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Scope and Purpose---In a recent paper. Slotnick and Morton introduce a problem of job selection in a heavily 
loaded shop. The problem is both practically relevant and theoretically interesting. As Slotnick and Morton point 
out, this kind of problems have just begun to receive attention in the research literature. For the problem at hand. 
Slotnick and Morton provide several algorithms (one exact and two approximate). They, however, do not 
establish the complexity status of the problem; nor do they provide any exact algorithm that is formally efficient 
or any approximate algorithm that guarantees performance within a specified bound. In this note, we attempt to 
address some of these unresolved issues. 

Abstract--Recently, Slotnick and Morton address a job selection problem in a heavily loaded shop, where a 
tradeoff is sought between the reward obtained when a job is accepted for processing and the lateness penalty 
incurred when such a job is actually delivered. They provide a branch and bound algorithm and a couple of 
heuristics for the problem's solution. They do not;however, resolve the issue of problem complexity. In this note. 
we first establish that the problem is NP-hard. We then go on to provide two pseudo-polynomial time algorithms 
which also show that the problem is solvable in polynomial time if either the job processing times or the job 
weights for the lateness penalty are equal. We further provide a fully polynomial time approximation scheme 
which always generates a solution within a specified percentage of the optimal. Copyright © 1997 Elsevier 
Science Ltd 

1. INTRODUCTION 

In a recent  paper, Slotnick and Morton [ l] introduce a problem o f  selecting jobs in a heavi ly  loaded shop, 
where  there is a reward for accepting a job  for processing but  also a lateness penalty associated with the 
delivery o f  an accepted job.  The idea is to find a suitable tradeoff by  selecting a subset  o f  the available 
jobs  (and subsequent ly  sequencing them) that maximizes the net profit. Slotnick and Morton  [1] 
e loquent ly  advocate the practical relevance o f  the problem and just i fy  the part icular variat ion studied by 
them. They  also point  to the emerging literature on job selection and related problems;  they refer, among  
others, to the earlier works  o f  Pourbabai  [2,3], Woodruff  [4] and Wester et al. [5]. At tent ion should be 
drawn as wel l  to the work  of  De et al. [6] which, as we shall see in the sequel, provides a significant lead 
to the problem's  effective solution. 

The S lo tn ick-Mor ton  vers ion of  the job  selection problem [1] can be formally described as follows. 
Let N be the index set o f n  jobs  numbered  1 through n that are ready at t ime 0 for  processing on  a single 
machine  which  is cont inuous ly  available. Associated with each job  i in N, there are its processing time 
Pi, its due-date d;, a reward o f  r i i f  it is accepted for processing and a weight o f  wl for its lateness penalty. 
Assume  at this point ,  wi thout  loss o f  generality, that all parameters are integers. Now, letting S be a subset  
o f  N, o-a  sequence o f  the jobs  in S and ci the complet ion t ime o f  job  i in S as sequenced in o-, define 
z(S,o') =Zips [ri - wi ( c i -  d~)]. The objective is to find a legitimate (S, tr) pair  which  maximizes  z(', '). It is 
easy to see that in order to achieve this objective we need not  consider the possibili t ies o f  machine  idle 
t ime be tween  jobs  and job  preemption.  In other words, the j ob  sequence alone is sufficient to identify the 
schedule. 

Slotnick and Morton [1] propose a branch and bound  algori thm which finds the exact optimal solut ion 
in 0 ( 2  n) time. They  also present  a beam-search heuristic and a myopic  heuristic which find approximate 
solut ions (without any guarantees about  their closeness to the optimal) in O(n 4) and O(n 2) times, 
respectively. But  they do not  resolve the ques t ion whether their j ob  selection problem is NP-hard  or not. 

In this note, we address the issues that are s imul taneously  o f  theoretical and practical interest. First, 
we prove that the Slo tn ick-Morton version o f  the job  selection problem [1] is NP-hard [7]. Next,  we 
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propose two dynamic programs that produce the exact solution to the problem in O ( n Z ~ N p ~ ) a n d  
O(nZ~Nw ~) times, both of which are pseudo-polynomial. This shows that the problem is NP-hard only in 
the ordinary sense (and is thus solvable efficiently if the Pi or the w~ are agreeable) and also that it can 
be solved in O(n 2) time if either the p; or the w~ are all equal. We go on to propose a fully polynomial 
time approximation scheme [7] which delivers in O(n2/e) time a solution to the problem, that is 
guaranteed to have a value within 100E percent of the optimum. Finally, we conclude with some closing 
remarks. 

2. S O L U T I O N  P R O P E R T I E S  AND C O M P L E X I T Y  

The first property is rather obvious and stated informally by Slotnick and Morton [1]. 

Property 1. Given a chosen subset S, the associated optimal sequence o-processes the jobs in S according 
to the weighted shortest processing time first (WSPT) order. 

Because of Property 1, it is possible to represent the pair (S,o-) by S alone and write z(S,o-) as simply 
z(S). We will also assume from now on that the jobs in N are numbered such that p,/w~ <-... <-pflw,,. 

The second property is similar to one in De e t  al. [6] and excludes choices of S that are clearly 
suboptimal. 

Property 2. Given a chosen subset S optimally sequenced, S cannot be optimal if it includes a job i for 
which ri + wid i - wp l  - wi(Ej~sj<Pj) - (Ej~sj>iwj) pi--<0. 

The third property is a restatement of Theorem 1 of Slotnick and Morton [1] and identifies jobs that 
will be included in an optimal subset; 

Property 3. Given that all jobs are optimally sequenced, job i will be included in an optimal subset if 
z(N)>--z(N - {i}). 

The fourth property is in a sense the opposite of Property 3 and identifies jobs that will not be included 
in any optimal subset. Its proof follows from a straightforward extension of the arguments used in 
proving Property 2. 

Property 4. Job i will not be included in any optimal subset if ri+wid i - wdai<-O. 

Remark  1. We may assume, without loss of generality, that neither Property 3 nor Property 4 applies to 
the job set N. This leads to a problem instance of full dimension n. Also, this guarantees that the problem 
instance does not yield a trivial solution given by the null set, where the maximum of z(') equals 0. Notice 
that it can be checked, through Property 4, in O(n) time whether an instance has a trivial solution. 

Having stated the basic solution properties, we are now ready to prove that the Slotnick-Morton job 
selection problem [1] is NP-hard [7]. 

Result 1. The Slotnick-Morton job selection problem is NP-hard. 
We use a reduction from the well-known Partit ion problem [7]: given a set N of indexes 1 through n 

and a set of integers { ai:i E N},  is there a subset S of N such that Zi,sa~= Z ~ N - s  a~= ½ b, where Zion a~= b? 
This problem is NP-complete. 

From this instance of Partition, we can create an instance of the Slotnick-Morton job selection 
problem as follows. For all i ~ N ,  set pi=w~=ai, and either set r~=0 and di=½ (b+a~) or set r~=5 (b+ai) al 
and de=0. This is obviously accomplished in polynomial time and space. Now, consider the associated 
decision problem: given a job set as above, is there a subset S and an optimal (i.e. WSPT) sequence of 
the jobs in S such that z(S)>-l/8 b2? We claim that this decision problem has a solution if and only if 
Partit ion has a solution. 

To see that the claim is correct, notice that pJw~= 1 for all i e N  and thus that the jobs can be sequenced 
in any order in an optimal subset. Notice further that, for any subset S of N, we get after some algebra: 

1 1 
z(S)=5 b (Z~s ai) - 5 (Y~i~S a~) 2. It is not difficult to see at this juncture that z(S) takes on its maximum 
value (= 1/8 b 2) if and only if Z~ ~s a~ = ½ b, i.e. if and only if Partit ion has a solution. This proves the claim. 
Noting now that the decision problem can easily be shown to be in NP, it immediately follows that it is 
NP-complete. The associated optimization problem (viz. the Slotnick-Morton job selection problem) is 
therefore NP-hard. 

Remark  2. A couple of points deserve to be mentioned. Because of the special way in which we have 
constructed the problem instance used in the proof given above, it should be clear that the total weighted 
lateness problem in the job selection context (i.e., the Slotnick-Morton problem with the reward ri set 
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equal to 0) is NP-hard as well. Similarly, it should be clear that another variation of the Slotnick-Morton 
problem, where a leadtime penalty (which is based exclusively on c~ and is obtained by setting di=0 for 
all i E N in the Slotnick-Morton objective function) is imposed in place of  the lateness penalty, is also NP- 
hard. 

3. EXACT AND APPROXIMATE ALGORITHMS 

We now provide two dynamic programming algorithms for the exact solution of  the Slotnick-Morton 
job selection problem. We also provide a fully polynomial time approximation scheme which guarantees 
a solution with a value within 100e percent of the optimum, where e is prespecified. These algorithms 
are developed along lines of  and are structurally quite similar to those presented by De et al. [6] for the 
solution of  a different job selection problem. 

Let S be a chosen subset in which the jobs are sequenced optimally (i.e. in the WSPT order). Assume 
that S is partitioned into subsets F and B such that any job in F precedes all jobs in B. The key to 
algorithm development is our ability to express z(S) as: z (S)=z(F)+z(B)  - 7r(F)w(B) where 7r(F)=Zi~Fp ~ 
and w(B)=EiE8 w~. We will use this expression (which is obtained through straightforward algebra) to 
derive the dominance rules for our dynamic programs. We now describe the dynamic programs in an 
enumerative form [8]. 

The first algorithm builds on an existing subset S by choosing to include or not include jobs with 
successively higher indexes and by placing the chosen jobs at the back of  the associated sequence o-. 
Thus, at the end of  stage k in our enumeration. S represents a subset of  the first k jobs in N. The following 
is a dominance rule that allows us to eliminate a subset from further consideration if there is another that 
promises to be at least as good. 

Rule 1. Given subsets S and S' at a stage such that z(S)>---z(S ') and 7r(S)<-zr(S'), retain only S for further 
expansion. 

The rule follows from the observation that if S and S' are identically completed, then under the stated 
condition S' cannot lead to a solution that is better than one obtained from S (the partitioning expression 
given above can be used to verify this). We can now outline the first dynamic program which we call DP_ 
E 

Algori thm DP_F:  

Step 1. Start with a null set. 
Step 2. For k= 1 through n: 

(a) From an existing subset S of  the first k - 1 jobs, create a new subset by adding job k to the 
back of  the jobs in S only if rk+wkdk -- wkPk -- w~er(S) >0 (cf. Property 2). 

(b) Use Rule 1 to retain only a minimal set of  nondominated subsets. 
Step 3. Identify an optimal subset and the associated sequence. 

In an actual implementation of  DP_F, a subset at stage k may implicitly be represented by a pair (z,~) 
augmented with an indication if job k is included in the subset or not. Note that the null set will be given 
by (0,0), and in Step 2(a) of  stage k the pair (z, zr) may give rise to a new pair (Z+rk+w~dk -- w~p~ -- wkqr, 
~-+pt). Let ~ be an upper bound on the maximum value of z at the end of  stage n. 

Result  2. Algorithm DP_F provides a correct solution in O(n min{ ~,~i~Np~})time. 

Algorithm DP_F enumerates over a completely representative set of all nondominated subsets of  N. It 
is thus guaranteed to produce an optimal solution at the end of the enumeration. The number of  active 
subsets, or equivalently (z, 70 pairs, retained at the end of  any stage is bounded by the number of  distinct 
z or ~r values possible which in turn are bounded by ~ and E;~N P~, respectively. Over n stages, this 
translates into the reported time (and space) complexity. 

R e m a r k  3. It should be clear that if the Pi are all equal, then the number of  distinct ~" values at any stage 
is bounded by n. The complexity of  the algorithm in this case thus becomes O(n2). 

We now turn to the second dynamic program which builds on an existing subset S by choosing to 
include Or not include jobs with successive lower indexes and by placing the chosen jobs in front of  the 
associated sequence o-. In this case, S at the end of stage k thus represents a subset of  the last k jobs in 
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N. We can now state an appropriate dominance rule for this case. 

Rule 2. Given subsets S and S' at a stage such that z(S)>--Z(S ') and w(S)<--w(S'), retain only S for further 
expansion. 

This rule can also be proved with the same kind of arguments used in the proof of  Rule 1. We outline 
below the second dynamic program called DP_B. 

Algorithm DP_B: 

Step 1. Start with a null set: 
Step 2. For k= 1 through n: 

(a) From an existing subset S of  the last k - 1 jobs, create a new subset by adding job n - k+ 1 
in front of  the jobs in S only if r,-k+~+W,,-k,~d,,-k+j--Wn-k+lPn-k+l- w(S)p,,-k+t>0 (cf 
Property 2). 

(b) Use Rule 2 to retain only a minimal set of  nondominated subsets. 
Step 3. Identify an optimal subset and the associated sequence. 

Algorithm DP_B is implemented similar to DP_F; only this time a subset is represented by the pair 
(z,w) which in Step 2(a) of  stage k may give rise to a new pair (z+rn_k+l+W,,_k+ld,_k+ l 

- -  W n _ k + l p n _ k +  1 - -  13~Pn_k+l,'~+Wn_k+l). 

.o .o , t  A,gorit m  ives a co e t solution in O(n min{    4time 
The correctness proof for DP_B is similar to that for DP_F. The number of  active subsets or (z,w) pairs 

at any stage in this case is determined by the number of  distinct z or xn values. This implies the reported 
complexity. 

Remark  4. When the wl are all equal, it is apparent that the number of distinct w values at any stage is 
bounded b y  n. This leads to an overall complexity of  O ( n  2) in this case also. 

Finally, we are ready to give the e-approximation scheme (call it DP_e) which uses the same 
enumeration framework as DP_F or DP_B but uses a different rule in Step 2(b); see [8] for examples of  
this kind of a scheme. Let ~, be the maximum z value observed during stage k of  the enumeration. Also, 
let e be the maximum permissible relative error. Assume that the interval [0,Tzk] is split into subintervals 
of  width dzk, where Az~= e~Jn. The following rule is used. 

Rule 3. At any stage of the enumeration, retain one subset with the minimum ~r (if using DP_F) or the 
minimum ~ (if using DP_B) from among those whose z value belong to the same interval. 

Result 4. Algorithm DP_e produces an e-approximate solution inO(n2/e) time. 
Since Rule 3 is an extension of Rule 1 or 2 (depending upon whether we are using DP_F or DP_B for 

the enumeration), it is easy to see that the maximum error introduced by it at stage k is limited to Azk. 
The error being additive over the stages, the total error due to DP_e in the worst case is N~_<~_<,,AZk (= e/n 
N~_<k-<,,Zk)" Let z" be the solution value delivered by the approximation scheme and z* be the optimal 
solution value. Since ~k---z* for k,l<--k<--n, we have: z* - z#<--e/n ~,l<_k<_nZk~E/n (n Z*)~EZ*. This implies that 
(z* - z~)/z *<- e as claimed. 

At stage k, the number of  subintervals and therefore the maximum number of active subsets is limited 

[ z k  ] ,  where Ix] stands for the smallest integer greater than or equal to x. From the definition of Az~., to /Azkl 

it follows that this number is O(n/e). Consequently, the overall complexity of DP_e is O(n2/e) as 
claimed. 

4 .  C O N C L U S I O N  

We have taken a second look at the job selection problem introduced by Slotnick and Morton [1 ] and 
have proved that the problem is NP-hard in the ordinary sense. We have also adapted the algorithms given 
by De et al. [6] for a different problem for the solution of the Slotnick-Morton problem. In particular, 
we have provided two pseudo-polynomial time dynamic programs that will be formally efficient when 
the job processing times or the job weights for the lateness penalty are agreeable. We have also provided 
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a ful ly po lynomia l  t ime approximat ion  scheme that wil l  a lways produce an e-opt imal  solut ion 

efficiently. 

Past exper ience  shows that, for n as large as 100, our dynamic  programs wil l  execute  within a few C P U  

seconds on a machine  such as the V A X  4000 provided  that the processing t imes and the weights  are 
reasonably  valued,  for example ,  when  they are independent ly  sampled f rom a discrete un i form 

distr ibution over  [1, p. 100]. Thus,  for real use or  for use as benchmarks  in heuristic testing, the dynamic  

programs proposed  here appear  to be quite attractive. 
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