policies have a considerable impact on the mix of jobs that need
to be scheduled, by refusing specific jobs from the total demand. By selecting orders
with specific characteristics that maximize resource utilization, an important and
often unforeseen side-effect occurs, namely the mix of orders changes in such a way
that the expected delivery reliability is no longer met. In this chapter, we investigated
the effects of selectivity of the scheduling and the regression policies on the delivery
reliability of the set of accepted orders.

We investigated whether jobs with specific characteristics are preferred by either pol-
icy, and the conditions under which the selectivity is statistically significant. We
conjectured that if the policies do not accept orders selectively, this results in job sets
with similar characteristics as the arriving jobs. We therefore compared the charac-
teristics of the job sets accepted by the two policies and the characteristics of the
arriving jobs. The experiments clearly show that both policies are selective in case of
high job mix variety. Both policies show a particular selectiveness; i.e. they accept
jobs that have, on average, a smaller number of processing steps and a higher overlap
than the average number of processing steps and the average overlap of the arriving
orders.

We further investigated the impact of this selectivity on system performance. Our
experiments showed that the selectivity is detrimental to the delivery reliability, es-
pecially in the case of a detailed information-based acceptance procedure. By being
selective, the scheduling policy obtains a tighter schedule in the acceptance phase,
compared to the construction data set, but underestimates the consequences of a
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tight ex ante schedule on the realized makespan. As a result, the scheduling policy
achieves a high capacity utilization, but poorer performance with respect to the deliv-
ery reliability. The regression policy is also selective, but performs much better with
respect to the delivery reliability; yet, it achieves lower capacity utilization values
than the scheduling policy.

The results from our study are insightful and show that selectivity is a relevant issue
with high impact on delivery performance. Whereas a detailed acceptance procedure
works well in maximizing resource utilization, its particular selectiveness has a neg-
ative effect for the delivery reliability. The intuition behind the explanation for this
effect lies within an implicit assumption that is generally made in production control,
namely that the jobs that are accepted for production are a random sample from the
population of jobs that arrive at the shop.

Distinguishing between the good performance of scheduling rules in selection and their
apparent poor performance in assessing the consequences of selection is an insight that
deserves further research attention. In the next chapter we address the consequence
of these insights for the development of production control policies, and we develop
a new order acceptance policy that uses detailed scheduling rules to estimate the
direct consequence of accepting an order on resource utilization and its feasibility,
and aggregate, regression-based models to estimate the extra delay that is caused by
constructing a high-density schedule.



Chapter 6

Hybrid policy: combining
scheduling and statistical
techniques

6.1 Introduction

The experimental results of the previous chapter show that the scheduling policy
contributes to performance in that it can capture the consequences that a typical
combination of orders have on the makespan of a job set and in that it develops
tight schedules. However, we also saw that when processing times are uncertain, this
tightness may be counterproductive; i.e., the realized makespan may be longer than
anticipated, resulting in late deliveries. To achieve a desired delivery performance
target, sufficient slack has to be added to the schedule to compensate for the effect of
stochastic processing times. We conjecture that the amount of slack may depend on
specific job set characteristics, such as the average overlap, and the average number
of processing steps per job in the job set.

In this chapter 1 we investigate the statistical relationship between the amount of slack
and specific order set characteristics, and we develop a new order acceptance policy,
the hybrid policy. The hybrid policy uses (i) detailed scheduling to estimate the direct
consequence of accepting an order on resource utilization and its feasibility, and (ii)
aggregate regression models to estimate the delay that is caused by constructing a
high-density schedule. We investigate the performance of the hybrid policy for a wide
range of customer order and production system scenarios and we compare it with the
performance of both the regression policy and the scheduling policy.

The remainder of this chapter is organized as follows. Section 6.2 discusses the de-
velopment of the hybrid policy. In Section 6.3 we evaluate the performance of the

1The content of this chapter is joint work with J.C. Fransoo and J.M.W. Bertrand and has
appeared in Ivanescu et al. (2004b).

63



64 6. Hybrid policy: combining scheduling and statistical techniques

hybrid policy, by means of simulation. We present our conclusions in Section 6.4.

6.2 Hybrid policy

The previous chapter showed the strengths and the weaknesses of using detailed
scheduling-based information for order acceptance. While the strength of the schedul-
ing policy is its capability of estimating the direct consequence of accepting an order
on resource utilization and its feasibility, and in developing tight schedules, its weak-
ness is its poor performance in assessing the consequences of a tight ex ante schedule
on the actual makespan. Recall that under the scheduling policy, an order is accepted
only if a schedule can be constructed such that the resulting makespan plus an amount
of slack is less than the period length (see equation 4.5). This slack is necessary to
cope with the uncertainty in the processing times and is a fraction of the ex ante
makespan. This fraction has been determined empirically from the construction data
set. By being selective, the scheduling policy significantly changes the mix of jobs in
the accepted job sets, compared to the jobs in the construction data set. The result
of this selectivity is that a high capacity utilization is obtained, but the slack added is
not sufficient to compensate for the uncertainty in the processing times, resulting in
late deliveries. In this section, we develop a new order acceptance policy, the hybrid
policy, that corrects for constructing a high-density schedule, and takes into account
the change in the job mix when determining the amount of slack. To estimate the
correct amount of slack, we propose to use a multiple regression model that uses a
limited number of specific job set characteristics. We expect this policy to give better
delivery performance - without loosing much of the beneficial effects of the selectivity
on the capacity utilization.

In summary, the hybrid policy accepts an order only if a schedule of the resulting job
set J can be constructed such that:

(1 + δ̂
1−α

) · Cex ante
max (SJ ) ≤ T (6.1)

where δ̂
1−α

denotes the slack factor that is determined using a regression model
of specific job set characteristics under a 100(1 − α)% delivery performance target
constraint.

Slack factor estimation The relative increase of the makespan - denoted by δ(SJ)
and defined in equation (4.6) - may depend on specific job set characteristics. For
example, a job set containing jobs with a high number of processing steps and low
overlap may experience a larger makespan increase than job sets containing jobs with
a small number of processing steps and high overlap. We statistically investigate here
the relationship between the makespan increase and a number of job set characteris-
tics, and we develop a multiple regression model to estimate the slack factor needed
to compensate - in the order acceptance phase - for this makespan increase.

In Chapter 3 we saw that the following job set characteristics have a significant con-
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tribution in explaining the variation in the interaction margin: (i) workload balance
of resource types ρmax, (ii) average number of processing steps per job in the job set
µs, (iii) average overlap of processing steps in the job set µg, (iv) expected processing
times variation in the job set cv2

E[p], (v) number of jobs in the job set nJ , (vi) squared
coefficient of variation of the processing times cv2

p.

We now investigate the statistical relationship between these job set characteristics
and the relative makespan increase. We use the same construction data set as for
the interaction margin models. We determine regression models following the same
procedure as in Section 3.6. We consider both simple models - which include only
the main effects - and more complex models - which include main effects and two-
way interactions between these six job set characteristics. To determine our regres-
sion models, we again use the backward and stepwise regression implemented in the
SPSS software package. Among the resulting models with the lowest degree of multi-
collinearity, we select the model with the highest adj. R2 value. To test the adequacy
of this model, we perform a residual analysis. In Appendix C.2, we present the stan-
dardized residuals versus the predicted values plots. Because heteroscedasticity was
found to be present, we apply a natural logarithm transformation of the response
variable; diagnostic checks on the subsequent model confirmed the appropriateness of
this transformation. Equation (6.2) gives the resulting regression equation:

̂ln(δ(S)) = −1.720− 0.095 · µs − 0.077 · µg − 2.134 · cv2
E[p]

+ 2.116 · cv2
p + 0.178 · ρmax + 0.003 · nJ .

(6.2)

The adj. R2 of this model is 0.66, which indicates that 66% of the variation in the
response variable is explained by the model, and the standard error of regression
(σ̂) is equal to 0.228. These two statistics indicate that the estimated regression
equation fits reasonably well the means of the transformed data. We also investigate
the predictive quality of this model in the testing data set. The mean estimation error
(ME) is 0.01, so the model seems to produce approximately unbiased predictions.

As mentioned previously, we determine the slack factor for a delivery performance
target level equal to 100(1−α)%. Thus, similar to the interaction margin estimation,
the slack factor is made equal to the 100(1 − α)% prediction bound of the response
variable:

δ̂
1−α

= exp
(

̂ln(δ(S)) + tα,n−(d+1) · σ̂ ·
√

1 + xT∗ (XT X)−1x∗

)
. (6.3)

6.3 Evaluation of the hybrid policy

The purpose of this section is to investigate the performance of the hybrid policy and
to compare it with the performance of both the scheduling policy and the regression
policy. We do so by simulation, using the experimental design used in Section 4.4.1.
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In the experiments, we use the same random number seeds as in the experiments of
Chapter 4, to generate identical order arrivals.

We first investigate whether the hybrid policy is also selective. Chapter 5 confirmed
previous research findings (see e.g. Wester et al., 1994; Ten Kate, 1994) that a detailed
scheduling-based order acceptance policy selects orders with specific characteristics
in trying to maximize resource utilization. However, this selectivity changes the mix
of jobs significantly, resulting in late deliveries. Although the hybrid policy also uses
detailed scheduling information, it uses a slack estimation procedure that accounts
for the change in the mix of jobs. Therefore, we expect this policy to be less selective.
As a result, we expect better system performance.

The remainder of this section is organized as follows. We investigate the selectivity of
the hybrid policy in Section 6.3.1. Next, we compare the performance of the hybrid
policy with the performances of both the regression policy and the scheduling policy
in sections 6.3.2 and 6.3.3. The performance is measured by the percentage of job
sets on time, the mean job set tardiness, the mean realized capacity utilization and
the feasibility performance. Finally, in Section 6.3.4 we investigate the robustness of
the hybrid policy.

6.3.1 Selectivity of the hybrid policy

In this section we investigate to what extent, the hybrid policy prefers jobs with
specific characteristics. Similar to the investigation in Chapter 5, we compare the
characteristics of the accepted job sets and the characteristics of the job arrival stream.
The same three job set characteristics are considered: the average workload per job
set (µp), the average overlap per job in a job set (µg), and the average number of
processing steps per job in a job set (µs). If the hybrid policy does not accept jobs
selectively, the accepted job sets and the arriving jobs will have similar characteristics.
Table 6.1 gives, for each of the three characteristics, the average difference between
the values obtained for the arriving jobs - denoted by µarr

p , µarr
g , and µarr

s - and the
values obtained for the accepted job sets - denoted by µhybrid

p , µhybrid
g , and µhybrid

s .
The last column in Table 6.1 gives the average acceptance rate of the hybrid policy.

Examining Table 6.1, we arrive at the same conclusion as in Chapter 5: the job mix
variety strongly influences the acceptance procedure. We observe smaller differences
between the characteristics of the arriving jobs and the characteristics of the job sets
accepted by the hybrid policy, and lower acceptance rates in case of low job mix variety
- compared with the case of high job mix variety. For each scenario and each of the
three characteristics, we use an one-sample t-test to detect if the mean differences
in Table 6.1 are statistically significant different from zero. The individual test level
is set at 0.05. The results - presented in Appendix D - show that, while in most
of the low job mix variety scenarios there are no significant differences between the
characteristics of the arriving jobs and the characteristics of the jobs accepted by the
hybrid policy, in all high job mix variety scenarios significant differences are observed.
This means that in scenarios with low job mix variety the hybrid policy does accept
orders non-selectively, whereas in high job mix variety scenarios the hybrid policy is



6. Hybrid policy: combining scheduling and statistical techniques 67

Table 6.1: Selectivity measures for hybrid policy

Scenario µarr
p − µhybrid

p µarr
g − µhybrid

g µarr
s − µhybrid

s ACR
1 14.05 -0.01 0.37 0.39
2 15.59 -0.02 0.50 0.57
3 17.79 -0.02 0.52 0.40
4 13.25 -0.02 0.41 0.51
5 0.37 0.00 0.01 0.37
6 0.53 0.00 0.02 0.49
7 -0.13 0.00 0.00 0.35
8 0.82 0.00 0.04 0.44
9 17.00 -0.01 0.53 0.55
10 9.24 0.00 0.32 0.71
11 15.88 -0.01 0.54 0.54
12 13.00 -0.01 0.47 0.71
13 1.95 0.00 0.05 0.55
14 1.72 0.00 0.05 0.70
15 0.80 0.00 0.03 0.49
16 2.21 0.00 0.07 0.64

selective. However, comparing the µarr
i − µhybrid

i values, i ∈ {p, g, s}, with the values
in Table 5.1 (see Chapter 5, page 57) we observe that the µarr

i − µhybrid
i values are

the smallest among the three policies. This indicates that the hybrid policy is the
least selective policy. This observation is also confirmed by Table 6.2, which gives the
distance between the characteristics of the arriving jobs and the characteristics of the
jobs accepted by the three order acceptance policies, for the scenarios with high job
mix variety.

The paired t-tests indicate that indeed, for all eight scenarios but one (scenario 12)
this distance is significantly smaller than the distance for both the scheduling policy
and the regression policy.

Table 6.2: The distance for the hybrid policy

Scenario d(xarr, xregr) d(xarr,xsched) d(xarr,xhybrid)
1 0.340 0.317 0.154
2 0.248 0.221 0.185
3 0.324 0.313 0.207
4 0.237 0.229 0.163
9 0.236 0.214 0.162
10 0.148 0.122 0.111
11 0.221 0.222 0.153
12 0.154 0.133 0.132

We next compare the acceptance rate (ACR) performance (see column 5 in Table
6.1 for the hybrid policy and columns 8 and 9 in Table 5.1 for the regression and
the scheduling policies). We observe that in scenarios with high demand/capacity
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ratio and high job mix variety (scenarios 1 to 4), the hybrid policy accepts a smaller
number of jobs than the regression and the scheduling policies. This observation in
addition to the fact that the hybrid policy is the least selective policy indicates that
indeed, the hybrid policy corrects for the selectivity of the scheduling policy. We
expect therefore better performance for this policy, especially in these scenarios. The
performance comparison is addressed in Section 6.3.2.

Given that the hybrid policy is also selective, we further investigate the impact of
this selectivity on system performance. As in Chapter 5, we consider the following
two performance measures: the percentage of job sets completed before the makespan
estimate (PCME), and the effective capacity utilization (ECU) (see the definitions
on page 59). Table 6.3 gives these performance measures for both the static case (the
construction and testing data sets) and the random order arrival case, for all three
order acceptance policies.

Table 6.3: Performance measures comparison: non-selective vs. selective acceptance

Policy Construction data set Testing data set Random order arrival
PCME ECU PCME ECU PCME ECU

Regression 95.02 0.4337 92.77 0.4377 90.96 0.4249
Scheduling 94.99 0.4337 94.92 0.4377 84.11 0.4492
Hybrid 96.02 0.4337 95.05 0.4377 94.49 0.4418

Table 6.3 shows that, the hybrid policy succeeds in realizing PCME values very
close to the target values; it outperforms both the scheduling policy and the regression
policy. With respect to the ECU , the hybrid policy outperforms the regression policy,
but not the scheduling policy. However, it is noteworthy to mention that the hybrid
policy manages to determine job sets that result in a delivery performance very close
to the target values, without loosing much of the beneficial effect of using detailed
scheduling information on the ECU measure.

6.3.2 Performance comparisons among the three policies

In this section we compare the performance of the hybrid policy with the performance
of the regression and the scheduling policies - in the random order arrival case. The
performance is again compared with respect to the mean percentage of accepted job
sets completed on time (POT ), mean tardiness of the job set (JST ), mean realized
capacity utilization (RCU), and feasibility performance (FEP ) (as defined in Chapter
4, page 47).

Table 6.4 presents the first three measures for each of the 16 scenarios. Each value in
this table is the average of the 15 independent planning periods. Columns 2, 3, and 4
give the performance values for the hybrid policy under a 95% delivery performance
target. For comparison reasons, we also give - for each performance measure - the
difference between the scheduling policy and the hybrid policy (columns 5, 6, and 7)
and the difference between the regression policy and the hybrid policy (columns 8, 9,
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and 10). We use again a paired t-test to detect significant differences between average
responses of a performance measure obtained by the scheduling and regression policies
versus the hybrid policy.

Table 6.4: Simulation results: POT , JST , and RCU measures for the hybrid policy

Scenario Hybrid policy Scheduling-Hybrid ∗ Regression-Hybrid
POT JST RCU POT JST RCU POT JST RCU

1 95.25 2.41 0.35 -20.40 14.09 0.05 -13.30 8.41 0.01
2 95.57 0.95 0.50 -26.24 7.78 0.03 1.84 -0.43 -0.03
3 94.91 2.42 0.34 -14.56 9.55 0.03 -11.95 8.42 0.01
4 95.04 1.02 0.46 -20.05 5.01 0.04 -7.52 2.32 -0.02
5 91.04 3.70 0.37 2.67 -0.99 -0.00 0.56 -0.54 -0.02
6 99.17 0.11 0.48 -8.69 1.50 0.02 0.62 -0.08 -0.04
7 89.92 4.20 0.35 6.08 -2.71 -0.01 1.97 -0.77 -0.01
8 99.36 0.08 0.44 -5.28 0.90 0.02 0.19 -0.02 -0.03
9 94.32 3.14 0.35 -10.19 6.15 0.02 -4.91 3.01 -0.00
10 97.25 0.62 0.47 -11.09 2.55 0.03 -5.04 1.92 -0.02
11 94.77 2.60 0.34 -10.50 6.80 0.02 -7.57 4.23 0.00
12 96.59 0.73 0.46 -9.39 2.13 0.01 -2.00 0.46 -0.03
13 90.93 3.57 0.37 1.50 -0.68 -0.00 2.67 -1.11 -0.02
14 99.47 0.08 0.47 -5.18 0.79 0.02 0.42 -0.06 -0.03
15 92.05 3.49 0.34 4.80 -2.36 -0.01 -4.69 2.77 -0.01
16 99.44 0.08 0.43 -2.88 0.48 0.01 -1.44 0.28 -0.02

∗ the numbers highlighted in bold indicate that the difference is not significant at 95% confidence

level, where t-critical=2.145

Table 6.4 shows for most scenarios a consistent Pareto improvement when comparing
the hybrid and the regression policies. This reinforce our findings in Chapter 4 that
using detailed scheduling information indeed improves performance.

We focus now on the comparison between the scheduling policy and the hybrid policy.
Table 6.4 shows that the hybrid policy provides major performance gains with respect
to the on-time delivery performance, especially for scenarios with high job mix variety
(scenarios 1 to 4, and 9 to 12). These results indicate that indeed, the hybrid policy
corrects for the selectivity of the scheduling policy. With respect to the realized
capacity utilization, the hybrid policy obtains lower values than the scheduling policy.
This is to be expected given the well-known inverse relationship between resource
utilization and on-time performance. However, it is noteworthy that, in case of low
demand/capacity ratio and high job mix variety (scenarios 9 to 12), the hybrid policy
manages to determine job sets that result in a delivery performance very close to the
target values, without loosing much of the beneficial effect of using detailed scheduling
information on the RCU measure. Nevertheless, the poor control on the delivery
performance of the scheduling policy makes the comparison between the scheduling
policy and the hybrid policy difficult, if both the capacity utilization and the delivery
performance criteria are considered. To obtain further insight on which of the two
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policies should be used in a particular situation, we perform additional experiments in
which we tune the slack factor such that similar performance is obtained with respect
to one criterion (i.e. the delivery performance). This is addressed in the next section.

The last performance measure we discuss is the feasibility performance. The feasibility
performance - presented in Figure 6.1 - ranges between 0.76 and 0.82. The hybrid
policy clearly outperforms the scheduling policy in cases with high job mix variety and
high demand/capacity ratio. This is the result of the fact that the scheduling policy
accepts a larger number of small jobs, particularly in these scenarios, and therefore
a tighter schedule is obtained. In a tight schedule, a high number of jobs will result
is a higher number of no-wait restrictions violations. In the case of low job mix
variety, the difference between the scheduling policy and the hybrid policy is almost
undistinguishable. Furthermore, in cases with low job mix variety, a higher feasibility
performance is obtained. However, this holds for all three acceptance policies.

Figure 6.1: Feasibility performance for the three policies
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6.3.3 Pareto comparison of scheduling and hybrid policies

As we previously mentioned, the poor control of the scheduling policy over delivery
performance makes the comparison with the hybrid policy difficult, if both the real-
ized capacity utilization and the realized job set service level criteria are considered.
Obviously, given that both a high capacity utilization and a high delivery reliability
are desirable, in situations where both policies reach the pre-specified job set ser-
vice level target, a comparison of the realized capacity utilization would determine
the choice of which of the two policies to be used in a particular situation. In this
section we perform such a comparison. However, to obtain the pre-specified job set
service level target, we need no additional experiments for the hybrid policy; for the
scheduling policy, however, a large number of experimental runs have to be made to
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tune the slack factor. This implies a large computational effort. Recall that the CPU
time needed on a Pentium 1.7 GHz is about 18 seconds to evaluate a single order
acceptance decision based on the scheduling policy. With an average of 100 arriving
orders per planning period and 15 planning periods, about 8 hours computer time
are required for each scenario. Therefore we select only the scenarios with high levels
of demand/capacity ratio and job mix variety (scenarios 1 through 4) for our Pareto
comparison.

For each of the scenario 1 through 4, we obtained the following values for the slack
factor, based on additional experiments: 0.76, 0.26, 0.71 and 0.25. Table 6.5 gives the
POT , JST , and RCU performance measures for the scheduling policy - when using
these slack factor values - under random order arrival.

Table 6.5: POT , JST , and RCU measures for the scheduling policy

Scenario POT JST RCU
1 95.57 2.08 0.36
2 94.64 0.92 0.51
3 94.53 2.53 0.34
4 96.43 0.76 0.47

To identify if, for each scenario, the performance values in Table 6.5 differ signifi-
cantly from the performance values obtained by the hybrid policy (see Table 6.4), we
performed a paired t-test. Table 6.6 presents the results of the 12 (= 4 scenarios ∗ 3
performance measures) paired t-tests.

Table 6.6: Paired t-test results: hybrid policy vs. scheduling policy

Scenario POT JST RCU
t-value P-value t-value P-value t-value P-value

1 -0.308 0.763 0.668 0.515 -2.178 0.047
2 1.073 0.301 0.128 0.900 -1.462 0.166
3 0.228 0.823 -0.124 0.903 -0.928 0.369
4 -1.907 0.077 1.498 0.156 -1.889 0.080

The results indicate that in all but one scenario (namely scenario 1), for similar
delivery performance (i.e. no significant differences between the hybrid policy and
the scheduling policy with respect to the POT and JST measures), similar values
for the realized capacity utilization are obtained by both policies. This would point
to equal performances in terms of these three performance measures. For scenario
1, the scheduling policy obtains a higher realized capacity utilization. However, the
difference in performance is small. Thus, we conclude that, the additional effort of
using a more sophisticated method, i.e. a regression model, to determine the slack
- required by the hybrid policy - is justified in the increase of the control over the
delivery performance obtained.
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6.3.4 Robustness of the hybrid policy

The regression model used to estimate the slack factor for the hybrid policy is de-
veloped to cover a large variety of production situations in batch process industries.
Production situations in batch process industries, however, may differ with respect
to job variety, demand/capacity ratio, workload balance and processing times uncer-
tainty. It is therefore important to investigate the sensitivity of the hybrid policy to
these differences.

Recall that, we developed the hybrid policy to correct for the selectivity of the schedul-
ing policy. Since selectivity is most detrimental to the delivery reliability, we will
discuss the robustness of the hybrid policy with respect to the POT performance
measure. Table 6.4 revealed that for each of the scenarios 1 through 4, the hybrid
policy realized performance values very close to the 95% target. For the other scenar-
ios, however, performance values are ranging from 89.92% for scenario 7 to 99.47%
for scenario 14, implying substantial deviations from the target value.

Now, we investigate the main and interaction effects of the four experimental factors
(i.e. demand/capacity ratio (A), the job mix variety (B), the workload balance (C),
and the uncertainty level (D)) on the POT performance measure. Since the use of
common random numbers across scenarios makes it invalid to use the ANOVA proce-
dure, we use the procedure described in Chapter 4: we transform each experimental
factor to fall onto −1 and 1 at their low and high values, we use regression analysis
to obtain a model that estimates the main and interactions effects for planning pe-
riod, and we use a two-sided one-sample t-test to test if each of the observed main
effects and two-way interactions are significant. Table 6.7 presents the results of our
one-sample t-test.

Table 6.7: One sample t-test results

Main effects & t statistic P-value
two-way interactions

A -1.117 0.283
B 0.389 0.703
C 0.514 0.615
D -14.601 0.000

AB 0.057 0.956
AC 0.720 0.483
AD 0.828 0.422
BC 0.604 0.556
BD 7.287 0.000
CD -0.399 0.696

A: demand/capacity ratio, B: job mix variety, C: workload balance, D: uncertainty level

Table 6.7 shows that only the uncertainty level D and the job mix variety-uncertainty
level interaction (BD) have significant effects on this performance measure. This indi-
cates that the hybrid policy appears to be fairly robust to changes in demand/capacity
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ratio, job mix variety, and workload balance.

A closer examination of the results in Table 6.4 suggests that under scenarios with
low job mix variety (scenarios 5 to 8 and 13 to 16), the hybrid policy tends to be more
”nervous” (or responsive) to variations in the processing time uncertainty, resulting in
over- or under- compensation. Moreover, the same observation holds for the regression
policy. This strongly indicates that, in the model estimation phase, the situations with
low job mix variety had little impact on determining the regression model parameter
values, and thus, they may not be adequately described by the final predictive model.
Essentially, there exists a trade-off between robustness and optimal performance.
Using a single predictive model to cover all the variants of production situations may
lead to a robust model, but the resulting model may not perform so well within certain
regions of the parameter space. This suggests that, to develop an order acceptance
policy that also achieves (near) optimal performance, we may need to determine
different regression models for different production situations. For instance, different
regression models may be developed for production situations characterized by low
product mix variety. We address this issue in the next section.

6.3.4.1 Specific models

The results in the previous section indicate that different regression models may need
to be developed for different production situations. More precisely, we saw that in
the case of low job mix variety, both the regression policy and the hybrid policy are
very responsive to variations in the processing time uncertainty. We hypothesized
that this is due to the fact that the situations with low job mix variety had very little
impact on determining the regression parameter values in the model determination
phase. We test this hypothesis in this section. Namely, we determine regression
models for the production situations with low product mix. We next use these specific
regression models to support order acceptance decisions in settings with random order
arrivals and production situations with low product mix. Our hypothesis is true if
better performance measures are obtained with the specific models compared to the
performance obtained with the general models, which cover a very large variety of
production situations in batch process industries.

Specific regression models In this section we determine specific regression models
for both the regression policy and the hybrid policy. To determine these models, we
use the following construction data set. From the initial construction data set that
we generated (see Section 3.4, page 26), we select only the cases with low product mix
(i.e. sj ∼ U(4, 7) and FE[p] ∼ U(15, 35) in Table 3.1). This yields a construction data
set with 19 500 observations. The testing data set is obtained in a similar way, yielding
a data set with 5 500 observations. We determine the regression models following the
procedure described in Section 3.6. We obtained the following regression equations:

̂ln(I(SJ)) = −1.586 + 0.060 · µs − 0.294 · µg − 3.080 · cv2
E[p]

+ 1.007 · cv2
p + 1.589 · ρmax − 0.003 · nJ

(6.4)
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̂ln(δ(S)) = −1.987− 0.156 · µs + 0.263 · µg + 4.747 · cv2
E[p]

+ 2.460 · cv2
p + 0.188 · ρmax + 0.002 · nJ

(6.5)

For equation (6.4), the adj. R2 and the σ̂ are equal to 0.80, and 0.091 respectively.
Comparing these values with the values obtained by model A in Section 3.6, Table 3.2
(adj. R2 = 0.77 and σ̂ = 0.107) we observe that the specific model has a higher adj.
R2 value and a smaller standard error of regression. We may therefore expect better
system performance when this model is used to support order acceptance decisions in
a setting with random order arrivals. The same holds for the slack estimation model
(i.e. the model given by (6.5)). For this model, we obtained an adj. R2 equal to 0.70
and a σ̂ equal to 0.201 - compared to the model given by (6.2) for which we obtained
adj. R2 equal to 0.66 and a σ̂ equal to 0.228.

We also investigate the predictive quality of these two models on the testing data set.
We obtain a mean estimation error equal to 0.023 for the interaction margin specific
model and −0.023 for the slack factor specific model. These values indicate that both
specific models produce approximately unbiased predictions.

6.3.4.2 Simulation experiments

In this section we perform simulation experiments to investigate whether specific
models perform better when used to support order acceptance decisions than general
models, which cover a very large variety of production situations in batch process
industries. The two regression models we developed in the previous section (see
equations (6.4) and (6.5)) are now used by the regression policy and the hybrid policy
respectively, to support order acceptance decisions in a setting with random order
arrivals (see equations (4.4) and (6.1)). Recall that orders are accepted under a job
set service level target equal to 1 − α. Therefore, for both the regression policy and
the hybrid policy we use the 100(1− α)% upper prediction bound for the interaction
margin and the slack factor respectively.

The experimental design in this section is similar to the one in Section 4.4.1. This
time, however, we consider only the production situations with the low job mix variety
(see Table 4.1 on page 45). This means that we now consider only the following three
experimental factors: demand/capacity ratio, workload balance, and the uncertainty
level of the processing times. The full factorial design yields 23 = 8 scenarios. For an
easy comparison, we keep the scenario notation used in the previous chapters.

The results of our experiments are presented in Table 6.8, which shows the percentage
of job sets on time (POT ), the mean job set tardiness (JST ) and the mean realized
capacity utilization (RCU).

Comparing the Tables 6.4 and 6.8, we conclude that performance improvements are
indeed obtained by using specific regression models. With respect to POT , Table
6.8 reveals that for all scenarios, both policies realize performance values exceeding
the 95% target value. The biggest performance improvement may be observed in the



6. Hybrid policy: combining scheduling and statistical techniques 75

Table 6.8: Simulation results for production situations with low product mix

Scenario Regression policy Hybrid policy
POT JST RCU POT JST RCU

5 97.15 1.07 0.34 96.91 1.11 0.36
6 99.87 0.01 0.44 98.72 0.20 0.48
7 94.61 2.22 0.32 97.57 0.86 0.33
8 99.04 0.13 0.41 98.00 0.32 0.44
13 97.07 1.18 0.34 96.88 1.00 0.36
14 99.81 0.04 0.44 99.31 0.11 0.47
15 94.88 2.23 0.32 98.05 0.66 0.32
16 98.96 0.18 0.41 98.85 0.16 0.44

cases with high uncertainty in the processing times (odd numbered scenarios). For
these scenarios, however, we see a small decrease in RCU . We also observe a slight
improvement with respect to the JST performance measure.

6.4 Conclusions

In Chapter 5 we saw that both the scheduling policy and the regression policy are
selective in the kind of jobs they accept. While the scheduling policy accepts orders
with specific characteristics that maximize resource utilization, this particular selec-
tiveness deteriorates the delivery reliability. This is due to the fact that the slack
added to cope with uncertainty in the processing times is not sufficient to compen-
sate for the selectivity. The regression policy is also selective, but better estimates
the slack needed to cope with stochastic processing times.

This insight motivated the development of a new order acceptance policy - the hybrid
policy - which combines the strengths of both the detailed and aggregate acceptance
procedures. The hybrid policy uses simulated annealing techniques to estimate the
direct consequences of accepting an order on resource utilization and its feasibility,
and regression techniques to estimate the delay that is caused by constructing a high-
density schedule and the uncertainty in the processing times. In a simulation study,
we compared the performances of the hybrid policy with the performance of both the
scheduling policy and the regression policy.

Given that both the scheduling policy and the regression policy proved to be selec-
tive, we first investigated whether the hybrid policy also prefers jobs with specific
characteristics. The results showed that although the hybrid policy is also selective
in the cases with high job mix variety, it is the least selective policy.

Simulation experiments further showed that the hybrid policy provides major perfor-
mance gains with respect to the on-time delivery performance measure, outperforming
the scheduling and the regression policies. Being the least selective policy, the hybrid
policy manages to determine job sets that result in delivery performance very close
to the 95% target, without loosing much of the beneficial effects of using detailed
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scheduling information on utilization.

The regression model used to estimate the slack factor for the hybrid policy was de-
veloped to cover a large variety of production situations in batch process industries.
However, in the simulation study, the model is applied to specific production situ-
ations. It is therefore interesting to investigate how robust is the hybrid policy to
differences in production situations.

We found that the POT performance is not affected by changes in the job mix variety,
demand/capacity ratio, or workload balance. This indicates that the hybrid policy is
fairly robust, and captures the effects of the demand/capacity ratio, job mix variety, or
workload balance differences quite well. However, the performance of the hybrid policy
is affected by variations in the processing time uncertainty. Whereas in case of high job
mix variety the performance differences are only weakly related to uncertainty levels
differences, for scenarios with low job mix variety the results showed that the hybrid
policy tends to be more responsive to variations in the processing time uncertainty,
resulting in over- or under-compensation. This indicates that production situations
with these characteristics (i.e., a low variety in the product mix and different levels
of processing time uncertainty) had little impact on the estimation of the regression
parameter values; thus, they may not be adequately described by the predictive model.

Therefore we further investigated whether the use of different regression models (i.e.
regression models developed for different scenarios, namely with low levels of job mix
variety) could provide better performance than the use of a single model, valid for the
entire parameter space. We found that indeed, a regression model developed for spe-
cific production situations, and then applied in that production situation to support
customer order acceptance decisions, provides significant performance improvements
with respect to on-time delivery performance.



Chapter 7

Limited data problem:
bootstrap solution

7.1 Introduction

In the previous chapter we saw that regression modelling does provide the decision
makers with a powerful and relatively straightforward tool for supporting order ac-
ceptance decisions in complex settings with orders arriving randomly over time and
stochastic processing times, especially when regression is combined with detailed
scheduling. However, the question then arises whether this approach can be success-
fully applied in practice. In the previous chapters, the regression models we developed
were tested extensively through simulation. These simulations used a large variety of
shops and job sets to estimate the coefficients of the regression models. Application
of such models in real life assumes that sufficient historical data (regarding customer
orders and the production system) is available for estimating these regression coeffi-
cients with acceptable accuracy. Unfortunately, this assumption does not always hold:
the quantity of historical data at hand may be rather limited, or not all the available
data may be relevant, because the system and its environment changed. We denote
this problem as the limited data problem in production control, and we address this
problem in this chapter1.

It is well known that a regression model can be used reliably for prediction if and only
if the relationship between the independent variables and the dependent variable does
not change. Changes in technology, raw materials, customer attitudes, and needs can
have a lasting impact on estimated regression relationships. If there are indications
that the relationship between independent and dependent variables changes, it be-
comes necessary to collect a new set of data in order to re-estimate the regression
coefficients. This implies that predictions are made from a small historical database.

1The content of this chapter is joint work with J.M.W. Bertrand, J.C. Fransoo and J.P.C. Kleijnen
and has appeared in Ivanescu et al. (2004a).
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In this chapter, we investigate to what extent the limited data problem impacts the
performance of our order acceptance policies.

Although the problem we address is of major practical interest, the research presented
in this chapter is simulation based; i.e., we do not use real data but simulated data,
allowing us to conduct extensive controlled experiments. For the production depart-
ment described in Chapter 2, we generate shop-specific historical data by mimicking
the planner’s actions. After investigating the magnitude of the limited data problem,
we develop a solution procedure based on the bootstrap principle. The bootstrap was
introduced by Efron (1979) as a computer-based method for measuring the accuracy
of statistical estimates. It implies re-sampling - with replacement - of a given (lim-
ited) sample of i.i.d. observations. In our research, we use re-sampling to generate
additional data (namely job sets) with the right mixture of variety across the job
sets and characteristics similar to the observed historical data. Next, we investigate
whether performance improvements are obtained through this bootstrapped data set.

The remainder of this chapter is as follows. In Section 7.2 we investigate to what ex-
tent limited data affects the performance of the regression and the scheduling policies.
Recall that both the regression policy and the hybrid policy are using a regression
model. In order to limit the computer time of the experiments, among the policies
that use regression analysis we chose to investigate the effect of limited data only for
the regression policy, as this policy requires less computer time. In Section 7.3 we
detail the bootstrap method we propose for generating additional data. In Section 7.4
we investigate the performance of this method in a setting with random order arrival
and processing times for the regression and the scheduling policies. In Section 7.5 we
present our conclusions.

7.2 Effects of limited data

Both the regression policy and the scheduling policy discussed in Chapter 4 require
some parameter estimates (namely the regression coefficients and the slack factor; see
equations (4.4) and (4.5)). In a real life application, the best estimation quality may
be obtained when the parameters are estimated from historical production data of
a specific production department. As we mentioned in Section 7.1, in real life, data
may be rather limited. Therefore, we now investigate the sensitivity of the order
acceptance policies to the size of the historical database. We do so by means of
simulation. We develop a simulation model of a single production department that
has the characteristics described in Chapter 2. The simulation experiments are carried
out in three stages: (i) run the simulation model to obtain data (i.e., the historical
database), (ii) estimate the policies’ parameters, and (iii) evaluate the performance
of the resulted order acceptance policies. These stages are addressed in the following
sub-sections.
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7.2.1 Generating the historical data base

As we mentioned above, to estimate the order acceptance policies’ parameters, shop-
specific historical data are required. We run the simulation model and generate a
sufficiently large ”historical” database of the production department. This database
contains information regarding the accepted customer orders and the production sys-
tem, for a large number of planning periods (nH = 512). We refer to this database
as the construction data set :

CONS = {Jt,t+1|t = 1, ..., nH} (7.1)

Recall that Jt,t+1 denotes the set of orders that are accepted in period t and that are
due at the end of period t + 1 (see Section 2.2.1).

The setting for the experiments in this chapter is similar to the one described in
Chapter 4 (see page 44). For computational reasons, however, we now consider only
the situation with high demand/capacity ratio, high job mix variety, high workload
balance, and high uncertainty in the processing times. We again consider a job set
service level target equal to 95% (α = 0.05).

Given that the construction data set contains the jobs accepted in a certain planning
period, there must exist a mechanism to accept or reject arriving jobs. We use the fol-
lowing workload-based rule: orders are accepted as long as (i) the total workload does
not exceed a specified maximum workload, and (ii) the workload per resource type
does not exceed the available capacity per resource type (Raaymakers et al., 2000b).
Each resulting job set is scheduled and executed by the production department. In
order to properly capture the effect of stochastic processing times when developing
the regression models, we simulate the execution of the job set several times. Analo-
gous to Chapter 4, we perform 250 independent realizations of the processing times,
which yields i.i.d. observations {Cmax,i(SJt,t+1); i = 1, ..., 250} on the makespan for
each job set Jt,t+1.

The size of the construction data set is given by the number of planning periods,
namely nH (see (7.1)). We expect this size to affect the performance of the order ac-
ceptance policies. To investigate this effect, we consider six construction data sets with
sizes ranging from 12 to 175 planning periods, namely nH ∈ {12, 25, 50, 100, 150, 175}.
The interpretation for these values is as follows: a construction data set of size 12
would correspond to one year production, 25 to about two years, etc. These con-
struction data sets are obtained by randomly sampling from the large ”historical”
database we generated.

7.2.2 Regression parameters estimation

Each of the six construction data sets is used to estimate the parameters of the
regression policy. Recall that the regression model used by the regression policy
estimates the average interaction margin by using the following six regressors (see
Section 3.5):
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• workload balance of resource types ρmax,

• average number of processing steps per job in the job set µs,

• average overlap of processing steps in the job set µg,

• expected processing times variation in the job set cv2
E[p],

• the number of jobs in the job set nJ ,

• squared coefficient of variation of the processing times cv2
p.

Given that - for all construction data sets - the processing times in each job set are
identically distributed (namely, Pij ∼ Erlang-2), the sixth regressor, cv2

p, is constant
in the experiments in this chapter. Thus, we consider as regressors only the first
five characteristics. However, we still want our regression models to account for the
processing time uncertainty. Therefore, instead of regressing the interaction margin,
we regress the 100(1 − α)th quantile of the empirical distribution of the interaction
margin I(SJt,t+1) of a given job set Jt,t+1. Since for each job set Jt,t+1, 250 i.i.d.
observations for the actual makespan are available, it allows us to determine an em-
pirical distribution for I(SJt,t+1). We use the direct-simulation quantile estimator
implemented in the SPSS statistical package (see equation (4.7) on page 43) and we
denote this quantile by I1−α.

In the following we detail the regression models. We again use the SPSS software
package for our analyses. To measure the fit of the regression equations to the data
in the construction data set, we again compute the adjusted coefficient of multiple
determination (adj. R2), and the standard error of regression (σ̂). We also check the
regression models for multicollinearity. For all the models we obtained that the VIF
value (see equation (3.14)) for the nJ variable was larger than 10. Thus, we eliminate
this variable from the list of regressors.

We perform a residual analysis to test the adequacy of the estimated regression mod-
els. The plots of standardized residuals versus predicted values plots presented in
Appendix C.3 indicate no violation of the basic regression assumptions. In Table 7.1,
we present the name, the adj. R2, and σ̂ for the models we developed.

Table 7.1: Measures of fit for the regression models based on nH observations

Data base size (nH) adj.R2 σ̂
12 0.85 0.044
25 0.82 0.065
50 0.79 0.062

100 0.85 0.061
150 0.79 0.068
175 0.80 0.069

We use an F -test to test the significance of each regression model as a whole, namely,
all coefficients of the regression model, except for the intercept, are equal to zero.
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For the regression models presented in Table 7.1, the P-value is 0.000 (see Appendix
E.4), so this null hypothesis is rejected. The relatively high adj. R2 values and low
σ̂ values in Table 7.1 indicate that the models give accurate predictions. Table 7.2
gives the regression parameters’ least squares estimates.

Table 7.2: Least squares estimates of the regression parameters

nH Regressors
Intercept µs µg cv2

E[p] ρmax

12 -0.277 0.010 -0.766 -1.637 3.209
25 -1.707 0.121 -0.025 0.842 2.722
50 -0.896 0.117 0.110 -0.418 2.209

100 -1.575 0.136 0.287 0.407 2.443
150 -1.469 0.116 0.177 0.406 2.515
175 -1.278 0.133 0.347 -0.269 2.340

We further evaluate the predictive performance of the models via a testing data set.
This data set contains 100 new job sets generated independently of the job sets in the
construction data set. The quality of the estimation models is evaluated through the
mean prediction error (ME) and the square root of the mean square prediction error
(
√

MSE). Additionally, we compare the percentage of variability in the new data
explained by the model (R2

pred) with the adj. R2 of the building model. The results
are presented in Table 7.3.

Table 7.3: Predictive quality of the regression models in the testing data set

nH ME
√

MSE R2
pred

12 0.0061 0.1199 0.35
25 0.0262 0.0910 0.62
50 0.0242 0.0863 0.66

100 0.0253 0.0835 0.68
150 0.0244 0.0839 0.68
175 0.0251 0.0839 0.68

The mean prediction error is nearly zero for all models, so the regression models seem
to produce unbiased predictions. Comparing Tables 7.1 and 7.3, we observe that σ̂
is smaller than

√
MSE, for all models. Furthermore, the R2

pred is less than the adj.
R2 from the construction phase. These two observations indicate that the regression
models do not predict new data as well as they fit the existing (historical) data.
However, except for the models based on 12 and 25 observations, the degradation of
performance is not severe. We conclude that the regression models we developed are
likely to be successful as predictors, except for the models based on the two smallest
data sets (nH = 12 or 25).
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7.2.3 Slack factor estimation

As we mentioned in Chapter 4, the slack factor γ1−α
k (see equation (4.5)) is added in

order to compensate for the effect of stochastic processing times. The same procedure
as in Section 4.3.2 is now used to compute this factor. Table 7.4 gives the values for
the slack factor and a 95% confidence interval for these values. It is not surprising to
observe that the larger the construction data set, the smaller the confidence interval
is.

Table 7.4: Slack factor values for scheduling policy, estimated from nH observations

nH γ0.95
2 95% confidence interval

12 0.62 [0.591, 0.643]
25 0.64 [0.627, 0.658]
50 0.65 [0.641, 0.667]

100 0.64 [0.632, 0.648]
150 0.64 [0.631, 0.646]
175 0.64 [0.637, 0.651]

7.2.4 Impact of limited data on performance

In this section, we perform experiments to examine if the performance of the two
order acceptance policies is indeed affected by the size of the construction data set.
In this second stage, the estimated parameters (e.g. the regression coefficients and
γ0.95

2 ) are now frozen and used by the policies . We repeat the experimental setting
of the data collection phase. This time, however, the arriving orders are accepted or
rejected according to each of the policies. We simulate a planning horizon of one year;
i.e., 12 replications of a planning period are performed.

We denote the regression policy that uses estimates based on a data base of size nH

by RegrnH
. Similarly, SchednH

denotes the scheduling policy that estimates the slack
factor from nH observations. Note that the slack factor γ0.95

2 is the same for the sizes
nH = 25, 100, 150 and 175. This yields three models for the scheduling policy.

Given that the parameters were determined under a 95% job set service level target,
we are interested in the ability of effectively meeting this target. This may be charac-
terized by the average percentage of job sets completed on time (POT). The results
are presented in Table 7.5.

Table 7.5 shows that none of the proposed policies reaches the pre-specified target.
However, the larger the construction data set is, the better the performance (i.e. the
average POT is closer to the target and the confidence interval is tighter). We observe
that the models developed in the case of very limited data (nH = 12) give the poorest
performance, as expected. Such a small sample size is likely to be encountered in
practice, because relevant historical information about the accepted orders may be
available only over a horizon of one year or less (which means 12 observations or less).
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Table 7.5: Average POT and 95% confidence interval

Policy POT 95% conf. interval
Regr12 84.93 [77.07, 92.80]
Regr25 88.27 [83.89, 92.65]
Regr50 88.37 [83.52, 93.22]
Regr100 88.43 [84.60, 92.27]
Regr150 88.67 [84.90, 92.43]
Regr175 89.63 [84.99, 94.28]
Sched12 76.43 [70.33, 82.53]
Sched50 81.77 [76.69, 86.84]
Sched25;100;150;175 79.43 [76.23, 82.64]

7.3 Bootstrap solution for limited data problem

In the previous section we saw that the size of the construction data set affects the
performance of both the regression policy and the scheduling policy. Therefore, in
a situation with very limited historical data (e.g., nH ≤ 12), application of these
policies may be jeopardized. What is required is a large number of job sets with the
right variety across the jobs and with characteristics similar to the observed historical
data. To generate these additional data, we propose a method based on the bootstrap
principle.

The bootstrap principle consists of repeated random re-sampling - with replacement -
of the original observations (Efron & Tibshirani, 1993). Bootstrapping is an approach
to statistical inference that makes few assumptions about the underlying probability
distribution that describes the data. The basic approach assumes that the original
observations are i.i.d. observations. Using these original data as an approximation
to the unknown population density function, data are re-sampled with replacement
from the observed sample to create an empirical sampling distribution for the statistic
under consideration. In the following subsection we present the classic non-parametric
bootstrap method and its application to regression. Next we describe our solution
procedure to the limited data problem that is based on the bootstrap principle.

7.3.1 Classical bootstrap application to regression models

In this section, we briefly present the bootstrap method and its application to regres-
sion models, as discussed in the seminal book on bootstrapping by Efron & Tibshirani
(1993). The name ”bootstrap” originates from the expression ”pulling yourself up by
your own bootstraps”, and refers to the basic idea of sampling with replacement from
the data at hand.

Let us consider the following situation. A random sample x = (x1, x2, ..., xn) from an
unknown probability distribution F has been observed:

F → (x1, x2, ..., xn), (7.2)
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and we wish to estimate a parameter of interest θ on the basis of x. For this purpose,
we calculate an estimate θ̂ from x. The bootstrap was introduced in 1979 as a
computer-intensive method for estimating the standard error of θ̂.

Bootstrap methods depend on the notion of bootstrap sample. Let F̂ denote the
empirical distribution function, i.e. the discrete distribution that puts probability
1/n on each value xi, i = 1, 2, ..., n. A bootstrap sample is defined to be a random
sample of the same size n drawn with replacement from F̂ , say x∗ = (x∗1, x

∗
2, ..., x

∗
n):

F̂ → (x∗1, x
∗
2, ..., x

∗
n) (7.3)

The star notation indicates that x∗ is not the actual data set x, but a re-sampled
version of x. Next, a bootstrap replication of θ̂ - denoted by θ̂

∗
- can be computed

from this bootstrap sample x∗. By drawing many independent bootstrap samples,
say B, and evaluating the corresponding bootstrap replications, the distribution of θ̂

may be estimated from the empirical distribution of θ̂
∗
b(b = 1, ..., B).

We now turn to the application of the bootstrap method to regression models. Two
approaches to construct bootstrap samples may be distinguished: bootstrapping pairs
and bootstrapping residuals. In the following we briefly describe these two approaches,
and refer to Efron & Tibshirani (1993) (see pp. 105− 121) for details.

Let us consider the standard linear multiple regression model:

yi = ciβ + εi for i = 1, ..., n (7.4)

where yi is a real number called the response, ci is a 1 × k vector ci = (ci1, ..., cik)
called the vector of regressors, β is a k × 1 vector of unknown parameters, and εi is
the error term. The error terms εi in (7.4) are assumed to be a (i.i.d.) random sample
from an unknown error distribution F having expectation 0,

F → (ε1, ε2, ..., εn) = ε (EF (ε) = 0). (7.5)

The data set x for a linear regression model consists of n points x1,x2, ...,xn where
each xi is itself a pair, say

xi = (ci, yi). (7.6)

The goal of the linear regression analysis is to infer β from the observed data x =
(x1,x2, ...,xn). Let C be the n×k matrix with the ith row ci (i.e. the design matrix),
and y the n × 1 vector y = (y1, y2, ..., y

T
n ) (the response vector). The ordinary least

squares (OLS) estimator of β is given by

β̂ = (CT C)−1CT y (7.7)

and the OLS residuals by:
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ε̂ = y − Cβ̂. (7.8)

Bootstrapping pairs Each bootstrap sample is constructed by selecting n-tuples
(ci, yi) from the original data set. So, the bootstrap data set x∗ has the form

x∗ = {(ci1 , yi1), (ci2 , yi2), ..., (cin
, yin

)} (7.9)

where i1, i2, ..., in is a random sample of the integers 1 through n.

Bootstrapping residuals To generate x∗, we first select a random sample of boot-
strap error terms

F̂ → (ε∗1, ε
∗
2, ..., ε

∗
n) = ε∗ (7.10)

where each ε∗i equals any one of the n values ε̂j , j = 1, ..., n with probability 1/n.

Then the bootstrap responses y∗i are generated according to (7.4)

y∗i = ciβ̂ + ε∗i for i = 1, ..., n. (7.11)

Then the bootstrap data set x∗ equals (x∗1, ...,x
∗
n), where x∗i = (ci, y

∗
i ).

The difference between the two methods is that in the latter the ci are regarded as
fixed. It is assumed that the basic regression model is correct and that the residu-
als can be regarded as i.i.d. If, however, residuals have different variances or when
errors are present in the regressors, then bootstrapping residuals will yield erroneous
results. Bootstrapping pairs, on the other hand, is less sensitive to model assump-
tions. Furthermore, if the assumptions underlying bootstrapping residuals are met,
bootstrapping pairs will yield approximately the same results (Efron & Tibshirani,
1993) (see pp. 113).

7.3.2 Proposed bootstrap method

The two approaches in the previous section are generally used for estimating the
standard error or confidence intervals for β̂, the least squares estimate of β. How-
ever, to solve the limited data problem, we are interested in generating additional job
sets rather than statistical inference. In this section, we therefore use the bootstrap
principle for generating these additional job sets, called bootstrap job sets. Bootstrap-
ping assumes that the observed data is a good estimate of the unknown population
density function. So, we assume that the sample consisting of the jobs from all the
accepted job sets is a good estimate of the population consisting of all the accepted
jobs. Therefore, we re-sample with replacement from this observed sample, and gen-
erate a number of B additional job sets. The bootstrap principle ensures that this
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set of B bootstrap job sets is a proxy for a set of B independent real job sets. Figure
7.1 presents schematically our procedure.

Figure 7.1: Proposed bootstrap method

In Figure 7.1, x denotes the original data set for the regression model which consists
of nH observations x1,x2, ...,xnH where each xi is a pair, i.e. xi = (ci, I

1−α
i ) with ci

denoting the vector of regressors and I1−α
i the response variable, i.e. the 100(1−α)th

quantile of the interaction margin (see Section 7.2.2).

Let {ji : i = 1, ..., n} denote the sample of all accepted jobs, where n =
∑nH

t=1 nJt,t+1

and nJt,t+1 denotes the number of jobs in the job set Jt,t+1 (t = 1, ..., nH). The
job arriving stream across all the planning periods is a sample with independent
observations since we assume independent planning periods with each job arriving
into the system being different and no precedence relations among jobs. However,
given that a workload-based order acceptance procedure is used to accept or reject the
arriving jobs, the accepted jobs contained in each job set may not be a random sample
from the arriving job stream due to selectivity (Raaymakers, 1999). Nevertheless,
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we do not expect this characteristic to violate the independence assumption. Our
procedure is as follows.

1. We re-sample with replacement from the originally observed sample {j1, ..., jn} of
accepted jobs, to generate a bootstrap sample {j∗1 , ..., j∗n}.

2. We assume that the jobs in the bootstrap sample are the jobs that arrive to the
system during a planning period, according to a Poisson arrival process.

3. At each arrival moment, a decision to either accept or reject the job has to be made.
This decision is based on the same acceptance procedure that was used to accept
the jobs in the original historical data set (i.e., a workload based procedure). The
result is a new job set, denoted by J∗. The simulated annealing algorithm described
in Chapter 2 is used to obtain the ex ante schedule (SJ∗) and its corresponding ex
ante makespan (Cexante

max (SJ∗)).

4. We simulate the execution of the bootstrap job set J∗. As in Section 7.2.1, 250
independent realizations of the processing times are generated that yield i.i.d. ob-
servations {Cmax,i(SJ∗); i = 1, ..., 250} for the actual makespan - which allow us
to obtain the 100(1− α)th quantile of the empirical distribution of the interaction
margin I(SJ∗) - the response variable.

5. We repeat steps 1 to 4 B times; we take B = 500. The replicate b, b = 1, ..., B
gives the bootstrap job set J∗b.

This procedure generates B bootstrap job sets. These job sets, together with the
original job sets forming the historical data set, form the new construction data set.

CONS∗ = {Jt,t+1|t = 1, ..., nH}
⋃
{J∗b|b = 1, ..., B} (7.12)

Based on this augmented construction data set, we estimate the parameters of the
regression policy (applying the procedure described in Section 7.2.2). We hypothesize
that the regression policy that uses parameter estimates based on this augmented
construction data set performs better. We test this hypothesis in the next section.

7.4 Evaluation of the bootstrap solution

In this section we investigate to what extent an order acceptance policy that esti-
mates its parameters from an augmented (bootstrap + original) construction data
set improves system performance when used to support order acceptance decisions,
as compared to an order acceptance policy that estimates its parameters from a small
size construction data set (original only). Let the smallest construction data set (size
nH = 12) of Section 7.2 be the original historical data set. Applying the bootstrap
procedure described in the previous section, we generate B = 500 additional job
sets. Adding these job sets to the initial construction data set gives the augmented
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construction data set, with 512 job set. We estimate the parameters for the regres-
sion policy and the slack factor for the scheduling policy by applying the procedures
described in Section 7.2. We obtain the following regression model:

Î0.95 = −1.441 + 0.133 · µs + 0.491 · µg + 0.036 · cv2
E[p] + 2.353 · ρmax (7.13)

and a slack factor equal to 0.63. The adj. R2 and σ̂ are 0.77 and 0.071 for the
regression model given by equation (7.13). Comparing these values with the values
in Table 7.1, we observe a smaller adj. R2 and a higher σ̂ for (7.13). However, the
decrease in performance is small and gives us no reason for concern with respect to
the predictive performance of this model.

Because our ”real” historical data set is simulated, we can also create an ideal situation
with a construction data set with 512 independent job sets. The regression model
estimated from this data set is

Î0.95 = −1.425 + 0.130 · µs + 0.337 · µg + 0.087 · cv2
E[p] + 2.402 · ρmax (7.14)

and the slack factor equals 0.64. The adj. R2 and σ̂ are 0.79 and 0.068 for the
regression model given by equation (7.14).

We denote the regression policy that uses estimates based on the augmented con-
struction data set by Regrb. The analogous notation holds for the scheduling policy.
We compare the performance of the order acceptance policies that uses parameter es-
timates based on the augmented construction data set (i.e. Regrb and Schedb) with
the performance of the order acceptance policies that use parameter estimates based
on the small construction data set (i.e. Regr12 and Sched12), and the large construc-
tion data set (i.e. Regr512 and Sched512) by means of simulation experiments. This
means that six simulation runs are performed. We use the same experimental setting
as in Section 7.2. For each run, we perform 36 independent replications of a planning
period. Common random numbers were used throughout all runs, hence each policy
deals with the same sequence of customer orders. We use the same performance mea-
sures as in Chapters 4 and 6: (i) realized capacity utilization (RCU), (ii) percentage
of job sets on time (POT ), (iii) job set tardiness (JST ), and (iv) feasibility (FEB).
Table 7.6 reports our results.

Table 7.6: Computational results

Policy RCU POT JST FEB
Regrb 0.3410 92.49 3.75 0.796
Regr12 0.3420 88.43 7.23 0.796
Regr512 0.3449 90.82 4.85 0.795
Schedb 0.3940 77.54 13.93 0.772
Sched12 0.3930 74.74 16.41 0.774
Sched512 0.3921 80.14 11.70 0.772

To compare the performance of Schedb with the performance of Sched12 and Sched512,
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we use paired t-tests; that is, for each performance measure, we made two pairwise
comparisons. The results are presented in Table 7.7.

The paired t-test results show that, for RCU and FEB, there are no significant
differences neither between Schedb and Sched12, nor between Schedb and Sched512.
We further observe that, by using the bootstrap construction data set to determine the
slack factor - instead of the small construction data set - the performance improves
significantly: Schedb manages to determine job sets that result in higher delivery
performance than Sched12, without decreasing the capacity utilization. However,
Sched512 gives significantly smaller job set tardiness and higher delivery performance
than Schedb.

Table 7.7: Paired t-test results for the scheduling policies in Table 7.6

Measures Schedb vs Sched12 Schedb vs Sched512

t-value P-value t-value P-value
RCU 0.426 0.672 0.588 0.561
POT 2.624 0.013 -2.279 0.029
JST -3.097 0.004 2.448 0.020
FEB 0.893 0.378 0.214 0.831

We perform the same analysis for the three regression policies; see Table 7.8. Table
7.8 shows that, for the RCU and FEB performance measures, there are no significant
differences between Regrb and Regr12. However, the POT and JST measures show
that Regrb performs significantly better. Table 7.6 shows that this policy manages
to determine job sets that result in a delivery performance very close to the 95%
target, and a smaller job set tardiness. We conclude that, in case of limited historical
data, our re-sampling procedure gives better system performance than the case when
limited historical data is used.

Table 7.8 further shows that for all performance measures, except FEB, there are
significant differences between Regrb and Regr512. With respect to the RCU measure,
Table 7.6 reveals that Regrb realizes a lower RCU than Regr512 but, this difference
is very small.

Table 7.8: Paired t-test results for the regression policies in Table 7.6

Measures Regrb vs Regr12 Regrb vs Regr512

t-value P-value t-value P-value
RCU -0.545 0.589 -7.097 0.000
POT 2.822 0.008 2.328 0.026
JST -2.874 0.007 -2.429 0.020
FEB -0.164 0.870 -0.997 0.326

It is remarkable that Regrb gives significantly higher delivery performance than Regr512.
To explain this result, we performed the following additional analysis. We compared
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the characteristics of the job sets accepted by Regrb to those accepted by Regr512.
The same job set characteristics as in Chapter 5 are investigated; namely, the aver-
age workload per job set (µp), the average overlap per job (µg), the average number
of processing steps per job (µs), and the acceptance rate (ACR). The results are
presented in Table 7.9.

Table 7.9: Selectivity of Regrb and Regr512

Policy µp µg µs ACR

Regrb 118.73 0.59 4.82 40.43
Regr512 119.86 0.58 4.86 39.65

Table 7.9 shows that Regr512 has a significantly higher acceptance rate (t = 3.522,
df=35). Furthermore, the jobs accepted by this policy have on average a significantly
higher overlap than the jobs accepted by Regrb (t = 3.675, df=35). These two
observations explain the better performance of Regrb. More exactly, a higher number
of jobs with a higher overlap result in a tighter schedule. In a highly stochastic
environment, a tight schedule increases capacity utilization but decreases the delivery
performance.

7.5 Conclusions

The order acceptance policies we developed in Chapter 4 were tested extensively
through simulation. These simulations, however, used a large variety of shops and
job sets to estimate the parameters of these policies (i.e. the coefficients of the re-
gression models for the regression policy and the slack factor for the scheduling pol-
icy). Application of such models in real life assumes that sufficient historical data
(regarding customer orders and production system) is available for estimating these
parameters with acceptable accuracy. In practice, however, relevant historical data
may be limited. In this chapter, we investigated to what extent this limited data
problem impacts the performance of these two order acceptance policies.

For batch process industries, featuring complex job and resource structures, we first
generated shop-specific historical data by simulation. This initial simulation study
showed that both order acceptance policies perform less well if the size of the con-
struction data set is small. To overcome the limited data problem, we developed a
procedure based on the bootstrap principle.

Classical bootstrap methods re-sample - with replacement - the original observations.
Our procedure bootstraps the original set of accepted jobs, to generate additional job
sets. We assessed the performance of our bootstrap procedure by means of simulation.
The results showed that the performance of the bootstrap policy (i.e. the policy
that uses parameter estimates based on the augmented construction data set) clearly
improves.

The results clearly demonstrate the power of extending the bootstrap principle by
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applying it to the most detailed items of a data set in production control, namely
the individual jobs. Rather than re-sampling the job sets, we used the individual
jobs for re-sampling. This allowed us to construct new jobs sets. We believe that
this principle can also be applied in other production control environments where the
limited data problem may occur. We encourage further research to investigate the
possible impact and limitations of our bootstrap approach.





Chapter 8

Conclusions and future
research

8.1 Main research findings

In this thesis we studied the order acceptance function, which is responsible for coor-
dinating the capacity requirements and the available capacity over time, in a multi-
resource production system with overlapping processing steps, no-wait restrictions
among processing steps and stochastic processing times inspired from batch process
industries. In Section 1.4 we formulated the goals of this research: (i) to contribute to
the development of models to support customer order acceptance decisions and (ii) to
increase insight into the benefits of using regression modelling techniques to support
these decisions in multipurpose batch process industries with random order arrivals
and stochastic processing times.

We pursued these goals by elaborating on the following research questions:

1. How do aggregate regression models perform compared with detailed scheduling
models, when used to support order acceptance decisions in settings with random
order arrivals and processing times?

2. Can the strengths of both aggregate regression-based policies and detailed scheduling-
based policies be combined in an improved order acceptance policy?

3. To what extent can regression analysis be used if only limited historical data is
available?

In the following subsections we summarize our conclusions regarding these questions.
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8.1.1 Aggregate versus detailed scheduling information

To provide the answer to the first research question, we performed a simulation study
and we compared the performance of two order acceptance policies under a wide range
of experimental conditions. The first policy, called the regression policy, uses aggre-
gate information by means of regression techniques to estimate the actual makespan
of an order set. The second policy, called the scheduling policy, uses detailed informa-
tion by means of simulated annealing techniques and an empirically determined slack
factor to estimate the actual makespan of an order set. The slack is added in order to
cope with the processing times uncertainty. Under both policies, orders are accepted
as long as the estimated makespan does not exceed the length of the planning period,
with a pre-specified probability. These two policies were compared with respect to (i)
the realized capacity utilization and (ii) the ability to effectively meet the customer
requirements.

Our simulation study showed that, in situations with low job mix variety, the schedul-
ing policy performs better. More precisely, this policy determines job sets that result
in higher capacity utilization values and in a delivery performance closer to the pre-
specified target. In cases with high product mix variety, however, the regression
policy manages to determine job sets that result in a delivery performance closer to
the pre-specified target and smaller job set tardiness than the scheduling policy. The
scheduling policy, however, reaches higher capacity utilization.

The first research contribution of this thesis is that it provides insight into the behavior
of both aggregate information- and detailed scheduling-based policies under stochastic
production conditions. Comparison among order acceptance policies shows that de-
tailed scheduling information at the order acceptance level remains valuable, also un-
der stochastic production conditions. The beneficial effects of using detailed schedul-
ing information for supporting order acceptance decisions has been previously estab-
lished for deterministic production conditions (see e.g. Wester et al., 1994; Ten Kate,
1994; Raaymakers et al., 2000b). This is to be expected, since, in a deterministic
production situation, the schedule constructed upon order acceptance and used to
support the acceptance decision is the exact representation of what will be realized
later by the production department. However, in a highly stochastic environment
one may expect the performance of the scheduling policy to be highly affected by
the uncertainty in the processing times, since the ex ante schedule constructed upon
order acceptance is not anymore an exact representation of the future status of the
production system. This expectation is confirmed by the results of our simulation
study in situations with high variation in the job mix. In those situations, and espe-
cially when the arrival rate is high, the scheduling policy tends to selectively accept
orders that ”fit in” with the orders already accepted. The result is a tight schedule
that maximize resource utilization. However, this selectiveness is detrimental to the
delivery reliability. The experiments in Chapter 5 showed that this weakness is due
to the fact that by being selective, the scheduling policy significantly changes the
mix of jobs in the accepted job sets - compared to the job sets on which the slack is
originally determined. Consequently, the empirically determined slack that is added
into the system is not sufficient to cope with the uncertainty in the processing times.
Information on the current job mix is therefore required when determining the slack.
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8.1.2 Combining scheduling and regression techniques

The second research question was: ”Can the strengths of both aggregate regression-
based policies and detailed scheduling-based policies be combined in an improved
order acceptance policy?”. We showed in Chapter 5 that a detailed scheduling-based
order acceptance policy contribute to performance in that it can capture the con-
sequences that a typical combination of orders have on the makespan of an order
set and in that it develops tight schedules that result in high levels of capacity uti-
lization. However, this tightness proved to be detrimental for the delivery reliability.
Recall that this policy is using simulated annealing techniques to estimate the ex ante
makespan and adds a slack to this value to cope with processing time uncertainty.
This slack is determined by estimating the probability distribution function of the
makespan increase due to stochastic processing times. It takes into consideration
the level of processing time uncertainty that is expected, but it does not explicitly
consider other job set characteristics.

The analysis we performed in Chapter 5 showed that this slack underestimates the
effect of the schedule’s tightness on the actual makespan under stochastic produc-
tion conditions, as the current mix of jobs significantly changes from the job sets on
which the slack has been originally determined. We conjectured that information on
the current job mix is required when determining the slack in order to obtain high
levels of delivery performance. We therefore investigated the relationship between
the makespan increase due to stochastic processing times and the following order set
characteristics:

• workload balance of resource types,

• average number of processing steps per job in the job set,

• average overlap of processing steps in the job set,

• expected processing times variation in the job set,

• number of jobs in the job set,

• squared coefficient of variation of the processing times.

Computer experiments showed that the amount of slack needed in the system can
be accurately estimated by regression models using these aggregate job set charac-
teristics. This insight led us to develop a new order acceptance policy, called the
hybrid policy, that combines detailed scheduling and regression models to estimate
the makespan of an order set.

To answer our second research question, we performed a simulation study to inves-
tigate the performance of the hybrid policy for a wide range of customer order and
production system scenarios. We also compared its performance with the performance
of the regression and the scheduling policies. Simulation results presented in Chap-
ter 6 showed that the hybrid policy significantly improved the delivery performance
measure, outperforming both the scheduling policy and the regression policy. Being
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the least selective policy, the hybrid policy manages to determine job sets that result
in a delivery performance very close to the pre-specified target, without loosing much
of the beneficial effect of using detailed scheduling information on utilization.

As mentioned in Section 1.4, when designing a new order acceptance policy we are
also interested in the robustness of this policy - besides its ability to improve system
performance. The results of our experiments showed that, with respect to deliv-
ery performance, the hybrid policy is fairly robust and captures the effects of the
demand/capacity ratio, job mix variety, or workload balance differences quite well.
However, in situations with low job mix variety the hybrid policy tends to be more
responsive to variations in the processing time uncertainty, resulting in over- or under-
compensation. We conjectured that production situations with these characteristics
(i.e., a low variety in the product mix and different levels of processing time uncer-
tainty) had little impact on the determination of the regression parameter values, so
they may not be adequately described by the predictive model. This was confirmed
by the simulation results in Section 6.3.4, which showed that using different regres-
sion models developed for different regions of the parameter space results in better
delivery reliability performance than the use of a single model, valid for the entire
parameter space.

Summarizing, another research contribution of this thesis is that we provide an order
acceptance policy that allows jobs to be accepted such that it provides control over
delivery performance. This new order acceptance policy combines the strengths of
both the scheduling policy and the regression policy, and corrects for the weakness of
the scheduling policy that has been uncovered by the analysis in Chapter 5 and that
was discussed in the previous section.

8.1.3 Limited data problem

The third research question concerns the problem of identifying to what extent it is
possible to use regression analysis to support order acceptance decisions when only
limited data is available. In Chapters 4 and 6 we developed two order acceptance
policies that use regression analysis and that have been tested extensively through
computer simulation. Such simulation basically allows a virtually unlimited variety of
job sets to be explored to determine the coefficients of the regression models. Appli-
cation of such models in real life assumes that sufficient historical data on customer
orders and the production system is available, to estimate these regression coefficients
with acceptable accuracy. However, in real life, there may be a small amount of his-
torical data available; this may not always be sufficient to produce good parameter
estimates. We therefore investigated first to what extent limited availability of histor-
ical data impacts the performance of an order acceptance policy that uses a regression
model.

The results of our simulation study showed that this impact is substantial. Regarding
the ability to effectively meet customer requirements, the models developed with
limited data realize the poorest performance. These results lead to the conclusion
that application of regression models to support order acceptance decisions in real life
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situations may be jeopardized if limited historical data are available. To overcome this
problem, we proposed a bootstrap procedure. Our procedure re-samples the original
set of accepted jobs, to generate additional job sets with similar characteristics as the
observed historical data.

We evaluated the performance of our bootstrap method by means of simulation ex-
periments. The results showed that the bootstrap method significantly improves per-
formance. Another important result is that the bootstrap regression policy (i.e. the
regression policy that uses parameter estimates based on the original construction
data set augmented with the bootstrap job sets) reaches capacity utilization levels
close to those of a regression policy that uses a very large historical data to estimate
its parameters.

8.1.4 General conclusion

A general conclusion of this thesis is that, in order to improve performance in a
hierarchical planning and scheduling framework, it is essential that the higher level
decision makers can accurately estimate the performance of the lower level decision
function. This is in line with the concept of anticipation introduced by Schneeweiß
(1999), who presented a hierarchical planning framework that consists of two levels
interacting with each other: the top level and the base level. Three different stages
of interdependencies may be distinguished. Firstly, the top level makes some decision
implying an instruction that is given to the base level. Secondly, the base level may
react to this instruction so that replanning at the top level is kicked off. Thirdly,
before giving its instruction, the top level takes into account the base level’s relevant
characteristics and anticipates the base level’s reaction by either implicitly or explicitly
modelling the behavior of the base level in the top level’s model; this is called the
anticipated base model. de Kok & Fransoo (2003) have further discussed the various
types of anticipation that may exist. In general, the anticipated base model can be
constructed by aggregating information and/or aggregating the base level model itself.

In this thesis, we focussed on models that estimate the production output that can be
realized by the production system per planning period. We conclude that to control
delivery performance in a stochastic environment, such an estimate of the production
output should combine detailed scheduling and aggregate regression techniques.

8.2 Future research

8.2.1 Assumptions revisited

In Chapter 2 we justified the assumptions we made to limit the size of this research
project. These assumptions, however, had an impact on developing the order ac-
ceptance policies. Therefore, some comments are needed on the application of these
policies in other areas of research and in industrial practice. The following assump-
tions are considered:
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• independent planning periods,

• single job per customer order,

• strict no-wait restrictions,

• the same Erlang shape parameter for all the processing steps in the job set, and

• specific scheduling algorithm.

First, we assumed that jobs are allocated to planning periods. At the start and at
the end of each planning period, the production system is assumed to be empty.
This is the case if production is not performed round-the-clock, i.e. no production is
carried out during weekends. In this case, all jobs are completed before the end of the
week. When constructing a schedule, start-up and close-down losses occur for each
planning period. These losses are expected to be acceptable if planning periods are
long relative to the processing time of the jobs. However, if production is performed
round-the-clock, these losses may be avoided by considering continuous time instead
of time buckets at the resource allocation (or scheduling) level. In that case, planning
periods may still be used at the order acceptance level, but the coefficients of the
estimation models may need to be adapted to reflect the realized production output.
Furthermore, we assumed that the planning periods are independent. Nevertheless,
due to the stochastic processing times, both lateness and earliness may occur. When
jobs are not completed within their assigned planning period, they require capacity
from the next planning period. Earliness, in contrast, causes idleness, and thus a
waste of capacity. In this case, idle time can be utilized by jobs from the next period.
The models we developed can still be used in the multi-period case, but again, they
have to be adapted to reflect the realized production output.

Second, we assumed that each customer order results in exactly one job. Hence,
there are no precedence relations between jobs allocated to a planning period. In
industrial practice, however, a number of subsequent operations has to be carried
out to produce a product, which means that a customer order may result in several
consecutive jobs. We may still use the estimation models in that situation simply by
allocating at most one job in a routing to a specific planning period. In that case,
there are still no precedence relations between the jobs allocated to the same period.
Consequently, the minimal throughput time of a customer order is as many periods
as there are jobs resulting from the customer order, e.g. a customer order consisting
of four consecutive jobs has at least a throughput time of four periods. The choice of
the length of the planning periods then determines the minimal throughput time of a
customer order. However, long planning periods result in high work-in-process (WIP)
inventories. Alternatively, more than one job related to the same customer order may
be allocated to the same planning period. In that situation, the scheduling algorithm
should also meet the precedence relations between the jobs in a job set. This reduces
the scheduling flexibility and may affect the production output realized. This should
be reflected in the coefficients of the regression models.

Thirdly, we assumed that processing steps of a job have strict no-wait restrictions. In
industrial practice, sometimes a limited waiting time is allowed. The situation with
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strict no-wait restrictions is a worst-case situation. This means that in real life, the
estimation models based on strict no-wait restrictions may give a pessimistic estimate
of the workload and job mix that can be realized per planning period. It may be
preferred to obtain estimation models with coefficients tailored to a specific situation.
In addition to the six job set characteristics we considered in this thesis, we may then
need another variable that represents the waiting time flexibility. Further research is
required to investigate the effects of limited waiting time among the processing steps.

Fourthly, we assumed the same Erlang shape parameter for all the processing steps
in the job set; in other words, we assumed that the level of uncertainty in the pro-
cessing times is independent of the type of resource used to execute the processing
steps. In industry, however, different resource types may result in different levels of
processing time uncertainty. In that case, the estimation models may still be used,
but further research is required to determine how the squared coefficient of variation
of the processing times regressor should incorporate this aspect.

Finally, we assumed that the allocation of jobs to resources is done by a specific
scheduling algorithm. Namely, we used a simulated annealing algorithm developed
by Raaymakers & Hoogeveen (2000). The use of a different algorithm for the resource
allocation decision function may require a different regression model at the order ac-
ceptance level. This is also the case for flowtime estimation in discrete manufacturing
where the due-date prediction capabilities of the due-date assignment rules are af-
fected by the different dispatching rules used at the shop floor (Chang, 1997). In this
thesis, we employed a predictive-reactive scheduling approach in which a schedule is
generated to optimize some performance measures (minimizing the makespan in our
case) based on job completion times without considering possible disruptions at the
shop floor. When the schedule released to the shop floor quickly becomes infeasible
due to the dynamic nature of the production floor, it is modified (rescheduled) to re-
store feasibility. We used the ”right-shifting” rescheduling procedure for this purpose
- which is the simplest and fastest kind of rescheduling. While generally all heuristics
and algorithms generate schedules that require rescheduling when feasibility can no
longer be maintained, a robust schedule is of most practical use as simpler scheduling
adjustments are then required. The robustness of a schedule refers to its ability to
perform well under different operational environments including dynamic and uncer-
tain conditions (Dooley & Mahmoodi, 1992). Significant research on the robustness
of a schedule is due to Leon et al. (1994) and Daniels & Kouvelis (1995). Further
research is required to investigate the effect of a robust scheduling algorithm on the
performance of order acceptance policies.

8.2.2 Suggestions for further research

An interesting research topic that may follow this research is the use of regression
analysis to support order acceptance and capacity loading decisions in other types
of systems than the one considered in this thesis. Estimating the production output
that can be realized with the available capacity is a complex problem if the level
of interaction between jobs and resources and between jobs themselves is high. In
capacity loading decisions in traditional job shops, queuing models are widely used
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to assist the decision maker (Buzacott & Shantikumar, 1993). However, while the
results of queueing analysis can often be used for simple production systems, the
power of queuing models decreases as production complexity increases. In addition,
research on traditional job shops disregards the behavior of the jobs between two
consecutive operations, i.e. it assumes that intermediate buffers (or storages) have
infinite capacity and that jobs can be stored for an unlimited amount of time. In
practice, there are many examples of industrial settings in which buffer capacity
has to be taken into account, at least at some stages of the production process.
Moreover, there may be limits on the amount of time that a job can spend in a buffer
between two consecutive operations. These additional constraints on work-in-process
and intermediate inventories further complicates the capacity estimation problem,
and offers increased opportunity for using regression modelling.

As we mentioned in Section 3.2, regression analysis has been previously used in job
shops, for due date assignment. In this literature, the flow time of a single job is
estimated based on some job and production system characteristics, in order to set
due dates. Also, the use of the flow time estimation error to set more reliable due dates
is considered in the due date assignment literature (Enns, 1993, 1994; Lawrence, 1995).
In this literature, however, estimates are made for single jobs. With respect to a set
of jobs, only the workload and the number of jobs are considered. The estimation
models discussed in this thesis, may be used to determine flow time estimates for
a set of jobs. This may give better capacity estimates when the job mix changes
considerably over time. However, further research is required to investigate how our
regression models may be adapted for job shop environments with no-wait or blocking
constraints.

Order acceptance is concerned with accepting or rejecting customer orders such that
the goals of the management are met as much as possible. In this thesis, we developed
models to support order acceptance decisions based on the availability of capacity
to produce the orders before their requested due date. However, as mentioned in
Chapter 1, there are some other important aspects for the order acceptance problem
that we did not consider. The first is the capability to manufacture the ordered
product. The resources in the production facility all have their (interdependent)
technological capabilities that together determine the ’aggregate capability’ of the
production facility. These capabilities primarily determine the make or buy decision
regarding the whole product or some parts of the ordered product. If some product
parts or processing steps are subcontracted, this will generally increase the delivery
time of the ordered product. Therefore, next to the availability of the resources, the
external process like subcontracting, transport and material acquisition should also
be considered to determine the possible delivery time of an ordered product. Another
aspect of order acceptance concerns the costs and revenues that result from accepting
the order. Setting the price of an order is often limited due to competition. However,
the relation between the price and the delivery time should receive more attention in
the near future. A number of production situations are characterized by the fact that
customers are willing to pay more for short lead times while, at the same time, there
are penalties for late deliveries.

The job mix has a considerable impact on both capacity utilization and delivery per-
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formance that can be realized. We developed regression models that only help the
decision makers to estimate if a certain job set can be completed within a certain
period. It does not directly indicate how a certain job mix contributes to actual ca-
pacity utilization or delivery performance. However, a decision maker may use this
knowledge of the relations between job set characteristics and system performance
measures to determine an adequate (optimal) job mix. A typical manufacturer in
batch process industries runs various plants in order to serve the international mar-
kets. Moreover, it is common that a product can be produced in more than one plant.
Knowledge about an adequate job mix that gives (near) optimal performance may
be valuable in (re)designing the entire production network. For instance, orders that
may disturb the optimal job mix for one plant may be produced by other plants.





Appendix A

Simulated annealing
algorithm

In this appendix, we discuss how the simulated annealing algorithm (SA) developed
by Raaymakers & Hoogeveen (2000) is used in our experiments; we refer to their
publication for details on SA. An overview of the SA algorithm is given in Figure A.1.

Raaymakers & Hoogeveen (2000) proved that the best scheduling solution results
from repeating the algorithm several times. However, the variations in the quality
of the scheduling solutions may have consequences for the quality of the estimation
model. Therefore, we run the algorithm three times, each time with a different initial
schedule, and we consider the best solution out of the three runs.

Experiments in Raaymakers & Hoogeveen (2000) showed that the dispatching rules
largest-number-of-processing-steps-first (LNP), bottleneck (BNCK), and largest-total-
processing-times-first (LTPT) give the best initial solutions. Therefore, we used these
three dispatching rules to generate the initial schedules. Furthermore, the SA’s so
called cooling parameters are set as follows. The initial temperature depends on
the size of the jobs. Since the temperature determines the probability of accepting
a deterioration of the makespan, it is expected that large jobs give rise to a larger
absolute deterioration of the makespan than small jobs. In order to have a reasonable
acceptance probability for all job sets, we set the initial temperature equal to the
average workload of a single job in a job set.

In our experiments, we chose to lower the temperature after each iteration, to limit the
computational time. The algorithm stops when the minimal temperature reaches 1,
when we find a makespan equal to the lower bound, or when all neighboring solutions
are rejected.
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Figure A.1: Overview of SA algorithm (from: Raaymakers 1999)
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Appendix B

Derivation of squared
coefficient of variation of
actual processing times

B.1 No variation in expected processing times

Assume that all the processing steps in the job set J have the same expected processing
times, i.e. E[Pij ] = c, i = 1, ..., sj and j = 1, ..., nJ . The processing times are then
determined by drawing a random variable from an Erlang distribution with mean
c and shape parameter k. So, the squared coefficient of variation for the effective
processing times is:

cv2
p =

1
k

(B.1)

according to the properties of an Erlang distributed random variable.

B.2 Variation in expected processing times

Assume that each processing step may be different and may have a different expected
processing time E[Pij ]. We modelled this by considering E[Pij ] as a random variable
uniformly distributed U(a, b). The processing times are determined by drawing a
random variable X, Erlang distributed with mean E[pij ] and shape parameter k.
In the following we compute the density function and the first two moments of the
resulting processing time. We can then compute the squared coefficient of variation
(which is used in the regression model).
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f(t) =
k

b− a

k

a∫

k

b

t
(ωt)k−2

(k − 1)!
e−ωtdω. (B.3)

Through the substitution ωt = s we arrive at the following formula for the density
function of the processing time:
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The first two moments can now be derived straightforwardly:
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knowing that
∞∫
0

sk

k!
e−sds = 1 (see the properties of the gamma function).

The second moment is computed according to the well known formula:

V ar[X] = E[X2]− (E[X])2 (B.6)

where in our case we have
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So, we have then the following formula for the second moment:
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Thus, the squared coefficient of variation is:
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Appendix C

Residual analysis

C.1 Interaction margin models

Figure C.1: Residual plots, model A

(a) before transformation (b) after transformation
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Figure C.2: Residual plots, model D

(a) before transformation (b) after transformation

Figure C.3: Residual plots, model E

(a) before transformation (b) after transformation
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C.2 Slack factor estimation model

Figure C.4: Residual plots, slack factor estimation model

(a) before transformation (b) after transformation

C.3 Limited data case

Figure C.5: Residual plot, limited data case
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Figure C.5: Residual plot, limited data case (continued)
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(c) Model Regr50
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(e) Model Regr150
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(f) Model Regr175
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Appendix D

Results for t-test

For each of the sixteen scenarios, Table D.1 gives the t-statistic of the one-sample
t-test we performed to detect if the mean differences observed in Tables 5.1 and
6.1 are significantly different from zero. The t-statistic is computed by dividing the
mean difference (given in tables 5.1 and 6.1) by the standard error of the sampling
distribution of differences (not presented here). A mean difference in Tables 5.1 and
6.1 is significantly different from zero at 95% confidence level if the corresponding
absolute value of the t-statistic in Table D.1 is larger than the critical value 2.145.

Table D.1: One-sample t-test results (df = 14)

Scenario µarr
p − µpolicy

p µarr
g − µpolicy

g µarr
s − µpolicy

s

Regr Sched Hybrid Regr Sched Hybrid Regr Sched Hybrid
1 19.66 17.73 4.07 -16.37 -14.12 -1.98 19.27 18.78 2.87
2 18.79 13.84 4.32 -10.61 -10.94 -5.61 19.65 15.08 3.97
3 14.37 4.66 4.06 -12.01 -4.99 -3.24 14.57 4.50 3.39
4 10.88 14.03 3.78 -8.63 -12.33 -3.22 12.16 16.03 3.39
5 -1.14 0.63 0.26 0.17 0.04 -0.34 -0.93 0.38 0.27
6 -1.21 2.18 0.60 -0.17 0.65 0.62 -0.79 1.70 0.51
7 -1.54 0.49 -0.10 -0.07 0.44 0.17 -1.11 0.04 -0.06
8 -0.89 2.18 0.78 -0.65 -0.19 -0.02 -0.69 1.69 0.97
9 10.66 8.77 9.75 -7.41 -5.98 -2.71 9.60 8.15 7.12
10 7.67 5.01 3.60 -5.79 -4.90 -1.87 7.68 5.42 3.40
11 10.27 9.37 8.48 -7.25 -5.26 -2.24 8.96 9.22 6.79
12 7.19 7.69 6.22 -4.58 -5.94 -3.69 6.68 6.95 5.46
13 0.00 2.84 3.16 -0.89 -0.82 -0.75 -0.04 2.28 1.82
14 2.51 3.22 3.73 -0.70 0.20 -0.38 1.71 2.56 2.88
15 1.86 0.35 1.06 -1.28 -0.71 -1.49 0.31 1.65 0.86
16 1.77 4.16 3.33 -0.74 -1.30 -0.46 2.05 3.14 2.63
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114 D. Results for t-test

We present in Table D.2 the results of the paired t-test we performed to detect signif-
icant statistical differences between d(xarr,xsched) and d(xarr, xregr), d(xarr,xregr)
and d(xarr,xhybrid), and d(xarr,xsched) and d(xarr,xhybrid).

Table D.2: Paired sample t-test results

Scenario df t-statistic
Sched vs. Regr Regr vs. Hybrid Sched vs. Hybrid

1 14 -1.947 7.782∗ 6.444∗

2 14 -5.024∗ 4.952∗ 2.813∗

3 14 -0.646 4.524∗ 3.873∗

4 14 -0.753 3.647∗ 3.236∗

9 14 -1.546 3.724∗ 2.689∗

10 14 -2.291∗ 3.584∗ 1.025
11 14 0.113 3.318∗ 3.045∗

12 14 -1.127 1.699 0.084
∗ significant at 95% confidence level, where t-critical=2.145



Appendix E

Results regression models

E.1 Interaction margin estimation models

Table E.1: Results anova for the interaction margin estimation model A

SS df MS F P-val
regression 2981.414 6 496.902 43342.071 0.000
residual 914.227 79743 0.011
total 3895.641 79749

Table E.2: Coefficients interaction margin estimation model A

B st.dev. B t P-val. 95% conf. interval VIF
Intercept -1.984 0.009 -210.854 0.000 [-2.003,-1.966]
µs 0.111 0.001 99.586 0.000 [ 0.109, 0.113] 1.13
µg -0.130 0.010 -12.604 0.000 [-0.150,-0.110] 1.15
cv2

E[p] -0.883 0.004 -208.429 0.000 [-0.891,-0.875] 2.23
cv2

p 0.911 0.003 347.897 0.000 [ 0.906, 0.916] 2.20
ρmax 1.466 0.005 282.278 0.000 [ 1.456, 1.477] 1.11
nJ -0.003 0.000 -79.485 0.000 [-0.003,-0.003] 1.04
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Figure E.1: Residual histogram, interaction margin estimation model A
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E.2 Slack factor estimation model

Table E.3: Results anova for the slack factor estimation model

SS df MS F P-val
regression 8016.678 6 1336.113 25600.107 0.000
residual 4161.922 79743 0.052
total 12178.600 79749

Table E.4: Coefficients slack factor estimation model

B st.dev. B t P-val. 95% conf. interval VIF
Intercept -1.720 0.020 -85.683 0.000 [-1.760,-1.681]
µs -0.095 0.002 -40.017 0.000 [-0.100,-0.090] 1.13
µg -0.077 0.022 -3.492 0.000 [-0.120,-0.034] 1.15
cv2

E[p] -2.134 0.009 -236.045 0.000 [-2.152,-2.116] 2.23
cv2

p 2.116 0.006 378.713 0.000 [ 2.105, 2.127] 2.20
ρmax 0.178 0.011 16.028 0.000 [ 0.156, 0.199] 1.11
nJ 0.003 0.000 49.104 0.000 [ 0.003, 0.004] 1.04
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Figure E.2: Residual histogram, slack factor estimation model
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E.3 Specific models

Table E.5: Results anova for specific models

SS df MS F P-val
Interaction margin regression 655.181 6 109.197 13326.414 0.000
estimation model residual 159.726 19493 0.008

total 814.907 19499
Slack factor regression 1862.169 6 310.362 7684.941 0.000
estimation model residual 787.238 19493 0.040

total 2649.407 19499

Table E.6: Coefficients interaction margin specific estimation model

B st.dev. B t P-val. 95% conf. interval VIF
Intercept -1.586 0.027 -58.357 0.000 [-1.639,-1.533]
µs 0.060 0.003 17.937 0.000 [ 0.054, 0.067] 1.02
µg -0.294 0.026 -11.494 0.000 [-0.345,-0.244] 1.08
cv2

E[p] -3.080 0.188 -16.361 0.000 [-3.449,-2.711] 1.05
cv2

p 1.007 0.005 190.243 0.000 [ 0.997, 1.018] 1.06
ρmax 1.589 0.008 204.967 0.000 [ 1.573, 1.604] 1.01
nJ -0.003 0.000 -51.739 0.000 [-0.003,-0.003] 1.05
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Table E.7: Coefficients slack factor specific estimation model

B st.dev. B t P-val. 95% conf. interval VIF
Intercept -1.987 0.060 -32.943 0.000 [-2.106,-1.869]
µs -0.156 0.007 -20.906 0.000 [-0.171,-0.142] 1.02
µg 0.263 0.057 4.621 0.000 [ 0.151, 0.374] 1.08
cv2

E[p] 4.747 0.418 11.356 0.000 [ 3.927, 5.566] 1.05
cv2

p 2.460 0.012 209.214 0.000 [ 2.437, 2.483] 1.06
ρmax 0.188 0.017 10.914 0.000 [ 0.154, 0.222] 1.01
nJ 0.002 0.000 16.361 0.000 [ 0.002, 0.002] 1.05

Figure E.3: Residual histogram, specific models
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E.4 Limited data case

Table E.8: Results anova, limited data case

SS df MS F P-val
Regr12 regression 0.124 4 0.031 16.218 0.001

residual 0.013 7 0.002
total 0.137 11

Regr25 regression 0.485 4 0.121 28.457 0.000
residual 0.085 20 0.004
total 0.570 24

Regr50 regression 0.721 4 0.180 46.663 0.000
residual 0.174 45 0.004
total 0.895 49

Regr100 regression 2.059 4 0.515 137.854 0.000
residual 0.355 95 0.004
total 2.413 99

Regr150 regression 2.690 4 0.672 144.469 0.000
residual 0.675 145 0.005
total 3.365 149

Regr175 regression 3.366 4 0.842 179.231 0.000
residual 0.798 170 0.005
total 4.164 174

Regr512 regression 8.718 4 2.180 471.024 0.000
residual 2.346 507 0.005
total 11.064 511

Regrb regression 8.519 4 2.130 426.109 0.000
residual 2.534 507 0.005
total 11.052 511

Table E.9: Coefficients model Regr12

B st.dev. B t P-val. 95% conf. interval VIF
Intercept -0.277 0.794 -0.349 0.737 [-2.155,1.600]
µs 0.010 0.044 0.229 0.826 [-0.094,0.114] 2.26
µg -0.766 0.437 -1.754 0.123 [-1.799,0.267] 2.09
cv2

E[p] -1.637 0.862 -1.899 0.099 [-3.675,0.401] 1.15
ρmax 3.209 0.478 6.717 0.000 [ 2.079,4.339] 1.05
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Table E.10: Coefficients model Regr25

B st.dev. B t P-val. 95% conf. interval VIF
Intercept -1.707 0.457 -3.738 0.001 [-2.659,-0.754]
µs 0.121 0.034 3.616 0.002 [ 0.051, 0.192] 1.29
µg -0.025 0.424 -0.059 0.954 [-0.910, 0.860] 1.18
cv2

E[p] 0.842 0.441 1.912 0.070 [-0.077, 1.762] 1.07
ρmax 2.722 0.332 8.198 0.000 [ 2.029, 3.414] 1.18

Table E.11: Coefficients model Regr50

B st.dev. B t P-val. 95% conf. interval VIF
Intercept -0.896 0.301 -2.981 0.005 [-1.501,-0.290]
µs 0.117 0.022 5.337 0.000 [ 0.073, 0.161] 1.27
µg 0.110 0.280 0.394 0.696 [-0.454, 0.674] 1.25
cv2

E[p] -0.418 0.311 -1.343 0.186 [-1.046, 0.209] 1.01
ρmax 2.209 0.191 11.567 0.000 [ 1.824, 2.593] 1.02

Table E.12: Coefficients model Regr100

B st.dev. B t P-val. 95% conf. interval VIF
Intercept -1.575 0.176 -8.791 0.000 [-1.923,-1.226]
µs 0.136 0.015 9.087 0.000 [ 0.106, 0.166] 1.24
µg 0.287 0.185 1.549 0.125 [-0.081, 0.655] 1.18
cv2

E[p] 0.407 0.193 2.110 0.037 [ 0.024, 0.789] 1.03
ρmax 2.443 0.132 18.552 0.000 [ 2.181, 2.704] 1.06

Table E.13: Coefficients model Regr150

B st.dev. B t P-val. 95% conf. interval VIF
Intercept -1.469 0.163 -8.999 0.000 [-1.792,-1.147]
µs 0.116 0.013 9.215 0.000 [ 0.091, 0.141] 1.23
µg 0.177 0.167 1.064 0.289 [-0.152, 0.506] 1.23
cv2

E[p] 0.406 0.173 2.348 0.020 [ 0.064, 0.747] 1.05
ρmax 2.515 0.123 20.463 0.000 [ 2.272, 2.757] 1.03

Table E.14: Coefficients model Regr175

B st.dev. B t P-val. 95% conf. interval VIF
Intercept -1.278 0.161 -7.934 0.000 [-1.596,-0.960]
µs 0.133 0.012 10.846 0.000 [ 0.109, 0.157] 1.32
µg 0.347 0.165 2.112 0.036 [ 0.023, 0.672] 1.27
cv2

E[p] -0.269 0.167 -1.609 0.110 [-0.599, 0.061] 1.03
ρmax 2.340 0.109 21.454 0.000 [ 2.125, 2.556] 1.05
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Table E.15: Coefficients model Regr512

B st.dev. B t P-val. 95% conf. interval VIF
Intercept -1.425 0.092 -15.478 0.000 [-1.605,-1.244]
µs 0.130 0.007 18.214 0.000 [ 0.116, 0.144] 1.22
µg 0.337 0.086 3.915 0.000 [ 0.168, 0.506] 1.20
cv2

E[p] 0.087 0.096 0.902 0.367 [-0.102, 0.276] 1.01
ρmax 2.402 0.065 36.874 0.000 [ 2.274, 2.530] 1.01

Table E.16: Coefficients model Regrb

B st.dev. B t P-val. 95% conf. interval VIF
Intercept -1.441 0.105 -13.689 0.000 [-1.648,-1.234]
µs 0.133 0.008 15.925 0.000 [ 0.117, 0.150] 1.40
µg 0.491 0.094 5.203 0.000 [ 0.306, 0.676] 1.40
cv2

E[p] 0.036 0.088 0.412 0.681 [-0.137, 0.209] 1.00
ρmax 2.353 0.063 37.216 0.000 [ 2.229, 2.478] 1.00

Figure E.4: Residual histogram, limited data case
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Figure E.4: Residual histogram, limited data case (continued)
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(d) Model Regr100
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(e) Model Regr150
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(f) Model Regr175
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(g) Model Regr512
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Appendix F

Workload-based rule

In this appendix we present the workload-based rule used in Chapter 7 to generate the
historical data base. Under this rule, orders are accepted to be executed in a specific
planning period as long as the total workload does not exceed a specified maximum
total workload and the workload per resource type does not exceed the available
capacity per resource type. The available capacity is computed as the number of
resources in the production system multiplied by the length of the planning period.
Consequently, an order is accepted as long as the following conditions are met for the
resulting job set J :

nJ∑

j=1

sj∑

i=1

E[Pij ] ≤ (1− τ) ·N · T (F.1)

and

∀m :
nJ∑

j=1

∑

i∈Pm

E[Pij ] ≤ nm · T (F.2)

where Pm gives set of processing steps that need to be executed on resource type
m, and τ ( 0 ≤ τ < 1) is the safety parameter that determines the maximum total
workload allowed and takes into consideration the processing times uncertainty. This
parameter τ is computed from the construction data set as follows:

τ = 1− 1
ncons

JS × nrepl
·

ncons
JS∑

J=1

nrepl∑
r=1

nJ∑
j=1

sj∑
i=1

pij

N · Cmax,r(SJ )
(F.3)

where for each job set J , Cmax,r(SJ) denotes the realized (ex post) makespan corre-
sponding to the r’s replication. We obtained τ = 0.62.
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Summary

The subject of this thesis is customer order acceptance in batch process industries.
Batch process industries produce a large variety of products that follow different
routings through a production department. Differences exist between products with
regard to the number and duration of the required processing steps. In that respect,
they resemble traditional job shops. However, an important difference with traditional
job shops is the existence of no-wait restrictions between consecutive processing steps.
These no-wait restrictions are caused by unstable intermediate products.

The demand volume for individual products is low and highly variable. As a result,
the capacity requirements and the mix of jobs vary considerably over time. Also,
different resources may become the bottleneck at different moments in time. One of
the main difficulties in production planning of batch process industries is to determine
the part of the available capacity that can be used effectively for production. Due
to high capital investments in resources and a need for a highly skilled labor force,
the available capacity is generally fixed on the medium term. Therefore, if total
demand exceeds the available capacity, approaches such as capacity expansion or
deploying overtime are not feasible for this type of industry. Hence, it becomes
necessary to smooth the capacity requirements to meet the available capacity. This
may be done by carefully assessing which orders to accept and how to allocate the
available capacity to the accepted orders. The main objective of this thesis is to
contribute to the development of models to support on-line order acceptance decisions
in complex environments such as batch process industries.

Order acceptance policies discussed in the literature are either based on aggregate
information or on detailed scheduling information. Most papers on order acceptance
consider the single resource case with deterministic processing times. The production
situation in batch process industries is, however, considerably more complex. More-
over, in most real life production situations, processing times are uncertain at the
moment the acceptance/rejection decision has to be made. In this thesis, we extend
previous work by developing order acceptance policies that incorporate processing
time uncertainty.

We model a make-to-order environment comprised of a single batch chemical produc-
tion department with multiple resources and limited capacity. We address the order
acceptance problem in a hierarchical planning and scheduling framework consisting
of two levels. At the first level (the order acceptance level) there is the planner who
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accepts or rejects orders that are requested by the market for delivery at the end
of a specific planning period. The order acceptance decision is an on-line decision
and is based on the availability of sufficient capacity to complete the order before its
exogenously determined due date. At the second level (the resource allocation level)
there is the scheduler who allocates the processing steps of a job (the accepted order)
to specific resources and determines the exact sequence and timing of the (planned)
execution of the processing steps on the resources. The objective of the order accep-
tance level is to determine order sets for each planning period that are achievable and
realize high capacity utilization. An order set is ”achievable” if, at the second level,
a schedule can be constructed in which all orders are completed before the end of the
planning period, i.e. their due date.

When developing order acceptance policies, it is essential to know whether an order
set is likely to be completed within the allocated planning period. In other words,
the models used to support order acceptance decisions should accurately estimate the
maximum completion time (or makespan) of a particular set of orders. The maximum
completion time of order sets is influenced by the workload and the order mix. We
identify six aggregate characteristics of the order set that influence the makespan.
These characteristics are: (1) workload balance of resource types, (2) average number
of processing steps per job in the job set, (3) average overlap of processing steps in
the job set, (4) expected processing times variation in the job set, (5) number of
jobs in the job set, (6) squared coefficient of variation of the processing times. We
use these characteristics, in addition to the workload, to estimate the makespan of
a given order set. With the aim to achieve a target service level for the order set
(defined as the probability of on-time order set completion), say α, we use regression
analysis to develop models that provide an α-reliable estimate for the makespan of
the order set. Our order acceptance policy, called the regression policy, then accepts
orders as long as this estimate does not exceed the length of the planning period.

In this thesis, we compare this regression policy with another method commonly used
in the literature and in practice. This policy, called the scheduling policy, accepts
orders based on a detailed schedule that is constructed every time an order arrives.
The schedule is constructed with a simulated annealing algorithm. Given that we
consider a stochastic environment, a slack is to be added to account for the processing
time uncertainty. The slack is determined by estimating the probability distribution
function of the makespan increase due to stochastic processing times. This slack is a
static parameter that takes into consideration the level of processing time uncertainty,
but it does not explicitly consider other order set characteristics.

We test the two policies under a wide range of experimental conditions (scenarios)
characterized by variations in order arrival rate, order mix variety, shop balance, and
level of uncertainty in the processing times. Our simulation results show that, for
scenarios with low order mix variety, the scheduling policy performs better. More
precisely, this policy determines job sets that result in higher capacity utilization and
a delivery performance that comes closer to the target. This policy, however, is time
consuming as it accepts orders based on a detailed schedule constructed every time
an order arrives. In scenarios with high order mix variety, while the scheduling policy
maintains high capacity utilization values, the delivery performance deteriorates. This
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is especially evident for scenarios with high arrival rate. In these cases, the scheduling
policy tends to selectively accept orders that ”fit in” with the orders already accepted.
The result is a tight schedule that maximizes resource utilization. This selectiveness,
however, is detrimental to the delivery reliability. This weakness is due to the fact
that by being selective, the scheduling policy significantly changes the mix of jobs
in the accepted job sets, compared with the job sets on which the slack is originally
determined. Consequently, this slack is not sufficient to cope with the uncertainty
in the processing times. In these scenarios, however, the regression policy manages
to determine job sets that result in a delivery performance closer to the target and
obtains much smaller job set tardiness than the scheduling policy.

We conclude that detailed scheduling information at the order acceptance level is
valuable. However, our analysis shows that adding a fixed slack to cope with the
effects of processing time uncertainty is not sufficient to maintain high levels of delivery
performance. Rather, the ability to estimate the slack accurately must be looked at
in conjunction with the characteristics of the job set. We therefore investigate the
statistical relationship between the makespan increase due to stochastic processing
times and the order set characteristics used by the regression policy. Simulation
experiments show that the required slack can be accurately estimated by using these
aggregate order set characteristics.

This insight leads us to develop a new order acceptance policy, called the hybrid
policy. This policy combines detailed scheduling and regression models for the slack
estimation. By using regression analysis we dynamically adjust the size of the slack as
the job mix in the job set changes. We investigate the performance of this policy for
a wide range of customer order and production system scenarios. We also compare it
with the performance of the scheduling policy. Our results show that the hybrid policy
may be successfully used to determine job sets that result in a delivery performance
very close to the target, without loosing the benefits of selectivity on utilization. This
is an important result as we provide an order acceptance policy that, by correcting
for the weakness of the scheduling policy, allows jobs to be accepted in a manner that
provides control over delivery performance.

The order acceptance policies we developed have been tested extensively in various
experimental settings using computer simulation. This basically allows a virtually
unlimited variety of shops and job sets to be explored to estimate the coefficients of
the regression models. Application of such models in a real life situation assumes
that sufficient historical data (regarding customer orders and the production system)
is available to estimate these coefficients with acceptable accuracy. However, in real
life, there may be only a limited amount of historical data available; this may not
always be sufficient to produce good regression estimates. We therefore investigate to
what extent limited data impacts the performance of an acceptance procedure that
uses a regression model. We investigate only the regression policy and the scheduling
policy under the limited data case. Our simulation study shows that, with respect
to the ability of effectively meeting the customer requirements, the models developed
with limited data realize the poorest performance. These results lead to the conclusion
that application of regression models to support order acceptance decisions in real life
situations may be jeopardized if limited historical data is available. To overcome this



128 Summary

problem, we develop a procedure based on the bootstrap principle. The bootstrap is a
computer-based method for measuring the accuracy of statistical estimates. It implies
re-sampling - with replacement - of a given (limited) sample of i.i.d. observations.
In this thesis, we use such re-sampling to generate additional data (namely order
sets) with the right mixture of variety across the order sets and characteristics similar
to the observed historical data. We again assess the performance of our bootstrap
method by means of simulation experiments. The results show that the bootstrap
method gives significant performance improvements for both the regression policy and
the scheduling policy.

The findings of this thesis increase our understanding of how statistics, and in particu-
lar linear regression models, can be useful in operational planning decisions. Statistical
models have an advantage over queuing models, since the former can be applied in set-
tings where the complexity is more than can be captured by the latter. Furthermore,
since we show that only a limited amount of data is needed, statistical models can
be used in settings that change rather frequently. Combining statistical models with
detailed scheduling has an advantage over classical detailed scheduling models, since
we demonstrated that the former can better capture the effects of processing time
uncertainty than the latter, which would typically address this problem by adding an
average slack. We expect that the insight developed in this thesis will assist further
developing of applications of regression analysis in operations planning, for instance
in standard job shops with constraints on intermediate storage.



Samenvatting

Het onderwerp van dit proefschrift is klantorderacceptatie in de batchprocesindustrie.
De batchprocesindustrie produceert een grote variëteit aan producten die verschillende
routes door een productieafdeling volgen. Produkten verschillen in aantal en tijdsduur
van de benodigde bewerkingen. In dat opzicht bestaat er een grote overeenkomst met
klassieke job shops. Echter, een belangrijk verschil met de klassieke job shops is
de aanwezigheid van wachttijdrestricties tussen opeenvolgende bewerkingen. Deze
wachttijdrestricties worden veroorzaakt door instabiele halffabrikaten, waardoor het
in bepaalde situaties noodzakelijk is om bewerkingen direct na elkaar uit te voeren.

De vraag naar individuele producten is laag en varieert sterk in de tijd. Hierdoor
varieert de capaciteitsbehoefte en de mix van productie-orders sterk. Bovendien is
niet altijd hetzelfde productiemiddel de bottleneck. Een van de grote problemen
bij de productieplanning van productie-afdelingen in de batchprocesindustrie is het
bepalen welk deel van de aanwezige productie-capaciteit kan worden benut voor pro-
ductie. Vanwege de hoge investeringskosten in productiemiddelen en het hoge oplei-
dingsniveau van het personeel is de beschikbare capaciteit al vastgelegd op de mid-
dellange termijn. Daarom zullen maatregelen zoals capaciteitsuitbreiding van pro-
ductiemiddelen en van personeel wanneer de totale vraag de beschikbare capaciteit
overschrijdt niet haalbaar zijn voor dit type industrie. Dus is het noodzakelijk om
de gevraagde capaciteit aan te passen aan de beschikbare capaciteit. Dit kan bereikt
worden door zorgvuldig te beoordelen welke orders er geaccepteerd kunnen worden
in een tijdsperiode en hoe de beschikbare capaciteit moet worden ingezet voor de
geaccepteerde orders. Het doel van dit proefschrift is om bij te dragen aan de kennis
voor de ontwikkeling van modellen die on-line de klantorderacceptatiebeslissingen in
dergelijke complexe productieomgevingen ondersteunen.

Orderacceptatiemethoden die in de literatuur worden besproken zijn gebaseerd op
aggregaatinformatie of op detailplanningsinformatie. De meeste artikelen over order-
acceptatie gaan over situaties met slechts één productiemiddel met deterministische
bewerkingstijden. De productiesituatie in de batchprocesindustrie is echter com-
plexer. Voorts zijn in de meeste werkelijke situaties de bewerkingstijden niet met
zekerheid bekend op het moment dat de acceptatie/weigerbeslissing genomen moet
worden. In dit proefschrift breiden we het eerdere werk uit door orderacceptatie-
methoden te ontwikkelen die rekening houden met onzekerheid in bewerkingstijden.

We modelleren een make-to-order omgeving die bestaat uit een chemische produc-
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tieafdeling die in individuele batches produceert met meerdere productiemiddelen
en een beperkte capaciteit. We positioneren het orderacceptatieprobleem in een
hiërarchisch planning- en schedulingmodel bestaande uit twee niveaus. Op het eerste
niveau (het orderacceptatieniveau) accepteert of weigert een planner orders die geleverd
moeten worden aan het einde van de volgende planningperiode. De orderaccep-
tatiebeslissing is een on-line beslissing die gebaseerd is op de beschikbaarheid van vol-
doende capaciteit om de order, te samen met de reeds eerder geaccepterde orders, af te
ronden binnen de gestelde termijn. Op het tweede niveau (het detailplanningsniveau
waar de individuele batches worden toegewezen aan de productiemiddelen) wijst een
detailplanner elke processtap van een geaccepteerde order toe aan specifieke produc-
tiemiddelen en bepaalt hij de exacte volgorde en tijden van de geplande uitvoering.
Het doel van het orderacceptatieniveau is om voor elke planningsperiode verzamelin-
gen van orders samen te stellen die haalbaar zijn en die een hoge bezettingsgraad
kunnen realiseren. Een verzameling van orders is ”haalbaar” wanneer op het tweede
niveau een detailplan geconstrueerd kan worden waarin alle orders afgerond zijn voor
het einde van de planningperiode, de leverdatum.

Bij het ontwikkelen van orderacceptatiemethoden is het dus essentieel om te weten
of van een verzameling orders te verwachten is of deze uitgevoerd kan worden binnen
de daarvoor gereserveerde periode. Met andere woorden, de modellen die gebruikt
worden om de orderacceptatiebeslissingen te ondersteunen moeten met een zekere be-
trouwbaarheid de verwerkingstijd van een bepaalde verzameling van productieorders
kunnen schatten. De verwerkingstijd van een verzamelings van orders wordt bëınvloed
door de werklast en de ordermix. We identificeren zes aggregaatkarakteristieken van
de verzameling orders die de verwerkingstijd benvloeden. Deze karakteristieken zijn:
(1) de werklastbalans over de typen productiemiddelen, (2) het gemiddelde aantal
bewerkingen per productieorder in de verzameling orders, (3) de gemiddelde overlap
tussen bewerkingen van productieorders, (4) de verwachte bewerkingstijdvariatie in
de verzameling orders, (5) het aantal productieorders in de verzameling, en (6) het
kwadraat van de variatiecoëfficiënt van de werkelijke bewerkingstijden. We gebruiken
deze karakteristieken, in aanvulling op de werklast, om de makespan (het tijdstip
waarop de allerlaatste order is verwerkt) van een gegeven verzameling orders te schat-
ten. Ons doel is om een bepaalde leverbetrouwbaarheid, aangeduid met α, te bereiken
voor een geaccepteerde verzameling orders (gedefinieerd als de waarschijnlijkheid om
een verzameling orders op tijd af te ronden). We gebruiken regressie-analyse om
modellen te ontwikkelen die voorzien in een een α-betrouwbaarheid schatting voor de
werkelijke makespan van de verzameling orders. Gebaseerd op deze schatting wor-
den orders geaccepteerd zolang de schatting van de makespan niet de lengte van de
planningperiode overschrijdt.

In dit proefschrift vergelijken we deze regressiemethode met een methode die karakter-
istiek is voor methoden die vaak gebruikt worden in de literatuur en de praktijk. Deze
methode, die we aan zullen duiden als de detailplanningsmethode, accepteert orders
gebaseerd op een detailplan dat elke keer wordt geconstrueerd met een simulated an-
nealing algoritme. Gegeven dat we rekening houden met een stochastische omgeving,
moet er speling worden toegevoegd om rekening te houden met onzekerheid in de be-
werkingstijden. De speling is gebaseerd op een schatting van de kansverdelingsfunctie
van de verlenging van de makespan die wordt veroorzaakt door de stochastische be-
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werkingstijden. Deze speling is een statische parameter die rekening houdt met de
onzekerheid in de bewerkingstijden maar niet expliciet met andere karakteristieken
van de verzameling orders.

De twee methoden zijn door middel van simulatie intensief getoetst voor een groot
aantal scenario’s, gekarakteriseerd door variaties in de vraag/capaciteitsratio, de or-
dermixvariëteit, de werklastbalans en het niveau van onzekerheid in de bewerkings-
tijden. Onze simulatieresultaten laten zien dat in situaties met een lage variëteit in de
ordermix, de detailsplanningsmethode het beste presteert. Deze methode stelt verza-
melingen van orders samen die resulteren in een hogere bezettingsgraad en een betere
leverprestatie. Echter, de detailplanningsmethode is rekenintensief omdat het orders
accepteert gebaseerd op een detailplan dat telkens opnieuw wordt gemaakt wanneer
een order aankomt. In het scenario met een hoge variëteit in de ordermix houdt de
detailplanningsmethode de bezettingsgraad op hetzelfde hoge niveau, terwijl de le-
verprestatie vermindert. Dit effect treedt het sterkst op bij scenario’s met een hoge
capaciteitbehoefte. In deze scenario’s heeft de detailplanningsmethode de neiging om
selectief orders te accepteren die goed passen bij de al eerder geaccepteerde orders.
Het resultaat is een krap detailplan dat productiemiddelen maximaal benut. Deze
selectiviteit is echter schadelijk voor de leverprestatie. Deze schadelijkheid wordt
veroorzaakt vanwege het feit dat door selectief te zijn, de detailplanningsmethode
de mix van orders significant verandert ten opzichte van de verzamelingen van orders
waarvoor de speling oorspronkelijk was bepaald. Daarom is de aldus bepaalde speling
niet geschikt. In deze scenario’s leidt het gebruik van de regressiemethode daarente-
gen tot orderverzamelingen die resulteren in een leverprestatie die dicht bij het van te
voren gespecificeerde doel komen en tot een veel kleinere orderverzamelingstardiness
dan de detailplanningsmethode.

De resultaten van onze simulatiestudie laten zien dat de detailplanningsinformatie
bij de orderacceptatiebeslissing zeer nuttig is. Echter, onze analyse laat zien dat
het gebruiken van een vaste speling om met de effecten van onzekerheid in de be-
werkingstijden om te gaan, niet voldoende is om een hoge leverprestatie te bereiken.
Blijkbaar moet bij het schatten van de speling nauwkeurig rekening worden gehouden
met de karakteristieken van die verzameling orders. Daarom onderzoeken we de statis-
tische relatie tussen de toename in de makespan (veroorzaakt door de stochastische
bewerkingstijden) en de karakteristieken van de geaccepteerde verzameling orders.
Simulatie-experimenten laten zien dat de benodigde speling nauwkeurig kan worden
bepaald door deze te bereken op aggregaatkarakteristieken van de verzameling orders.

Dit inzicht leidt tot de ontwikkeling van een nieuwe orderacceptatiemethode, de hy-
bride methode. Deze hybride methode combineert detailplanning en regressiemo-
dellen om een schatting te maken van de benodigde speling. Door regressie-analyse
te gebruiken, passen we dynamisch de grootte van de speling aan wanneer de order
mix in de verzameling orders verandert. De prestatie van deze hybride methode is
onderzocht voor een breed scala aan klantorder- en productiesysteemscenario’s en
vergeleken met de prestatie van de detailplanningsmethode. Onze resultaten laten
zien dat de hybride methode zeer succesvol is in het samenstellen van verzamelingen
orders die resulteren in een hoge leverprestatie, zonder de voordelen te verliezen van
selectiviteit tijdens het gebruik. Dit is een belangrijk resultaat, omdat we zo een or-
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deracceptatiemethode hebben ontwikkeld die, door een van de zwakke eigenschappen
van de detailplanningsmethode te corrigeren, orders accepteert op een manier die de
leverprestatie beheerst.

De orderacceptatiemethoden die we ontwikkeld hebben zijn uitgebreid getoetst on-
der diverse experimentele situaties door middel van computersimulatie. Dit maakt
het mogelijk een zeer grote variëteit van productie-afdelingen en verzamelingen van
orders te gebruiken voor het schatten van de coëfficiënten van de regressiemodellen.
Toepassing van dergelijke modellen in de werkelijkheid gaat er vanuit dat voldoende
historische informatie beschikbaar is om met een voldoende nauwkeurigheid deze
coëfficiënten te schatten. Echter, in werkelijkheid kan het zijn dat er slechts een
beperkte hoeveelheid relevante historische informatie beschikbaar is; dit kan onvol-
doende zijn om goede regressieschattingen te produceren. We onderzoeken daarom
in hoeverre beperkte beschikbaarheid van historische informatie invloed heeft op
de prestatie van een orderacceptatiemethode gebaseerd op een regressiemodel. We
beperkten ons tot alleen de regressiemethode en de detailplanningsmethode onder
de beperkte gegevensbeschikbaarheid. We ontdekken dat, wat betreft het vermogen
om effectief aan de klanteisen tegemoet te komen, de modellen die ontwikkeld zijn
voor het geval van een beperkte gegevensbeschikbaarheid, resulteren in de slechtste
prestatie. Deze resultaten leiden tot de conclusie dat de toepassing van regressie-
modellen om orderacceptatiebeslissingen in realistische situaties te ondersteunen, in
gevaar kan worden gebracht wanneer slechts beperkte historische informatie beschik-
baar is. Om dit probleem aan te pakken, ontwikkelen we een procedure op basis
van het bootstrap-principe. Het bootstrap-principe houdt in dat met een gegeven
beperkte hoeveelheid gegevens nieuwe gegevensverzamelingen worden gevormd door
trekking met teruglegging. In dit proefschrift gebruiken we re-sampling om additionele
informatie (verzamelingen van productieorders) te genereren met de juiste mix van
variteit over de orderverzamelingen en met de karakteristieken vergelijkbaar met die
van de waargenomen historische informatie. We onderzoeken de prestatie van onze
bootstrapmethode door middel van simulatie-experimenten. De resultaten laten zien
dat door onze bootstrapmethode te gebruiken, significante prestatieverbeteringen te
behalen zijn voor zowel de regressiemethode als de detailplanningsmethode.

De bevindingen van dit proefschrift dragen bij aan onze kennis over hoe statistische
methoden, in het bijzonder lineaire regressiemodellen, gebruikt kunnen worden in
operationele planningsbeslissingen. Statistische modellen hebben een voordeel ten
opzichte van analytische (wachtrij, detailplanning) modellen aangezien statistische
modellen toegepast kunnen worden in omgevingen waar de complexiteit zo groot is
dat het gebruiken van analytische methoden alléén niet werkt. We laten bovendien
zien dat slechts een beperkte hoeveelheid historische informatie nodig is; statistische
modellen kunnen dus ook gebruikt worden in omgevingen die vrij regelmatig veran-
deren. Statistische modellen blijken goed gecombineerd te kunnen worden met ana-
lytische methoden (detailplanning). We verwachten dat de inzichten die ontwikkeld
zijn in dit proefschrift kunnen leiden tot de verdere ontwikkeling bij het gebruik van
regressiemethoden in operationele planning, bijvoorbeeld in standaard jobshops met
tussenopslagbeperkingen.
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I

By selecting orders under a capacity constraint in order to optimize some
objective function, the mix of orders may change in such a way that the
model underlying the selection mechanism is no longer valid.
[this thesis, chapter 5]

II

Using the output of deterministic scheduling models - with expected job
durations as input - for planning purposes may cause low service level if pro-
cessing times are stochastic [V. Portougal and D. Trietsch, 2001]. To achieve
an appropriate service level, we have to include safety time (or slack) into
the schedule. We claim that major gains in delivery performance measure
may be obtained by dynamically adjusting the size of the slack as the job
mix changes.
[V. Portougal and D. Trietsch, Stochastic scheduling with optimal customer
service, Journal of Operational Research Society, 52: 226-233, 2001; this
thesis, chapter 6]

III

There exists a trade-off between model robustness and performance. Using a
single predictive model that covers all the variants of production situations
may lead to a robust order acceptance policy, but the resulting policy may
perform poorly in certain regions of the parameters space.
[M.M. Vig and K.J. Dooley, Mixing static and dynamic flowtime estimates for
due-date assignment, Journal of Operations Management, 11: 67-79, 1993;
this thesis, chapter 6]

IV

The planning and control performance that can be obtained with the use
of a regression model depends on the quality of the regression model, which
in turn depends on the amount of data available for estimating the model.
Many real life production situations are dynamic in terms of characteristics
of product, production processes and resource configurations. As a result,
only recent data are relevant for the future, which severely limits the amount
of data available for developing the model. The lack of data problem may be
solved by intelligent application of bootstrapping techniques.
[this thesis, chapter 7]



V

Through the use of enterprise information systems, organizations record
nowadays an increasing amount of operational data. This offers increased
opportunities for using statistical methods not only for measuring and mon-
itoring purposes but also to model complex causal relationships to further
improve the planning and control of production processes.

VI

For research purposes, if one is not willing to ”sacrifice details and idiosyn-
cracies for the sake of perceiving the broader picture” all one may hope for is
a perfect replica of the real-world, which provides at most the same insights
that the real-world itself could provide.
[M.L. Whicker and L. Sigelman, Computer simulation applications, an intro-
duction, Applied Social Research Methods Series, Vol. 25, Sage Publications,
Newbury Park, 1991]

VII

When doing research, finding the right question is the first step to finding
the right answer.

VIII

All of life is an experiment. The more experiments you do, the better.
[Ralph Waldo Emerson, 1803-1882]

IX

What participating in the Olympic Games means for a sportsman, is pub-
lishing in Management Science for an OR/MS researcher.

X

For a successful PhD defense like for winning a fencing bout, all one needs is
a strong parry and a fast riposte.

XI

If the sun shines after two cold, rainy days, it is probably Monday.
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