
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

3-25-2010

Branch and Price Solution Approach for Order
Acceptance and Capacity Planning in Make-to-
Order Operations
Siddharth D. Mestry
Florida International University, smest001@fiu.edu

Martha A. Centeno
Florida International University, centeno@fiu.edu

Jose A. Faria
Florida International University, fariaj@fiu.edu

Purushothaman Damodaran
Northern Illinois University, pdamodaran@niu.edu

Chen Chin-Sheng
Florida International University, chenc@fiu.edu

Follow this and additional works at: http://digitalcommons.fiu.edu/etd

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Mestry, Siddharth D.; Centeno, Martha A.; Faria, Jose A.; Damodaran, Purushothaman; and Chin-Sheng, Chen, "Branch and Price
Solution Approach for Order Acceptance and Capacity Planning in Make-to-Order Operations" (2010). FIU Electronic Theses and
Dissertations. Paper 145.
http://digitalcommons.fiu.edu/etd/145

http://digitalcommons.fiu.edu?utm_source=digitalcommons.fiu.edu%2Fetd%2F145&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F145&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F145&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F145&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd/145?utm_source=digitalcommons.fiu.edu%2Fetd%2F145&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

BRANCH AND PRICE SOLUTION APPROACH

FOR ORDER ACCEPTANCE AND CAPACITY PLANNING

IN MAKE-TO-ORDER OPERATIONS

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

INDUSTRIAL AND SYSTEMS ENGINEERING

by

Siddharth D. Mestry

2010

ii

To: Dean Amir Mirmiran
 College of Engineering and Computing

This dissertation, written by Siddharth D. Mestry, and entitled Branch and Price Solution
Approach for Order Acceptance and Capacity Planning in Make-to-Order Operations,
having been approved in respect to style and intellectual content, is referred to you for
judgment.

We have read this dissertation and recommend that it be approved.

Martha A. Centeno

José A. Faria

Purushothaman Damodaran, Co-Major Professor

Chin-Sheng Chen, Co-Major Professor

Date of Defense: March 25, 2010

The dissertation of Siddharth D. Mestry is approved.

 Dean Amir Mirmiran

College of Engineering and Computing

Interim Dean Kevin O’Shea
University Graduate School

Florida International University, 2010

iii

© Copyright 2010 by Siddharth D. Mestry

All rights reserved

iv

DEDICATION

 I dedicate this dissertation to my wife Vrunda and to my parents for their

tremendous patience and understanding. Without their support, the completion of this

work would not have been possible.

And, to my son Arav for giving me the strength to push myself to the limits of my

capabilities and potential, to help me see the light at the end of the tunnel, to believe in

the future with all our dreams fulfilled.

v

ACKNOWLEDGMENTS

I am greatly indebted to Dr. Purush Damodaran for being an excellent academic

advisor, and a tremendous mentor. He has not only helped me in my scholastic pursuits

but has also given me valuable guidance in personal matters. I owe him this dissertation

and much more.

I would like to thank Dr. Chin-Sheng Chen for the confidence he showed in my

capabilities, for his practical insights and for sharing his limitless knowledge with me. I

will forever remember the discussions which we had in his office.

A special thanks to Dr. Martha Centeno for being an excellent teacher and for

inculcating in me the qualities to be one. I appreciate Dr. Jose Faria’s valuable inputs in

improving this Dissertation.

vi

ABSTRACT OF THE DISSERTATION

BRANCH AND PRICE SOLUTION APPROACH FOR ORDER ACCEPTANCE

AND CAPACITY PLANNING IN MAKE-TO-ORDER OPERATIONS

by

Siddharth D. Mestry

Florida International University, 2009

Miami, Florida

Professor Chin-Sheng Chen, Co-Major Professor

Professor Purushothaman Damodaran, Co-Major Professor

The increasing emphasis on mass customization, shortened product lifecycles,

synchronized supply chains, when coupled with advances in information system, is

driving most firms towards make-to-order (MTO) operations. Increasing global

competition, lower profit margins, and higher customer expectations force the MTO

firms to plan its capacity by managing the effective demand. The goal of this research

was to maximize the operational profits of a make-to-order operation by selectively

accepting incoming customer orders and simultaneously allocating capacity for them at

the sales stage.

For integrating the two decisions, a Mixed-Integer Linear Program (MILP) was

formulated which can aid an operations manager in an MTO environment to select a set

of potential customer orders such that all the selected orders are fulfilled by their

deadline. The proposed model combines order acceptance/rejection decision with detailed

scheduling. Experiments with the formulation indicate that for larger problem sizes, the

computational time required to determine an optimal solution is prohibitive. This

vii

formulation inherits a block diagonal structure, and can be decomposed into one or more

sub-problems (i.e. one sub-problem for each customer order) and a master problem by

applying Dantzig-Wolfe’s decomposition principles. To efficiently solve the original

MILP, an exact Branch-and-Price algorithm was successfully developed. Various

approximation algorithms were developed to further improve the runtime. Experiments

conducted unequivocally show the efficiency of these algorithms compared to a

commercial optimization solver.

The existing literature addresses the static order acceptance problem for a single machine

environment having regular capacity with an objective to maximize profits and a penalty

for tardiness. This dissertation has solved the order acceptance and capacity planning

problem for a job shop environment with multiple resources. Both regular and overtime

resources is considered.

The Branch-and-Price algorithms developed in this dissertation are faster and can be

incorporated in a decision support system which can be used on a daily basis to help

make intelligent decisions in a MTO operation.

viii

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION .. 1
1.1. Background ... 1
1.2. Research Problem.. 6
1.3. Research Objective.. 7
1.4. Significance of the Research Problem .. 10
1.5. Dissertation Structure .. 11

2. LITERATURE REVIEW ... 12
2.1. Order acceptance with dynamic arrivals ... 12
2.2. Order acceptance with static arrivals .. 17
2.3. Applications of column generation in scheduling ... 19
2.4. Summary ... 19

3. MATHEMATICAL FORMULATION .. 21
3.1. Problem characteristics ... 21
3.2. Assumptions .. 22
3.3. Mathematical model .. 22
3.4. “What-if” scenario analysis using the MTO formulation 27
3.5. Computational runtime analysis .. 34

4. BRANCH AND PRICE ALGORITHM ... 38
4.1. Theory of Branch-and-Price Algorithm .. 38
4.2. Decomposition of the MTO model ... 45
4.3. Solution approach for solving sub-problem .. 46
4.4. Greedy heuristic for initial solution to RMP ... 54
4.5. Branching in Branch and Price algorithm ... 55

4.5.1. Definition of an integer feasible solution to RMP 55
4.5.2. Branching strategies .. 58
4.5.3. Lagrangian bounds .. 61
4.5.4. Node Selection .. 63

4.6. Experimentation .. 64
4.6.1. Pilot experiment .. 65
4.6.2. Experimental setup.. 67
4.6.3. Solution quality of Branch and Price Algorithm .. 67

5. BRANCH AND PRICE HEURISTIC & APPROXIMATION ALGORITHMS......... 80
5.1. Branch and Price Strategy 2 (BPS2) ... 80
5.2. Approximation Algorithms for Branch & Price.. 82
5.3. Comparative Analysis ... 82

5.3.1. Comparing solution quality of BPS2 against BPS1 83

ix

6. CONCLUSIONS AND FUTURE WORK ... 91
6.1. Summary ... 91
6.2. Contributions & Significance .. 94
6.3. Future Work .. 95

LIST OF REFERENCES……………………………………………...………………… 98

APPENDICES…………………………………………………………………….…… 102

VITA………………………………………………………………………………....… 135

x

LIST OF TABLES

TABLE PAGE

Table 2-1. Summary of relevant research ... 20

Table 3-1. Experiment A to show the usefulness of the model .. 28

Table 3-2. Customer order data for Experiment A ... 28

Table 3-3. Data of resource cost for Experiment A .. 29

Table 3-4. Data for Experiment A extension .. 30

Table 3-5. Data for Experiment B ... 32

Table 3-6. Data for Experiment C (computational runtime analysis) 35

Table 4-1. Pilot Experiment .. 65

Table 4-2. Experiment D setup for assessing the quality of B&P Algorithm 67

Table 4-3. Number of optimal solutions obtained and relative gap 72

Table 4-4. BPS1 solution improvement over CPLEX .. 73

Table 4-5. Average runtime for CPLEX and BPS1 .. 75

Table 4-6. Time to Best Integer Solution for BPS1 (Experiment) 76

Table 4-7. Maximum number of times sub-problem solved ... 79

Table 4-8. Runtime analysis for sub-problem solution ... 79

Table 5-1. Results of the paired-t test ... 84

Table 5-2. Test for Equal Variances ... 84

Table 5-3. Improvement over CPLEX .. 85

Table 5-4. Runtime analysis of Branch and Price ... 86

Table 5-5. Reduction in runtime ... 87

xi

Table 5-6. Number of columns generated in B&P ... 89

Table 5-7. Size of branch and bound tree in B&P .. 90

xii

LIST OF FIGURES

FIGURE PAGE

Figure 1-1. Customer order process route for jobshop-MTO operation 9

Figure 1-2. Optimal production plan generated by the mathematical model 9

Figure 3-1. Constraint (3-8) with successive operations on the same resource 25

Figure 3-2. Constraint (3-8) with successive operations on different resources 26

Figure 3-3. Precedence constraint (3-9) .. 26

Figure 3-4. Gantt chart for Experiment A ... 29

Figure 3-5. Gantt chart for extension of Experiment A .. 30

Figure 3-6. Source utilization and selection of jobs ... 32

Figure 3-7. Optimal solution against utilization maximizing policy 33

Figure 3-8. Computation runtime to solve MTO mathematical model to optimality 36

Figure 4-1. Flowchart for the Branch and Price procedure .. 44

Figure 4-2. Decomposition of the MTO model (Block-Diagonal Structure) 45

Figure 4-3. Average time to solve sub-problem formulation for 3 job instances 47

Figure 4-4. Average time to solve sub-problem formulation for 5 job instances 48

Figure 4-5. General Directed Acyclic Graph representation of the sub-problem 50

Figure 4-6. Directed acyclic graph for sub-problem representation 52

Figure 4-7. Gantt chart for the schedule obtained from the convex combination 60

Figure 4-8. Branching strategy 1 (BPS1) .. 61

Figure 4-9. Summary of results for Pilot Experiment ... 66

Figure 4-10. Percentage gap between LP and column generation bounds 69

Figure 4-11. Time to reach root node in LP relaxation and column generation 70

xiii

Figure 4-12. Comparison of total time and time taken to find best integer solution 77

Figure 4-13. Comparative graphs of BPS1 with CPLEX ... 78

Figure 5-1. Branching in BPS2 ... 81

Figure 6-1. Average improvement in solution quality .. 93

Figure 6-2. Runtime for various solution approaches ... 94

xiv

LIST OF SYMBOLS

αj : Dual value of jth convexity constraint representing job j

brts : Number of hours resource r is available in source s of time period t

crs : Processing cost per hour of resource r in source s

dj : Due-date for job j

 : Precedence error length between operation o and o+1

 : Optimality tolerance used to prune branch and bound tree

J : Set of jobs

lts : Length of source s in time period t

 : Binary variable in the restricted master problem

Oj : Set of operations in job j

pjor : Processing time needed for completing operation o of job j on resource r

qj : Selling price of job j

R : Set of resources

S : Set of sources

T : Set of time periods

 : smallest time unit for which a operation has to be processed on a resource,

if processed at all

 : Convex combination of columns for job j

Uj : Binary decision variable indicating acceptance or rejection of job j

 : Capacity constraint dual value

Xjorts : Continuous decision variable for the number of hours operation o of job j is

xv

to be processed on resource r in source s of time period t

Yjorts : Binary decision variable indicating if operation o of job j is processed on

resource r in source s of time period t

 : Best upper bound of all the unexplored nodes in the branch and bound tree

for the restricted master problem

 : Objective function value of the jth sub-problem

 : Objective function value of the best known integer solution

 : Objective function value of the linear relaxation of the restricted master

problem

xvi

LIST OF ACRONYMS

BeFS : Best First Search

BPS1 : Branch and Price Strategy 1

BPS2 : Branch and Price Strategy 2

DC Ratio : Demand-to-Capacity Ratio

DFS : Depth First Search

dtu : Discretized time unit

MTO : Make-to-Order

MTS : Make-to-Stock

RMP : Restricted Master Problem

SP : Sub-Problem

1

1. INTRODUCTION

1.1. Background

Manufacturing systems are usually classified along two dimensions: 1) the internal

organization of the production system and 2) logistic product/market relations [1]. The

former is concerned with the internal structure of the manufacturing and assembly

system. The three basic structures are dedicated flow lines, job shops, and on-site

manufacturing. In dedicated flow lines, a number of operations have to be carried out on

every customer order following the same process route. Job shops on the other hand can

manufacture a broad spectrum of products, each product having its own process route.

On-site (or fixed location) manufacturing is one in which all the equipments have to be

moved to the product manufacturing location. Examples include bridge construction, ship

building, etc.

The second classification dimension (i.e. logistic product/market relations) is operational

policies for fulfilling customer orders. The three basic operational modes are: 1) make-to-

stock, 2) make-to-order, and 3) hybrid [2]. Make-to-stock (MTS) is a philosophy to fill

customer orders by stocking finished goods for immediate delivery. MTS is characterized

by high-volume production and is normally followed when the firms are product-focused

with relatively less component level customization. The second operational mode is

make-to-order (MTO). A MTO firm starts working on an order only after it has been

placed by the customer. This policy is advantageous when the end product is customer

specific, with high level of customization. This policy allows a high degree of flexibility

2

and the products manufactured are one-of-a-kind or in small batches. Typical examples

of MTO system include print shop, semiconductor manufacturing, engineering tooling,

special equipments, and large hydraulic pumps, DNA sequencing, laundry service, etc.

Most of the MTO firms are process-focused, as the products manufactured share the same

kind of operations but differ in the design details. Firms can also have a hybrid of MTS

and MTO system for different products that are manufactured at the same production

facility. Flow shops and job shops can be operated under MTS or MTO policies or the

combination of the above two.

In the current business scenario, customers demand products with a high level of

customization. The focus is on innovation and customer satisfaction, leading to shortened

product development life cycle. These trends compel the manufacturers to remain agile

and flexible, leading to an increase in the appeal and popularity of make-to-order or a

hybrid operational philosophy [3]. MTO systems are not only used for unique product

manufacturing but are also very efficient in producing greater product variety at lower

cost [4].

The major difference between MTO and MTS is the way in which customer demand is

handled. By definition, MTS holds finished goods inventory to meet the customer

demand. The focus is on anticipating the demand and planning to meet the demand. The

main issues that need to be addressed are inventory planning, lot size determination and

demand forecasting. Since MTO is characterized by back orders with zero inventories as

each customer order is unique and cannot be manufactured in advance, the only way for

3

managing the effective demand is by holding its capacity in inventory. The production

planning focus is on order execution and the competitive priority is shorter delivery lead-

time, and adherence to due-dates. Hence the most important operating issue in MTO is

the effective and efficient use of available capacity to meet customer demands.

Capacity planning determines the resource requirements of an organization to sustain a

given demand over a planning horizon. There are three tiers of capacity planning based

on their planning horizon. Long term capacity planning relates primarily to strategic

issues involving the firm’s major production facilities with a planning horizon anywhere

between three to five years. It focuses on determining facility locations, plant capacities,

division of new and existing product lines, technology and transferability of process to

other products, subject to demand forecast and availability of investment funds. It is used

to determine major supplier’s plans and their vertical integration; principal operation

modes and production methods. The fundamentals of long-term capacity planning are

mostly the same for both MTO and MTS operations.

Medium term capacity planning or aggregate planning focuses on setting monthly or

quarterly resource requirements for each plant for typically a one-year planning horizon.

The process includes developing, analyzing and maintaining a preliminary, approximate

schedule of the overall operations of an organization. It decides on workforce level, raw

materials and inventory policy by product group and department. Based on sales forecast,

it generates production capacity plans for (1) labor-employment level (i.e. lay-offs,

hiring, recalls, overtime, and part-timer), (2) inventory policy, (3) utility requirements,

4

(4) facility modifications, (5) outsourcing, and (6) major material supply contracts.

Capacity requirements may vary from period to period in their regular time labor,

overtime labor, inventory and subcontracting.

Two conventional aggregate planning approaches for MTS are: (1) matching demand and

(2) level capacity. With the matching demand approach, production capacity in each time

period varies to exactly match the aggregate demand as forecasted for that time period,

by hiring and laying-off workers. With the level capacity approach, production capacity

is held constant over the planning horizon; the difference between the constant

production rate and the varying demand rate is made up by inventory, backlog, overtime

labor, part time labor, temporary labor, and/or sub-contracting. An MTO operation

usually adopts a hybrid approach of both. On one hand, it needs to maintain a certain

level of production capacity for its core competency. On the other, it cannot leverage on

inventory, as every order is a backorder and it requires customization. The common

practice is to maintain a minimum level of production capacity, and liberally rely on

overtime and subcontracting to adjust capacity and to accommodate demand fluctuation.

Aggregate plans serve as foundation for future short term capacity plans.

Short term capacity planning sets a daily or weekly capacity plan for a planning horizon

long enough to accommodate each order’s lead time. The objective of short-term capacity

planning is to ensure an appropriate match between the resources availability and the

capacity requirement for a production plan at the work center level [5]. For a MTO

operation, it has to specify resources requirement of each labor and machine type for each

5

customer order at its component level. Each customer order first is translated into internal

orders and detailed work orders, which are then summarized into a load schedule (time-

phased capacity requirements) by labor and/or equipment, in coordination with materials

arrival. A typical MTO operation routinely considers the use of alternative sources such

as overtime and outsourcing, in order to meet work order’s due date, which is a critical

issue for MTO operations.

In most MTO operations, meeting due-dates is considered a hard constraint. With

multiple orders and bids competing for common resources, meeting these deadlines is the

first criterion used to reject or accept a backorder as due-date feasibility depends on the

availability of the time-phased resource capacity. Reliable due-dates require a continuous

coordination between marketing/sales and manufacturing departments during the bidding

phase. Zijm [1] mentions that it is important to integrate these decisions.

In practice, decisions on order acceptance and production planning are often functionally

separated. The objective of the sales department is to bring as much revenue as possible.

The sales department will tend to accept all orders, regardless of the available capacity,

because their goal is turnover. Production is concerned with limited capacity and it tries

to maximize utilization and minimize the number of tardy deliveries. Given these

conflicting goals of turnover and tardiness, order acceptance decisions are often made

without involving production department or with incomplete information on the available

capacity in production department [6]. Accepting too many orders, which is the objective

of the sales department, leads to an over-loaded production system, in which lead times

6

increase and orders are increasingly delivered late. To deal with this short term capacity

problems, management may try to use additional non-regular capacity like overtime and

outsourcing, thereby increasing the costs significantly. This may lead to lower profit

margins or even negative profits. Tardy deliveries may also lead to higher penalty costs,

and possibly lead to loss of customer goodwill [6, 7].

While negotiating contracts in MTO environment, the company can either adjust the

price or lead time for an order. If the order has tighter deadlines, the MTO enterprise can

charge a premium for processing that order as it might have to be expedited with use of

non-regular capacity. Recent experiences of firms, such as Amazon.com, indicate that

customers may be unwilling to accept dynamic pricing as fair [8]. An alternative to

dynamic pricing would be to view the issue as one of allocating capacity between

competing orders, making it a capacity allocation problem. When multiple orders, each

providing a different profit contribution is present, the capacity allocation problem

becomes an order acceptance or refusal problem [9, 10, 11].

1.2. Research Problem

A job shop environment is considered to model the make-to-order operation. A MTO

firm receives a set of bids or customer orders. A customer order is referred to as jobs in

the context of this research. The decision to be made is which customer order is to be

accepted and how to schedule it to maximize profit. The decisions should be made

simultaneously; otherwise, an order may be accepted but the residual capacity available

may not permit timely delivery.

7

Each customer order has a set of operations to be processed with linear precedence

constraint and deterministic processing times, a fixed due-date and a known sales price.

No tardy deliveries are allowed. There are multiple types of resources each having one or

more machines. Furthermore, job recirculation is allowed, which means that the jobs can

visit the same machine more than once. The cost of using a resource in each source is

known and is represented in unit cost per hour. The planning horizon is discretized into

time buckets of equal length know as a time period. Without loss of generality we assume

that each time period is one day. Furthermore each day is divided into sources viz.

regular time and overtime. Overtime is usually considered more expensive. The decision

of accepting or rejecting the orders is done on day zero.

1.3. Research Objective

The goal of this dissertation was to maximize the operational profit of a make-to-order

operation by combining the order acceptance decision with capacity planning at the sales

stage. The objectives were to mathematically model the problem and solve it within the

bounds of practicality.

A mixed-integer linear program was formulated to model the order acceptance and

capacity planning problem. Large-scale mixed integer linear programs are difficult to

solve because of their combinatorial nature and solving industry-sized problems would

take prohibitively long runtimes. Over the last decade, column generation has proven to

be one of the most successful approaches for solving large-scale integer programs [12].

Column generation, also known as the Dantzig-Wolfe (DW) decomposition, is

8

implemented along with branch-and-bound scheme which is collectively known as

branch-and-price. The original formulation has to be decomposed into a restricted master

problem (RMP) and one or more pricing or sub-problems (SPs). The major components

of a branch-and-price scheme are generating columns by solving the sub-problems and

branching to restore the integrality constraints for integer variables, as the RMP is solved

as a linear relaxation. To solve the mixed-integer linear program in reasonable time we

have developed a branch and price algorithm.

Figure 1-1 shows a schematic representation of a typical order acceptance problem in a

job shop environment of a MTO operation. For illustration purposes the job shop used

has three resources. Resource 1 has two machines of the same type, while resources 2 and

3 each have a single machine. Each resource has fixed operating costs in regular time and

overtime. There are three orders, each having a known sales price and a fixed due-date.

Each order has a different process route with deterministic processing times. For

example, the process route for customer order 1 is Resource 1 → Resource 2 → Resource

3. The model takes these as input parameters and gives a solution which comprises of the

orders that have been accepted so as to maximize the operational profits and their

corresponding schedules.

For the example shown in Figure 1-1, customer orders 1 and 3 are accepted. Figure 1-2

shows the schedule generated by the model for these orders.

9

Customer
Order #1

Customer
Order #2

Customer
Order #3

Customer
Order #1

Customer
Order #3

Resource #1

M/C 1 M/C 2

Resource #2

M/C 1

Resource #3

M/C 1

Incoming
Customer

Orders

Accepted
Customer

Orders

Figure 1-1. Customer order process route for jobshop-MTO operation

Figure 1-2. Optimal production plan generated by the mathematical model

For simplicity, a common due-date of three days was assumed for this example. Each day

is divided into regular time and overtime, each eight hours long. All the operations for

10

order 1 are processed in the regular time of days 1, 2 and 3. Operation 2 of customer

order 3 uses two additional hours of overtime on day 3 in order to meet its due-date.

1.4. Significance of the Research Problem

The ever increasing emphasis on mass customization, shortened product lifecycles,

synchronized supply chains, when coupled with advances in information system, is

driving most firms towards make-to-order operations. Increasing global competition,

lower profit margins, and higher customer expectations force the MTO firms to

effectively manage the capacity to make sustainable profits. Because the main driver in

MTO operations is customer orders, coordination of operations and marketing functions

for effectively managing capacity by managing the demand placed on the system has

been long recognized as vital [10]. This research integrates these two important decisions,

by coordinating the order acceptance at the sales stage with a detailed capacity plan at the

production level.

The policy of acceptance or rejection of an order based on capacity available is referred

to as available-to-promise (ATP), which is common in an Enterprise Resource Planning

(ERP) system to search and check resource availability. With most ERP systems, it is a

simple search in a database, accompanied by a simple heuristic rule such as first-come-

first-serve (FCFS). When an order is accepted, it is usually inserted into the existing

master production schedule (MPS). The acceptance/rejection decision in this case is to

check whether the available capacity is sufficient to meet the order due-date. ERP

systems lack intelligent planning [1] tools in order to maximize the profits based on

11

selectively accepting incoming orders. Concepts like manufacturing resources planning

(MRP), and enterprise resource planning (ERP) were embraced almost immediately after

their introduction because of their simplicity and the available computing power. But

there are many implementation failures because there are a great number of conditions to

be fulfilled before the apparently simple logic can work successfully. Many managers

recognized these major drawbacks and are demanding more intelligent solutions.

Furthermore, with the recent increase in the computing power Operations Research

models have gained a lot of importance.

1.5. Dissertation Structure

The rest of the dissertation is organized as follows. In Chapter 2, past and current closely

related research is explored. In Chapter 3 the mathematical model is presented along with

the assumptions and limitations of this research. Chapter 4 explains the Dantzig-Wolfe

decomposition, and an exact branch and price technique. The solution quality from the

exact branch and price technique is compared to the results from an optimization solver.

In Chapter 5, we present approximation algorithms and comparison between the various

solution methodologies. We conclude this dissertation with Chapter 6 by summarizing

the contributions of this research and possible extensions.

12

2. LITERATURE REVIEW

Order acceptance in manufacturing is closely related to the principles of revenue

management (RM) which is a commonly used in service industry for order acceptance

and refusal process, with differential pricing, capacity reallocation and overbooking [9].

There has been a recent interest in applying RM to manufacturing industry in both MTS

and MTO operation modes. In MTO, the decisions of order acceptance, lead-time or due-

date quotation, pricing and capacity planning are closely related. In the absence of

differential pricing, RM becomes a capacity allocation and order acceptance problem. For

the purpose of this research we focus on applications of RM to MTO and literature

closely related to order acceptance in MTO. Order acceptance in make-to-order can be

broadly classified based on static [6, 13, 14, 15, 16, 17] and dynamic arrivals [4, 7, 10,

11, 11, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27] of customer orders. Section 2.1 discusses

research done in the area of order acceptance with dynamic customer arrivals while

Section 2.2 focuses on the static arrivals. Section 2.3 is dedicated to the applications of

column generation technique, especially in the area of scheduling.

2.1. Order acceptance with dynamic arrivals

The earliest research in order acceptance was done by Miller [28]. He considered an n-

server queuing system with m customer classes distinguished by the reward associated

with serving customers of that class. The objective was to accept or reject customers so as

to maximize the expected value of the rewards received over an infinite planning horizon.

Poisson arrivals with common exponential service time is considered and formulated as

13

an infinite horizon continuous time Markov decision problem. Lippman and Ross [29]

considered the problem of maximizing the long-run average return in a single server

traffic reward system with a customer’s offer is a joint distribution of reward and of

service time required to earn this reward which is independent of the renewal process

which governs customer orders. They formulate it as a semi-Markov decision process

with the characterization of accepting the customer if and only if the ratio of his expected

reward to his expected service time is larger than g, the long-run average return.

Recently, the concepts of revenue management have been applied to manufacturing for

tackling the order acceptance problem. Carr and Duenyas [30] address the problem of

admission control and sequencing in a production system that produces two classes of

products in a hybrid MTO/MTS operation. The first class of products is made-to-stock

and the second is make-to-order. The firm has the option to accept or reject a particular

MTO customer order. They model the joint admission control / sequencing decision in

the context of a single M/M/1 queue with two classes of products.

Webster [31] studies a single stage make-to-order production system to examine policies

for adjusting price and capacity in response to periodic and unpredictable shifts in the

importance placed by the market on the price and lead-time. He suggests that maintaining

a fixed capacity while using lead-time and/or price to absorb changes in the market will

be most attractive when stability in throughput and profits are highly valued, but in

volatile markets, this stability comes at a cost of low profits.

14

Balakrishnan et al. [18, 19] and Sridharan and Balakrishnan [32] described how to ration

the available capacity when the forecasted demand is higher than the available capacity

over a planning horizon, using a decision-theory based approach. Barut and Sridharan

[10] extended this research for investigating the effectiveness of a tactical demand-

capacity management policy to maximize profit by selectively accepting or rejecting

customer orders for multiple product classes. Tardiness is not allowed but earliness is

permissible without penalty. They propose a dynamic capacity apportionment procedure

(DCAP) to prescribe a static acceptance policy. Ebadian et al. [24] also proposed a

decision-making structure for the order entry stage in MTO environments. The aim of the

proposed structure is to manage the arriving orders so that the MTO system just proceeds

to produce those arriving orders which are feasible and profitable for the system. The

appropriate decisions on the arriving orders are taken based on two criteria including

price and delivery time. The arriving orders have either fixed or negotiable delivery

times. During the first two steps, the new arriving orders either are rejected or appropriate

decisions to meet their delivery time are made. At the next step, the optimal prices along

with delivery times (if negotiable) of non-rejected orders are determined by a mixed-

integer programming model. In the case of the final approval by the customers at the

fourth step, another mixed-integer programming model is launched to select a set of

suppliers and subcontractors that are able to provide required raw material and workload

for the newly accepted orders. They consider a job shop with sub-contracting but without

overtime capacity.

15

Defregger and Heinrich [33] considered the application of revenue management in make-

to-order manufacturing company with limited inventory capacity. Orders with different

profit margins arrive stochastically over an infinite time horizon and the company has to

decide which orders to accept and which to reject. They model the problem as a discrete

Markov decision process and propose a heuristic procedure. In numerical tests, they

showed the potential benefits of using revenue management compared to a FCFS policy.

Herbots et al. [25] examine the simultaneous dynamic order-acceptance and capacity

planning decision. They consider only one resource type, which represents the bottleneck

of the company. They consider regular capacity and non-regular capacity.

Charnsirisakskul et al. [20] studied integrated order selection and scheduling decision,

where the manufacturer has the flexibility to choose lead-times. They provide a

mechanism for coordinating order selection, lead-time and scheduling decisions and to

determine under what conditions lead-time flexibility is most useful for increasing the

profits. They consider a single machine production system with a bottleneck and no

buffers between stations capable of producing multiple products with negligible setup

times and preemptions. If the manufacturer cannot complete the order by the latest

acceptable due-date tardiness costs are incurred. As an extension to this research,

Charnsirisakskul et al. [21] study the simultaneous pricing, order acceptance, scheduling

and lead-time decisions, both in the case where the manufacturer has and does not have

the flexibility to charge different prices for different customers. They present decision

models that can be solved by commercial optimization software and present simple

16

rounding heuristics that provide initial solution with the objective functions values within

87% of the optimal solution.

Ebben et al. [7] investigate the importance of order acceptance and the benefits of

cooperation between the sales and planning function. They develop several workload

based order acceptance methods and develop a simulation model of generic MTO job

shop, which enables them to simulate the order arrival and production process to test the

proposed methods. They use utilization rate and the service level as the performance

measures. Nandi and Rogers [34] using simulation demonstrate how to optimally control

a manufacturing system under different environments and how main performance

measures of a system are affected by using a parameterized order acceptance rule. The

order acceptance rule is similar to the path load order review introduced in Philipoom and

Fry [35].

Akkan [27] develops heuristics to insert a new work order in the existing schedule in

order to minimize the holding costs and the total contribution lost due to rejected work

orders in the case where one has to reject the incoming work order because it cannot be

fit in the current schedule.

Modarres et al. [36] formulate stochastic capacity allocation problem in a manufacturing

system with two classes of “frequent” and “occasional” customers demanding its

capacity. The stochastic nature of capacity is caused by machine failures, stops or

breakdowns during the operation; and the maintenance duration is random. The price rate

17

as well as the penalty for order cancellation caused by overbooking is different for each

class.

2.2. Order acceptance with static arrivals

Within the operational domain of job shop planning with static customer arrivals, job

selection has been a topic of growing interest. The problem of selection and ordering of

elements from a given set so as to optimize a given objective function was considered by

Bahram et al. [17]. They present a generalization of the best-in rule that in many cases

can solve the problem while the best-in rule does not. A characterization of such a greedy

algorithm has been presented.

Slotnick and Morton [13] examine a set of trade-offs that can arise if a manufacturing

facility has more potential work than it can handle easily. They formulate a one-machine

model with static arrivals, fixed processing times, due-dates and profits. The objective

function maximizes total net profit, which is the sum of the revenues of all jobs minus

weighted lateness penalties, by selecting a subset of jobs. Ghosh [16] proves that the

Slotnick-Morton [13] version of the job selection problem is NP-Hard. He proposes two

dynamic programs that produce the exact solution to the problem.

In an extension to [13] Lewis and Slotnick [14] examine the profitability of job selection

decisions over a number of periods when current orders exceed capacity with the

objective of maximizing profit and when rejecting a job will result in no future jobs from

that customer. The firm processes jobs, over a set number of time periods (stages) within

18

a given time horizon. The firm has m customers at the beginning of the first period; each

customer submits one job at each stage, until one of the jobs is rejected. Each job has pre-

determined revenue, and the firms pay back a discount to customers whose jobs are

completed past a pre-determined due-date; customers are willing to pay a premium for

early delivery. Each job has a known processing time and importance. The importance of

the job is the weight assigned to it for calculating the lateness penalty. This weight allows

the firm to indicate that certain jobs may have importance beyond their immediate profit.

The firm has the option of rejecting any job. If a job is rejected, the customer is lost (i.e.

never sends another job to be processed within the planning horizon).

In [6], Slotnick and Morton model a manufacturing facility that considers a pool of

orders, and chooses for processing the subset that results in the highest profit. In addition

to the problem characteristics in [13] they consider customer weight. The objective is to

maximize profit, which is the sum of per-job revenues minus total weighted tardiness.

They propose two approaches: separation of sequencing and job acceptance decisions,

utilizing a property of the problem that is exploited to good advantage in the analogous

problem with weighted lateness; and a joint consideration of sequencing and acceptance,

using relaxation. They state that the joint approach is far superior to the first. Rom and

Slotnick [15] also propose a GA to solve the order acceptance problem with tardiness

penalties.

19

2.3. Applications of column generation in scheduling

Decomposition techniques like column generation have been widely used to solve large-

scale optimization problems [12, 37]. Column generation has been successfully used in

job scheduling for common due date [38], parallel machines [39], and single machines

[40, 41]. For a detailed taxonomy of the column generation literature we refer to [12].

Hans [42] developed a branch-and-price loading method that is an exact approach for

solving the pre-emptive resource loading problem. The objective is to generate an order

schedule for each order, such that the total costs of the required non-regular capacity and

the order tardiness penalties are minimized.

2.4. Summary

This research considers an order acceptance problem in multi-resource job shop

environment with regular and non-regular capacity and static customer arrivals. The only

research which tackles a multi-resource job shop problem is by Ebben et al. [7]; but they

do not consider non-regular capacity (overtime) and the customer arrivals are dynamic.

We solve the problem under study using a branch-and-price algorithm. To the best of our

knowledge this approach has never been used for order acceptance; although Hans [42]

has developed a branch-and-price resource loading (BPRL) approach for scheduling

orders which have already been selected. Ebben et al. [7] use the BPRL technique in their

simulation for scheduling the already accepted orders.

Table 2-1 summarizes the literature related to the proposed problem under study. The

table compares and contrasts the literature reported on problems similar to the problem

20

under study. It is evident from this table that the proposed problem and the solution

approach are different from what is reported in the literature so far.

Table 2-1. Summary of relevant research

Research Objective Order
Acceptance

Multiple
Resources

Non-regular
Capacity

Fixed
Due-dates

Solution
Approach

[42]
Minimize non-regular
capacity costs and
tardiness penalties

No Yes Yes No Branch and
Price

[13] Maximize Profit Yes No No No Heuristic

[6] Maximize Profit Yes No No No Branch and
Bound

[14] Maximize Profit Yes No No No DP, Heuristic
Proposed
Research Maximize Profit Yes Yes Yes Yes Branch and

Price

21

3. MATHEMATICAL FORMULATION

This chapter describes the problem environment, proposes a mathematical formulation

for the short-term capacity planning problem for the MTO operation environment. The

outline of the chapter is as follows. We formally present the problem in Section 3.1.

Section 3.3 describes the model developed for solving the MTO order acceptance and

scheduling problem. Preliminary results are presented in Section 3.4 that illustrates the

usefulness of the model proposed and Section 3.5 provides the motivation for solving this

problem by the proposed branch and price technique.

3.1. Problem characteristics

The MTO production system is modeled as a job shop with multiple resources .

Each resource type r can have multiple machines. A finite planning horizon is considered

which is discretized into equal interval time periods . Without loss of generality

we assume that each time period is one day. Furthermore each day is divided into sources

 viz. regular time and overtime. The length of each source s in time period t is

given by lts and is eight hours, but can be varied according to the need. The available

capacity of resource r in source s of time period t is denoted by brts. The MTO firm

receives a set of customer orders or jobs . Each job j has a set of operations

 with a processing time pjor on resource r, a fixed due date dj and a sales price qj.

Each job can follow different processing route and the operations have a linear

precedence relationship. The cost of using a resource r in each source s is represented in

unit cost per hour crs. Overtime is usually considered more expensive. The objective is to

22

maximize the profit of the MTO operation by selectively accepting the customer orders

and planning for their capacity within the planning horizon, such that the accepted orders

are completed before their due dates.

3.2. Assumptions

For the problem under consideration we assume a single deliverable job without any sub-

assemblies. Raw material costs are not considered. The cost of operating machines is

same during regular and overtime hours. The operational profit is a function of the sales

price of a job and labor costs incurred to process that job in regular time and overtime.

The sales price is dictated by the market and hence is considered to be fixed. Preemptions

are allowed in scheduling the jobs. Processing times are additive and the amount of

processing a preempted job already has received is not lost. Machine failure is not

considered. The problem addresses in this research is deterministic.

3.3. Mathematical model

The problem is modeled as a mixed-integer linear program. The decision variables used

in the model are:

The mathematical formulation for the problem under study is presented below.

23

 (3-1)

 (3-2)

 (3-3)

 (3-4)

 (3-5)

 (3-6)

 (3-7)

(3-8)

 (3-9)

 (3-10)

 (3-11)

 (3-12)

The objective (3-1) is formulated to maximize the total net profit over the planning

horizon. The first term in the objective function is the total revenue and the second term

is the total processing or labor cost. The constraint set (3-2) ensures that the capacity of

resource r of source s in time period t is not violated. Constraint set (3-3) ensures that

24

adequate resources are allocated to process operation o of job j. The total number of

hours allocated to process an operation should be equal to its processing time. The

equality constraint set (3-3) can be replaced with an inequality (≥) constraint. The second

term in the objective function will prevent allocating more resources than what is

required.

The constraint set (3-4) ensures that each operation of a job is processed for no more than

lts hours in each source during each time period. If the processing time of operation o is

less than lts, then it is possible to start processing the next operation (o+1) in the same

time period. Since operation (o+1) cannot be started before operation o, the remaining

time available for operation (o+1) in period t is only (lts-pjor). Consequently, the total

time allocated to process job j in any time period cannot exceed lts hours. The constraint

sets (3-5) and (3-6) set the Yjorts decision variables to either 1 or 0. The Yjorts variable is

an indicator variable. It takes a value of 1 when Xjorts > 0, indicating that operation o of

job j is scheduled for processing on resource r of source s in time period t; otherwise it

takes a value of 0. The parameter "τ” in constraint (3-5) indicates that whenever an

operation is processed on a resource it should be processed for at least "τ" units of time.

The Yjorts variables are used to ensure the precedence relationship. The constraint set (3-

7) ensures that when an order for a job is accepted, the completion time of the last

operation of that order does not exceed the order due date.

The next two constraints impose precedence restrictions. The constraint set (3-8) ensures

that operation o of job j can be processed in period t during regular hours only after

25

completing operation (o-1). The first term in constraint (3-8) represents the total number

of hours allotted to process operation (o-1) in time periods 1,…,(t-1). It includes both the

regular time and overtime hours allocated to process operation (o-1) in each time period

up to and including (t-1). The second term in constraint (3-8) represents the number of

hours allocated to process operation (o-1) in time period t during regular hours. Figure

3-1 illustrates how the precedence relationship (i.e., constraint 3-8) will take effect when

operation (o-1) is completed in time period t during regular hours. The processing of

operation (o-1) begins during the regular hours of production in time period (t-1),

continues during the overtime and then to regular hours of production in time period t.

The processing of operation o can begin either during the regular hours of production or

during overtime in time period t’ ≥ t. For illustration purposes, it is assumed that

operation (o-1) and o require same resource r in Figure 3-1. Figure 3-2 illustrates the case

when both the operations require different resources. Operation o can be processed on

resource r’ only after operation (o-1) is completely processed on resource r (r’ ≠ r).

Regular time hours Overtime hours

Time Period
0

Resource
r

o-1

o-1

o-1
...

Time Period
t-1

Time Period
t

Figure 3-1. Constraint (3-8) with successive operations on the same resource

26

Regular time hours Overtime hours

Time Period
0

Resource
r’

Resource
r’ ...

Time Period
t-1

Time Period
t

Time Period
0

Resource
r

o-1

o-1

o-1
...

Time Period
t-1

Time Period
t

Figure 3-2. Constraint (3-8) with successive operations on different resources

The constraint set (3-9) ensures that operation o of job j can be processed in period t

during overtime only after completing operation (o-1). Figure 3-3 illustrates how the

precedence relationship (i.e., constraint 3-9) will take effect when operation (o-1) is

completed in time period t during overtime. The processing of operation o can begin

during the remaining overtime hours in time period (t-1) or any source (either regular

hours or overtime) in time period t’ > t.

Regular time hours Overtime hours

Time Period
0

Resource
r

o-1 o-1

o-1
...

Time Period
t-1

Time Period
t

Figure 3-3. Precedence constraint (3-9)

27

The constraint sets (3-10) – (3-12) impose the non-negativity restrictions on the decision

variables. In particular, the constraint sets (3-11) and (3-12) impose the binary

restrictions on the decision variables Y and U.

This model can help the operations manager to determine which subset of incoming

customer orders should be selected to maximize profits. The model presents a detailed

capacity plan for the accepted orders such that they are completed before their due-dates.

This is useful to carefully plan for the resources used in overtime hours. The model can

be run at the beginning of each decision period, such that the operations manager can

reserve capacity for already accepted orders and determine which new orders to accept.

In situation where a particular order or orders have to be selected for strategic reasons, a

corresponding subset of orders that will maximize the profits can be known. The model is

also useful to reschedule the already accepted orders when new orders have to be

accepted. Section 3.3 presents some examples to illustrate the above scenarios that the

end user might encounter and to show how the formulation when solved can be used to

one’s advantage. The mathematical model was solved using ILOG CPLEX 10.1, which is

a tool for solving linear optimization problems. ILOG CPLEX can also solve several

extensions of linear programs like network flow, quadratic problems, and mixed-integer

programs.

3.4. “What-if” scenario analysis using the MTO formulation

This section presents some illustrations to show the usefulness of the formulation for

making decisions to maximize the revenue in different situations. Table 3-1 through

28

Table 3-3 give the data for Experiment A for illustrating how a decision maker could use

the mathematical formulation proposed. Two kinds of sources are considered, namely

regular production time and overtime. It is assumed that the regular production time and

overtime is 8 hours each. In each source, three resources are considered. The planning

horizon includes three time periods. The decision maker has to decide which jobs to

accept and how to schedule the accepted jobs such that they are processed before their

due date. The objective is to maximize total profit. At the beginning of the planning

horizon, three jobs are available to choose from. The selling price and due date for each

job is given.

Table 3-1. Experiment A to show the usefulness of the model

={1,2,3} Three jobs
={1,2,3} Each job comprises of 3 operations

={1,2,3} Three resources
={1,2,3} A planning horizon of 3 periods
={1,2} 1: regular hours of production; 2: overtime

Table 3-2. Customer order data for Experiment A

Job #
of

operations
Due
Date
(dj)

Selling
Price
 (qj)

Operation

Resource

Process
Time
(pjor)

1 3 3 10000
1 3 14
2 1 12
3 2 14

2 3 3 9800
1 3 14
2 1 10
3 2 14

3 3 3 6500
1 1 8
2 3 6
3 2 8

29

Table 3-3. Data of resource cost for Experiment A

Processing Cost/hr (crs)

Resource (r) Source (s)
1 2

1 200 300
2 200 250
3 200 200

Figure 3-4 shows the Gantt chart for the example instance under consideration. The total

profit is $3800 and the orders for jobs 2 and 3 are accepted. The detailed schedule for

each job is also shown. Since the cost of using resource 1 during overtime is higher than

resources 2 and 3, resource 1 is not used during the overtime hours. The utilization of

each resource can be easily computed. The utilization of resources 1, 2, and 3 is 37.5%,

45.83%, and 41.67%, respectively.

Figure 3-4. Gantt chart for Experiment A

Suppose two new jobs (say jobs 4 and 5) become available at the end of the first time

period. The decision maker would like to know whether or not to accept these orders as

30

some of the resources have already been reserved to process orders for jobs 2 and 3.

Table 3-4 gives the data associated with jobs 4 and 5.

Table 3-4. Data for Experiment A extension

Job #
of

Operations
Due
Date
(dj)

Selling
Price
 (qj)

Opt # Resource

Process Time
(pjor)

4 2 4 5800 1 1 12
 2 3 14
5 3 4 6200 1 3 10
 2 2 8
 3 1 10

When the mathematical model was solved with the new information (fixing the resources

already committed to process jobs 2 and 3), job 4 was chosen and the total profit

increases to $4000. The model recommends to select job 4 and not to select job 5. The

Gantt chart for the new schedule is shown in Figure 3-5.

Figure 3-5. Gantt chart for extension of Experiment A

31

In the case where the company policy would have been to maximize capacity utilization

both jobs 4 and 5 would have been accepted. The total profit in such a scenario would

have been $3900 which is less than the optimal found by solving the model.

Another interesting illustration is the analysis of the effect of the change in the overtime

cost with respect to the regular time cost. Four jobs were assumed to be available at the

beginning of the planning horizon. Other job specific information is given in Table 3-5.

The processing times of the operations were randomly generated from a discrete uniform

distribution [3, 12]. The unit cost of all the resources was considered the same and the

ratio of the unit cost of the resource in regular time to unit cost of the resource in

overtime was varied. The different ratios under which the experiment was run were 1:1,

1:1.2, 1:1.5 and 1:2. The planning horizon was assumed to be five time periods. In this

experiment, the combined regular time and overtime hours available is more than the

time required to complete all the orders. Consequently, when the ratio was 1:1, the orders

for all the jobs were accepted. The results obtained for the various cost structure

considered are summarized in Figure 3-6. Even when the ratio was 1:1.2, the orders for

all the jobs were accepted. However, the profit reduced due to the additional cost incurred

for processing some jobs during the overtime. It can be seen that with the increase in the

overtime cost, the number of hours the resources are allocated in overtime is reduced. At

a certain point the increase in overtime cost was so high that it prohibited accepting

orders for some jobs. For example, when the ratio was 1:1.5, job 1 was not selected.

When the ratio was further increased to 1:2, job 4 was not selected.

32

Table 3-5. Data for Experiment B

Job

No. of

Operations (Oj)

Due-date

 (dj in days)

Selling Price

(qj in $)

1 3 4 3375

2 4 4 3335

3 3 5 2990

4 5 5 4750

Figure 3-6. Source utilization and selection of jobs

In practice, the MTO firms would generally accept an order whenever the capacity is

available to fulfill an order. By adopting this policy, the utilization of the resources is

maximized. However the next set of experiment (Experiment B) shows that this policy

may not be profitable. In addition, by committing all the resources available in the current

time period, the more profitable orders which may arise in the future may not be accepted

due to lack of capacity. When the cost ratio was 1:1.5, job 1 was not selected. Suppose

0

3

6

9

12

15

1:1 1:1.2 1:1.5 1:2

H
ou

rs
 U

til
iz

ed

Ratio of regular time to overtime cost

Utilization of sources and job selection

Regular Time Overtime

Job 1
not selected Job 4

not selected

33

the firm decides to accept the orders for all the jobs (note the regular time + overtime

capacity available is more than the demand), the profit reduces to $1450. When the cost

ratio was 1:2, job 4 was not selected. But when the manager accepts all the orders, the

profit reduces to $450. These experiments clearly indicate that even when the available

capacity is more than the demand, the cost incurred to operate the resources during the

overtime may prohibit accepting all the orders.

Figure 3-7. Optimal solution against utilization maximizing policy

Figure 3-7 shows the reduction in profit when the orders for all the jobs were accepted.

These experiments clearly indicate the usefulness of the model proposed. Without the

model, the decision maker would incline to accept orders based on the residual resource

capacity alone.

1525
1300

1450

450

0

500

1000

1500

2000

1:1.5 1:2

Pr
of

it
($

)

Ratio of regular time cost to overtime cost

Comparison of optimal solution against maximize
utilization policy

Optimum Select all jobs

34

3.5. Computational runtime analysis

In order to solve a mixed-integer problem, CPLEX uses a branch-and-bound approach to

fix the fractional variables to integer values. Consequently, it may not be able to solve

problem instances with large number of integer variables in reasonable time. An

experimental study (Experiment C) was conducted to determine the effect of problem

size on the run-time (computation time) required to find an optimal solution. Various

factors determine the size of the problem, namely, the number of customer orders or jobs,

number of operations for each job, the number of resources, due-dates for each job and

the planning horizon. We introduce a demand-to-capacity ratio (DC ratio) to control the

load on the MTO shop-floor. The DC ratio is the ratio of the demand to the regular time

capacity available in the MTO operation given by equation (3-13), over the planning

horizon with |T| time periods. If we know the total demand and the available resources,

we can generate problem instances by computing the number of time periods required for

a fixed DC ratio using Equation (3-14).

 (3-13)

 (3-14)

Table 3-6 presents the data used for Experiment C. Number of jobs and numbers of

operations for each job are the two factors which are varied. The levels for the two

factors are presented in Table 3-6. The length of each source was fixed to 8 hours. For a

35

DC ratio of 1.0 with different levels for jobs and operations, the planning horizon varied

from 3 to 17 time periods. For each combination of the factor and level, three instances

were randomly generated. The due-date for each job was equal to the planning horizon

computed for that problem instance. The ratio of regular time to overtime cost was kept

constant at 1:1.5. The runtime to solve the mathematical model to optimality was

reported.

Table 3-6. Data for Experiment C (computational runtime analysis)

Factors Levels

Number of jobs 3 5

Number of Operations 3,5, and 8

Number of resources 3

Number of sources 2 (Regular Time, and overtime)

Processing time Discrete Uniform (4,16) hours

Demand-to-Capacity Ratio 1.0

Figure 3-8 shows the runtime in seconds against the number of operations per job for 3

job and 5 job instances. In two instances for 5 jobs with 8 operation problem, CPLEX

was not able to find an optimal solution even after a runtime of more than 16 hours

(>62000 seconds), hence for those we report the optimality gap in Figure 3-8.

36

Figure 3-8. Computation runtime to solve MTO mathematical model to optimality

For the above problems, the planning horizon was anywhere between 3 to 17 days. We

aspire to solve short-term capacity planning problems with a planning horizon up to a

month (30 days) and a set of 8 to 10 customer orders, each having more than 5 operations

to bid for each day. The bidding process is an iterative negotiation process and hence the

sales department may have to consider different scenarios before accepting an order as

illustrated in Section 3.4. The decision process in a bidding negotiation is highly time

sensitive. Considering the above factors, there is a need to generate solutions to the order

acceptance and capacity planning in MTO operations relatively quickly for large problem

sizes.

3 5 8

Number of operations
3 jobs runtime 0.35 2.66 3509.78
5 jobs runtime 0.57 577.98 52954.7
5 job optimality gap 0 0 3.89%

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

0

2500

5000

7500

10000

O
pt

im
al

ity
 g

ap

R
un

tim
e

in

se
co

nd
s

Time to solve MTO mathematical model

37

To effectively solve large-scale integer programs column generation has proven to be one

of the most successful approaches [12]. Column generation is based on the Dantzig-

Wolfe decomposition principle for linear programs. For solving integer programs the

column generation procedure is combined with branch-and-bound procedure, which is

commonly referred to as branch-and-price.

38

4. BRANCH AND PRICE ALGORITHM

This chapter explains the Dantzig-Wolfe decomposition, column generation and the

branch-and-price algorithm. In Section 4.2, the decomposition of the model proposed in

Chapter 3 is described.

4.1. Theory of Branch-and-Price Algorithm

The decomposition algorithm has an interesting economic interpretation. Consider the

case of a large system that is composed of smaller subsystems. Each subsystem has its

own objective and constraints, and the objective function of the overall system is the sum

of the objective functions of the subsystems. In addition, all the subsystems share a few

common resources, and hence, the consumption of these resources by all the subsystems

must not exceed the availability. With this in mind the decomposition algorithm can be

interpreted as follows. With the current proposals of the subsystems, the total system

obtains a set of optimal weights for these proposals and announces a set of prices for

using the common resources. These prices are passed down to the subsystem, which

modify their proposals according to these new prices [43].

The problem under consideration is well-suited for applying column generation. Each job

or customer order can be considered as a subsystem, independent of other job, and a

schedule can be generated. Later the individual subsystems should be merged together to

obtain a feasible schedule for the entire problem under study.

39

The decomposition principle is a systematic procedure for solving large-scale linear

programs or linear programs that contain specially structured constraints. The constraints

are partitioned into two sets: general constraints (or complicating constraints) and

constraints having a special structure. Special structure, when available, enhances the

efficiency of the procedure.

The strategy of the decomposition procedure is to operate on two separate linear

programs: one over the set of general constraints and one over the set of special

constraints. Information is passed back and forth between the two linear programs until

an optimal solution to the original problem is achieved. The linear program over the

general constraints is called the master problem, and the linear program over the special

constraints is called the sub-problem. The master problem passes down a continually

revised set of cost coefficients to the sub-problem, and receives from the sub-problem a

new column (or columns) based on these cost coefficients. For this reason, such a

procedure is also known as a column generation technique.

Consider the following linear program, where X is a polyhedral set representing specially

structured constraints, A is an m x n matrix, and b is an m vector:

Minimize cx

Subject to Ax=b

To simplify the presentation, assume that X is nonempty and bounded. Since X is a

bounded polyhedral set any feasible point x can be represented as a convex

40

combination of the finite number of extreme points of X. Denoting these extreme points

by any can be represented as:

Substituting for x, the foregoing optimization problem can be transformed into the

following so-called master problem in the variables .

(4-1)

Subject to

(4-2)

(4-3)

 (4-4)

Since t, the number of extreme points of the set X, is usually very large, attempting to

explicitly enumerate all the extreme points and explicitly solving this problem

is a very difficult task. In column generation, an extreme point or column is generated as

and when required by solving a sub-problem known as the pricing problem. After adding

the column to the master problem the LP is re-optimized. This is done iteratively until no

41

new column can price out of the sub-problem (SP); this being the check for optimality of

the LP master problem. The pricing problem is given by,

Maximize (wA-c)x +α (4-5)

Subject to (4-6)

Where, w and α denote the dual variables for equations (4-2) and (4-3), respectively [43].

The master problem is restricted in the sense that all the columns are not known explicitly

and hence it is called as a Restricted Master Problem (RMP).

To start the column generation scheme, an initial feasible solution to the restricted master

problem has to be determined. The initial RMP could then pass proper dual information

to the pricing problem. The pricing problem or sub-problem plays a critical role through

their structure, symmetry, complexity and whether or not they exhibit the Integrality

Property. The integer variables in an IP typically become decision variables in one or

more SPs. Formulations that have block diagonal structure (i.e. each SP is separable) are

attractive because they result in small, independent SPs that are typically more effectively

solved. Integer SPs with no special structure are NP-hard and should be avoided. The

original IP is NP-hard but need to be solved only once. Solving one or more NP-hard SPs

repetitively offers no worst-case advantage and is typically computationally prohibitive.

Thus, the ideal SP should have a structure that can be solved effectively since it must be

solved repetitively. Experience has shown that NP-hard SPs that can be solved in pseudo-

polynomial time satisfy the criterion of being solvable relatively effectively; in addition

they avoid the Integrality Property as well [12].

42

In a maximization linear program, any column with positive reduced cost is a candidate

to enter the basis. The pricing problem is to find a column with highest reduced cost.

Therefore, if a column with positive reduced cost exists the pricing problem will always

identify it. This guarantees that the optimal solution to the linear program will be found.

However, it is not necessary to select the column with the highest reduced cost - any

column with a positive reduced cost will do. Using this observation can improve the

overall efficiency when the pricing problem is computationally intensive. Depending on

the pricing problem, it may even be possible to generate more than one column with

positive reduced cost per iteration with a large increase in computation time. Such a

scheme increases the time per iteration, since a larger RMP has to be solved, but it may

decrease the number of iterations.

The second important point to consider while generating columns is the fashion in which

the columns are generated and added to the RMP. One strategy would be to solve all sub-

problems and select the best improving column to enter the RMP. Instead, all improving

columns could be made available to the RMP through column management procedure. A

third strategy would be to solve SPs in a round robin fashion, entering each improving

column identified and re-optimizing the RMP, solving SPs in a random order. Another

method would be to solve SP using a heuristic to generate good solution quickly and in

case it fails an optimizing algorithm which takes more runtime can be used to identify an

improving column. Preliminary tests may be used to identify the best way to add columns

to the RMP [12].

43

In solving integer programs (a program incorporating integer, and / or binary, or mixed-

integers) there is a binary restriction on the λ variable in the RMP. The RMP is optimized

as a LP but when we have an optimal solution of the LP if those variables do not satisfy

the integrality restriction then a branch-and-bound procedure is implemented. Branch-

and-price, which is a generalization of branch-and-bound with LP relaxations, allows

column generation to be applied throughout the branch-and-bound tree [44]. This is

known as Branch & Price (B&P). However, this implementation is not straight forward

and there are fundamental difficulties in applying column generation techniques for linear

programming in integer programming solution methods [45]. These problems arise

because conventional integer programming branching may not be effective as fixing

variables can destroy the structure of the sub-problem and solving the relaxed master

problem may be inefficient. Furthermore the branching should result in child nodes that

represent balanced set of solutions. Balancing is important because it can be expected to

result in a tighter bound at each sibling node, facilitating solution. A branching that does

not balance solutions defines one sibling that represents just a few of the solutions

associated with the parent node and another that represents all remaining solutions. The

bound associated with the former node is not likely to be as good as that of the latter.

Devising an effective branching strategy may present one of the most difficult challenges

to composing an effective B&P algorithm [12]. The three major aspects of implementing

branch-and-price algorithm are decomposing the original model, formulating and

efficiently solving the sub-problem and lastly determining the branching strategy. The

B&P procedure is illustrated in Figure 4-1.

44

START

Generate Initial
feasible Solution

Solve LP
Relaxation of RMP

Solve Subproblem

Improving
columns ?

STOP

Add Columns to
RMP

No

Yes

Add Columns to
RMP

Integer Solution
to RMP?

Yes

No

Implement
Branching

Figure 4-1. Flowchart for the Branch and Price procedure

The next sections discuss the implementation of the above with respect to the problem

under consideration.

45

4.2. Decomposition of the MTO model

The proposed MTO model has a block diagonal or angular structure as shown in Figure

4-2. This special structure is well suited for applying the decomposition principle. The

capacity constraint (3-2) is the binding or complicating constraint. The rest of the

constraints can be decomposed into sets of constraints for each job that can go in the sub-

problem. The sub-problem solution will generate the schedule for the corresponding job

that can be added as a column to the RMP.

Capacity Constraint Binding

Job 1

Job 2

Job |J|

Subproblems

Figure 4-2. Decomposition of the MTO model (Block-Diagonal Structure)

The MTO restricted master problem is formulated as follows,

 (4-7)

Subject to

 (4-8)

 (4-9)

46

 binary (4-10)

 binary (4-11)

Where, Kj is the set of columns generated by the sub-problem for job j that are added to

the RMP. The column generated by the sub-problem is a feasible schedule for the

corresponding job. An initial feasible solution to the RMP is provided by a greedy

heuristic presented in Section 4.4.

4.3. Solution approach for solving sub-problem

A feasible schedule for job j should satisfy the processing time constraint (3-3), the

physical constraint of processing job j for not more than lts hours in source s of time

period t, the due-date constraint (3-7) and the precedence constraints (3-8) and (3-9). The

corresponding formulation for the sub-problem or pricing problem of job j will consist of

the constraint set (3-3) to (3-11) with an objective of minimizing the cost of processing

job j by its due-date. The objective function for the pricing problem is formulated as,

 (4-12)

Where, and is the dual variables of constraints (4-8) and (4-9) respectively.

Ideally, the sub-problem should be able to generate columns very quickly as the sub-

problem has to be solved many times during the B&P procedure. Solving the sub-

problem formulation to optimality using a commercial solver to generate columns is not

an efficient way. Figure 4-3 and Figure 4-4 show the average computational time (or

47

runtime) to solve a sub-problem with 3 jobs and 5 jobs instances to optimality using a

commercial solver. It can be seen that the time taken to solve each sub-problem increases

as the size of the sub-problem increases. Thus, there is a need to efficiently solve the sub-

problem. The data used for this experiment was the same as used in Experiment C (Refer

to Section 3.5). The sub-problem size is defined as the product of the number of

operations per job and the time periods in the planning horizon, given that the number of

resources and sources is kept constant.

Figure 4-3. Average time to solve sub-problem formulation for 3 job instances

0.0

0.5

1.0

1.5

9 12 16 20 30 42 48 56 63 72 80Av
g.

 ti
m

e
to

 s
ol

ve
 1

 s
ub

pr
ob

le
m

(s
ec

on
ds

)

Subproblem Size
(Number of Operations per job * Time Periods)

Average Time to solve a sub-problem
(3 Job Instances)

48

Figure 4-4. Average time to solve sub-problem formulation for 5 job instances

We propose an exact procedure to solve the sub-problem to optimality. We represent the

sub-problem for job j as a Directed Acyclic Graph (DAG) where Nj denotes

the set of nodes and Aj denotes the set of arcs. Each time period is discretized into smaller

intervals with equal length denoted by dtu. Let the set of discretized time instants for job j

from time period one till its due-date dj be . Each operation o of

job j is split into dtu sized operations. Let the set of split operations for all the operations

in j be where r is the resource type on which operation o of job j needs

to be processed and let the set be the set of split operations for

operation o of job j. The set of nodes consists of three types, an artificial source node, an

0

15

30

45

60

15 18 32 36 50 66 72 91 98 128 136

Ti
m

e
in

 s
ec

on
ds

Subproblem Size
(Number of Operations per job * Time Periods)

Averege time to solve single sub-problem
(5 Job Instances)

49

artificial sink node, and OperationTimeNodes. The nodes in OperationTimeNodes set are

denoted by a 2-tuple such that we have |Hj| nodes corresponding to each

element in Ej. We have lts/dtu nodes in Hj corresponding to each source s in time period t.

There is a set of secondary attribute for each node represented by a 4-tuple

. The set of arcs consists of two distinct types, set of idle

arcs and set of processing arcs . An arc is represented by the

notation , where (e,h) and (e’,h’) is the tail node and head node respectively. There is

a cost associated with each arc denoted by . Idle arcs are connected between two

consecutive nodes of the same split operation starting at node {e,h} and ending at

{e,h+1}. The processing arc starting from node {e,h} goes to node {e+1,h+1}. This

ensures that each discretized operation e is completed before starting discretized

operation e+1. This structure captures the precedence constraint of the sub-problem. All

arc capacities are set to one. A unit flow in the processing arc implies that the split

operation e is processed for dtu time units in time instance h. A unit flow in the idle arc

implies that the split operation e will not be processed for dtu time units in time instance

h. A unit flow sent from the source node reaching the sink node ensures that all the

operations in job j are processed by the due-date dj. The cost of idle arc is zero while the

cost of the processing arc is given by crs+wrts, where r is the resource on which operation

o of job j needs to be processed in source s of time period t. The arc connecting the

source node to the first node in the operationTimeNodes N{1,1} is denoted by and

cost of that is fixed to zero. All the arcs to the sink node are denoted . The shortest

path from the source node to the sink node gives us the schedule for job j at the minimum

50

processing cost. Figure 4-5 shows a general DAG representation of the sub-problem. In

the general DAG, it is apparent that there exist nodes which cannot be reached from the

source node or nodes whose outbound flow can never reach the sink node and as such

they can never be part of the shortest path. Hence we can eliminate such nodes.

1,1

1,2 2,2

1,h

1,|Hj|

Ij
1

Operation 1

Ij
2 |Ij

1| i |Ij
|Oj||

Operation o Operation
|Oj|

t=1;s=1;
h=1

t=1;s=1;
h=2

Time period = t
Source = s

Time instant = h

t=|T|;s=|S|;
h=|H j|

Source
Node

Sink
Node

e,h

Idle Arc
Arc Cost = 0

Processing Arc
Arc Cost = (crs+wrst)

I jo

1 2 |Ij
1| e |E j|E j

Figure 4-5. General Directed Acyclic Graph representation of the sub-problem

51

To further understand this concept, consider a sub-problem for job j with three operations

having processing times 5, 2, and 3 hours, respectively. For simplicity consider that they

need to be processed on the same resource. Let the due-date for job j be dj = 1 day and we

have two sources, regular time and over time of 8 hours each. We discretize time in units

of one hour. The corresponding graph for the sub-problem is shown in Figure 4-6. The

earliest we can process split operation e=1 is in time instance 1 corresponding to h=1,

which implies that the earliest we can process split operation e’=e+1=2 is in h’=h+1=2,

and thus all the nodes for e’=2 before time instance h’=2 can be ignored in Gj. For

processing job j by its due-date, the latest we can process the split operation e=1 is in

time instance 7 corresponding to h=7, thus the flow from all the nodes

cannot reach the sink node and thus the corresponding nodes can be ignored in Gj. We

can extend this logic for all the split operations and time instances and

eliminate the corresponding nodes.

Figure 4-6 shows the shortest path from the source node to the sink node. The nodes

visited in the shortest path are shaded in black and the path is represented by thick

arrows. In each time period and source we can count for each operation how many

processing arcs have been traversed which will give us the number of hours of processing

of that operation. For example, for regular time in time period 1, we are processing

operation 1 for four hours. Then the processing of operation 1 is continued in overtime

for one hour.

52

2 4 6 8 10
2

Operation 1:
Processing time = 5 hours

Opt. 2:
2 hours

Opt. 3:
3 hours

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1 3 5 7 9

1 3 4 5 1 2 1 2 3

e=
i=

H j

Source
Node

Sink
Node

t=1
Regular

time

t=1
Overtime

I jo
E j

Figure 4-6. Directed acyclic graph for sub-problem representation

The pseudo code for finding the shortest path for acyclic digraph [46] and extracting the

schedule from the shortest path solution are given below:

Algorithm for finding the shortest path:

53

BEGIN

 For

 If N{e’,h’} exists then

 For - - -

 achieving the minimum cost

 End for

 End if

 End for

 Let

 Let achieving the minimum cost

END

Algorithm to extract schedule from the shortest path solution for sub-problem j:

BEGIN

 Initialize

 Let

 If then

 Let

54

 End if

 While (N{e,h} ≠ source node)

 Let

 If then

 Let

 End if

 Let

 End while

END

4.4. Greedy heuristic for initial solution to RMP

In order to start the column generation procedure, a basic feasible solution to the RMP

has to be provided. We propose a greedy heuristic to obtain this solution. The set of

available jobs J are sorted in a non-increasing order of their profit margins, where profit

margin is the ratio of the sales price to the cost of processing the job in regular time, and

stored in a list. Each job in this list is scheduled one at a time with an objective of

minimizing their processing costs. If scheduling a job improves the objective function

value, the total profit, then the job is accepted and the residual capacities for the resources

are updated along with the total profit yielded by accepting the current job, else the job is

rejected. The schedule obtained for the job is added as a column to the RMP. For

scheduling each job so that we can minimize its processing costs, we make use of the

sub-problem solution approach described in Section 4.3. The dual prices are set to zero

55

for the capacity constraints and the convexity constraints. The costs of the processing arcs

which have been already utilized by previously scheduled jobs are set to infinity, to take

care of the residual capacities of the resources in their respective time periods and

sources.

4.5. Branching in Branch and Price algorithm

In Section 4.5.1 we define an integer feasible solution to the original problem. In Section

4.5.2 we discuss the proposed branching strategies. In Sections 4.5.3 and 4.5.4 we derive

the Lagrangean bounds for fathoming the nodes and node selection for exploring the

branch and bound tree respectively.

4.5.1. Definition of an integer feasible solution to RMP

We formally define a feasible integer solution to the RMP.

Definition 4.1: Consider a set of columns for job j represented by the basic

variables in the RMP, such that , which implies Uj=1 (from constraint (4-

9)). The convex combination is a feasible integer solution to the RMP

for job j if for any pair of operations (oi ,oi+1){i=1,…,|Oj|-1} in , there is no precedence

violation. Since there is no restriction over to be integer in the original problem,

is a feasible solution for the original problem.

Consider job j with 3 operations having processing times 6, 10 and 4 hours, respectively.

In the RMP, suppose we have two schedules corresponding to the basic variables,

56

. For an intuitive representation of a schedule we represent it as a

matrix, where the rows denote the time period t and source s while the columns denote

the operations. Then the schedules corresponding to the basic variables are as follows:

The convex combination is given by,

57

In , none of the adjacent operation pairs have a precedence violation; the processing

time constraint (3-3), physical constraint (3-4) and due-date constraint (3-7) are satisfied

and hence is an integer feasible solution to RMP for job j.

Now consider another basic column with a corresponding schedule given by and

the new solution to RMP is .

The convex combination for the above RMP for job j is,

In , operation 1 ends in time period 2, source 1, while operation 2 starts in time period

1, source 2. Thus for operation pair (1,2) there is a precedence violation. Similarly for

58

operation pair (2,3) the precedence constraint is violated. Thus , is an infeasible integer

solution to the RMP for job j.

4.5.2. Branching strategies

In our original formulation, we have two binary variables Y and U. While branching in

B&P algorithm the literature suggests to branch on the original variables, instead of

branching on the variable in the RMP. From the Definition 4.1, we know that, to get an

integer feasible solution to the RMP for job j, Uj should be exactly equal to 1, implying

that job j is selected and the processing time requirements of it are satisfied. Hence at any

node in the branch and bound tree if we find Uj to be fractional, we branch on Uj, setting

Uj to 0 in the first (left) child node and Uj to1 in its twin (right) node. If at any node in the

branch and bound tree, if we find Uj to be either 0 or 1, and all the corresponding

 to be integer feasible solutions as per Definition 4.1, then we report the

corresponding integer solution.

In the case that we find U to be binary, but to be integer infeasible, then we have

to fix the original variable Y. Fixing Y variables is not as straight forward as fixing U,

since we do not have them as explicit variables in the RMP. In the original formulation Y

is an indicator variable used for ensuring that the linear precedence amongst operations is

maintained. Whenever we have as fractional, all the constraints except the precedence

constraint are satisfied. In such a case we try to restore the precedence between the pair

of adjacent operations violating this constraint such that the solution subsets are equally

59

divided so that we get a balanced branch and bound tree. We propose a branching

strategy to accomplish this as explained in the rest of the section.

A pair of operations (o,o+1) has a precedence violation if operation o+1 starts before the

completion of operation o. We define this violation in absolute terms as the precedence

error length for job pair (o,o+1) given by the difference in the end time of operation o

and start time of operation o+1. Equation (4-13) computes the precedence error length

between the violating adjacent pair of operations.

- - (4-13)

Where, eto and eso is the time period and source respectively in which operation o is

completed, while sto+1 and sso+1 is respectively the time period and source in which

operation o+1 starts. For the purposes of this research we refer to a particular time period

and source combination as time-source instance.

Let be an integer infeasible solution at node n in the branch and bound tree and all Uj

 be binary. We try to restore the precedence amongst the violating operation pair

with maximum precedence error length. Let this pair be denoted by (o,o+1).

Consider the illustration in Section 4.5.1., with schedule being an integer infeasible

solution at some node n in the branch and bound tree and all Uj are binary. Figure

60

4-7 shows the Gantt chart for the schedule generated from this convex combination.

Operation pair (2,3) has the maximum precedence error length () of 2 units. Hence, we

select this pair to restore precedence feasibility.

st1=1
ss1=1

st2=1
ss2=2

st3=2
ss3=1

Precedence error
e 2

p=2e 1
p=1

Operation 1

Operation 2

Operation 3

Time period t, source s

1,1 1,2 2,1 2,2 3,1 3,2 4,1 4,2

et1=2
es1=1

et2=3
es2=1

et3=3
es3=2

Figure 4-7. Gantt chart for the schedule obtained from the convex combination

In the B&B tree at node n, we form two child nodes. In branching strategy 1 (BPS1) for

the first child node we place the restriction that operation o cannot be scheduled in the

time period (eto) and source (eso) in which it had finished its processing in schedule . In

the second child node we place the restriction that operation o+1 cannot be scheduled in

the time period (sto+1) and source (sso+1) when it began its processing in schedule .

There are no other restrictions on scheduling either these operations or other operations.

Continuing the discussion on the illustration from Section 4.5.1, if we want to implement

BPS1 for this example then in child node 1 we place the restriction that operation 2 is not

61

allowed to be scheduled in regular time (s=1) of the third time period, while in child node

2 we do not allow operation 3 to be scheduled during the regular time (s=1) of the second

time period. Figure 4-8 shows the branching with the restrictions on each node. The black

colored box shows that scheduling during those time periods and sources is not allowed.

Opt. 1

Opt. 2

Opt. 3

1,1 1,2 2,1 2,2 3,1 3,2 4,1 4,2

Time period t, source s

Opt. 1

Opt. 2

Opt. 3

1,1 1,2 2,1 2,2 3,1 3,2 4,1 4,2

Time period t, source s

Node n

Child
node 1

Child
node 2

Figure 4-8. Branching strategy 1 (BPS1)

4.5.3. Lagrangian bounds

Column generation process carries out many iterations with very small improvements to

objective function value of the RMP. Thus it takes relatively longer times to prove

optimality of the current solution. This is called the “tailing-off” effect. We can reduce

this effect by stopping the column generation procedure earlier by proving optimality of

the current solution. To achieve this we provide an upper bound (since the original

62

problem is a maximization problem). If the upper bound is less than the best known

integer solution value then we can terminate the column generation procedure at the node

and fathom the corresponding node without risk of missing the optimum.

Lasdon [47] provides a lower bound calculation for the master problem from the current

objective value and the reduced costs obtained by solving the sub-problems. We follow a

similar method, but unlike Lasdon our RMP is a maximization problem and hence the

bound which we get is in fact an upper bound to the Master Problem (MP). Also, we have

an additional variable Uj which is non-decomposable; as such it is not a part of the sub-

problem solution. We now discuss the computation of the upper bound.

Proposition 4-1: Given that is the current objective function value of the RMP at

optimality, then the upper bound to the optimal objective value for the MP is given by

-

Proof:

The proof is presented in matrix notations. We use bold-face capital letters to represent

variables and bold-face lower-case letters to represent parameters and dual values.

 (4-14)

 (4-15)

63

From Equation (4-12) we know . Since is the

reduced cost of jth sub-problem, we consider only those that will improve the objective

function value of RMP, hence can be replaced by .

 (4-16)

Rearranging the terms in Equation (4-16), we get,

 (4-17)

The dual objective function value of the RMP is given by , which is

equal to the objective function value of the primal RMP at optimality. We can re-write

equation (4-17) as,

– - (4-18)

4.5.4. Node Selection

For searching the branch and bound tree we use three strategies, namely, Depth first

Search (DFS), Best First Search (BeFS) and a combination of depth first and best first

strategy which we denote by (DFS+BeFS). In DFS strategy when exploring a particular

node, we form two child nodes and select the node with the best bound for exploration.

We continue this till we find an integer solution and then backtrack to the nodes which

64

are unexplored. In BeFS strategy we search for the node with the best bound in the

complete B&B tree for exploration. In DFS+BeFS strategy we try to combine the first

and second strategy. We begin with DFS strategy and after finding an integer solution we

implement BeFS so as to select an unexplored node having the best bound in the B&B

tree and thereafter continue with DFS.

4.6. Experimentation

The research problem under consideration does not have benchmark problems and

solutions. Hence, we compare the results from Branch & Price algorithm to the best

known integer solution provided by a commercial solver for the original formulation. For

it is seen from some initial experimentation with the original formulation that the solution

time depends on the number of jobs, number of operations in each job, and number of

time periods considered in the planning horizon. The length of the planning horizon and

the number of jobs and operations determine the complexity of the problem. As

mentioned earlier, if we consider a very long planning horizon and relatively few jobs,

the problem is trivial to solve, because we will have enough capacity to accept and

schedule all the available jobs in regular time. Thus, we control the length of the planning

horizon indirectly by introducing the demand-to-capacity ratio (DC ratio) explained in

Section 3.5. The objective is to obtain an experimental range for the DC ratio for which

the commercial solver yields relatively good results in the stipulated time. The pilot

experiment which we conducted for this purpose is explained in Section 4.6.1.

65

4.6.1. Pilot experiment

The experimental setup is provided in Table 4-1. We consider a full factorial

experimental design. The number of operations per job, and the number of resources is

kept constant at 5 and 3 respectively. The processing times are generated randomly for

each replication from a discrete uniform distribution. We have two replications for each

factor-level combination. The DC ratio is varied from 0.2 to 2.2 with a step size of 0.4 as

shown in the experimental setup. The time periods obtained by using these DC ratios

varied from 2 to 144. The due-date for each job is randomly generated within 60% to

100% of the planning horizon. The regular time cost for each resource is randomly

generated from a uniform distribution between 20 and 80. The ratio of regular time to

over time cost is 1:1.5. The sales price for each job is decided using Equation 4-19.

Table 4-1. Pilot Experiment

Factors Levels

Number of jobs 3, 10 and 15

Number of operations 5

DC ratio 0.2, 0.6, 1.0, 1.4, 1.8, and 2.2

Number of resources 3

Processing time distribution DU[2,8]

qj= (4-19)

The problem instances are solved for the original formulation by using a commercial

solver CPLEX 10.1. Each problem instance is allowed to be run either till the optimality

66

of the solution is proved or for 1800 seconds, whichever is the first. We report the time

taken to solve the problem, and the absolute and relative gap. The relative gap is defined

by CPLEX as given in Equation (4-20), where ZIP is the best known integer solution and

the Bound is the best bound in the branch and bound tree.

- (4-20)

Figure 4-9. Summary of results for Pilot Experiment

When DC ratio is 0.2, we have enough capacity to accept all the orders and schedule

them in regular time, hence the problem is trivial to solve. It is seen that the solution

quality of CPLEX is relatively better for problem instances with a DC ratio of 1.0. Hence

0.00

300.00

600.00

900.00

1200.00

1500.00

0.00%

100.00%

200.00%

300.00%

400.00%

500.00%

0.2 0.6 1 1.4 1.8 2.2

Ti
m

e
in

 s
ec

on
ds

Re
la

ti
ve

 G
ap

 in
 %

ag
e

Demand to Capacity Ratio

Pilot Experiment

Relative MIP Gap Average Runtime

67

for further experimentation to assess the solution quality of the B&P algorithm we

generate a set of problem instances with a DC ratio as 0.8, 1.0 and 1.2, by comparing

them with CPLEX.

4.6.2. Experimental setup

As discussed in Section 4.6.1, we have three levels for the DC ratio, namely 0.8, 1.0 and

1.2. The complete experimental setup (Experiment D) to assess the solution quality of the

B&P algorithm is presented in Table 4-1. We conduct a full factorial experiment for the

different factors and their respective levels with three replications. The number of

resources is fixed to 3 for problem instances with 3 and 5 operations per job, and to 5 for

instances with 8 and 10 operations per job. The due-dates for each job, the regular time

and overtime costs and the sales price are generated as discussed in Section 4.6.1.

Table 4-2. Experiment D setup for assessing the quality of B&P Algorithm

Factors Levels

Number of jobs 3, 5, 8 and 10

Number of operations 3, 5, 8 and 10

DC ratio 0.8, 1.0 and 1.2

Processing time distribution (hours) DU[4,16]

4.6.3. Solution quality of Branch and Price Algorithm

In this section we first show that column generation provides tighter bounds than LP

relaxation of the original problem at root node. Then we discuss the relative performance

of the three node selection strategies implemented in BPS1 with CPLEX results as the

68

benchmark. CPLEX was not able to provide feasible solutions to all the problem

instances; hence we report the number of instances that CPELX could provide a feasible

solution and the number instances solved to optimality. We also present the relative gap

reported by CPLEX at the end of 1800 seconds and the average runtime in seconds. We

empirically show that BPS1 with DFS+BeFS as the node selection strategy proves to be

the best solution approach with solution quality and runtime as the measures of

performance. Finally we show the efficiency of the sub-problem solution strategy, which

is a very important factor in successfully implementing a branch-and-price algorithm.

Figure 4-10 graphically shows the percentage gap between the bounds obtained by LP

relaxation of the original problem and bounds obtained from column generation at the

root node of the branch and bound tree. The X-axis consists of two rows, the first row

gives the number of operations for the number of jobs in the second row. The Y-axis

gives the percentage gap between the two bounds. A positive gap means that the

objective value obtained from the column generation was lesser than LP relaxation. For a

maximization problem this means that we found tighter bounds using column generation.

On an average we find that the percentage gap between the two bounds is anywhere from

2% to 10%. In some instances especially with 3 and 5 jobs having 8 and 10 operations

each, the gaps are relatively larger. This can be attributed to the length of the planning

horizon where very few jobs or none could be accepted in reality because of the due-date

constraint which is implicit in column generation but yields a highly fractional solution in

LP relaxation. A specific example is for the instance with 3 jobs, 10 operations and

planning horizon of 6 days. The LP relaxation yields an objective function value of

69

1109.797 with all jobs being selected, but in the integer solution we find that none of the

jobs could be processed because they violated their due-dates and the integer solution had

an objective function value of 0.

Figure 4-10. Percentage gap between LP and column generation bounds

Figure 4-11 shows the time taken to reach the root node solution for the LP relaxation of

the original problem and column generation. We can easily verify from this graph that

column generation takes comparatively lesser time to determine the root node solution of

the branch and bound tree as compared to the LP relaxation of the original problem, as

the problem size increases.

0%

10%

20%

30%

40%

50%

3 5 8 10 3 5 8 10 3 5 8 10 3 5 8 10

3 5 8 10

Pe
rc

en
ta

ge

Number of Operations
Number of Jobs

Gap between LP and Column Generation Bounds

Gap between LP and Column Generation Bounds

70

Figure 4-11. Time to reach root node in LP relaxation and column generation

For BPS1 procedure we experimented with three different node selection strategies as

explained in Section 4.5.4. In Table 4-3, we report the number of optimal solutions (A)

obtained by CPLEX and B&P. We also report the relative gap in percent (B) computed

using Equation 4-21 between the best known integer solution ZIP provided by the solution

method and the best bound computed in the branch and bound tree . We allow BPS1

to run till it proves optimality or a maximum of 900 seconds, whichever comes first. The

improvement made by BPS1 over CPLEX is shown in Table 4-4. For problem instances

with less than or equal to 5 jobs CPLEX yields marginally better results than BPS1. But

as the number of jobs increase, BPS1 shows huge improvements over CPLEX. From

these results we can see that CPLEX cannot provide feasible solutions for some problem

instances with high number of jobs and operations. As the number of operations increase,

0.00

1.00

2.00

3.00

4.00

3 5 8 10 3 5 8 10 3 5 8 10 3 5 8 10

3 5 8 10

Ti
m

e
in

 s
ec

on
ds

Number of Operations
Number of Jobs

Runtime for Root Node Bounds

LP relax Solve Time Col. Gen Solve Time

71

the problem complexity increases, and hence CPLEX cannot provide optimal solutions in

the stipulated 1800 seconds. Also the relative gap increases with this increase in number

of operations. A side-by-side comparison between the relative gap of the four solution

strategies shows that BPS1 with DFS and DFS+BeFS consistently provides low relative

gap and relatively more number of optimal solutions as compared to CPLEX.

BPS1(BeFS) yields poor quality solutions for problems with more than 3 jobs as

compared to the other node selection strategies of BPS1. On an average the relative gap

for BPS1 with DFS and DFS+BeFS is always less than 4%; which means that the

solutions provided by these two strategies is within 4% of the optimum. On the other

hand, the solutions obtained from CPLEX can be on an average as far as 200% and up to

1200% away from the optimum.

- (4-21)

The improvements made by BPS1 over CPLEX are shown in Table 4-4. For problem

instances with less than or equal to 5 jobs CPLEX yields marginally better results than

BPS1. But as the number of jobs increase, BPS1 shows huge improvements over CPLEX.

72

Table 4-3. Number of optimal solutions obtained and relative gap

(A) Number of Optimal Solutions
(B) Relative gap in %

Jobs Opts.

of
Inst.

solved
by

CPLEX

CPLEX
BPS1

DFS BeFS DFS +BeFS

A B A B A B A B

3 3 9 9 0.00 9 0.00 9 0.00 9 0.00

5 9 9 0.01 8 0.22 9 0.00 7 0.27

8 9 9 0.00 9 0.00 9 0.00 8 0.14

10 9 7 3.94 8 2.31 9 7.83 6 0.63

Average
 0.99 0.63 1.96 0.26

5 3 9 9 0.00 9 0.00 9 0.00 8 0.02

5 9 4 4.39 6 0.60 6 4.25 6 0.41

8 9 0 14.51 2 10.3 4 20.89 0 9.03

10 9 0 22.86 1 3.06 1 77.71 0 2.69

Average

 10.44 3.42 25.71 3.04

8 3 9 5 1.52 7 0.48 5 6.00 9 0.00

5 9 0 5.24 3 0.96 0 35.66 4 0.58

8 9 0 29.62 0 4.51 0 29.81 0 3.96

10 8 0 176.86 0 4.71 0 39.27 0 2.73

Average 49.76 2.61 27.35 1.79

10 3 9 6 0.52 8 0.05 1 21.63 8 0.05

5 9 1 5.02 5 0.37 0 22.31 5 0.16

8 9 0 60.79 0 2.37 0 30.61 0 1.54

10 5 0 1269.25 0 3.82 0 25.8 0 3.40

Average 216.98 1.38 24.89 1.02

Grand
Average 65.44 2.02 19.78 1.54

It can be seen from Table 4-3 and Table 4-4 that for problems with less number of jobs,

DFS and BeFS performs better than DFS+BeFS. But as the number of jobs increase there

73

is no significant difference between DFS and DFS+BeFS, while BeFS provides no

optimal solutions and on an average performs very poorly as compared to the other two

strategies.

Table 4-4. BPS1 solution improvement over CPLEX

 Improvement over CPLEX in %

 BPS1

Jobs # of
Opts. DFS BeFS DFS

+BeFS

3 3 0.00 0.00 0.00

5 -0.05 0.00 0.00

8 0.00 0.00 0.00

10 -1.51 -4.44 -0.04

Average -0.39 -1.11 -0.01

5 3 0.00 0.00 0.00

5 -0.34 -3.56 -0.13

8 -4.18 -11.82 -3.24

10 4.16 -29.56 4.43

Average -0.09 -11.23 0.26

8 3 -0.46 -4.89 0.00

5 0.80 -20.73 1.18

8 20.54 -0.73 20.99

10 139.84 84.59 144.34

Average 37.33 12.56 38.69

10 3 0.00 -16.36 0.00

5 1.13 -14.85 1.35

8 50.79 23.46 52.13

10 1175.60 1032.22 1178.07

Average 198.29 159.10 199.11

Grand Avg. 54.93 36.59 55.65

74

MILP problems are hard to solve using conventional branch and bound procedures. This

is evident from our previous results in Sections 3.5, 4.6.1 and also from Table 4-5 where

we show the average runtimes for different problem instances. We can observe that BPS1

is comparatively faster than CPLEX and at the same time provides better quality

solutions. The DFS and DFS+BeFS strategies are comparable in terms of improvement

over CPLEX, but on an average DFS+BeFS terminates earlier than DFS.

It is typical for a decomposition solution approach to find good quality feasible solutions

early on in the solution process. This is true for the problem under consideration where

the best integer solution was found much earlier than it took to terminate the B&P

procedure. Table 4-6 summarizes the average time taken to find the best solution, after

which no improvement was made. These results also suggest that BPS1(DFS+BeFS)

finds solutions of comparable quality as BPS1(DFS) but quite early in the B&P process.

Furthermore, BPS1(BeFS) makes no improvement over the initial solution for larger

problem instances. Since BPS1(DFS+BeFS) performs the best with respect to the

solution quality and runtime, for the rest of the chapter we will restrict our discussion to

this strategy.

75

Table 4-5. Average runtime for CPLEX and BPS1

 Average runtime in seconds

Jobs Opts. CPLEX

BPS1

DFS BeFS DFS
+BeFS

3 3 0.04 0.03 0.03 0.33

5 8.34 100.44 1.00 4.33

8 81.79 1.43 1.51 0.54

10 537.74 133.12 105.39 102.08

Average 156.98 58.75 26.98 26.82

5 3 0.69 23.52 8.68 0.32

5 1181.86 319.15 458.18 210.50

8 1800.59 708.87 542.98 483.20

10 1800.23 805.60 801.41 800.67

Average 1195.84 464.28 452.81 373.67

8 3 955.33 200.63 443.33 0.89

5 1800.15 602.08 839.96 502.71

8 1800.14 900.46 900.35 900.45

10 1800.05 900.38 900.33 900.38

Average 1582.88 643.76 767.30 566.84

10 3 665.43 103.84 792.90 101.87

5 1783.29 408.87 892.04 408.61

8 1800.04 900.40 900.19 900.43

10 1800.12 900.23 900.44 900.76

Average 1476.23 538.10 867.76 537.56

Grand Avg. 1088.79 421.44 512.24 370.21

76

Table 4-6. Time to Best Integer Solution for BPS1 (Experiment)

(A)Avg. time to Best Integer Solution for BPS1 in seconds
(B) Improvement over Initial Solution in %

Jobs

Opts.

DFS BeFS DFS+BeFS

A B A B A B

3 3 0.03 31.67 0.02 31.67 0.32 31.67

 5 19.64 16.39 0.89 16.44 4.19 16.44

 8 1.23 137.52 1.51 137.52 0.45 137.52

 10 38.07 46.05 2.79 41.18 2.09 48.49
Average 14.74 57.91 1.3 56.7 1.76 58.53

5 3 22.55 21.3 8.67 21.3 0.15 21.3

 5 44.12 26.65 156.69 22.91 9.52 26.86

 8 112.51 52.16 23.67 40.74 131.57 53.51

 10 158.62 84.49 0.89 10.36 126.63 84.84
Average 84.45 46.15 47.48 23.83 66.97 46.63

8 3 5.25 19.81 43.28 14.36 0.89 20.37

 5 184.11 34.51 0 0 83.44 34.96

 8 333.64 24.59 0 0 142.51 25.16

 10 210.79 33.04 0 0 211.23 35.59
Average 182.66 27.84 11.13 3.69 106.61 28.83

10 3 60.57 22.53 71.19 14.36 2.09 22.53

 5 70.36 21.88 0 0 36.25 22.12

 8 183.91 27.58 0 0 258.33 28.15

 10 463.43 20.56 0 0 492.07 21.17
Average 160.96 23.46 20.02 0.27 160.32 23.88

Grand
Average 108.74 39.36 20.05 21.85 81.55 39.99

Figure 4-12 graphically presents the comparison of total time taken to the time taken to

find the best solution for BPS1 with DFS+BeFS strategy.

77

Figure 4-12. Comparison of total time and time taken to find best integer solution

These results are summarized graphically in Figure 4-13. We can see that for problems

with lesser number of jobs and operations, CPLEX can provide optimal results and hence

the improvements are zero. In some instance CPLEX actually performs better than BPS1

in solution quality, as BPS1 is unable to find optimal solution in the allotted 900 seconds,

although the average runtime of CPLEX is much higher that BPS1 as we terminate

CPLEX after 1800 seconds. Typically, CPLEX can solve most of the 3 operation

instances with higher number of jobs to optimality. As the number of jobs and number of

operations per job increase BPS1 consistently provides better results at a much lesser

computational time. This is corroborated by the main effects plot and the interaction

plots. In 10 job-10 operation instance BPS1 shows an improvement over CPLEX of close

to 1178%. The improvement made by BPS1 decreases as the DC ratio increases from 0.8

0%

20%

40%

60%

80%

100%

3 5 8 10 3 5 8 10 3 5 8 10 3 5 8 10

3 5 8 10

%
 T

im
e

ta
ke

n

Number of Operations
Number of Jobs

Total Time to Best Integer Solution Time for BPS1(DFS+BeFS)

Avg. time to Best Integer Solution Total Avg. Runtime

78

to 1.2. This corroborates the results from Section 4.6.1 where we found that it was more

difficult to solve problems with DC ratio of 0.6 than those with 1.0.

Figure 4-13. Comparative graphs of BPS1 with CPLEX

79

Another important aspect of column generation is the number of times a subproblem

needs to be solved and the efficiency in solving it. Table 4-7 shows maximum times a

sub-problem was solved for each combination of job and operation. We see that for a

sub-problem size of 10 operations with a planning horizon of 30 days and on an average

100 hours of processing time per job take at most 0.00395 seconds to solve the sub-

problem. Table 4-8 shows the average maximum time to solve a sub-problem and

average percentage time spent in solving the sub-problems for a problem instance with

respect to the number of operations and the DC ratio.

Table 4-7. Maximum number of times sub-problem solved

 Number of Operations per job
Number of Jobs 3 5 8 10

3 94 108580 7389 95042
5 80828 136190 156880 138331
8 203608 209408 157189 142188
10 234384 260582 180230 124804

Table 4-8. Runtime analysis for sub-problem solution

Average Maximum time to
solve a single sub-problem

(sec.)

% time spent in solving sub-
problems

DC Ratio DC Ratio
Operations 0.8 1 1.2 0.8 1 1.2

3 0.00046 0.00042 0.00034 44.41 47.75 28.84
5 0.00192 0.00116 0.00097 56.32 38.83 30.34
8 0.00255 0.00192 0.00178 34.89 27.57 25.12
10 0.00395 0.00321 0.00246 36.04 33.70 29.11

80

5. BRANCH AND PRICE HEURISTIC & APPROXIMATION ALGORITHMS

BPS1 guarantees an optimal solution. However, it takes a long time to prove optimality,

which is common to decomposition procedures. Furthermore, since we are fixing one

original variable at a time in BPS1, the branch and bound tree can grow exponentially. To

overcome this problem we propose a branch and price heuristic in Section 5.1. In Section

5.2 we propose approximation algorithms for the proposed branch and price algorithms.

In Section 5.3 we present comparative analysis for the various branch and price strategies

discussed.

5.1. Branch and Price Strategy 2 (BPS2)

For BPS2, unlike in BPS1 instead of fixing a single time period and source in each child

node, we introduce time windows, during which operations o and o+1 are not allowed to

be scheduled. This proposed method for fixing original variables gives us an approximate

solution; but is intended to reduce the computational time. In , we can look at the

violation as two mutually exclusive events. The first is keeping the start time of operation

o+1 as is. In that case, operation o has to be completely processed by the time period and

source in which operation o+1 has started in . The second event is that we keep the end

time of operation o as is, so in such a case the earliest we can start processing operation

o+1 is from the time operation o ends. Thus we can create the time windows during

which we cannot schedule the two operations. In the first child node we place the

restriction that operation o cannot be processed after source (sso+1) in time period (sto+1),

since this is the start time of operation o+1. Also, since we want to keep this start time as

81

is, we can have an additional restriction that we cannot process operation o+1 before this

time/source instance. In the other child node we place a restriction that operation o cannot

be scheduled after time period (eto) and source (eso) onwards along with operation o+1

not to be scheduled before this time period and source. Figure 5-1 shows the way in

which we can branch for in the previous example (Section 4.5.1) using BPS2.

Node n

Child
node 1

Child
node 2

Opt. 1

Opt. 2

Opt. 3

Opt. 1

Opt. 2

Opt. 3

1,1 1,2 2,1 2,2 3,1 3,2 4,1 4,2

Processing not allowed

Time period t, source s

1,1 1,2 2,1 2,2 3,1 3,2 4,1 4,2

Process. not allowed

Time period t, source s

Processing not allowed

Figure 5-1. Branching in BPS2

We implement these restrictions of disallowing operations to be processed during certain

time periods and sources in the sub-problem network by fixing the processing arc costs

for the corresponding time periods and sources to +∞.

82

5.2. Approximation Algorithms for Branch & Price

In decomposition algorithms, we have tighter linear programming bounds as compared to

the linear relaxations of the aggregated or non-decomposed formulation, and we usually

find good feasible solutions early on in the solution process. Due to this reason, truncated

tree search algorithms may provide very good approximation algorithms. In truncated

tree search algorithms the number of nodes evaluated in the solution process is reduced

according to some pre-specified scheme [48].

In the approximation algorithm, which we propose, we introduce a optimality tolerance

, such that a node is fathomed if , where ZIP is the value of the best

known integer solution.

We implement the approximation algorithms for both BPS1 and BPS2 with value of

0.01 and 0.05. For value of 0.0 we get the original BPS1 and BPS2 strategies. For being

concise, we represent the name of the branching strategy followed by the optimality

tolerance within round brackets. For example, BPS2(0.01) represents branch strategy

BPS2 with an optimality tolerance We follow this convention in the following

sections. Section 5.3 presents a comprehensive analysis of the different branch and price

strategies along with the results for the approximation algorithms.

5.3. Comparative Analysis

In this section we present a comprehensive analysis of the different branch and price

strategies along with the results for the approximation algorithms. In this section we show

83

a paired t-test analysis between BPS1 and BPS2 with value of 0.00, and prove that

there is no statistical difference between the solution qualities of the two strategies. Then

we summarize the improvements made over CPLEX by the various B&P strategies in

Table 5-3. In Table 5-4 we present the computational runtime required to solve the

problem instances and in Table 5-5 we summarize the reductions in runtime by using

BPS2 and the various approximation algorithms instead of BPS1(0.0). Finally we give

some statistics pertaining to the size of the branch and bound tree, and number of

columns generated for the various strategies. For all the above implementations we use

Lagrangean bounds discussed in Section 4.5.3 to fathom the nodes in the branch and

bound tree and DFS+BeFS strategy for node selection.

5.3.1. Comparing solution quality of BPS2 against BPS1

A paired t-test is conducted to conclude whether there is any statistical difference

between the solution quality from BPS1 and BPS2. The null hypothesis is that there is no

statistical difference in the results obtained by the two strategies at a 95% significance

level. The null and alternate hypothesis can be states as follows:

Null Hypothesis H0:

Alternate Hypothesis H1:

84

Table 5-1. Results of the paired-t test

 N Mean St. Dev SE Mean

BPS1(0.0) 139 5408 4171 354

BPS2(0.0) 139 5415 4164 353

Difference 139 -7.4 259.9 22.0

95% CI for mean difference: (-51.0, 36.2)

T-Test of mean difference = 0 (vs not = 0): T-Value = -0.34 P-Value = 0.738

Since p-value is 0.738, we fail to reject the null hypothesis with a 95% confidence level.

A test to check for equal variances was conducted. The 95% Bonferroni confidence

intervals for standard deviations and the result from the Levene’s Test is shown in Table

5-2. The null hypothesis is testing for equal variances are that they are the same. In the

Levene’s Test we get a p-value of 0.971, and hence we fail to reject the null hypothesis at

a 0.05 significance level. We can infer the variances for BPS1(0.0) and BPS2(0.0) are

equal

Table 5-2. Test for Equal Variances

 N Lower St. Dev Upper

BPS1(0.0) 139 3674.03 4171 4171.30

BPS2(0.0) 139 3667.18 4164 4808.32

Levene's Test

(Any Continuous Distribution)

Test statistic = 0.00

p-value = 0.971

85

From the above two tests we can conclude that there is no statistical difference between

the objective function values of BPS1(0.0) and BPS2(0.0). This implies that the solution

quality obtained from the two strategies is the same.

In Table 5-3, we show the percentage improvement made by the various B&P strategies

over CPLEX.

Table 5-3. Improvement over CPLEX

%age improvement over CPLEX

Jobs Opts. BPS1 BPS2
0.00 0.01 0.05 0.00 0.01 0.05

3 3 0.00 0.00 0.00 -0.12 -0.12 -0.12

5 0.00 -0.05 -0.81 -0.28 -0.36 -0.52

8 0.00 -0.04 -0.83 -0.13 -0.13 -0.92

10 -0.04 -0.10 -0.14 -0.09 -0.14 -0.23

Average -0.01 -0.05 -0.44 -0.15 -0.19 -0.45

 5 3 0.00 0.00 -0.24 -0.07 -0.16 -0.34

5 -0.13 -0.35 -1.24 -0.18 -0.38 -0.80

8 -3.24 -3.28 -3.28 0.36 0.31 -0.26

10 4.43 4.16 3.96 2.36 2.22 1.70

Average 0.26 0.13 -0.20 0.62 0.50 0.07

 8 3 0.00 -0.04 -1.69 0.00 -0.07 -1.65

5 1.18 1.09 -0.36 1.48 1.27 -0.23

8 20.99 20.94 20.51 21.65 21.14 19.52

10 144.34 140.65 139.81 141.76 141.03 139.44

Average 38.69 37.80 36.70 38.35 37.98 36.41

 10 3 0.00 -0.07 -0.69 0.00 -0.05 -0.76

5 1.35 1.28 0.12 1.47 1.46 -0.22

8 52.13 51.70 50.58 51.78 51.64 50.91

10 1178.07 1178.07 1175.39 1200.37 1199.62 1170.61

Average 199.11 198.95 197.72 202.53 202.36 196.95

86

For instances with 3 jobs we see that CPLEX performs marginally better than the B&P

strategies. We see marginal improvement in the solution quality of B&P as the number of

jobs increase. For 8 job and 10 job instances we see an average improvement of 35% and

200% respectively.

In Table 5-4 we show the computation runtime to solve the various problem instances by

the different B&P strategies.

Table 5-4. Runtime analysis of Branch and Price

Runtime in seconds

Jobs Opts. BPS1 BPS2
0.00 0.01 0.05 0.00 0.01 0.05

3 3 0.33 0.03 0.03 0.03 0.03 0.03

5 4.33 0.87 0.16 0.15 0.13 0.10

8 0.54 0.34 0.30 0.18 0.14 0.09

10 102.08 100.68 0.90 0.94 0.71 0.60

Average 26.82 25.48 0.35 0.32 0.25 0.20

 5 3 0.32 0.16 0.16 0.10 0.09 0.08

5 210.50 102.33 0.70 0.56 0.41 0.31

8 483.20 403.18 102.94 14.02 5.83 1.69

10 800.67 633.56 205.96 360.15 308.88 110.18

Average 373.67 284.81 77.44 93.71 78.80 28.07

 8 3 0.89 0.82 0.31 0.34 0.29 0.16

5 502.71 204.83 4.32 122.79 102.27 1.74

8 900.45 802.12 145.02 807.37 711.64 155.66

10 900.38 900.94 301.34 900.64 755.10 254.47

Average 566.84 465.07 107.36 445.13 381.96 98.68

 10 3 101.87 101.88 1.62 0.94 0.65 0.41

5 408.61 33.88 16.63 21.73 7.40 4.28

8 900.43 639.28 180.69 900.34 805.50 81.14

10 900.76 780.15 487.35 900.81 900.95 391.71

Average 537.56 339.88 132.10 400.34 369.59 85.35

87

BPS1(0.0) takes the most time to solve the problems. When the number of operations are

less (3 and 5) BPS2(0.0) is faster than BPS1(0.0) and BPS1(0.01), but as the number of

operations increase BPS1(0.01) is faster than BPS1 (0.0). The approximation algorithms

with optimality tolerance of 0.05 are much faster than any other, while BPS2(0.05)

performs the best in terms of runtime. Since BPS1(0.0) is slowest, we compute the

reduction in runtime achieved by using the other B&P strategies. The results are shown in

Table 5-5.

Table 5-5. Reduction in runtime

%age reduction in runtime

Jobs Opts. BPS1 BPS2
0.01 0.05 0.00 0.01 0.05

3 3 22.74 22.81 30.35 25.17 13.27

5 13.68 28.77 24.52 29.80 40.39

8 -40.30 7.29 10.64 15.22 14.33

10 21.74 34.38 31.52 32.51 35.52

Average 4.46 23.31 24.26 25.67 25.88

 5 3 6.04 1.92 37.03 41.05 49.65

5 25.25 40.97 62.46 66.31 66.00

8 30.43 70.58 88.68 90.31 91.33

10 24.34 71.89 50.86 59.82 84.45

Average 21.52 46.34 59.76 64.37 72.86

 8 3 6.81 47.95 48.31 54.39 67.85

5 32.78 69.73 67.94 70.33 87.30

8 10.92 83.89 10.34 20.97 82.71

10 -0.06 66.53 -0.03 16.13 71.74

Average 12.98 67.04 32.55 41.15 77.56

 10 3 -0.13 26.91 70.54 66.53 81.05

5 41.58 54.30 79.57 81.27 87.19

8 29.00 79.93 0.01 10.54 90.99

10 13.39 45.90 -0.01 -0.02 56.50

Average 21.91 52.49 42.22 44.53 81.74

88

For 10 job problems BPS2(0.05) can show on an average 81% reduction in runtime over

BPS1(0.0). As seen from the improvements made over CPLEX BPS2(0.05) makes 196%

improvement as opposed to BPS2(0.0) which makes 202.53% but at a much lesser

computation overhead. This shows that the approximation algorithms are a viable

alternative to the exact procedure.

Finally we present the maximum number of columns generated, maximum nodes formed

and number of times the sub-problem is solved for the different number of jobs and

operations. This information is helpful to analyze the size of the branch and bound tree,

the effectiveness of the sub-problem solution approach and the memory requirements for

the solution approach. It can be seen from Table 5-6 that there is no clear pattern as

regards to the columns generated and the problem size. But for high number of jobs and

operations per each job, the number of columns generated by BPS2 are more than BPS1.

The maximum number of columns generated were for a 5 job 8 operation problem by

BPS2(0.01).

The number of nodes in the branch and bound tree, as shown in Table 5-7 are lesser in

BPS2 as compared to BPS1, which makes intuitive sense because in BPS2, we are setting

a set of original variables to zero based on the concept of time windows, as compared to

BPS1, where we are setting the value of a single original variable to zero. Hence, BPS1

takes more time because the search space is much bigger. Also the overhead of traversing

the branch and bound tree to set the columns at each node in the branch to zero which

89

violates the current restrictions is much more when the number of nodes in the branch is

more and hence the increase in computational time.

Table 5-6. Number of columns generated in B&P

Maximum number of columns generated

Jobs Opts.
BPS BPS2

0.0 0.01 0.05 0 0.01 0.05
3 3 41 41 41 81 81 81

 5 1713 396 348 316 231 268

 8 851 851 376 498 447 253

 10 50546 49085 1064 2631 1350 400

5 3 9370 2972 388 437 379 191

 5 61797 68180 808 1197 500 412

 8 64480 62893 2904 61562 83342 2423

 10 64747 15366 7588 20085 6646 3851

8 3 1891 1172 1083 642 447 287

 5 64786 66269 48435 16900 7873 1614

 8 67009 65031 51689 74524 77517 71755

 10 63420 55750 44805 73850 76483 47446

10 3 51436 53432 1560 2321 1874 1536

 5 61202 63623 65702 67678 68219 70360

 8 59340 62094 54651 66367 65360 67664

 10 50688 52075 27938 61918 65165 63451

90

Table 5-7. Size of branch and bound tree in B&P

Maximum nodes formed in the branch and bund tree

Jobs Opts.
BPS BPS2

0.0 0.01 0.05 0 0.01 0.05
3 3 15 15 15 19 19 19

 5 2327 691 85 49 37 19

 8 213 111 103 67 43 23

 10 6239 6097 135 161 127 99

5 3 325 75 95 43 33 35

 5 14627 6541 109 89 43 27

 8 9111 9057 9105 809 353 97

 10 6589 5245 4283 3557 3065 2027

8 3 261 261 161 67 57 31

 5 10845 11225 389 4161 4699 143

 8 5455 4179 2797 4725 2861 1541

 10 3939 3081 3047 3055 2865 1665

10 3 13921 13969 319 253 141 41

 5 9411 1771 849 959 321 209

 8 4915 5163 2555 2997 2903 1253

 10 3377 2233 2211 1981 1649 1061

91

6. CONCLUSIONS AND FUTURE WORK

This dissertation is concluded by summarizing the problem and the solution approach in

Section 6.1. Section 6.2 states the contributions of this research followed by their

significance. Lastly in Section 6.3 possible extensions of this research are outlined.

6.1. Summary

Integrating order acceptance and capacity planning provides tremendous opportunities to

maximize the operational profits of make-to-order operations. This is done by selectively

accepting jobs from the available pool of customer orders and simultaneously planning

for their capacity. This integrated problem is difficult to solve and many researchers have

tried to simplify the problem by planning for the bottleneck machines and solving the

problem as a single machine problem. But in reality, the bottleneck is floating as it

depends on the orders which are selected. Furthermore, capacity is not fixed since you

can extend your capacities by adding overtime and outsourcing, which might be

beneficial for improving the profits. Non-regular capacity has not been considered in any

of the previous work done in the area of MTO order acceptance problem. In this

dissertation we model the MTO operation as a job shop with multiple resources and

recirculation. We consider regular capacity (regular shift) and non-regular capacity

(overtime shift). The MTO operation receives customer orders or jobs each with a

number of operations having linear precedence relationship. Typically order acceptance

problems are solved on daily basis for short term capacity planning with a rolling

planning horizon of 3 to 4 weeks. Hence the solution approach to this integrated problem

92

should be quick such that the decision maker can use it recursively not only to find the

optimal set of orders and to allocate capacity but also to explore various other scenarios

that would help in negotiating order due-dates, prices and be aligned with the

organization’s long-term business strategy. The goal of this dissertation is to develop

such a tool.

In order to achieve this goal we first proposed a Mixed-Integer Linear Program (MILP) to

model the research problem under consideration. Using the model we illustrate that

integrating the two decisions of order acceptance and capacity planning can achieve our

goal to maximize the operational profits. Since the proposed MILP had a block diagonal

structure, and column generation can solve models with this structure efficiently, we

proposed an exact branch and price algorithm (BPS1). We also develop approximate

branching scheme (BPS2) and various approximation algorithms for the exact and

approximate branching schemes.

We show through experiments that the BPS1 and other approximation schemes perform

better than the solution provided by the commercial solver, and can solve problems of

sizes which can be typically found in the real-life applications. Figure 6-1 and Figure 6-2

graphically summarize the improvements made by B&P algorithms and the

computational runtime of various solution approaches discussed in this dissertation. We

observe that B&P performs 200% better than the results obtained from solving the MILP

at a much lesser computational overhead as compared to a commercial solver CPLEX.

BPS2(0.05) can solve, on an average, 10 jobs problems in 85 seconds and making 196%

93

improvements over CPLEX. B&P algorithms are significantly faster and solve problems

in reasonable time, and thus can be utilized in a decision support system used on a daily

basis to help make intelligent decisions in a MTO operation.

Figure 6-1. Average improvement in solution quality

3 jobs 5 jobs 8 jobs 10 jobs

BPS1 -0.01 0.26 38.69 199.11
BPS1 0.01 -0.05 0.03 37.80 198.95
BPS1 0.05 -0.44 -0.20 36.70 197.72
BPS2 -0.15 0.62 38.35 202.53
BPS2 0.01 -0.19 0.50 37.98 202.36
BPS2 0.05 -0.45 0.07 36.41 196.95

-10

40

90

140

190

Pe
rc

en
ta

ge

Improvement over CPLEX

94

Figure 6-2. Runtime for various solution approaches

6.2. Contributions & Significance

The contributions of this dissertation are:

• Development of a mathematical model for maximizing the operational profits of a

make-to-order operation by combining order acceptance with capacity planning at

the sales stage in job-shop environment having multiple resources with regular

time and overtime capacity.

3 jobs 5 jobs 8 jobs 10 jobs

CPLEX 156.98 1195.84 1582.88 1476.23
BPS1 26.82 373.67 566.84 537.56
BPS1 0.01 25.48 284.81 465.07 339.88
BPS1 0.05 0.35 77.44 107.36 132.1
BPS2 0.32 93.71 445.13 400.34
BPS2 0.01 0.25 78.8 381.96 369.59
BPS2 0.05 0.2 28.07 98.68 85.35

0

400

800

1200

1600

Ti
m

e
in

 s
ec

on
ds

Runtime for various solution approaches

95

• Development of a Branch and Price solution approach along with various

approximation algorithms were proposed for solving this model within practical

considerations of time-limit.

Existing literature on MTO with static job arrivals only considers order acceptance for

single resource cases with regular capacity. However, most MTO operations have

multiple resources in a job shop environment with regular and non-regular capacity like

overtime and outsourcing available to them. These have not been addressed in the past

research efforts. Hans [42] has developed a B&P solution approach for capacity planning

in job shop with multiple resources and non-regular capacity, but he does not consider

order acceptance. Ebben [7] has studied resource loading based order acceptance using

simulation. In one of the approaches they used BPRL approach proposed by Hans [42] to

schedule already accepted orders. This dissertation has made significant contribution to

the scientific community by studying and modeling the MTO production system as a job

shop with multiple resources having regular and overtime capacity. The branch and

algorithm developed and implemented in this dissertation can solve larger problem sizes,

typically found in MTO operations within practical time limits.

6.3. Future Work

Column generation is a decomposition approach and is efficient when the formulation

exhibits a block diagonal structure. The MILP proposed in this dissertation exhibited this

special structure and hence column generation was adopted to solve the MTO problem.

There are other decomposition techniques in literature like Lagrangian relaxation and

Benders’ decomposition which are commonly used in solving large-scale optimization

96

problems. It could be worthwhile to explore the Lagrangian relaxation approach to solve

the MTO order acceptance problem. Since the capacity constraint is the complicating or

binding constraint, it could be relaxed and put in the objective function. Once this

constraint is relaxed, a solution to the problem can be found out by generating schedules

for individual jobs by using the sub-problem solution approach proposed in this

dissertation. The Lagrange multipliers can be updated by looking at the capacity

violations, and these multipliers can be used to find the new schedules from the sub-

problem.

The problem under consideration is typically found in many practical applications. It lays

the foundation for other complex problems of practical interest having variations to this

basic problem. For example, we consider non-regular capacity as overtime, but many

make-to-order operations have outsourcing options. Integrating outsourcing is another

important variation to the problem we have considered. The solution approach proposed

in this dissertation can be extended to cases where pre-emption is not allowed. In many

other operations, instead of a single deliverable job, we may have a bigger assemblies

made of smaller sub-assemblies. Hence, the precedence relations are much more complex

although each sub-assembly will have linear precedence amongst their sub-operations or

tasks. The solution approach proposed in this research forms the foundation for solving

such complex problems.

One of the assumptions made here in this research is that all the parameters are known

with certainty, however, in real-life there may be some uncertainties. In such case a

97

stochastic formulation is necessary, and hence, the solution approaches may have to be

modified. There are B&P implementations for stochastic MILP’s for other applications.

Consequently, a stochastic version of the proposed B&P algorithm may have to be

implemented. A scenario tree approach is commonly applied in the literature to tackle

uncertainties. The size of the model (constraints, and decision variables) will increase as

a result. A goal programming approach can be devised to relax the due date constraints

to capture the capability to negotiate due dates for different customer orders.

98

LIST OF REFERENCES

[1] Zijm, W. H. M., 2000, "Towards intelligent manufacturing," OR Spektrum, 22, 313-
345.

[2] Chen, Chin-Sheng, 2006, "Concurrent engineering-to-order operation in the
manufacturing engineering contracting industries," International Journal of Industrial and
Systems Engineering, 1(1), 37-58.

[3] Jalora, Anshu. , August 2006, "Order acceptance and scheduling at a make-to-order
system using revenue management," Dissertation/Thesis, Unpublished, Texas A&M
University.

[4] Gallien, Jeremie, Tallec, Yann Le and Schoenmeyr, Tor, "A Model for Make-To-
Order Revenue Management," Unpublished Material.

[5] Vollmann, T. E., Berry, W. L. and Whybark, D. C., 1997, "Manufacturing planning
and control systems," Mc-Graw Hill.

[6] Slotnick, Susan A. and Morton, Thomas E., 2007, "Order acceptance with weighted
tardiness," Computers & Operations Research, 34, 3029-3042.

[7] Ebben, M. J. R., Hans, E. W. and Weghuis, Olde F. M., 2005, "Workload based order
acceptance in job shop environments," OR Spectrum, 27, 107-122.

[8] Streitfeld, D., 2000, "Amazon pays a price for marketing test," Los Angeles Times,
October 2.

[9] Harris, Frederick H., deB. and Pinder, Jonathan P., 1995, "A revenue management
approach to demand management and order booking in assemble-to-order
manufacturing," Journal of Operations Management, 13, 299-309.

[10] Mehmet, Barut and Sridharan, V., 2005, "Revenue management in order-driven
production systems," Decision Sciences, 36(2), 287-316.

[11] Barut, M. and Sridharan, V., 2004, "Design and evaluation of a dynamic capacity
apportionment procedure," European Journal of Operations Research, 155(1), 112-133.

[12] Wilhelm, Wilbert E., 2001, "A technical review of column generation in integer
programming," Optimization and Engineering, 2, 159-200.

[13] Slotnick, Susan A. and Morton, Thomas E., 1996, "Selecting jobs for heavily loaded
shop with lateness penalties," Computers & Operations Research, 23(2), 131-140.

99

[14] Lewis, Herbert F. and Slotnick, Susan A., 2002, "Multi-period job
selection:Planning work loads to maximize profit," Computers & Operations Research,
29, 1081-1098.

[15] Rom, Walter O. and Slotnick, Susan A., 2009, "Order acceptance using genetic
algorithms," Computers & Operations Research, 36(6), 1758-1767.

[16] Ghosh, Jay B., 1997, "Job selection in a heavily loaded shop," Computers Ops. Res.,
24(2), 141-145.

[17] Alidaee, Bahram, Kochenberger, Gary A. and Amini, Mohammad M., 2001,
"Greedy solutions of selection and ordering problems," European Journal of Operational
Research, 134(1), 203-215.

[18] Balakrishnan, N., Sridharan, V. and Patterson, J. W., 1996, "Rationing capacity
between two product classes," Decision Sciences, 27(2), 185-214.

[19] Balakrishnan, N., Patterson, J. W. and Sridharan, V., 1999, "Robustness of capacity
rationing policies," European Journal of Operational Research, 115, 324-338.

[20] Charnsirisakskul, Kasarin, Griffin, Paul M. and Keskinocak, Pinar, 2004, "Order
selection and scheduling with leadtime flexibility," IIE Transactions, 36(7), 697(11).

[21] Charnsirisakskul, Kasarin, Griffin, Paul M. and Keskinocak, Pınar, 2006, "Pricing
and scheduling decisions with leadtime flexibility," European Journal of Operational
Research, 171(1), 153-169.

[22] Duenyas, Izak, 1995, "Single facility due date setting with multiple customer
classes," Management Science, 41(4), 608-619.

[23] Easton, Fred F. and Moodie, Douglas R., 1999, "Pricing and lead time decisions for
make-to-order firms with contingent orders," European Journal of Operational Research,
116(2), 305-318.

[24] Ebadian, M., Rabbani, M., Jolai, F., Torabi, S. A. and Tavakkoli-Moghaddam, R.,
2008, "A new decision-making structure for the order entry stage in make-to-order
environments," International Journal of Production Economics, 111(2), 351-367.

[25] Herbots, Jade, Herroelen, Willy and Leus, Roel, "Dynamic order acceptance and
capacity planning within a multi-project environment,"

[26] Akkan, Can, 1996, "Overtime scheduling: An application in finite-capacity real-time
scheduling," The Journal of OPerational Research Society, 47(9), 1137-1149.

100

[27] Akkan, Can, 1997, "Finite-capacity scheduling-based planning for revenue-based
capacity management," European Journal of Operational Research, 100(1), 170-179.

[28] Miller, Bruce L., 1969, "A queuing reward system with several customer classes,"
Management Science, 16(3, Theory Series), 234-245.

[29] Lippman, Steven A. and Sheldon M. Ross, 1971, "The streetwalker's dilemma: A job
shop model," SIAM J Appl Math, 20(3), 336-342.

[30] Carr, Scott and Duenyas, Izak, 2000, "Optimal admission control and sequencing in
a make-to-Stock/Make-to-order production system," Operations Research, 48(5), 709-
720.

[31] Webster, Scott, 2002, "Dynamic pricing and lead-time policies for make-to-order
systems," Decision Sciences, 33(4), 579-599.

[32] Sridharan, V. and Balakrishnan, N., 1996, "Capacity rationing in multi-period
planning environments," in Proceedings of the Decision Sciences Institute, Orlando, FL.

[33] Defregger, Florian and Kuhn, Heinrich, 2007, "Revenue management for a make-to-
order company with limited inventory capacity," OR Spectrum, 29, 137-156.

[34] Nandi, Amitava and Rogers, Paul, "Optimal control of make-to-order manufacturing
systems via selected order acceptance," in Winter Simulation Conference

[35] Philipoom, P. R. and Fry, T. D., 1992, "Capacity-based order review/release
strategies to improve manufacturing perofrmance," International Journal of Production
Research, 30(11), 2559-2572.

[36] Modarres, Mohammad and Sharifyazdi, Mehdi, "Revenue management approach to
stochastic capacity allocation problem," European Journal of Operational Research, In
Press, Corrected Proof

[37] Faria, Jose A. , 2005, "Multiobjective optimization models and solution methods for
planning land development using minimum spanning trees, lagrangian relaxation and
decomposition techniques," Dissertation/Thesis, Unpublished, University of Maryland.

[38] Van den Akker, J. M., Hoogeveen, H. and van de Velde, S., 1997, "A column
generation algorithm for common due date scheduling,"

[39] Van den Akker, J. M., Hoogeveen, H. and van de Velde, S., 1999, "Parallel machine
scheduling by column generation," Operations Research, 47(6), 862-872.

101

[40] Van den Akker, J. M., Hurkens, C. A. J. and Savelsbergh, M. W. P., 2000, "A time-
indexed formulation for single-machine scheduling problems: Column generation,"
INFORMS Journal of computing, 12(2), 111-124.

[41] Van den Akker, J. M., Van Hoesel, C. P. M. and Savelsbergh, M. W. P., 1999, "A
polyhedral approach to single-machine scheduling problems," Mathematical
Programming, 85(3), 541-572.

[42] Hans, Erwin. , 2001, "Resource loading by branch-and-price techniques,"
Dissertation/Thesis, Unpublished, University of Twente.

[43] Bazarra, Mokhtar S., Jarvis, John J. and Sherali, Hanif D., 2004, "Linear
programming and network flows," Wiley.

[44] Barnhart, Cynthia, Johnson, Ellis L., Nemhauser, George L., Savelsbergh, Martin W.
P. and Vance, Pamela H., 1998, "Branch-and-price: Column generation for solving huge
integer programs," Operations Research, 46(3), 316-329.

[45] Appelgren, L. H., 1969, "A column generation algorithm for a ship scheduling
problem," Transportation Science, 3, 53-68.

[46] Rardin, Ronald L.,1998, "Optimization in operations research," Prentice Hall.

[47] Lasdon, L. S.,1970, "Optimization theory for large systems," Macmillan Publishing
Co., Inc.

[48] Savelsbergh, Martin, 1997, "A branch-and-price algorithm for the generalized
assignment problem," Oper.Res., 45(6), 831-841.

102

APPENDICES

APPENDIX A: Experimental results (Experiment C) for showing empirically the exponential
increase in runtime of the Mixed-Integer Linear Program.

APPENDIX B: Experimental results to show the exponential increase in solving the Sub-
problem using a mathematical optimization model.

APPENDIX C: CPLEX results for solving the Mixed-Integer Linear Program using
Experimental setup D

APPENDIX D: Results for the Root Node solution (Column Generation) for Experimental
setup D

APPENDIX E: Experimental results for Branch & Price Strategy 1 (BPS1) with Depth First
(DFS) node selection.

APPENDIX F: Experimental results for Branch & Price Strategy 1 (BPS1) with combination
of Depth First and Best First (DFS+BeFS) node selection.

APPENDIX G: Experimental results for Branch & Price Strategy 1 (BPS1) with Best First
(BeFS) node selection.

APPENDIX H: Experimental results for approximation algorithm employing BPS1 and
DFS+BeFS with optimality tolerance α=0.01

APPENDIX I: Experimental results for approximation algorithm employing BPS1 and
DFS+BeFS with optimality tolerance α=0.05

APPENDIX J: Experimental results for Branch & Price Strategy 2 (BPS2) with combination
of Depth First and Best First (DFS+BeFS) node selection.

APPENDIX K: Experimental results for approximation algorithm employing BPS2 and
DFS+BeFS with optimality tolerance α=0.01

APPENDIX L: Experimental results for approximation algorithm employing BPS2 and
DFS+BeFS with optimality tolerance α=0.05

103

APPENDIX A

Number
of Jobs

Number
Of

Operations
per job

Time
Period
(Days)

Random
Instance

CPLEX
Runtime
(seconds)

Absolute
MIP
Gap

Relative
MIP
Gap

3 3 3 1 0.047
3 3 4 2 0.063
3 3 4 3 0.938
3 4 4 1 0.938
3 4 4 2 0.141
3 4 5 3 0.156
3 5 6 1 0.266
3 5 6 2 0.578
3 5 6 3 7.141
3 6 7 1 66.063
3 6 7 2 0.859
3 6 8 3 0.625
3 7 8 1 9.250
3 7 9 2 17.391
3 7 9 3 16.484
3 8 9 1 385.516
3 8 10 2 10135.500
3 8 10 3 8.328
5 3 6 1 0.313
5 3 5 2 1.219
5 3 5 3 0.172
5 4 8 1 0.641
5 4 8 2 1.469
5 4 9 3 0.859
5 5 10 1 9.109
5 5 10 2 1234.860
5 5 10 3 489.969
5 6 12 1 346.938
5 6 12 2 47896.600 68 2.81%
5 6 11 3 11.188
5 7 13 1 24.563
5 7 14 2 23.234
5 7 14 3 1917.980
5 8 17 1 62186.400 22 0.42%
5 8 16 2 61971.800 28 0.03%
5 8 16 3 34705.900 552 11.22%

104

APPENDIX B

Number
Of

Jobs

Number of
Operations

per job

Time
Period
(Days)

Random
Instance

No. of
Sub-

Problems
Solved

Total
Sub-Problem
Solve Time
(seconds)

Average
Sub-Problem
Solve Time
(seconds)

3 3 3 1 18 0.766 0.043
3 3 4 2 15 0.750 0.050
3 3 4 3 21 0.922 0.044
3 4 4 1 21 1.031 0.049
3 4 4 2 18 0.953 0.053
3 4 5 3 21 1.156 0.055
3 5 6 1 33 2.625 0.080
3 5 6 2 30 2.250 0.075
3 5 6 3 54 5.625 0.104
3 6 7 1 60 11.047 0.184
3 6 7 2 54 10.359 0.192
3 6 8 3 30 4.156 0.139
3 7 8 1 51 11.875 0.233
3 7 9 2 36 6.797 0.189
3 7 9 3 27 6.531 0.242
3 8 9 1 42 35.875 0.854
3 8 10 2 63 109.938 1.745
3 8 10 3 21 14.922 0.711
5 3 6 1 40 1.859 0.046
5 3 5 2 30 1.453 0.048
5 3 5 3 30 1.406 0.047
5 4 8 1 45 2.938 0.065
5 4 8 2 35 2.297 0.066
5 4 9 3 35 2.422 0.069
5 5 10 1 60 8.016 0.134
5 5 10 2 120 15.031 0.125
5 5 10 3 50 11.016 0.220
5 6 12 1 45 9.109 0.202
5 6 12 2 40 6.813 0.170
5 6 11 3 45 5.900 0.131
5 7 13 1 35 18.000 0.514
5 7 14 2 55 43.297 0.787
5 7 14 3 60 25.078 0.418
5 8 17 1 150 7294.660 48.631
5 8 16 2 80 770.562 9.632
5 8 16 3 115 3675.120 31.958

105

APPENDIX C

Instance LP
Relaxation

Time to
Root
Node

CPLEX
Integer

Solution

CPLEX
Best

Bound

CPLEX
Runtime

Absolute
MIP
Gap

Relative
MIP
Gap
(%)

j3o3r3lr0.8t4_i1 906.00 0 794 794 0.06 0.000 0.000
j3o3r3lr0.8t5_i2 1163.06 0 1135 1135 0.03 0.000 0.000
j3o3r3lr0.8t5_i3 1890.00 0 1807 1807 0.14 0.000 0.000
j3o3r3lr1t4_i1 1161.06 0 1120 1120 0.02 0.000 0.000
j3o3r3lr1t4_i2 1169.00 0 1169 1169 0.02 0.000 0.000
j3o3r3lr1t3_i3 787.51 0.02 729 729 0.06 0.000 0.000
j3o3r3lr1.2t2_i1 257.13 0 92 92 0.02 0.000 0.000
j3o3r3lr1.2t3_i2 377.95 0 274 274 0.02 0.000 0.000
j3o3r3lr1.2t3_i3 1333.88 0.02 1202 1202 0.03 0.000 0.000
j3o5r3lr0.8t8_i1 3009.00 0 2781 2781.225 15.53 0.225 0.010
j3o5r3lr0.8t6_i2 3546.00 0 3416 3416.294 6.34 0.294 0.010
j3o5r3lr0.8t7_i3 2271.73 0 2157 2157 1.53 0.000 0.000
j3o5r3lr1t6_i1 2474.00 0.01 2134 2134.138 11.06 0.138 0.010
j3o5r3lr1t6_i2 4090.85 0 3661 3661.327 12.27 0.327 0.010
j3o5r3lr1t6_i3 2651.00 0.01 2377 2377.2 27.19 0.204 0.010
j3o5r3lr1.2t5_i1 2949.61 0 2282 2282 0.39 0.000 0.000
j3o5r3lr1.2t6_i2 834.64 0.02 164 164 0.67 0.000 0.000
j3o5r3lr1.2t5_i3 1335.12 0 988 988 0.08 0.000 0.000
j3o8r5lr0.8t8_i1 3180.41 0.01 2235 2235.214 57.36 0.214 0.010
j3o8r5lr0.8t7_i2 2589.25 0.02 1889 1889 1.27 0.000 0.000
j3o8r5lr0.8t8_i3 3605.25 0.03 3034 3034.3 673.94 0.300 0.010
j3o8r5lr1t6_i1 1158.91 0.02 266 266 0.27 0.000 0.000
j3o8r5lr1t5_i2 1842.81 0 1175 1175 0.77 0.000 0.000
j3o8r5lr1t6_i3 3216.30 0.02 1610 1610 1.92 0.000 0.000
j3o8r5lr1.2t4_i1 2010.64 0.02 649 649 0.08 0.000 0.000
j3o8r5lr1.2t4_i2 2043.22 0.02 1102 1102 0.05 0.000 0.000
j3o8r5lr1.2t5_i3 4064.47 0.02 1806 1806 0.45 0.000 0.000
j3o10r5lr0.8t9_i1 2433.76 0.03 1620 1620.147 133.39 0.147 0.010
j3o10r5lr0.8t9_i2 4628.15 0.06 3954 4420.984 1800 466.984 11.810
j3o10r5lr0.8t9_i3 3693.22 0.06 2563 3169.34 1800 606.340 23.660
j3o10r5lr1t8_i1 7709.53 0.06 6645 6645.637 1092.74 0.637 0.010
j3o10r5lr1t7_i2 1020.29 0.03 861 861 0.58 0.000 0.000
j3o10r5lr1t7_i3 3717.05 0.01 3171 3171 12.34 0.000 0.000
j3o10r5lr1.2t6_i1 1109.80 0.03 1E-07 0 0.09 0.000 0.000
j3o10r5lr1.2t5_i2 3583.72 0.02 3004 3004 0.2 0.000 0.000
j3o10r5lr1.2t6_i3 1109.90 0.03 137 137 0.28 0.000 0.000
j5o3r3lr0.8t7_i1 1775.46 0 1729 1729 0.16 0.000 0.000
j5o3r3lr0.8t8_i2 2259.00 0.01 2259 2259 3.31 0.000 0.000
j5o3r3lr0.8t8_i3 2793.23 0.02 2627 2627 1.2 0.000 0.000
j5o3r3lr1t6_i1 3691.67 0.02 3621 3621 0.25 0.000 0.000
j5o3r3lr1t6_i2 3187.28 0.02 3031 3031 0.39 0.000 0.000
j5o3r3lr1t5_i3 3041.00 0 3041 3041 0.44 0.000 0.000
j5o3r3lr1.2t4_i1 1319.17 0 1312 1312 0.05 0.000 0.000
j5o3r3lr1.2t5_i2 1470.32 0 1321 1321 0.11 0.000 0.000
j5o3r3lr1.2t5_i3 2751.36 0 2670 2670 0.34 0.000 0.000
j5o5r3lr0.8t10_i1 2905.00 0.01 2657 2781.752 1800.28 124.752 4.700
j5o5r3lr0.8t14_i2 3566.74 0.03 3404 3543 1800.02 139.000 4.080
j5o5r3lr0.8t12_i3 7187.00 0.03 6891 7187 1801.24 296.000 4.300
j5o5r3lr1t10_i1 3989.59 0.02 3862 3862 3.63 0.000 0.000
j5o5r3lr1t10_i2 4003.40 0.02 3188 3790 1800.01 602.000 18.880
j5o5r3lr1t11_i3 6443.00 0.03 5992 6443 1800.58 451.000 7.530

106

Instance LP
Relaxation

Time to
Root
Node

CPLEX
Integer

Solution

CPLEX
Best

Bound

CPLEX
Runtime

Absolute
MIP
Gap

Relative
MIP
Gap
(%)

j5o5r3lr1.2t8_i1 1538.37 0.02 1182 1182.111 1377.17 0.111 0.010
j5o5r3lr1.2t9_i2 3264.17 0.01 3114 3114.275 251.77 0.275 0.010
j5o5r3lr1.2t8_i3 1906.20 0 1700 1700 2 0.000 0.000
j5o8r5lr0.8t11_i1 3057.00 0.09 2640 2982.154 1800.19 342.154 12.960
j5o8r5lr0.8t13_i2 9445.00 0.09 8657.5 9414 1800 756.500 8.740
j5o8r5lr0.8t12_i3 11458.83 0.06 11091.5 11444 1803.53 352.500 3.180
j5o8r5lr1t9_i1 2920.34 0.09 1559 2039.745 1800.8 480.745 30.840
j5o8r5lr1t9_i2 4275.43 0.08 3667 4062.136 1800.03 395.136 10.780
j5o8r5lr1t9_i3 3907.58 0.09 2626 3310 1800.44 684.000 26.050
j5o8r5lr1.2t9_i1 4487.86 0.11 3752 3964.069 1800 212.069 5.650
j5o8r5lr1.2t8_i2 3417.08 0.13 2018 2332.823 1800.03 314.823 15.600
j5o8r5lr1.2t8_i3 8365.71 0.08 6833 7982.636 1800.3 1149.640 16.820
j5o10r5lr0.8t15_i1 7765.44 0.37 6664 7695 1800.05 1031.000 15.470
j5o10r5lr0.8t14_i2 3795.69 0.24 2967 3611.158 1800.03 644.158 21.710
j5o10r5lr0.8t16_i3 11333.81 0.3 7667 11056 1800.02 3389.000 44.200
j5o10r5lr1t12_i1 7116.60 0.25 5661 6964.841 1800.05 1303.840 23.030
j5o10r5lr1t12_i2 7509.24 0.23 6274 7313 1800 1039.000 16.560
j5o10r5lr1t12_i3 7930.32 0.3 5438 7596.897 1800.02 2158.900 39.700
j5o10r5lr1.2t10_i1 5238.88 0.25 3615 4511.766 1801.88 896.766 24.810
j5o10r5lr1.2t10_i2 6544.65 0.23 5676 6246.1 1800.02 570.100 10.040
j5o10r5lr1.2t10_i3 5508.28 0.2 4401 4851.961 1800.02 450.961 10.250
j8o3r3lr0.8t13_i1 2391.00 0.03 2295 2391 1801.34 96.000 4.180
j8o3r3lr0.8t13_i2 4341.00 0.03 4341 4341 3.89 0.000 0.000
j8o3r3lr0.8t11_i3 4365.53 0.02 4193 4299 1800.19 106.000 2.530
j8o3r3lr1t9_i1 2953.62 0.02 2889 2889 1.02 0.000 0.000
j8o3r3lr1t9_i2 2082.87 0.02 2069 2069 0.27 0.000 0.000
j8o3r3lr1t10_i3 3285.82 0.01 3218 3266 1800.02 48.000 1.490
j8o3r3lr1.2t8_i1 3109.27 0.02 2963 2963.295 1389.91 0.295 0.010
j8o3r3lr1.2t8_i2 5439.52 0.02 5436 5436 1.31 0.000 0.000
j8o3r3lr1.2t8_i3 3492.07 0.02 3202 3377 1800.01 175.000 5.470
j8o5r3lr0.8t20_i1 6205.00 0.17 5340 6205 1800.03 865.000 16.200
j8o5r3lr0.8t20_i2 6039.13 0.14 5848 6010 1800 162.000 2.770
j8o5r3lr0.8t20_i3 7039.50 0.13 6924 7028 1801.03 104.000 1.500
j8o5r3lr1t17_i1 7072.25 0.14 6838 7072 1800.05 234.000 3.420
j8o5r3lr1t14_i2 6045.00 0.11 5724 6034 1800.17 310.000 5.420
j8o5r3lr1t16_i3 4183.03 0.14 4009 4177 1800.03 168.000 4.190
j8o5r3lr1.2t14_i1 5739.75 0.09 5369 5685 1800.03 316.000 5.890
j8o5r3lr1.2t14_i2 5966.38 0.11 5807 5887 1800.03 80.000 1.380
j8o5r3lr1.2t12_i3 4336.10 0.08 4003 4259 1800.02 256.000 6.400
j8o8r5lr0.8t21_i1 7346.00 0.63 4129 7346 1800.05 3217.000 77.910
j8o8r5lr0.8t18_i2 6931.50 0.2 3305 6803 1800.06 3498.000 105.840
j8o8r5lr0.8t19_i3 15558.67 0.74 13522 15452 1800.01 1930.000 14.270
j8o8r5lr1t15_i1 17591.00 0.47 15757 17549.47 1800.03 1792.470 11.380
j8o8r5lr1t16_i2 11858.60 0.31 10583 11713 1800.06 1130.000 10.680
j8o8r5lr1t16_i3 11831.00 0.56 9902 11831 1800.03 1929.000 19.480
j8o8r5lr1.2t13_i1 11489.89 0.5 10102 11090.85 1800.88 988.854 9.790
j8o8r5lr1.2t13_i2 7388.77 0.33 6889 7357 1800.09 468.000 6.790
j8o8r5lr1.2t13_i3 4850.94 0.31 4309 4757 1800.01 448.000 10.400
j8o10r5lr0.8t26_i1 18082.60 2.45 0 18001 1800.05 18001.000 infinity
j8o10r5lr0.8t23_i2 11581.00 1.84 6441 11581 1800.02 5140.000 79.800
j8o10r5lr0.8t23_i3 18384.00 1.56 11813 18384 1800.03 6571.000 55.630
j8o10r5lr1t19_i1 13919.71 1.23 8399 13528 1800.08 5129.000 61.070
j8o10r5lr1t17_i2 11238.00 0.94 2985 11238 1800.08 8253.000 276.480
j8o10r5lr1t19_i3 9858.08 1.09 2836 9850 1800.05 7014.000 247.320

107

Instance LP
Relaxation

Time to
Root
Node

CPLEX
Integer

Solution

CPLEX
Best

Bound

CPLEX
Runtime

Absolute
MIP
Gap

Relative
MIP
Gap
(%)

j8o10r5lr1.2t15_i1 9478.00 0.66 3457 9478 1800.03 6021.000 174.170
j8o10r5lr1.2t16_i2 16972.46 1.23 7713 16737 1800.02 9024.000 117.000
j8o10r5lr1.2t16_i3 12323.25 1.13 2430 12220.57 1800.05 9790.570 402.900
j10o3r3lr0.8t15_i1 7366.00 0.03 7366 7366 2.17 0.000 0.000
j10o3r3lr0.8t15_i2 3593.58 0.05 3529 3592 2.63 0.000 0.000
j10o3r3lr0.8t14_i3 4795.27 0.03 4676 4676 1.53 0.000 0.000
j10o3r3lr1t12_i1 3719.00 0.03 3639 3719 1800 90.000 2.200
j10o3r3lr1t12_i2 5296.00 0.05 5218 5266 1800.14 48.000 0.920
j10o3r3lr1t11_i3 4669.00 0.02 4658 4658 5.11 0.000 0.000
j10o3r3lr1.2t10_i1 4683.00 0.03 4683 4683 2.53 0.000 0.000
j10o3r3lr1.2t9_i2 4464.71 0.03 4373 4373.433 574.72 0.433 0.010
j10o3r3lr1.2t10_i3 4476.02 0.03 4306 4372 1800.02 66.000 1.530
j10o5r3lr0.8t26_i1 9833.00 0.34 9833 9833 1648.53 0.000 0.000
j10o5r3lr0.8t28_i2 12311.29 0.59 11425 12049 1800 624.000 5.460
j10o5r3lr0.8t25_i3 9519.00 0.34 9169 9519 1800.03 350.000 3.820
j10o5r3lr1t20_i1 4709.46 0.34 4672 4703 1800.01 31.000 0.660
j10o5r3lr1t19_i2 6191.70 0.41 6156 6178 1800.02 22.000 0.360
j10o5r3lr1t19_i3 7237.36 0.25 6967 7215 1800.03 248.000 3.560
j10o5r3lr1.2t16_i1 4071.03 0.22 3896 4018 1800.01 122.000 3.130
j10o5r3lr1.2t18_i2 6851.82 0.31 6123 6782 1800.92 659.000 10.760
j10o5r3lr1.2t18_i3 8083.24 0.3 6880 8082 1800.05 1202.000 17.470
j10o8r5lr0.8t24_i1 13565.00 1.58 7206 13565 1800.03 6359.000 88.250
j10o8r5lr0.8t24_i2 10602.00 1.31 8169 10602 1800.06 2433.000 29.780
j10o8r5lr0.8t22_i3 11857.94 1.55 4377 11804 1800.06 7427.000 169.680
j10o8r5lr1t17_i1 12802.59 0.81 10782 12750 1800.05 1968.000 18.250
j10o8r5lr1t18_i2 9899.41 1.39 6798 9783 1800.03 2985.000 43.910
j10o8r5lr1t19_i3 9671.39 1.22 5408 9581 1800.03 4173.000 77.160
j10o8r5lr1.2t16_i1 15029.52 1.01 9231 14717 1800.02 5486.000 59.430
j10o8r5lr1.2t16_i2 13955.67 1.2 11403 13785 1800.08 2382.000 20.890
j10o8r5lr1.2t16_i3 10523.54 1.17 7518 10510 1800.03 2992.000 39.800
j10o10r5lr0.8t29_i1 18526.50 3.23 4.97E-14 18491 1800.09 18491.000 infinity
j10o10r5lr0.8t29_i2 12322.00 4.06 3474 12322 1800.09 8848.000 254.690
j10o10r5lr0.8t30_i3 17822.00 4.23 358 17822 1800.22 17464.000 4900.000
j10o10r5lr1t24_i1 11457.00 4.02 1737 11397 1800.17 9660.000 556.130
j10o10r5lr1t23_i2 18395.00 3.14 0 18395 1800.03 18395.000 infinity
j10o10r5lr1t25_i3 17716.31 3.72 4.75E-13 17643 1800.13 17643.000 infinity
j10o10r5lr1.2t19_i1 19037.58 2.66 7304 18841 1800.08 11537.000 157.950
j10o10r5lr1.2t21_i2 14230.88 3.06 -3.2E-14 14201 1800.13 14201.000 infinity
j10o10r5lr1.2t19_i3 16799.00 2.28 2909 16799 1800.03 13890.000 477.480

108

APPENDIX D

Instance Fractional
Uj

Fractional
λj

Initial
Solution

Max.
Initial
Integer
Profit

Root Node
Solution

Columns
Added @

Root
Node

Time to
Root
Node

(seconds)
j3o3r3lr0.8t4_i1 1 5 716 716 902 17 0.031
j3o3r3lr0.8t5_i2 0 9 960 960 1135 18 0.031
j3o3r3lr0.8t5_i3 0 2 1181 1181 1807 19 0.031
j3o3r3lr1t4_i1 0 7 1070 1070 1120 14 0.031
j3o3r3lr1t4_i2 0 0 420 420 1169 19 0.016
j3o3r3lr1t3_i3 1 7 655 655 742.818 16 0.016
j3o3r3lr1.2t2_i1 0 0 92 92 92 1 0.031
j3o3r3lr1.2t3_i2 0 0 274 274 274 3 0.016
j3o3r3lr1.2t3_i3 0 5 1107 1107 1202 12 0.016
j3o5r3lr0.8t8_i1 0 13 2518 2518 2839.54 46 0.047
j3o5r3lr0.8t6_i2 0 9 3366 3366 3416 33 0.031
j3o5r3lr0.8t7_i3 0 9 1624 1624 2170 34 0.047
j3o5r3lr1t6_i1 1 10 1679 1679 2145.4 29 0.031
j3o5r3lr1t6_i2 1 9 3223 3223 3670.27 45 0.047
j3o5r3lr1t6_i3 0 11 2225 2225 2413.7 36 0.031
j3o5r3lr1.2t5_i1 1 7 1466 1466 2399 30 0.031
j3o5r3lr1.2t6_i2 1 1 164 164 217.5 5 0.031
j3o5r3lr1.2t5_i3 0 0 988 988 988 1 0.016
j3o8r5lr0.8t8_i1 0 3 2195 2195 2258.4 14 0.046
j3o8r5lr0.8t7_i2 1 5 284 284 1900.18 11 0.046
j3o8r5lr0.8t8_i3 1 14 1324 1324 3125.5 49 0.078
j3o8r5lr1t6_i1 0 0 203 203 266 7 0.031
j3o8r5lr1t5_i2 2 3 1148 1148 1294.21 8 0.031
j3o8r5lr1t6_i3 2 8 1550 1550 1675.68 19 0.031
j3o8r5lr1.2t4_i1 0 0 649 649 649 1 0.031
j3o8r5lr1.2t4_i2 0 0 284 284 1102 3 0.031
j3o8r5lr1.2t5_i3 0 2 571 571 1806 16 0.031
j3o10r5lr0.8t9_i1 0 6 1208 1208 1621.71 18 0.063
j3o10r5lr0.8t9_i2 0 16 2375 2375 4154.04 49 0.094
j3o10r5lr0.8t9_i3 0 7 2297 2297 2634.36 25 0.063
j3o10r5lr1t8_i1 0 18 3686 3686 6706.5 73 0.125
j3o10r5lr1t7_i2 0 0 861 861 861 1 0.016
j3o10r5lr1t7_i3 0 5 1795 1795 3197.31 32 0.078
j3o10r5lr1.2t6_i1 0 0 0 0 0 0 0.016
j3o10r5lr1.2t5_i2 0 0 1121 1121 3004 10 0.046
j3o10r5lr1.2t6_i3 0 0 137 137 137 1 0.016
j5o3r3lr0.8t7_i1 1 11 1449 1449 1775.46 27 0.031
j5o3r3lr0.8t8_i2 0 7 2113 2113 2259 31 0.031
j5o3r3lr0.8t8_i3 2 18 2341 2341 2786.08 37 0.031
j5o3r3lr1t6_i1 0 12 2883 2883 3621 31 0.031
j5o3r3lr1t6_i2 2 14 2555 2555 3081.58 35 0.031
j5o3r3lr1t5_i3 0 14 2843 2843 3041 35 0.031
j5o3r3lr1.2t4_i1 1 9 773 773 1319.17 18 0.016
j5o3r3lr1.2t5_i2 2 12 1206 1206 1408.43 33 0.031
j5o3r3lr1.2t5_i3 0 16 2174 2174 2674.13 44 0.031
j5o5r3lr0.8t10_i1 1 18 2119 2119 2688.8 68 0.063
j5o5r3lr0.8t14_i2 1 25 2882 2882 3470.11 60 0.094
j5o5r3lr0.8t12_i3 0 17 6440 6440 6891 30 0.047
j5o5r3lr1t10_i1 1 14 3411 3411 3989.59 51 0.063
j5o5r3lr1t10_i2 1 21 2658 2658 3424.76 84 0.078
j5o5r3lr1t11_i3 0 20 5767 5767 5992 60 0.078
j5o5r3lr1.2t8_i1 1 11 647 647 1380.03 45 0.063

109

Instance Fractional
Uj

Fractional
λj

Initial
Solution

Max.
Initial
Integer
Profit

Root Node
Solution

Columns
Added @

Root
Node

Time to
Root
Node

(seconds)
j5o5r3lr1.2t9_i2 2 18 2503 2503 3170.5 65 0.078
j5o5r3lr1.2t8_i3 2 16 1144 1144 1833.44 46 0.062
j5o8r5lr0.8t11_i1 1 16 1995 1995 2802.2 54 0.11
j5o8r5lr0.8t13_i2 1 29 7905 7905 8788.49 136 0.25
j5o8r5lr0.8t12_i3 0 23 10094 10094 11234 85 0.188
j5o8r5lr1t9_i1 3 18 1146 1146 1705.34 63 0.11
j5o8r5lr1t9_i2 1 18 2127 2127 3809.49 55 0.11
j5o8r5lr1t9_i3 0 14 1057 1057 2818.31 50 0.11
j5o8r5lr1.2t9_i1 1 16 3091 3091 4026.43 58 0.141
j5o8r5lr1.2t8_i2 1 18 869 869 2161.05 55 0.094
j5o8r5lr1.2t8_i3 1 28 4229 4229 7212.8 119 0.156
j5o10r5lr0.8t15_i1 1 30 5419 5419 6965.13 160 0.469
j5o10r5lr0.8t14_i2 2 25 755 755 3074.46 115 0.391
j5o10r5lr0.8t16_i3 2 34 7241 7241 10019.8 172 0.5
j5o10r5lr1t12_i1 0 44 4123 4123 6025.39 223 0.5
j5o10r5lr1t12_i2 1 25 2828 2828 6388.75 102 0.328
j5o10r5lr1t12_i3 1 35 4177 4177 6327.77 173 0.391
j5o10r5lr1.2t10_i1 2 20 1871 1871 3677.49 75 0.219
j5o10r5lr1.2t10_i2 1 29 5019 5019 5877.61 113 0.266
j5o10r5lr1.2t10_i3 2 24 2185 2185 4556.57 91 0.188
j8o3r3lr0.8t13_i1 1 23 2263 2263 2349.3 48 0.063
j8o3r3lr0.8t13_i2 0 27 4181 4181 4341 53 0.063
j8o3r3lr0.8t11_i3 1 25 4057 4057 4240.05 48 0.046
j8o3r3lr1t9_i1 1 22 2305 2305 2953.62 53 0.046
j8o3r3lr1t9_i2 1 14 1616 1616 2082.87 52 0.046
j8o3r3lr1t10_i3 1 25 2473 2473 3248.93 56 0.047
j8o3r3lr1.2t8_i1 2 21 2133 2133 2996.59 69 0.046
j8o3r3lr1.2t8_i2 1 24 4147 4147 5439.24 69 0.047
j8o3r3lr1.2t8_i3 2 21 2641 2641 3269.25 56 0.047
j8o5r3lr0.8t20_i1 1 31 3993 3993 5964.56 77 0.125
j8o5r3lr0.8t20_i2 1 44 5681 5681 6039.13 74 0.125
j8o5r3lr0.8t20_i3 1 34 6630 6630 6962.5 81 0.141
j8o5r3lr1t17_i1 1 36 5833 5833 6946 93 0.156
j8o5r3lr1t14_i2 2 38 4989 4989 5903.37 80 0.094
j8o5r3lr1t16_i3 1 27 1698 1698 4082.04 61 0.11
j8o5r3lr1.2t14_i1 3 44 4338 4338 5567.58 128 0.156
j8o5r3lr1.2t14_i2 2 38 4040 4040 5835.14 106 0.156
j8o5r3lr1.2t12_i3 2 34 3224 3224 4166.66 137 0.141
j8o8r5lr0.8t21_i1 1 48 6360 6360 7280.75 112 0.375
j8o8r5lr0.8t18_i2 1 34 5514 5514 6857.5 97 0.281
j8o8r5lr0.8t19_i3 0 49 13046 13046 15035.8 293 0.922
j8o8r5lr1t15_i1 1 56 14347 14347 16285.8 328 0.75
j8o8r5lr1t16_i2 2 54 8145 8145 11080.2 184 0.453
j8o8r5lr1t16_i3 0 51 9819 9819 10996 160 0.375
j8o8r5lr1.2t13_i1 1 43 6443 6443 10429.2 218 0.469
j8o8r5lr1.2t13_i2 1 47 5481 5481 7350.56 243 0.547
j8o8r5lr1.2t13_i3 1 31 2824 2824 4564.68 142 0.39
j8o10r5lr0.8t26_i1 1 52 15038 15038 17460.8 184 0.843
j8o10r5lr0.8t23_i2 2 57 8724 8724 11333.7 168 0.594
j8o10r5lr0.8t23_i3 1 47 16541 16541 18279.8 162 0.688
j8o10r5lr1t19_i1 1 51 7217 7217 13069.8 326 1.266
j8o10r5lr1t17_i2 1 54 7382 7382 9356.48 280 0.844
j8o10r5lr1t19_i3 1 44 5850 5850 8981.05 202 0.735
j8o10r5lr1.2t15_i1 1 56 5440 5440 9242.17 339 1.032

110

Instance Fractional
Uj

Fractional
λj

Initial
Solution

Max.
Initial
Integer
Profit

Root Node
Solution

Columns
Added @

Root
Node

Time to
Root
Node

(seconds)
j8o10r5lr1.2t16_i2 4 67 13092 13092 15463.8 490 1.438
j8o10r5lr1.2t16_i3 2 57 8131 8131 10754.3 328 1
j10o3r3lr0.8t15_i1 0 35 6757 6757 7366 70 0.078
j10o3r3lr0.8t15_i2 1 34 3247 3247 3593.58 86 0.078
j10o3r3lr0.8t14_i3 1 34 4532 4532 4795.27 70 0.078
j10o3r3lr1t12_i1 0 35 2813 2813 3639 86 0.078
j10o3r3lr1t12_i2 1 38 4781 4781 5280 89 0.078
j10o3r3lr1t11_i3 1 25 3663 3663 4669 65 0.047
j10o3r3lr1.2t10_i1 0 31 3542 3542 4683 79 0.063
j10o3r3lr1.2t9_i2 2 26 3125 3125 4384.69 63 0.046
j10o3r3lr1.2t10_i3 1 34 2989 2989 4382.75 89 0.062
j10o5r3lr0.8t26_i1 0 46 9405 9405 9833 110 0.25
j10o5r3lr0.8t28_i2 1 50 10474 10474 12037 109 0.312
j10o5r3lr0.8t25_i3 1 45 8585 8585 9245.9 110 0.234
j10o5r3lr1t20_i1 1 43 4215 4215 4684.4 109 0.188
j10o5r3lr1t19_i2 0 44 5903 5903 6156 108 0.172
j10o5r3lr1t19_i3 2 47 6083 6083 7184.96 100 0.187
j10o5r3lr1.2t16_i1 2 38 3062 3062 3970.99 105 0.14
j10o5r3lr1.2t18_i2 1 28 4564 4564 6226.5 97 0.172
j10o5r3lr1.2t18_i3 1 34 4050 4050 7350 136 0.234
j10o8r5lr0.8t24_i1 0 62 12568 12568 13293 126 0.438
j10o8r5lr0.8t24_i2 0 70 9930 9930 10589.1 141 0.5
j10o8r5lr0.8t22_i3 1 58 10337 10337 11319 118 0.344
j10o8r5lr1t17_i1 1 66 10408 10408 12341.1 188 0.454
j10o8r5lr1t18_i2 3 45 6189 6189 8824.09 205 0.454
j10o8r5lr1t19_i3 1 42 6268 6268 9378.57 95 0.297
j10o8r5lr1.2t16_i1 0 44 7276 7276 13790 154 0.391
j10o8r5lr1.2t16_i2 2 54 10204 10204 13313.9 265 0.563
j10o8r5lr1.2t16_i3 1 72 8061 8061 10207 398 1
j10o10r5lr0.8t29_i1 1 70 15839 15839 18500.4 196 0.985
j10o10r5lr0.8t29_i2 1 83 10919 10919 12169.9 161 0.766
j10o10r5lr0.8t30_i3 1 73 15273 15273 17592.9 291 1.438
j10o10r5lr1t24_i1 0 91 9028 9028 11023.9 332 1.437
j10o10r5lr1t23_i2 2 59 7497 7497 16441 223 0.828
j10o10r5lr1t25_i3 2 87 11700 11700 16344.9 541 2.531
j10o10r5lr1.2t19_i1 1 72 13871 13871 18232.6 336 1.218
j10o10r5lr1.2t21_i2 2 47 6483 6483 12910.3 219 0.938
j10o10r5lr1.2t19_i3 1 69 10791 10791 15929.2 205 0.734

111

APPENDIX E

Instance
Best

Integer
Solution

Best
Integer @

node

Time to
Best

Integer
Solution
(seconds)

Number of
Columns

Best
Bound

Runtime
(seconds)

Total
Nodes

j3o3r3lr0.8t4_i1 794 14 0.046 41 794 0.046 15
j3o3r3lr0.8t5_i2 1135 3 0.031 24 1135 0.031 5
j3o3r3lr0.8t5_i3 1807 1 0.031 24 1807 0.031 3
j3o3r3lr1t4_i1 1120 1 0.031 23 1120 0.031 3
j3o3r3lr1t4_i2 1169 3 0.031 26 1169 0.031 5
j3o3r3lr1t3_i3 729 13 0.031 55 729 0.031 15
j3o3r3lr1.2t2_i1 92 0 0 1 92 0.031 3
j3o3r3lr1.2t3_i2 274 0 0 3 274 0.016 3
j3o3r3lr1.2t3_i3 1202 1 0.031 24 1202 0.031 3
j3o5r3lr0.8t8_i1 2781 23 0.297 2113 2781 3.157 247
j3o5r3lr0.8t6_i2 3416 15 0.094 92 3416 0.094 17
j3o5r3lr0.8t7_i3 2157 7 0.094 150 2157.89 0.156 17
j3o5r3lr1t6_i1 2134 3 0.063 73 2134 0.063 5
j3o5r3lr1t6_i2 3661 7 0.078 79 3661 0.078 9
j3o5r3lr1t6_i3 2367 5649 175.87 50259 2413.7 900.046 13167
j3o5r3lr1.2t5_i1 2282 39 0.25 275 2282 0.328 55
j3o5r3lr1.2t6_i2 164 0 0 20 164 0.046 5
j3o5r3lr1.2t5_i3 988 0 0 1 988 0.016 3
j3o8r5lr0.8t8_i1 2235 4 0.062 24 2235 0.078 7
j3o8r5lr0.8t7_i2 1889 1 0.046 19 1889 0.046 3
j3o8r5lr0.8t8_i3 3034 498 10.704 4268 3034.12 12.423 563
j3o8r5lr1t6_i1 266 1 0.031 7 266 0.031 3
j3o8r5lr1t5_i2 1175 6 0.047 22 1175 0.047 7
j3o8r5lr1t6_i3 1610 9 0.11 79 1610 0.125 11
j3o8r5lr1.2t4_i1 649 0 0 1 649 0.031 3
j3o8r5lr1.2t4_i2 1102 1 0.031 3 1102 0.031 3
j3o8r5lr1.2t5_i3 1806 0 0.031 16 1806 0.031 1
j3o10r5lr0.8t9_i1 1620 3 0.094 39 1620 0.125 5
j3o10r5lr0.8t9_i2 3417 2587 130.891 51012 4126.9 900.183 8073
j3o10r5lr0.8t9_i3 2563 409 5.735 2006 2563.49 6.141 435
j3o10r5lr1t8_i1 6645 5101 205.615 24045 6645 291.264 5879
j3o10r5lr1t7_i2 861 0 0 1 861 0.031 3
j3o10r5lr1t7_i3 3171 8 0.234 104 3171 0.234 9
j3o10r5lr1.2t6_i1 1E-07 0 0 0 1E-07 0.031 3
j3o10r5lr1.2t5_i2 3004 1 0.046 10 3004 0.046 3
j3o10r5lr1.2t6_i3 137 0 0 1 137 0.016 3
j5o3r3lr0.8t7_i1 1729 10 0.062 58 1729 0.062 11
j5o3r3lr0.8t8_i2 2259 30 0.141 98 2259 0.141 31
j5o3r3lr0.8t8_i3 2627 71 0.234 155 2627 0.234 73
j5o3r3lr1t6_i1 3621 15 0.094 122 3621 0.094 17
j5o3r3lr1t6_i2 3031 55 0.187 197 3031 0.187 57
j5o3r3lr1t5_i3 3041 8412 201.895 23426 3041 201.911 8413
j5o3r3lr1.2t4_i1 1312 22 0.063 97 1312 0.063 23
j5o3r3lr1.2t5_i2 1321 25 0.093 105 1321 0.109 29
j5o3r3lr1.2t5_i3 2670 49 0.172 5016 2670 8.845 1001
j5o5r3lr0.8t10_i1 2635 8051 250.322 52274 2684.97 900.079 14773
j5o5r3lr0.8t14_i2 3404 87 0.969 450 3404 0.985 89
j5o5r3lr0.8t12_i3 6891 107 0.797 326 6891 0.813 109
j5o5r3lr1t10_i1 3862 62 0.578 334 3862 0.578 63
j5o5r3lr1t10_i2 3176 2117 86.46 64930 3226.57 900.016 7971
j5o5r3lr1t11_i3 5881 791 19.392 64901 5992 900.129 8167

112

Instance
Best

Integer
Solution

Best
Integer @

node

Time to
Best

Integer
Solution
(seconds)

Number of
Columns

Best
Bound

Runtime
(seconds)

Total
Nodes

j5o5r3lr1.2t8_i1 1182 65 0.516 342 1182 0.531 67
j5o5r3lr1.2t9_i2 3114 1294 37.94 28121 3114 169.149 3059
j5o5r3lr1.2t8_i3 1700 14 0.109 71 1700 0.109 15
j5o8r5lr0.8t11_i1 2725 19 0.422 666 2725 1.735 89
j5o8r5lr0.8t13_i2 8600 1044 64.597 64339 8776.36 900.011 5469
j5o8r5lr0.8t12_i3 11074 2991 257.855 62414 11227.6 900.318 6119
j5o8r5lr1t9_i1 1565 104 1.891 55125 1604.94 900.422 8725
j5o8r5lr1t9_i2 3653 268 7.453 58247 3756.73 900.088 7523
j5o8r5lr1t9_i3 2710 6895 657.063 54945 2805.72 900.13 8167
j5o8r5lr1.2t9_i1 3484.5 928 20.469 51105 3817.4 900.187 9271
j5o8r5lr1.2t8_i2 2059 143 2.828 14025 2059 76.845 1851
j5o8r5lr1.2t8_i3 4229 0 0 48497 7121.13 900.09 9109
j5o10r5lr0.8t15_i1 6785 316 23.188 51005 6922.13 900.527 5647
j5o10r5lr0.8t14_i2 2967 2865 308.488 61307 3047.61 900.479 5287
j5o10r5lr0.8t16_i3 9715 201 19.672 56125 9967.47 901.318 3431
j5o10r5lr1t12_i1 5693 3465 570.098 51686 6024.62 900.834 4607
j5o10r5lr1t12_i2 6277.33 72 4.719 61371 6355.08 900.334 3983
j5o10r5lr1t12_i3 5995 1617 233.861 55398 6326.13 901.068 3799
j5o10r5lr1.2t10_i1 3615 889 37.578 8815 3615.53 44.5 1007
j5o10r5lr1.2t10_i2 5628 2075 221.892 58146 5858.59 900.756 4933
j5o10r5lr1.2t10_i3 4351 194 8.063 51928 4504.98 900.579 6879
j8o3r3lr0.8t13_i1 2295 231 2.172 851 2295 2.188 233
j8o3r3lr0.8t13_i2 4341 109 0.813 312 4341 0.828 111
j8o3r3lr0.8t11_i3 4193 57 0.343 217 4193 0.359 59
j8o3r3lr1t9_i1 2889 65 0.296 167 2889 0.312 69
j8o3r3lr1t9_i2 2069 276 1.343 594 2069 1.343 277
j8o3r3lr1t10_i3 3218 50 0.25 149 3218 0.25 51
j8o3r3lr1.2t8_i1 2963 44 0.296 248 2963 0.296 45
j8o3r3lr1.2t8_i2 5417 75 0.438 54257 5436 900 13913
j8o3r3lr1.2t8_i3 3081 2402 41.266 53880 3202 900.094 13375
j8o5r3lr0.8t20_i1 5940 155 2.484 613 5940 2.5 157
j8o5r3lr0.8t20_i2 5941 624 13.734 1885 5941 13.734 625
j8o5r3lr0.8t20_i3 6942 9562 322.906 32755 6954 900.203 18503
j8o5r3lr1t17_i1 6739 4033 356.578 65076 6915.17 900.515 6897
j8o5r3lr1t14_i2 5652 5070 390.344 62914 5724 900.219 7945
j8o5r3lr1t16_i3 4009 128 1.328 429 4009 1.328 129
j8o5r3lr1.2t14_i1 5369 2622 119.641 62272 5405.5 900 8201
j8o5r3lr1.2t14_i2 5775 8591 430.859 47246 5807 900.234 12819
j8o5r3lr1.2t12_i3 3899 731 19.11 58654 4029 900.031 9127
j8o8r5lr0.8t21_i1 7046 852 191.563 52036 7252 900.313 2857
j8o8r5lr0.8t18_i2 6748 599 37.172 63811 6802 900.531 4921
j8o8r5lr0.8t19_i3 14660 3768 865.219 55034 15033.3 900.187 3885
j8o8r5lr1t15_i1 15751 354 49.531 60840 16230.2 900.031 3659
j8o8r5lr1t16_i2 9146 3139 761 52870 11032.9 900.515 3497
j8o8r5lr1t16_i3 10741 404 47.406 54057 10996 900.203 4047
j8o8r5lr1.2t13_i1 9986 338 35.359 61866 10375.1 900.609 4223
j8o8r5lr1.2t13_i2 7154 3311 611.25 64948 7347.76 900.203 4155
j8o8r5lr1.2t13_i3 4484 2146 404.25 70409 4557.27 901.515 3305
j8o10r5lr0.8t26_i1 17003 1639 463.922 38406 17432 900.578 2999
j8o10r5lr0.8t23_i2 11073 1840 537.61 48132 11258 900.547 2673
j8o10r5lr0.8t23_i3 18021 753 127.391 55007 18213 900.344 3051
j8o10r5lr1t19_i1 12758 388 77.704 51462 13067.4 900.219 3663
j8o10r5lr1t17_i2 9056 469 66.172 65335 9354.93 900.359 3093

113

Instance
Best

Integer
Solution

Best
Integer @

node

Time to
Best

Integer
Solution
(seconds)

Number of
Columns

Best
Bound

Runtime
(seconds)

Total
Nodes

j8o10r5lr1t19_i3 8645 312 44.844 62333 8870.84 900.657 3475
j8o10r5lr1.2t15_i1 7899 441 76.813 53938 9229.92 900.047 3619
j8o10r5lr1.2t16_i2 14621 876 237.25 56144 15248.3 900.672 2729
j8o10r5lr1.2t16_i3 10111.3 2278 518.516 52221 10667.7 900.172 3389
j10o3r3lr0.8t15_i1 7366 205 2.281 595 7366 2.297 207
j10o3r3lr0.8t15_i2 3529 317 3.797 1064 3529 3.828 319
j10o3r3lr0.8t14_i3 4676 303 2.766 644 4676 2.781 305
j10o3r3lr1t12_i1 3639 186 1.421 388 3639 1.437 187
j10o3r3lr1t12_i2 5218 198 2.453 933 5218 2.453 199
j10o3r3lr1t11_i3 4658 166 1.297 556 4658 1.297 167
j10o3r3lr1.2t10_i1 4683 197 1.469 569 4683 1.485 199
j10o3r3lr1.2t9_i2 4373 1546 19 5423 4373 19 1547
j10o3r3lr1.2t10_i3 4306 8542 510.687 56346 4323.5 900 11481
j10o5r3lr0.8t26_i1 9833 744 29.938 2439 9833 29.938 745
j10o5r3lr0.8t28_i2 11643 847 85.656 47689 11817 901.094 5199
j10o5r3lr0.8t25_i3 9189 499 15.797 1575 9189 15.922 501
j10o5r3lr1t20_i1 4672 481 10.407 1284 4672 10.438 483
j10o5r3lr1t19_i2 6104 5354 445.625 56265 6156 900.235 8235
j10o5r3lr1t19_i3 7072 399 12.922 2446 7072 15.172 465
j10o5r3lr1.2t16_i1 3874 794 20.812 61149 3896 900.047 8421
j10o5r3lr1.2t18_i2 6193 200 5.187 40741 6221 900.046 11637
j10o5r3lr1.2t18_i3 7350 272 6.906 1379 7350 6.906 273
j10o8r5lr0.8t24_i1 13219 900 125.579 47423 13293 900.594 3271
j10o8r5lr0.8t24_i2 10424 1063 213.109 45801 10589.1 900.656 2865
j10o8r5lr0.8t22_i3 11032 1151 154.375 47225 11289 900.329 4117
j10o8r5lr1t17_i1 11909 785 130.266 55772 12294 900 3785
j10o8r5lr1t18_i2 8552 1601 315.797 57191 8749.66 900.282 2969
j10o8r5lr1t19_i3 8978 640 70.75 54967 9346 900.281 4349
j10o8r5lr1.2t16_i1 13490 2199 421.938 56042 13790 900.219 3635
j10o8r5lr1.2t16_i2 12987.5 1150 125.813 58582 13293 900.453 4397
j10o8r5lr1.2t16_i3 9903 628 97.594 51449 10160.5 900.829 4195
j10o10r5lr0.8t29_i1 18435 884 146.438 31466 18491 900.907 3503
j10o10r5lr0.8t29_i2 11507 1767 781.094 30290 12091 900.266 1983
j10o10r5lr0.8t30_i3 16690.5 1447 661.907 31413 17464 900.407 1915
j10o10r5lr1t24_i1 10682 1127 546.922 33994 11023.9 900.343 1761
j10o10r5lr1t23_i2 15578 1731 458.781 45250 16190.3 900.297 3123
j10o10r5lr1t25_i3 15369 754 204.937 45808 16095.9 901.047 2277
j10o10r5lr1.2t19_i1 17710 637 171.484 49363 18177.4 900.031 2707
j10o10r5lr1.2t21_i2 12650 590 220.703 54019 12867.1 900.875 1671
j10o10r5lr1.2t19_i3 15336 679 155.765 54988 15882.9 900.078 2765

114

APPENDIX F

Instance
Best

Integer
Solution

Node of
Best

Integer
Solution

Time to
Best Integer

Solution
 (seconds)

Columns
Generated

Best
Bound

Runtime
(seconds)

Total
Nodes

j3o3r3lr0.8t4_i1 794 14 2.719 41 794 2.719 15
j3o3r3lr0.8t5_i2 1135 3 0.031 24 1135 0.031 5
j3o3r3lr0.8t5_i3 1807 1 0.031 24 1807 0.046 3
j3o3r3lr1t4_i1 1120 1 0.031 23 1120 0.031 3
j3o3r3lr1t4_i2 1169 3 0.031 26 1169 0.031 5
j3o3r3lr1t3_i3 729 8 0.046 40 729 0.046 9
j3o3r3lr1.2t2_i1 92 0 0 1 92 0.015 3
j3o3r3lr1.2t3_i2 274 0 0 3 274 0.031 3
j3o3r3lr1.2t3_i3 1202 1 0.031 24 1202 0.031 3
j3o5r3lr0.8t8_i1 2781 23 0.312 976 2825.36 1.25 105
j3o5r3lr0.8t6_i2 3416 15 0.078 92 3416 0.078 17
j3o5r3lr0.8t7_i3 2157 7 0.109 150 2157.89 0.156 17
j3o5r3lr1t6_i1 2134 3 0.078 73 2134 0.078 5
j3o5r3lr1t6_i2 3661 7 0.078 79 3661 0.093 9
j3o5r3lr1t6_i3 2377 2321 36.796 9370 2395.4 36.953 2327
j3o5r3lr1.2t5_i1 2282 41 0.265 258 2282 0.312 51
j3o5r3lr1.2t6_i2 164 0 0 20 164 0.046 5
j3o5r3lr1.2t5_i3 988 0 0 1 988 0.031 3
j3o8r5lr0.8t8_i1 2235 4 0.063 24 2235 0.078 7
j3o8r5lr0.8t7_i2 1889 1 0.047 19 1889 0.047 3
j3o8r5lr0.8t8_i3 3034 174 3.687 1891 3071.97 4.421 213
j3o8r5lr1t6_i1 266 1 0.031 7 266 0.031 3
j3o8r5lr1t5_i2 1175 6 0.046 22 1175 0.046 7
j3o8r5lr1t6_i3 1610 9 0.11 79 1610 0.125 11
j3o8r5lr1.2t4_i1 649 0 0 1 649 0.016 3
j3o8r5lr1.2t4_i2 1102 1 0.031 3 1102 0.031 3
j3o8r5lr1.2t5_i3 1806 0 0.031 16 1806 0.031 1
j3o10r5lr0.8t9_i1 1620 3 0.094 39 1620 0.11 5
j3o10r5lr0.8t9_i2 3938 133 4.625 51436 4107.27 900.39 6239
j3o10r5lr0.8t9_i3 2563 24 0.375 1216 2582.52 3.406 259
j3o10r5lr1t8_i1 6645 427 13.469 3910 6686.4 14.422 453
j3o10r5lr1t7_i2 861 0 0 1 861 0.062 3
j3o10r5lr1t7_i3 3171 8 0.234 104 3171 0.234 9
j3o10r5lr1.2t6_i1 0 0 0 0 0 0.031 3
j3o10r5lr1.2t5_i2 3004 1 0.031 10 3004 0.047 3
j3o10r5lr1.2t6_i3 137 0 0 1 137 0.031 3
j5o3r3lr0.8t7_i1 1729 29 0.109 103 1729 0.109 31
j5o3r3lr0.8t8_i2 2259 30 0.141 98 2259 0.141 31
j5o3r3lr0.8t8_i3 2627 71 0.235 155 2627 0.25 73
j5o3r3lr1t6_i1 3621 15 0.094 122 3621 0.094 17
j5o3r3lr1t6_i2 3031 55 0.172 197 3031 0.172 57
j5o3r3lr1t5_i3 3041 73 0.266 396 3041 0.266 75
j5o3r3lr1.2t4_i1 1312 22 0.063 97 1312 0.063 23
j5o3r3lr1.2t5_i2 1321 25 0.094 105 1321 0.094 29
j5o3r3lr1.2t5_i3 2670 49 0.187 1713 2674.13 1.718 325
j5o5r3lr0.8t10_i1 2635 138 1.203 50357 2675.87 900.015 14627
j5o5r3lr0.8t14_i2 3404 87 0.953 450 3404 0.985 89
j5o5r3lr0.8t12_i3 6891 107 0.797 326 6891 0.813 109
j5o5r3lr1t10_i1 3862 62 0.578 334 3862 0.578 63
j5o5r3lr1t10_i2 3176 171 2.625 61797 3221.05 900.11 8681
j5o5r3lr1t11_i3 5992 307 4.078 1633 5992 4.094 309
j5o5r3lr1.2t8_i1 1182 85 0.641 409 1182 0.656 87

115

Instance
Best

Integer
Solution

Node of
Best

Integer
Solution

Time to
Best Integer

Solution
 (seconds)

Columns
Generated

Best
Bound

Runtime
(seconds)

Total
Nodes

j5o5r3lr1.2t9_i2 3114 2024 74.672 18289 3136 87.172 2201
j5o5r3lr1.2t8_i3 1700 14 0.109 71 1700 0.109 15
j5o8r5lr0.8t11_i1 2725 19 0.422 439 2735.96 1.11 59
j5o8r5lr0.8t13_i2 8630.5 3562 544.39 64786 8773.76 900.343 4615
j5o8r5lr0.8t12_i3 11059 149 5.656 61079 11209.7 900.406 6341
j5o8r5lr1t9_i1 1559 6429 622.36 50076 1588.72 711.875 6915
j5o8r5lr1t9_i2 3650 77 2.156 59277 3736.14 900.516 7323
j5o8r5lr1t9_i3 2751 101 2.813 3835 2802.8 13.141 499
j5o8r5lr1.2t9_i1 3752 164 4.625 1790 3764.19 5.672 199
j5o8r5lr1.2t8_i2 2059 83 1.703 4518 2120.61 15.188 627
j5o8r5lr1.2t8_i3 4229 0 0 48534 7121.13 900.531 9111
j5o10r5lr0.8t15_i1 6774 1195 109.094 56508 6918.58 900.531 4719
j5o10r5lr0.8t14_i2 2970 442 22.031 59252 3041.38 900.14 5843
j5o10r5lr0.8t16_i3 9826 3908 813.172 55019 9967.47 900.172 4123
j5o10r5lr1t12_i1 5693 259 25.578 57217 6023.01 900.61 4753
j5o10r5lr1t12_i2 6277.33 450 31.047 52202 6334.43 900.281 6589
j5o10r5lr1t12_i3 6011 413 44.344 61202 6317.32 900.313 3545
j5o10r5lr1.2t10_i1 3615 51 2 1028 3616.29 3.5 103
j5o10r5lr1.2t10_i2 5659 313 22.906 53155 5842.08 900.343 6117
j5o10r5lr1.2t10_i3 4361 1098 69.516 56294 4497.4 900.141 5753
j8o3r3lr0.8t13_i1 2295 231 2.188 851 2295 2.188 233
j8o3r3lr0.8t13_i2 4341 109 0.812 312 4341 0.828 111
j8o3r3lr0.8t11_i3 4193 57 0.344 217 4193 0.36 59
j8o3r3lr1t9_i1 2889 65 0.281 167 2889 0.297 69
j8o3r3lr1t9_i2 2069 260 1.281 547 2069 1.281 261
j8o3r3lr1t10_i3 3218 50 0.25 149 3218 0.25 51
j8o3r3lr1.2t8_i1 2963 44 0.281 248 2963 0.281 45
j8o3r3lr1.2t8_i2 5436 193 1.156 777 5436 1.156 195
j8o3r3lr1.2t8_i3 3202 241 1.406 766 3202 1.406 243
j8o5r3lr0.8t20_i1 5940 155 2.469 613 5940 2.5 157
j8o5r3lr0.8t20_i2 5941 566 12.203 1773 5941 12.203 567
j8o5r3lr0.8t20_i3 6942 9293 679.485 53960 6954 900.172 10845
j8o5r3lr1t17_i1 6739 388 14.235 64480 6915.17 900.203 5817
j8o5r3lr1t14_i2 5724 493 7.64 2123 5724 7.656 495
j8o5r3lr1t16_i3 4009 128 1.313 429 4009 1.313 129
j8o5r3lr1.2t14_i1 5373 583 16.094 64322 5405.5 900.016 7217
j8o5r3lr1.2t14_i2 5759 431 7.875 56914 5807 900.234 9699
j8o5r3lr1.2t12_i3 3991 464 9.688 64058 4029 900.063 7377
j8o8r5lr0.8t21_i1 7046 719 155.563 49896 7252 900.641 3553
j8o8r5lr0.8t18_i2 6748 568 29.781 57211 6802 900.156 5455
j8o8r5lr0.8t19_i3 14641 428 66.672 58312 15031.8 900.641 3713
j8o8r5lr1t15_i1 15751 354 49.5 57209 16230.2 900.844 3441
j8o8r5lr1t16_i2 9331 974 178.297 50851 11032.9 900.125 3841
j8o8r5lr1t16_i3 10889 1020 133.062 52694 10996 900.109 4179
j8o8r5lr1.2t13_i1 10082 2381 439.156 61897 10369.6 900.735 3883
j8o8r5lr1.2t13_i2 7154 318 33.141 60971 7347.76 900.438 3921
j8o8r5lr1.2t13_i3 4484 1634 197.438 67009 4546.92 900.36 4003
j8o10r5lr0.8t26_i1 17087 1408 465.718 43904 17432 900.453 2327
j8o10r5lr0.8t23_i2 11107 1334 368.563 47942 11258 900.797 2373
j8o10r5lr0.8t23_i3 18045 1465 284.531 48316 18213 900.219 3083
j8o10r5lr1t19_i1 12758 388 77.516 57787 13067.4 900.125 2839
j8o10r5lr1t17_i2 9056 422 59.125 59340 9354.86 900.188 3939
j8o10r5lr1t19_i3 8721 554 85.922 57969 8870.84 900.594 3351
j8o10r5lr1.2t15_i1 8803 1977 522.125 54429 9225.48 900.235 2911

116

Instance
Best

Integer
Solution

Node of
Best

Integer
Solution

Time to
Best Integer

Solution
 (seconds)

Columns
Generated

Best
Bound

Runtime
(seconds)

Total
Nodes

j8o10r5lr1.2t16_i2 14616 482 140.094 50381 15121 900.532 1851
j8o10r5lr1.2t16_i3 10269 721 151.938 52648 10665.6 900.329 3263
j10o3r3lr0.8t15_i1 7366 205 2.281 595 7366 2.297 207
j10o3r3lr0.8t15_i2 3529 317 3.812 1064 3529 3.843 319
j10o3r3lr0.8t14_i3 4676 303 2.766 644 4676 2.766 305
j10o3r3lr1t12_i1 3639 186 1.422 388 3639 1.422 187
j10o3r3lr1t12_i2 5218 198 2.438 933 5218 2.438 199
j10o3r3lr1t11_i3 4658 166 1.297 556 4658 1.297 167
j10o3r3lr1.2t10_i1 4683 197 1.469 569 4683 1.485 199
j10o3r3lr1.2t9_i2 4373 218 1.296 621 4373 1.296 219
j10o3r3lr1.2t10_i3 4306 221 2.046 50546 4323.5 900.015 13921
j10o5r3lr0.8t26_i1 9833 744 29.922 2439 9833 29.922 745
j10o5r3lr0.8t28_i2 11760 1770 180.312 47298 11817 900.437 5643
j10o5r3lr0.8t25_i3 9189 499 15.812 1575 9189 15.953 501
j10o5r3lr1t20_i1 4672 481 10.39 1284 4672 10.422 483
j10o5r3lr1t19_i2 6145 1175 45.641 56551 6156 900.172 8419
j10o5r3lr1t19_i3 7072 399 12.906 2070 7072 13.015 405
j10o5r3lr1.2t16_i1 3884 747 19.141 64747 3896 900.453 8487
j10o5r3lr1.2t18_i2 6193 200 5.203 55699 6221 900.203 9411
j10o5r3lr1.2t18_i3 7350 272 6.906 1379 7350 6.906 273
j10o8r5lr0.8t24_i1 13218.5 877 120.672 44386 13293 900.829 3333
j10o8r5lr0.8t24_i2 10518 1849 396.969 37037 10589.1 900.234 3921
j10o8r5lr0.8t22_i3 11262 1556 202.953 47638 11289 900.656 4641
j10o8r5lr1t17_i1 12053 2140 507.344 52869 12294 900.484 3277
j10o8r5lr1t18_i2 8552 227 16.5 63420 8716.18 900.14 3879
j10o8r5lr1t19_i3 9162 983 119.672 57238 9346 900.579 3847
j10o8r5lr1.2t16_i1 13469 365 37.469 52620 13790 900.579 4915
j10o8r5lr1.2t16_i2 13040 997 118.219 57951 13293 900.063 4237
j10o8r5lr1.2t16_i3 9951 3383 805.156 54541 10160.5 900.281 3649
j10o10r5lr0.8t29_i1 18435 884 146.593 30370 18491 900.828 3361
j10o10r5lr0.8t29_i2 11507 1767 780.703 27938 12091 900.297 2211
j10o10r5lr0.8t30_i3 16690.5 1447 662.328 29949 17464 902.219 1919
j10o10r5lr1t24_i1 10682 1127 547.016 37154 11023.9 900.406 1741
j10o10r5lr1t23_i2 15578 773 219.25 47741 16092.2 900.719 2983
j10o10r5lr1t25_i3 15369 754 204.968 41056 15980.6 900.562 2435
j10o10r5lr1.2t19_i1 17632 636 170.969 50688 18177.4 900.172 2417
j10o10r5lr1.2t21_i2 12637 951 361.156 49398 12867 901.719 1933
j10o10r5lr1.2t19_i3 15726 1229 299.328 43617 15882.9 900.688 3377

117

APPENDIX G

Instance
Best

Integer
Solution

Best
Integer @

node

Time to
Best

Integer
Solution
(seconds)

Number of
Columns

Best
Bound

Runtime
(seconds)

Total
Nodes

j3o3r3lr0.8t4_i1 794 15 0.031 51 794 0.031 17
j3o3r3lr0.8t5_i2 1135 3 0.016 24 1135 0.031 5
j3o3r3lr0.8t5_i3 1807 1 0.016 24 1807 0.031 3
j3o3r3lr1t4_i1 1120 1 0.031 23 1120 0.031 3
j3o3r3lr1t4_i2 1169 3 0.031 26 1169 0.031 5
j3o3r3lr1t3_i3 729 8 0.031 40 729 0.031 9
j3o3r3lr1.2t2_i1 92 0 0 1 92 0.016 3
j3o3r3lr1.2t3_i2 274 0 0 3 274 0.016 3
j3o3r3lr1.2t3_i3 1202 1 0.031 24 1202 0.031 3
j3o5r3lr0.8t8_i1 2781 165 2.484 2110 2782 3.343 233
j3o5r3lr0.8t6_i2 3416 11 0.078 82 3416 0.078 13
j3o5r3lr0.8t7_i3 2157 19 0.203 183 2157 0.203 21
j3o5r3lr1t6_i1 2134 3 0.063 73 2134 0.063 5
j3o5r3lr1t6_i2 3661 7 0.063 79 3661 0.078 9
j3o5r3lr1t6_i3 2377 565 4.875 2709 2377 4.891 567
j3o5r3lr1.2t5_i1 2282 35 0.281 258 2282 0.297 41
j3o5r3lr1.2t6_i2 164 0 0 20 164 0.047 5
j3o5r3lr1.2t5_i3 988 0 0 1 988 0.016 3
j3o8r5lr0.8t8_i1 2235 4 0.063 24 2235 0.078 7
j3o8r5lr0.8t7_i2 1889 1 0.046 19 1889 0.062 3
j3o8r5lr0.8t8_i3 3034 442 13.171 4244 3034.5 13.171 443
j3o8r5lr1t6_i1 266 1 0.046 7 266 0.046 3
j3o8r5lr1t5_i2 1175 6 0.046 22 1175 0.046 7
j3o8r5lr1t6_i3 1610 9 0.11 79 1610 0.125 11
j3o8r5lr1.2t4_i1 649 0 0 1 649 0.015 3
j3o8r5lr1.2t4_i2 1102 1 0.031 3 1102 0.031 3
j3o8r5lr1.2t5_i3 1806 0 0.046 16 1806 0.046 1
j3o10r5lr0.8t9_i1 1620 3 0.094 39 1620 0.125 5
j3o10r5lr0.8t9_i2 2375 0 0 50377 4047.08 900.016 6177
j3o10r5lr0.8t9_i3 2563 367 5.578 1959 2563.49 6.156 403
j3o10r5lr1t8_i1 6645 621 19.203 8330 6645.86 41.875 1115
j3o10r5lr1t7_i2 861 0 0 1 861 0.031 3
j3o10r5lr1t7_i3 3171 8 0.219 104 3171 0.219 9
j3o10r5lr1.2t6_i1 1E-07 0 0 0 1E-07 0.031 3
j3o10r5lr1.2t5_i2 3004 1 0.031 10 3004 0.031 3
j3o10r5lr1.2t6_i3 137 0 0 1 137 0.031 3
j5o3r3lr0.8t7_i1 1729 23 0.078 75 1729 0.078 25
j5o3r3lr0.8t8_i2 2259 179 0.641 343 2259 0.641 181
j5o3r3lr0.8t8_i3 2627 986 4.047 1780 2627 4.047 987
j5o3r3lr1t6_i1 3621 50 0.25 291 3621 0.25 51
j5o3r3lr1t6_i2 3031 3650 44.235 10508 3031 44.235 3651
j5o3r3lr1t5_i3 3041 1601 17.485 7889 3041 17.5 1603
j5o3r3lr1.2t4_i1 1312 23 0.062 100 1312 0.078 25
j5o3r3lr1.2t5_i2 1321 41 0.172 193 1321 0.188 43
j5o3r3lr1.2t5_i3 2670 1073 11.046 5603 2670 11.062 1075
j5o5r3lr0.8t10_i1 2657 10314 506.281 36648 2657 506.313 10315
j5o5r3lr0.8t14_i2 3404 2893 34.891 6135 3404 34.922 2895
j5o5r3lr0.8t12_i3 6891 16196 783.297 40542 6891 783.328 16197
j5o5r3lr1t10_i1 3411 0 0 50117 3862 900.141 14813
j5o5r3lr1t10_i2 2658 0 0 69198 3218.78 900.218 6775
j5o5r3lr1t11_i3 5767 0 0 48036 5992 900.141 15391

118

Instance
Best

Integer
Solution

Best
Integer @

node

Time to
Best

Integer
Solution
(seconds)

Number of
Columns

Best
Bound

Runtime
(seconds)

Total
Nodes

j5o5r3lr1.2t8_i1 1182 735 7.281 3054 1182 7.297 737
j5o5r3lr1.2t9_i2 3114 1678 78.359 19339 3114.88 91.125 1859
j5o5r3lr1.2t8_i3 1700 16 0.125 76 1700 0.125 17
j5o8r5lr0.8t11_i1 2725 26 0.485 667 2725 1.656 87
j5o8r5lr0.8t13_i2 7905 0 0 58321 8748.8 900.063 5301
j5o8r5lr0.8t12_i3 10094 0 0 58946 11184.8 900.203 6247
j5o8r5lr1t9_i1 1259 213 3.531 54681 1571.88 900.485 7447
j5o8r5lr1t9_i2 2127 0 0 58608 3700.03 900.297 6981
j5o8r5lr1t9_i3 2767.8 2742 186.656 32011 2768.71 328.469 3947
j5o8r5lr1.2t9_i1 3752 214 6.766 1962 3752 6.781 215
j5o8r5lr1.2t8_i2 2059 525 15.61 10551 2060 48.391 1313
j5o8r5lr1.2t8_i3 4229 0 0 67428 7090.16 900.438 5813
j5o10r5lr0.8t15_i1 5419 0 0 52996 6902.17 900.328 5267
j5o10r5lr0.8t14_i2 755 0 0 59933 2985.11 900.5 4389
j5o10r5lr0.8t16_i3 7241 0 0 61672 9955.26 900.844 3495
j5o10r5lr1t12_i1 4123 0 0 66217 6001.42 900.219 2713
j5o10r5lr1t12_i2 2828 0 0 52691 6307.99 900.156 5863
j5o10r5lr1t12_i3 4177 0 0 66364 6309.76 900.75 3267
j5o10r5lr1.2t10_i1 3615 236 8.047 2087 3615 8.063 237
j5o10r5lr1.2t10_i2 5019 0 0 61266 5772.75 901.063 3559
j5o10r5lr1.2t10_i3 2185 0 0 56904 4468.03 900.766 5445
j8o3r3lr0.8t13_i1 2263 0 0 53845 2295 900.203 15907
j8o3r3lr0.8t13_i2 4341 43 0.36 250 4341 0.375 45
j8o3r3lr0.8t11_i3 4057 0 0 45159 4193 900.031 19415
j8o3r3lr1t9_i1 2889 2475 17.906 4528 2889 17.906 2477
j8o3r3lr1t9_i2 1616 0 0 43764 2069 900.11 20159
j8o3r3lr1t10_i3 3218 1376 9.141 2797 3218 9.141 1377
j8o3r3lr1.2t8_i1 2963 50 0.312 306 2963 0.312 51
j8o3r3lr1.2t8_i2 5436 10210 361.781 33668 5436 361.796 10211
j8o3r3lr1.2t8_i3 2641 0 0 51307 3202 900.063 17485
j8o5r3lr0.8t20_i1 3993 0 0 41417 5940 900.016 16305
j8o5r3lr0.8t20_i2 5681 0 0 42904 5941 900.141 14067
j8o5r3lr0.8t20_i3 6630 0 0 41107 6954 900.062 14283
j8o5r3lr1t17_i1 5833 0 0 40237 6915.17 900.015 13483
j8o5r3lr1t14_i2 4989 0 0 42307 5724 900.031 17739
j8o5r3lr1t16_i3 1698 0 0 43244 4009 900.125 16919
j8o5r3lr1.2t14_i1 4338 0 0 53583 5405.5 900.172 13445
j8o5r3lr1.2t14_i2 4040 0 0 53823 5807 900.125 12943
j8o5r3lr1.2t12_i3 3224 0 0 4834 4029 358.985 30001
j8o8r5lr0.8t21_i1 6360 0 0 56119 7252 900.156 4865
j8o8r5lr0.8t18_i2 5514 0 0 47939 6802 900.094 10717
j8o8r5lr0.8t19_i3 13046 0 0 54221 15023.6 900.078 3171
j8o8r5lr1t15_i1 14347 0 0 63849 16213.5 900.328 3297
j8o8r5lr1t16_i2 8145 0 0 54627 11032.9 900.187 5791
j8o8r5lr1t16_i3 9819 0 0 59293 10996 900.437 6825
j8o8r5lr1.2t13_i1 6443 0 0 60277 10350.5 900.453 3763
j8o8r5lr1.2t13_i2 5481 0 0 68924 7344.64 900.984 2729
j8o8r5lr1.2t13_i3 2824 0 0 61133 4535.7 900.453 3663
j8o10r5lr0.8t26_i1 15038 0 0 48761 17432 900.437 5053
j8o10r5lr0.8t23_i2 8724 0 0 49889 11258 900.484 5537
j8o10r5lr0.8t23_i3 16541 0 0 50786 18213 900.188 6993
j8o10r5lr1t19_i1 7217 0 0 49206 13065.4 900.109 2717
j8o10r5lr1t17_i2 7382 0 0 55177 9343.65 900.703 3721

119

Instance
Best

Integer
Solution

Best
Integer @

node

Time to
Best

Integer
Solution
(seconds)

Number of
Columns

Best
Bound

Runtime
(seconds)

Total
Nodes

j8o10r5lr1t19_i3 5850 0 0 55114 8867.88 900.25 4031
j8o10r5lr1.2t15_i1 5440 0 0 56454 9210.53 900.125 2759
j8o10r5lr1.2t16_i2 13092 0 0 49455 15121 900.125 3771
j8o10r5lr1.2t16_i3 8131 0 0 58395 10652.4 900.625 2725
j10o3r3lr0.8t15_i1 6757 0 0 50850 7366 900.125 16497
j10o3r3lr0.8t15_i2 3529 14375 640.75 37731 3529 640.906 14377
j10o3r3lr0.8t14_i3 4532 0 0 48726 4676 900.016 17423
j10o3r3lr1t12_i1 2813 0 0 39861 3639 900.047 20659
j10o3r3lr1t12_i2 4781 0 0 50621 5218 900.125 15111
j10o3r3lr1t11_i3 3663 0 0 51481 4658 900.031 16873
j10o3r3lr1.2t10_i1 3542 0 0 1701 4683 194.64 30001
j10o3r3lr1.2t9_i2 3125 0 0 47009 4373 900.015 19059
j10o3r3lr1.2t10_i3 2989 0 0 50292 4323.5 900.188 17097
j10o5r3lr0.8t26_i1 9405 0 0 5649 9833 827.657 30001
j10o5r3lr0.8t28_i2 10474 0 0 49126 11817 900 9115
j10o5r3lr0.8t25_i3 8585 0 0 43950 9189 900.125 12283
j10o5r3lr1t20_i1 4215 0 0 36826 4672 900.094 17207
j10o5r3lr1t19_i2 5903 0 0 57187 6156 900.094 10189
j10o5r3lr1t19_i3 6083 0 0 53297 7072 900.25 12093
j10o5r3lr1.2t16_i1 3062 0 0 48248 3896 900.047 13917
j10o5r3lr1.2t18_i2 4564 0 0 45725 6221 900.094 14467
j10o5r3lr1.2t18_i3 4050 0 0 43211 7350 900 14153
j10o8r5lr0.8t24_i1 12568 0 0 39774 13293 900.172 6353
j10o8r5lr0.8t24_i2 9930 0 0 48398 10589.1 900.109 6271
j10o8r5lr0.8t22_i3 10337 0 0 54217 11289 900.188 6987
j10o8r5lr1t17_i1 10408 0 0 55672 12294 900.141 7205
j10o8r5lr1t18_i2 6189 0 0 61227 8713.3 900.297 5383
j10o8r5lr1t19_i3 6268 0 0 46532 9346 900.157 7299
j10o8r5lr1.2t16_i1 7276 0 0 61194 13790 900.594 7185
j10o8r5lr1.2t16_i2 10204 0 0 59153 13293 900.047 7371
j10o8r5lr1.2t16_i3 8061 0 0 53898 10160.5 900.047 4593
j10o10r5lr0.8t29_i1 15839 0 0 30209 18491 900.359 6155
j10o10r5lr0.8t29_i2 10919 0 0 29526 12091 900.015 4593
j10o10r5lr0.8t30_i3 15273 0 0 32658 17464 900.234 6347
j10o10r5lr1t24_i1 9028 0 0 51289 11023.9 901.453 2175
j10o10r5lr1t23_i2 7497 0 0 47829 16092.2 900.344 3811
j10o10r5lr1t25_i3 11700 0 0 27377 15980.6 900.015 7251
j10o10r5lr1.2t19_i1 13871 0 0 43390 18177.4 900.469 5379
j10o10r5lr1.2t21_i2 6483 0 0 49759 12864.4 901.047 1957
j10o10r5lr1.2t19_i3 10791 0 0 47793 15882.9 900.016 5003

120

APPENDIX H

Instance
Best

Integer
Solution

Best
Integer @

node

Time to
Best

Integer
Solution
(seconds)

Number of
Columns

Best
Bound

Runtime
(seconds)

Total
Nodes

j3o3r3lr0.8t4_i1 794 14 0.063 41 794 0.063 15
j3o3r3lr0.8t5_i2 1135 3 0.031 24 1135 0.031 5
j3o3r3lr0.8t5_i3 1807 1 0.031 24 1807 0.031 3
j3o3r3lr1t4_i1 1120 1 0.016 23 1120 0.031 3
j3o3r3lr1t4_i2 1169 3 0.016 26 1169 0.031 5
j3o3r3lr1t3_i3 729 8 0.031 40 729 0.031 9
j3o3r3lr1.2t2_i1 92 0 0 1 92 0.016 3
j3o3r3lr1.2t3_i2 274 0 0 3 274 0.016 3
j3o3r3lr1.2t3_i3 1202 1 0.031 24 1202 0.031 3
j3o5r3lr0.8t8_i1 2781 23 0.312 711 2825.36 0.89 71
j3o5r3lr0.8t6_i2 3416 15 0.093 92 3416 0.093 17
j3o5r3lr0.8t7_i3 2157 7 0.11 109 2157 0.125 9
j3o5r3lr1t6_i1 2134 3 0.063 73 2134 0.063 5
j3o5r3lr1t6_i2 3661 7 0.078 79 3661 0.078 9
j3o5r3lr1t6_i3 2367 649 5.687 2972 2413.7 6.234 691
j3o5r3lr1.2t5_i1 2282 41 0.281 228 2282 0.281 43
j3o5r3lr1.2t6_i2 164 0 0 20 164 0.062 5
j3o5r3lr1.2t5_i3 988 0 0 1 988 0.031 3
j3o8r5lr0.8t8_i1 2235 4 0.063 20 2235 0.063 5
j3o8r5lr0.8t7_i2 1889 1 0.047 19 1889 0.047 3
j3o8r5lr0.8t8_i3 3023 101 2.359 1172 3077.92 2.562 111
j3o8r5lr1t6_i1 266 1 0.047 7 266 0.047 3
j3o8r5lr1t5_i2 1175 6 0.047 22 1175 0.047 7
j3o8r5lr1t6_i3 1610 9 0.14 79 1610 0.156 11
j3o8r5lr1.2t4_i1 649 0 0 1 649 0.031 3
j3o8r5lr1.2t4_i2 1102 1 0.063 3 1102 0.078 3
j3o8r5lr1.2t5_i3 1806 0 0.062 16 1806 0.062 1
j3o10r5lr0.8t9_i1 1620 3 0.11 39 1620 0.125 5
j3o10r5lr0.8t9_i2 3951.5 374 15.219 53432 4117.38 900.11 6097
j3o10r5lr0.8t9_i3 2563 24 0.375 197 2632.48 0.5 31
j3o10r5lr1t8_i1 6589 83 2.484 1651 6691.83 4.984 197
j3o10r5lr1t7_i2 861 0 0 1 861 0.031 3
j3o10r5lr1t7_i3 3171 8 0.219 104 3171 0.219 9
j3o10r5lr1.2t6_i1 1E-07 0 0 0 1E-07 0.031 3
j3o10r5lr1.2t5_i2 3004 1 0.046 10 3004 0.046 3
j3o10r5lr1.2t6_i3 137 0 0 1 137 0.031 3
j5o3r3lr0.8t7_i1 1729 29 0.109 103 1729 0.109 31
j5o3r3lr0.8t8_i2 2259 30 0.141 98 2259 0.141 31
j5o3r3lr0.8t8_i3 2627 71 0.25 155 2627 0.25 73
j5o3r3lr1t6_i1 3621 15 0.094 122 3621 0.094 17
j5o3r3lr1t6_i2 3031 55 0.171 197 3031 0.187 57
j5o3r3lr1t5_i3 3041 73 0.281 396 3041 0.297 75
j5o3r3lr1.2t4_i1 1312 22 0.062 97 1312 0.062 23
j5o3r3lr1.2t5_i2 1321 25 0.093 105 1321 0.109 29
j5o3r3lr1.2t5_i3 2670 49 0.171 223 2670 0.187 51
j5o5r3lr0.8t10_i1 2635 138 1.203 3847 2684.62 8.985 765
j5o5r3lr0.8t14_i2 3404 87 0.953 450 3404 0.969 89
j5o5r3lr0.8t12_i3 6891 107 0.797 326 6891 0.797 109
j5o5r3lr1t10_i1 3862 62 0.578 334 3862 0.578 63
j5o5r3lr1t10_i2 3167 103 1.703 68180 3221.25 900 6541
j5o5r3lr1t11_i3 5992 307 4.078 1633 5992 4.078 309

121

Instance
Best

Integer
Solution

Best
Integer @

node

Time to
Best

Integer
Solution
(seconds)

Number of
Columns

Best
Bound

Runtime
(seconds)

Total
Nodes

j5o5r3lr1.2t8_i1 1171 58 0.453 288 1171 0.453 59
j5o5r3lr1.2t9_i2 3092 59 0.875 2393 3136 5.016 281
j5o5r3lr1.2t8_i3 1700 14 0.11 71 1700 0.11 15
j5o8r5lr0.8t11_i1 2725 19 0.421 181 2725 0.437 21
j5o8r5lr0.8t13_i2 8600 149 7.969 66269 8775.25 900.281 3943
j5o8r5lr0.8t12_i3 11059 149 6.079 57856 11227.4 900.172 5463
j5o8r5lr1t9_i1 1559 45 0.843 2972 1599.36 8.234 429
j5o8r5lr1t9_i2 3650 77 2.203 58081 3749.83 900.203 6323
j5o8r5lr1t9_i3 2751 101 2.812 2534 2803.45 8.078 305
j5o8r5lr1.2t9_i1 3752 164 4.672 1441 3752 4.688 165
j5o8r5lr1.2t8_i2 2059 78 1.75 2320 2122.91 6.313 259
j5o8r5lr1.2t8_i3 4229 0 0 48234 7121.13 900.234 9057
j5o10r5lr0.8t15_i1 6759 114 9.141 50345 6920.54 900.156 5245
j5o10r5lr0.8t14_i2 2967 118 6.391 30280 3026.17 286.313 2289
j5o10r5lr0.8t16_i3 9810 551 65.094 55001 9967.47 900.812 2923
j5o10r5lr1t12_i1 5693 259 25.687 59400 6023.01 901.062 4157
j5o10r5lr1t12_i2 6269 63 4.219 2158 6348.84 10.437 155
j5o10r5lr1t12_i3 5993 205 21.141 63623 6325.47 900.531 3215
j5o10r5lr1.2t10_i1 3593 40 1.672 530 3593 1.672 41
j5o10r5lr1.2t10_i2 5628 122 8.36 55920 5842.08 900.735 4729
j5o10r5lr1.2t10_i3 4348 3420 453.422 54911 4499.46 900.344 5113
j8o3r3lr0.8t13_i1 2295 231 2.171 851 2295 2.187 233
j8o3r3lr0.8t13_i2 4341 109 0.828 312 4341 0.828 111
j8o3r3lr0.8t11_i3 4193 57 0.343 217 4193 0.359 59
j8o3r3lr1t9_i1 2889 65 0.281 167 2889 0.297 67
j8o3r3lr1t9_i2 2069 260 1.281 547 2069 1.281 261
j8o3r3lr1t10_i3 3218 50 0.25 149 3218 0.25 51
j8o3r3lr1.2t8_i1 2963 44 0.281 248 2963 0.281 45
j8o3r3lr1.2t8_i2 5417 75 0.438 329 5417 0.438 77
j8o3r3lr1.2t8_i3 3202 241 1.406 766 3202 1.422 243
j8o5r3lr0.8t20_i1 5940 155 2.5 613 5940 2.516 157
j8o5r3lr0.8t20_i2 5941 566 12.281 1773 5941 12.281 567
j8o5r3lr0.8t20_i3 6942 243 4.438 821 6942 4.453 245
j8o5r3lr1t17_i1 6739 388 14.313 62893 6915.17 900.344 6647
j8o5r3lr1t14_i2 5724 493 7.672 2123 5724 7.688 495
j8o5r3lr1t16_i3 4009 128 1.328 429 4009 1.328 129
j8o5r3lr1.2t14_i1 5369 238 5.188 1754 5369 5.188 239
j8o5r3lr1.2t14_i2 5719 259 4.485 46766 5807 900.016 11225
j8o5r3lr1.2t12_i3 3991 464 9.687 3144 3991 9.687 465
j8o8r5lr0.8t21_i1 7046 719 156.359 52623 7252 900.593 2819
j8o8r5lr0.8t18_i2 6748 277 13.813 2036 6748 13.891 279
j8o8r5lr0.8t19_i3 14641 428 66.625 56358 15031.8 900.187 3165
j8o8r5lr1t15_i1 15751 354 49.531 56903 16230.2 900.984 2975
j8o8r5lr1t16_i2 9331 974 178.281 52344 11032.9 900.312 3391
j8o8r5lr1t16_i3 10858 645 84.359 54052 10996 900.859 4179
j8o8r5lr1.2t13_i1 10067 1966 355.062 61010 10373.8 900.187 3371
j8o8r5lr1.2t13_i2 7154 318 33.156 56363 7347.76 900.984 3933
j8o8r5lr1.2t13_i3 4484 120 8.578 65031 4556.04 901.047 3991
j8o10r5lr0.8t26_i1 17003 793 236.328 42222 17432 900.672 2469
j8o10r5lr0.8t23_i2 11073 686 164.891 45519 11258 901.438 2281
j8o10r5lr0.8t23_i3 18021 753 127.172 45769 18213 901.156 2723
j8o10r5lr1t19_i1 12758 388 77.625 51867 13067.4 900 3081
j8o10r5lr1t17_i2 9056 422 59.188 62094 9354.86 900.407 2915

122

Instance
Best

Integer
Solution

Best
Integer @

node

Time to
Best

Integer
Solution
(seconds)

Number of
Columns

Best
Bound

Runtime
(seconds)

Total
Nodes

j8o10r5lr1t19_i3 8645 295 41.656 60511 8870.84 901.406 2769
j8o10r5lr1.2t15_i1 7899 441 76.829 54134 9229.78 900.25 2717
j8o10r5lr1.2t16_i2 14616 482 140.532 56460 15121 901.813 1809
j8o10r5lr1.2t16_i3 10269 721 151.984 53186 10666.8 901.016 2563
j10o3r3lr0.8t15_i1 7366 205 2.281 595 7366 2.312 207
j10o3r3lr0.8t15_i2 3529 317 3.812 1064 3529 3.843 319
j10o3r3lr0.8t14_i3 4676 303 2.765 644 4676 2.781 305
j10o3r3lr1t12_i1 3639 186 1.422 388 3639 1.422 187
j10o3r3lr1t12_i2 5218 198 2.438 933 5218 2.438 199
j10o3r3lr1t11_i3 4658 166 1.296 556 4658 1.296 167
j10o3r3lr1.2t10_i1 4683 197 1.468 569 4683 1.484 199
j10o3r3lr1.2t9_i2 4373 218 1.297 621 4373 1.297 219
j10o3r3lr1.2t10_i3 4278 112 1.031 49085 4323.5 900.078 13969
j10o5r3lr0.8t26_i1 9833 744 29.907 2439 9833 29.907 745
j10o5r3lr0.8t28_i2 11760 1770 180.437 15366 11760 180.469 1771
j10o5r3lr0.8t25_i3 9189 499 15.875 1575 9189 16.015 501
j10o5r3lr1t20_i1 4672 481 10.469 1284 4672 10.5 483
j10o5r3lr1t19_i2 6104 649 23.688 3980 6104 23.797 651
j10o5r3lr1t19_i3 7072 399 12.906 2061 7072 12.922 401
j10o5r3lr1.2t16_i1 3884 747 19.172 3156 3884 19.219 749
j10o5r3lr1.2t18_i2 6193 200 5.188 1006 6193 5.188 201
j10o5r3lr1.2t18_i3 7350 272 6.906 1379 7350 6.906 273
j10o8r5lr0.8t24_i1 13218.5 877 120.391 7107 13218.5 120.454 879
j10o8r5lr0.8t24_i2 10424 1043 207.625 42640 10589.1 901.188 3111
j10o8r5lr0.8t22_i3 11262 1556 203.125 13643 11262 203.156 1557
j10o8r5lr1t17_i1 11909 785 129.454 46238 12294 900.5 3465
j10o8r5lr1t18_i2 8552 227 16.516 4519 8713.3 26.703 319
j10o8r5lr1t19_i3 9162 983 119.765 55750 9346 900.75 3303
j10o8r5lr1.2t16_i1 13469 365 37.484 51499 13790 900.375 3303
j10o8r5lr1.2t16_i2 12961.5 491 51.297 50673 13293 900.031 5163
j10o8r5lr1.2t16_i3 9903 628 97.672 54366 10160.5 900.359 3699
j10o10r5lr0.8t29_i1 18435 884 146.531 5435 18435 146.547 885
j10o10r5lr0.8t29_i2 11507 1767 781.234 27917 12091 900.016 2209
j10o10r5lr0.8t30_i3 16690.5 1447 662.407 29892 17464 900.328 1917
j10o10r5lr1t24_i1 10682 1127 547.515 37143 11023.9 900.422 1739
j10o10r5lr1t23_i2 15578 773 218.984 43074 16092.2 900.703 2779
j10o10r5lr1t25_i3 15369 754 205.031 42278 15980.6 900.672 2263
j10o10r5lr1.2t19_i1 17632 636 171.25 52075 18177.4 900.031 2233
j10o10r5lr1.2t21_i2 12593 480 166.984 52139 12867 900 1645
j10o10r5lr1.2t19_i3 15726 1229 299.328 22335 15726 299.969 1231

123

APPENDIX I

Instance
Best

Integer
Solution

Best
Integer @

node

Time to
Best

Integer
Solution
(seconds)

Number of
Columns

Best
Bound

Runtime
(seconds)

Total
Nodes

j3o3r3lr0.8t4_i1 794 14 0.046 41 794 0.046 15
j3o3r3lr0.8t5_i2 1135 3 0.031 24 1135 0.031 5
j3o3r3lr0.8t5_i3 1807 1 0.016 24 1807 0.031 3
j3o3r3lr1t4_i1 1120 1 0.016 23 1120 0.016 3
j3o3r3lr1t4_i2 1169 3 0.031 26 1169 0.031 5
j3o3r3lr1t3_i3 729 8 0.031 40 729 0.031 9
j3o3r3lr1.2t2_i1 92 0 0 1 92 0.016 3
j3o3r3lr1.2t3_i2 274 0 0 3 274 0.031 3
j3o3r3lr1.2t3_i3 1202 1 0.016 24 1202 0.031 3
j3o5r3lr0.8t8_i1 2781 23 0.328 257 2781 0.343 25
j3o5r3lr0.8t6_i2 3366 0 0 38 3366 0.047 3
j3o5r3lr0.8t7_i3 2157 7 0.109 109 2157 0.109 9
j3o5r3lr1t6_i1 2134 3 0.062 73 2134 0.078 5
j3o5r3lr1t6_i2 3661 7 0.078 79 3661 0.093 9
j3o5r3lr1t6_i3 2339 84 0.453 388 2339 0.453 85
j3o5r3lr1.2t5_i1 2186 26 0.172 223 2296.4 0.25 41
j3o5r3lr1.2t6_i2 164 0 0 19 164 0.047 3
j3o5r3lr1.2t5_i3 988 0 0 1 988 0.031 3
j3o8r5lr0.8t8_i1 2195 0 0 17 2195 0.063 3
j3o8r5lr0.8t7_i2 1889 1 0.046 19 1889 0.062 3
j3o8r5lr0.8t8_i3 3023 101 2.297 1083 3023 2.313 103
j3o8r5lr1t6_i1 266 1 0.031 7 266 0.031 3
j3o8r5lr1t5_i2 1156 3 0.031 18 1156 0.031 5
j3o8r5lr1t6_i3 1550 0 0 30 1550 0.063 3
j3o8r5lr1.2t4_i1 649 0 0 1 649 0.016 3
j3o8r5lr1.2t4_i2 1102 1 0.031 3 1102 0.031 3
j3o8r5lr1.2t5_i3 1806 0 0.047 16 1806 0.047 1
j3o10r5lr0.8t9_i1 1620 3 0.109 39 1620 0.125 5
j3o10r5lr0.8t9_i2 3938 133 4.625 1560 3938 4.672 135
j3o10r5lr0.8t9_i3 2563 24 0.375 142 2563 0.375 25
j3o10r5lr1t8_i1 6589 83 2.5 943 6589 2.531 85
j3o10r5lr1t7_i2 861 0 0 1 861 0.031 3
j3o10r5lr1t7_i3 3171 8 0.234 104 3171 0.234 9
j3o10r5lr1.2t6_i1 1E-07 0 0 0 1E-07 0.031 3
j3o10r5lr1.2t5_i2 3004 1 0.046 10 3004 0.046 3
j3o10r5lr1.2t6_i3 137 0 0 1 137 0.031 3
j5o3r3lr0.8t7_i1 1729 29 0.109 103 1729 0.125 31
j5o3r3lr0.8t8_i2 2259 30 0.141 98 2259 0.141 31
j5o3r3lr0.8t8_i3 2627 71 0.235 155 2627 0.235 73
j5o3r3lr1t6_i1 3621 15 0.109 122 3621 0.109 17
j5o3r3lr1t6_i2 3031 55 0.172 197 3031 0.172 57
j5o3r3lr1t5_i3 2975 94 0.328 348 2975 0.328 95
j5o3r3lr1.2t4_i1 1312 22 0.078 97 1312 0.078 23
j5o3r3lr1.2t5_i2 1321 25 0.094 99 1321 0.094 27
j5o3r3lr1.2t5_i3 2670 49 0.172 223 2670 0.188 51
j5o5r3lr0.8t10_i1 2577 66 0.656 397 2577 0.656 67
j5o5r3lr0.8t14_i2 3404 87 1.016 450 3404 1.032 89
j5o5r3lr0.8t12_i3 6891 107 0.797 326 6891 0.797 109
j5o5r3lr1t10_i1 3862 62 0.687 334 3862 0.687 63
j5o5r3lr1t10_i2 3100 78 1.312 808 3100 1.312 79
j5o5r3lr1t11_i3 5767 0 0 60 5767 0.109 3

124

Instance
Best

Integer
Solution

Best
Integer @

node

Time to
Best

Integer
Solution
(seconds)

Number of
Columns

Best
Bound

Runtime
(seconds)

Total
Nodes

j5o5r3lr1.2t8_i1 1171 58 0.5 288 1171 0.5 59
j5o5r3lr1.2t9_i2 3092 59 1 489 3092 1.032 61
j5o5r3lr1.2t8_i3 1700 14 0.141 71 1700 0.141 15
j5o8r5lr0.8t11_i1 2725 19 0.547 181 2725 0.578 21
j5o8r5lr0.8t13_i2 8600 149 8.266 1987 8600 8.282 151
j5o8r5lr0.8t12_i3 11059 149 5.735 1634 11059 5.797 151
j5o8r5lr1t9_i1 1559 45 0.843 427 1559 0.875 47
j5o8r5lr1t9_i2 3650 77 2.156 867 3650 2.187 79
j5o8r5lr1t9_i3 2751 101 2.782 1011 2751 2.829 103
j5o8r5lr1.2t9_i1 3752 164 4.75 1441 3752 4.75 165
j5o8r5lr1.2t8_i2 2059 39 0.828 375 2059 0.844 41
j5o8r5lr1.2t8_i3 4229 0 0 48435 7121.13 900.33 9105
j5o10r5lr0.8t15_i1 6759 114 9.064 1793 6759 9.064 115
j5o10r5lr0.8t14_i2 2967 118 6.298 1857 2967 6.313 119
j5o10r5lr0.8t16_i3 9715 201 19.612 3412 9715 19.752 203
j5o10r5lr1t12_i1 5693 259 25.55 53865 6023.01 900.418 4283
j5o10r5lr1t12_i2 6269 63 4.188 998 6269 4.219 65
j5o10r5lr1t12_i3 5993 205 21.408 65702 6325.47 900.356 3111
j5o10r5lr1.2t10_i1 3593 40 1.656 530 3593 1.656 41
j5o10r5lr1.2t10_i2 5628 122 7.954 1869 5628 7.954 123
j5o10r5lr1.2t10_i3 4325 90 3.922 1189 4325 3.938 91
j8o3r3lr0.8t13_i1 2263 0 0 56 2263 0.078 3
j8o3r3lr0.8t13_i2 4181 0 0 53 4181 0.063 3
j8o3r3lr0.8t11_i3 4057 0 0 56 4057 0.062 3
j8o3r3lr1t9_i1 2889 65 0.281 167 2889 0.296 67
j8o3r3lr1t9_i2 2012 159 0.75 376 2012 0.75 161
j8o3r3lr1t10_i3 3218 50 0.265 149 3218 0.265 51
j8o3r3lr1.2t8_i1 2963 44 0.281 248 2963 0.281 45
j8o3r3lr1.2t8_i2 5417 75 0.437 329 5417 0.453 77
j8o3r3lr1.2t8_i3 3081 80 0.516 334 3081 0.516 81
j8o5r3lr0.8t20_i1 5940 155 2.485 613 5940 2.5 157
j8o5r3lr0.8t20_i2 5681 0 0 74 5681 0.172 5
j8o5r3lr0.8t20_i3 6630 0 0 88 6630 0.172 3
j8o5r3lr1t17_i1 6739 388 14.204 2904 6739 14.204 389
j8o5r3lr1t14_i2 5652 322 5.188 1494 5652 5.188 323
j8o5r3lr1t16_i3 4009 128 1.313 429 4009 1.313 129
j8o5r3lr1.2t14_i1 5369 238 5.141 1754 5369 5.141 239
j8o5r3lr1.2t14_i2 5719 259 4.438 1234 5719 4.454 261
j8o5r3lr1.2t12_i3 3875 275 5.687 1965 3875 5.719 277
j8o8r5lr0.8t21_i1 7046 719 155.714 13467 7046 155.948 721
j8o8r5lr0.8t18_i2 6748 277 13.844 2036 6748 13.923 279
j8o8r5lr0.8t19_i3 14641 428 66.63 7435 14641 66.645 429
j8o8r5lr1t15_i1 15751 354 49.457 6850 15751 49.472 355
j8o8r5lr1t16_i2 9146 448 78.505 51689 11032.9 900.199 2797
j8o8r5lr1t16_i3 10732 362 42.565 5494 10732 42.565 363
j8o8r5lr1.2t13_i1 9986 338 34.783 5918 9986 34.799 339
j8o8r5lr1.2t13_i2 7154 318 33.111 5847 7154 33.111 319
j8o8r5lr1.2t13_i3 4484 120 8.547 2261 4484 8.547 121
j8o10r5lr0.8t26_i1 17003 793 236.342 14141 17003 236.467 795
j8o10r5lr0.8t23_i2 11073 686 164.697 12599 11073 164.728 687
j8o10r5lr0.8t23_i3 18021 753 127.117 10120 18021 127.492 755
j8o10r5lr1t19_i1 12758 388 77.441 8003 12758 77.457 389
j8o10r5lr1t17_i2 9056 422 59.096 7415 9056 59.112 423

125

Instance
Best

Integer
Solution

Best
Integer @

node

Time to
Best

Integer
Solution
(seconds)

Number of
Columns

Best
Bound

Runtime
(seconds)

Total
Nodes

j8o10r5lr1t19_i3 8645 295 41.58 5412 8645 41.721 297
j8o10r5lr1.2t15_i1 7899 441 76.723 49190 9229.78 900.103 3047
j8o10r5lr1.2t16_i2 14616 482 140.021 12795 14616 140.052 483
j8o10r5lr1.2t16_i3 10107 380 71.472 54651 10666.9 900.081 2577
j10o3r3lr0.8t15_i1 7366 205 2.265 595 7366 2.281 207
j10o3r3lr0.8t15_i2 3529 317 3.813 1064 3529 3.844 319
j10o3r3lr0.8t14_i3 4532 0 0 70 4532 0.078 3
j10o3r3lr1t12_i1 3639 186 1.406 388 3639 1.406 187
j10o3r3lr1t12_i2 5218 198 2.438 933 5218 2.438 199
j10o3r3lr1t11_i3 4658 166 1.296 556 4658 1.296 167
j10o3r3lr1.2t10_i1 4683 197 1.469 569 4683 1.485 199
j10o3r3lr1.2t9_i2 4263 119 0.719 380 4263 0.735 121
j10o3r3lr1.2t10_i3 4278 112 1.046 603 4278 1.046 113
j10o5r3lr0.8t26_i1 9405 0 0 120 9405 0.312 3
j10o5r3lr0.8t28_i2 11643 847 85.503 7588 11643 85.566 849
j10o5r3lr0.8t25_i3 9189 499 15.782 1575 9189 15.907 501
j10o5r3lr1t20_i1 4672 481 10.406 1284 4672 10.438 483
j10o5r3lr1t19_i2 5903 0 0 118 5903 0.204 3
j10o5r3lr1t19_i3 7072 399 12.876 2061 7072 12.907 401
j10o5r3lr1.2t16_i1 3815 457 12.266 1954 3815 12.297 459
j10o5r3lr1.2t18_i2 6193 200 5.188 1006 6193 5.188 201
j10o5r3lr1.2t18_i3 7350 272 6.891 1379 7350 6.891 273
j10o8r5lr0.8t24_i1 13218.5 877 120.348 7107 13218.5 120.426 879
j10o8r5lr0.8t24_i2 9930 0 0 44805 10589.1 900.496 2555
j10o8r5lr0.8t22_i3 11262 1556 202.974 13643 11262 203.005 1557
j10o8r5lr1t17_i1 11909 785 129.41 13296 11909 129.613 787
j10o8r5lr1t18_i2 8552 227 16.626 2679 8552 16.782 229
j10o8r5lr1t19_i3 8942 629 69.455 6937 8942 69.549 631
j10o8r5lr1.2t16_i1 13469 365 37.611 4767 13469 37.72 367
j10o8r5lr1.2t16_i2 12961.5 491 50.736 6559 12961.5 50.97 493
j10o8r5lr1.2t16_i3 9903 628 97.659 9811 9903 97.675 629
j10o10r5lr0.8t29_i1 18435 884 146.409 5435 18435 146.425 885
j10o10r5lr0.8t29_i2 11507 1767 780.421 27938 12091 900.126 2211
j10o10r5lr0.8t30_i3 16690.5 1447 661.887 22628 16690.5 662.184 1449
j10o10r5lr1t24_i1 10682 1127 546.806 23433 10682 547.322 1129
j10o10r5lr1t23_i2 15578 773 218.502 15248 15578 218.737 775
j10o10r5lr1t25_i3 15369 754 204.924 13562 15369 204.955 755
j10o10r5lr1.2t19_i1 17632 636 171.049 14011 17632 171.08 637
j10o10r5lr1.2t21_i2 12593 480 166.846 12687 12593 166.877 481
j10o10r5lr1.2t19_i3 15336 679 155.736 12888 15336 156.018 681

126

APPENDIX J

Instance
Best

Integer
Solution

Best
Integer @

node

Time to
Best

Integer
Solution
(seconds)

Columns
Added

Best
Bound

Runtime
(seconds)

Total
Nodes

j3o3r3lr0.8t4_i1 794 7 0.031 28 794 0.031 9
j3o3r3lr0.8t5_i2 1135 3 0.031 30 1135 0.031 5
j3o3r3lr0.8t5_i3 1807 1 0.031 26 1807 0.031 3
j3o3r3lr1t4_i1 1120 2 0.016 20 1120 0.016 3
j3o3r3lr1t4_i2 1169 3 0.031 25 1169 0.031 5
j3o3r3lr1t3_i3 721 17 0.046 81 721 0.046 19
j3o3r3lr1.2t2_i1 92 0 0 1 92 0.016 3
j3o3r3lr1.2t3_i2 274 0 0 3 274 0.015 3
j3o3r3lr1.2t3_i3 1202 3 0.016 30 1202 0.016 5
j3o5r3lr0.8t8_i1 2723 46 0.531 437 2737.6 0.547 49
j3o5r3lr0.8t6_i2 3416 10 0.093 107 3416 0.093 11
j3o5r3lr0.8t7_i3 2157 10 0.125 130 2157 0.14 13
j3o5r3lr1t6_i1 2134 3 0.062 77 2134 0.078 5
j3o5r3lr1t6_i2 3661 8 0.078 80 3661 0.078 9
j3o5r3lr1t6_i3 2367 12 0.094 208 2377 0.172 27
j3o5r3lr1.2t5_i1 2282 18 0.125 123 2282 0.125 19
j3o5r3lr1.2t6_i2 164 0 0 20 164 0.047 5
j3o5r3lr1.2t5_i3 988 0 0 1 988 0.031 3
j3o8r5lr0.8t8_i1 2235 3 0.047 22 2235 0.063 7
j3o8r5lr0.8t7_i2 1889 1 0.046 19 1889 0.062 3
j3o8r5lr0.8t8_i3 2998 22 0.531 642 3086.86 1.234 67
j3o8r5lr1t6_i1 266 1 0.031 7 266 0.031 3
j3o8r5lr1t5_i2 1175 5 0.046 21 1175 0.046 7
j3o8r5lr1t6_i3 1610 9 0.125 86 1610 0.14 11
j3o8r5lr1.2t4_i1 649 0 0 1 649 0.016 3
j3o8r5lr1.2t4_i2 1102 1 0.016 3 1102 0.016 3
j3o8r5lr1.2t5_i3 1806 0 0.031 16 1806 0.031 1
j3o10r5lr0.8t9_i1 1620 3 0.156 57 1620 0.171 5
j3o10r5lr0.8t9_i2 3923 110 4.531 2321 3996.5 6.343 161
j3o10r5lr0.8t9_i3 2563 18 0.36 163 2563 0.36 19
j3o10r5lr1t8_i1 6645 38 0.844 476 6659.33 1.235 59
j3o10r5lr1t7_i2 861 0 0 1 861 0.031 3
j3o10r5lr1t7_i3 3171 6 0.218 105 3171 0.218 7
j3o10r5lr1.2t6_i1 1E-07 0 0 0 1E-07 0.031 3
j3o10r5lr1.2t5_i2 3004 1 0.046 10 3004 0.046 3
j3o10r5lr1.2t6_i3 137 0 0 1 137 0.031 3
j5o3r3lr0.8t7_i1 1729 13 0.078 107 1729 0.078 15
j5o3r3lr0.8t8_i2 2259 11 0.078 66 2259 0.093 13
j5o3r3lr0.8t8_i3 2627 13 0.063 68 2627 0.078 15
j5o3r3lr1t6_i1 3621 9 0.063 82 3621 0.078 11
j5o3r3lr1t6_i2 3031 27 0.11 179 3031 0.125 29
j5o3r3lr1t5_i3 3041 11 0.063 114 3041 0.063 13
j5o3r3lr1.2t4_i1 1312 8 0.046 58 1312 0.046 9
j5o3r3lr1.2t5_i2 1321 28 0.125 130 1321 0.125 29
j5o3r3lr1.2t5_i3 2652 32 0.171 316 2670 0.218 43
j5o5r3lr0.8t10_i1 2657 21 0.266 253 2657 0.281 23
j5o5r3lr0.8t14_i2 3404 23 0.421 224 3404 0.421 25
j5o5r3lr0.8t12_i3 6891 26 0.359 237 6891 0.359 27
j5o5r3lr1t10_i1 3862 22 0.375 246 3862 0.375 23
j5o5r3lr1t10_i2 3182 72 1.265 1197 3194 1.625 89
j5o5r3lr1t11_i3 5992 27 0.515 352 5992 0.531 29

127

Instance
Best

Integer
Solution

Best
Integer @

node

Time to
Best

Integer
Solution
(seconds)

Columns
Added

Best
Bound

Runtime
(seconds)

Total
Nodes

j5o5r3lr1.2t8_i1 1182 31 0.375 339 1182 0.375 33
j5o5r3lr1.2t9_i2 3070 38 0.641 606 3116.63 0.922 51
j5o5r3lr1.2t8_i3 1700 9 0.109 85 1700 0.125 11
j5o8r5lr0.8t11_i1 2725 13 0.344 191 2725 0.422 19
j5o8r5lr0.8t13_i2 8527 69 4.969 16900 8666.37 83.188 809
j5o8r5lr0.8t12_i3 11024 328 20.953 8617 11158.6 30.312 437
j5o8r5lr1t9_i1 1502 72 1.531 826 1502 1.531 73
j5o8r5lr1t9_i2 3667 39 1.281 577 3667 1.313 41
j5o8r5lr1t9_i3 2751 36 1.187 564 2788.88 1.359 43
j5o8r5lr1.2t9_i1 3733 43 1.719 670 3733 1.719 45
j5o8r5lr1.2t8_i2 2059 26 0.64 665 2119.44 1.468 77
j5o8r5lr1.2t8_i3 6796.5 120 3.985 2255 6928.87 4.828 141
j5o10r5lr0.8t15_i1 6769 213 22.782 61553 6915.16 901.1 3557
j5o10r5lr0.8t14_i2 2784 89 6.86 2417 2899.8 8.11 103
j5o10r5lr0.8t16_i3 9682 182 30.078 46728 9935.32 482.269 1777
j5o10r5lr1t12_i1 5534 2935 765.895 67678 5954.96 901.037 3247
j5o10r5lr1t12_i2 6175 34 3.063 1733 6237.16 6.485 67
j5o10r5lr1t12_i3 5879 2717 599.598 66885 6286.69 900.74 3447
j5o10r5lr1.2t10_i1 3589 67 2.828 925 3589 2.891 71
j5o10r5lr1.2t10_i2 5471 249 21.032 6453 5692.76 26.078 291
j5o10r5lr1.2t10_i3 4383 202 10.625 3795 4441.17 12.641 243
j8o3r3lr0.8t13_i1 2295 37 0.437 311 2295 0.468 39
j8o3r3lr0.8t13_i2 4341 65 0.766 498 4341 0.797 67
j8o3r3lr0.8t11_i3 4193 19 0.172 154 4193 0.188 21
j8o3r3lr1t9_i1 2889 27 0.203 168 2889 0.219 31
j8o3r3lr1t9_i2 2069 43 0.297 282 2069 0.297 45
j8o3r3lr1t10_i3 3218 25 0.218 174 3218 0.234 27
j8o3r3lr1.2t8_i1 2963 15 0.14 160 2963 0.14 17
j8o3r3lr1.2t8_i2 5436 17 0.234 253 5436 0.25 19
j8o3r3lr1.2t8_i3 3202 56 0.469 447 3202 0.469 57
j8o5r3lr0.8t20_i1 5940 60 1.765 715 5940 1.765 61
j8o5r3lr0.8t20_i2 5941 74 3 924 5941 3 75
j8o5r3lr0.8t20_i3 6942 1503 60.969 33282 6954 270.595 4161
j8o5r3lr1t17_i1 6787 2192 223.064 61562 6852.04 515.956 3613
j8o5r3lr1t14_i2 5724 90 2 945 5724 2 91
j8o5r3lr1t16_i3 4009 30 0.594 289 4009 0.594 31
j8o5r3lr1.2t14_i1 5385 418 17.313 37494 5405.5 226.595 2293
j8o5r3lr1.2t14_i2 5807 39 1.36 742 5807 1.406 41
j8o5r3lr1.2t12_i3 4029 1566 83.173 22585 4029 83.204 1567
j8o8r5lr0.8t21_i1 6976 189 47.719 63373 7252 900.771 2261
j8o8r5lr0.8t18_i2 6766 3705 598.217 63682 6802 900.316 4725
j8o8r5lr0.8t19_i3 14456 1145 278.127 68958 14855.9 900.412 2821
j8o8r5lr1t15_i1 15748 1969 627.973 69665 16200.2 900.537 2465
j8o8r5lr1t16_i2 10686 1589 512.816 69088 10965.7 901.6 2345
j8o8r5lr1t16_i3 10780 86 12.609 65103 10996 900.252 2879
j8o8r5lr1.2t13_i1 9914 541 75.876 74524 10187.3 900.287 2859
j8o8r5lr1.2t13_i2 7185 2666 745.692 69986 7325.49 901.381 2997
j8o8r5lr1.2t13_i3 4397 352 44.516 11631 4428.51 60.735 455
j8o10r5lr0.8t26_i1 16940 446 257.424 50640 17432 902.459 1557
j8o10r5lr0.8t23_i2 10866 104 32.016 54375 11258 901.091 1611
j8o10r5lr0.8t23_i3 17926 90 21.578 62888 18213 902.005 2031
j8o10r5lr1t19_i1 12560 131 31.282 66367 12863.2 900.162 2347
j8o10r5lr1t17_i2 8914 1099 221.767 60610 9314.21 900.069 3055

128

Instance
Best

Integer
Solution

Best
Integer @

node

Time to
Best

Integer
Solution
(seconds)

Columns
Added

Best
Bound

Runtime
(seconds)

Total
Nodes

j8o10r5lr1t19_i3 8709 610 148.142 65446 8801.83 900.124 2283
j8o10r5lr1.2t15_i1 8661 307 89.032 64537 9183.11 901.162 2287
j8o10r5lr1.2t16_i2 14370 1409 643.458 59671 15103.6 900.475 1733
j8o10r5lr1.2t16_i3 10243 1199 404.55 62480 10590.5 900.069 2155
j10o3r3lr0.8t15_i1 7366 33 0.547 290 7366 0.563 35
j10o3r3lr0.8t15_i2 3529 35 0.578 376 3529 0.594 37
j10o3r3lr0.8t14_i3 4676 37 0.438 282 4676 0.453 39
j10o3r3lr1t12_i1 3639 30 0.438 323 3639 0.438 31
j10o3r3lr1t12_i2 5218 55 0.985 649 5218 1.016 57
j10o3r3lr1t11_i3 4658 99 1.11 821 4658 1.11 101
j10o3r3lr1.2t10_i1 4683 40 0.515 355 4683 0.515 41
j10o3r3lr1.2t9_i2 4373 24 0.203 166 4373 0.203 25
j10o3r3lr1.2t10_i3 4306 54 0.703 2631 4323.5 3.531 253
j10o5r3lr0.8t26_i1 9833 76 4.922 928 9833 4.922 77
j10o5r3lr0.8t28_i2 11817 958 135.594 20085 11817 135.641 959
j10o5r3lr0.8t25_i3 9189 58 2.953 691 9189 2.953 59
j10o5r3lr1t20_i1 4672 144 6.781 1740 4672 6.781 145
j10o5r3lr1t19_i2 6156 54 2.75 972 6156 2.75 55
j10o5r3lr1t19_i3 7072 61 3.484 1110 7072 3.64 67
j10o5r3lr1.2t16_i1 3896 93 3.547 1376 3896 3.578 95
j10o5r3lr1.2t18_i2 6200 447 21.766 7530 6221 32.75 617
j10o5r3lr1.2t18_i3 7350 39 2.438 951 7350 2.516 41
j10o8r5lr0.8t24_i1 13264 2324 875.532 64685 13293 901.11 2361
j10o8r5lr0.8t24_i2 10475 590 138.579 58375 10589.1 900.005 2243
j10o8r5lr0.8t22_i3 11251 2599 846.943 69720 11289 900.334 2709
j10o8r5lr1t17_i1 11999 352 94.11 68135 12294 900.225 2129
j10o8r5lr1t18_i2 8518 58 6.375 72622 8716.19 900.093 2759
j10o8r5lr1t19_i3 9089 85 12.906 73850 9346 900.865 2469
j10o8r5lr1.2t16_i1 13436 1224 309.862 70151 13790 900.084 2645
j10o8r5lr1.2t16_i2 12954 359 62.954 67727 13293 900.178 2997
j10o8r5lr1.2t16_i3 9986 170 29.422 68425 10160.4 900.132 2591
j10o10r5lr0.8t29_i1 18323 128 29.36 50941 18491 900.6 2151
j10o10r5lr0.8t29_i2 11760 143 48.219 47956 12091 901.537 1545
j10o10r5lr0.8t30_i3 17129 391 247.126 42764 17464 900.365 1113
j10o10r5lr1t24_i1 10490 621 536.831 50884 11023.9 901.146 1067
j10o10r5lr1t23_i2 15561 190 68.141 57537 16083.5 900.162 2069
j10o10r5lr1t25_i3 15390 218 88.829 56452 15980.6 900.74 1683
j10o10r5lr1.2t19_i1 17323 289 131.438 57506 18176.6 900.568 1981
j10o10r5lr1.2t21_i2 12694 177 64.25 60206 12818.8 901.43 1687
j10o10r5lr1.2t19_i3 15639 82 24.672 61918 15882.9 900.443 1699

129

APPENDIX K

Instance
Best

Integer
Solution

Best
Integer @

node

Time to
Best

Integer
Solution
(seconds)

Columns
Added

Best
Bound

Runtime
(seconds)

Total
Nodes

j3o3r3lr0.8t4_i1 794 7 0.078 28 794 0.078 9
j3o3r3lr0.8t5_i2 1135 3 0.031 30 1135 0.031 5
j3o3r3lr0.8t5_i3 1807 1 0.031 26 1807 0.031 3
j3o3r3lr1t4_i1 1120 2 0.031 20 1120 0.031 3
j3o3r3lr1t4_i2 1169 3 0.016 25 1169 0.016 5
j3o3r3lr1t3_i3 721 17 0.046 81 721 0.046 19
j3o3r3lr1.2t2_i1 92 0 0 1 92 0.015 3
j3o3r3lr1.2t3_i2 274 0 0 3 274 0.016 3
j3o3r3lr1.2t3_i3 1202 3 0.031 30 1202 0.031 5
j3o5r3lr0.8t8_i1 2703 16 0.219 379 2749.54 0.453 37
j3o5r3lr0.8t6_i2 3416 10 0.093 107 3416 0.093 11
j3o5r3lr0.8t7_i3 2157 10 0.125 121 2157 0.125 11
j3o5r3lr1t6_i1 2134 3 0.063 77 2134 0.063 5
j3o5r3lr1t6_i2 3661 8 0.078 80 3661 0.078 9
j3o5r3lr1t6_i3 2367 12 0.094 119 2367 0.11 17
j3o5r3lr1.2t5_i1 2282 18 0.125 123 2282 0.14 19
j3o5r3lr1.2t6_i2 164 0 0 20 164 0.062 5
j3o5r3lr1.2t5_i3 988 0 0 1 988 0.016 3
j3o8r5lr0.8t8_i1 2235 3 0.062 20 2235 0.062 5
j3o8r5lr0.8t7_i2 1889 1 0.031 19 1889 0.047 3
j3o8r5lr0.8t8_i3 2998 22 0.531 447 3086.86 0.844 43
j3o8r5lr1t6_i1 266 1 0.031 7 266 0.031 3
j3o8r5lr1t5_i2 1175 5 0.046 21 1175 0.046 7
j3o8r5lr1t6_i3 1610 9 0.125 86 1610 0.141 11
j3o8r5lr1.2t4_i1 649 0 0 1 649 0.016 3
j3o8r5lr1.2t4_i2 1102 1 0.016 3 1102 0.016 3
j3o8r5lr1.2t5_i3 1806 0 0.031 16 1806 0.031 1
j3o10r5lr0.8t9_i1 1620 3 0.156 57 1620 0.171 5
j3o10r5lr0.8t9_i2 3911 98 4.016 1874 4013.17 5 127
j3o10r5lr0.8t9_i3 2563 18 0.375 163 2563 0.375 19
j3o10r5lr1t8_i1 6634 20 0.531 231 6634 0.531 21
j3o10r5lr1t7_i2 861 0 0 1 861 0.031 3
j3o10r5lr1t7_i3 3171 6 0.203 105 3171 0.203 7
j3o10r5lr1.2t6_i1 1E-07 0 0 0 1E-07 0.031 3
j3o10r5lr1.2t5_i2 3004 1 0.047 10 3004 0.047 3
j3o10r5lr1.2t6_i3 137 0 0 1 137 0.031 3
j5o3r3lr0.8t7_i1 1729 13 0.079 107 1729 0.079 15
j5o3r3lr0.8t8_i2 2259 11 0.078 66 2259 0.078 13
j5o3r3lr0.8t8_i3 2627 13 0.078 68 2627 0.078 15
j5o3r3lr1t6_i1 3621 9 0.078 82 3621 0.078 11
j5o3r3lr1t6_i2 3031 27 0.125 179 3031 0.14 29
j5o3r3lr1t5_i3 3041 11 0.063 114 3041 0.063 13
j5o3r3lr1.2t4_i1 1312 8 0.047 58 1312 0.047 9
j5o3r3lr1.2t5_i2 1311 17 0.093 94 1311 0.093 21
j5o3r3lr1.2t5_i3 2652 32 0.171 231 2652 0.171 33
j5o5r3lr0.8t10_i1 2657 21 0.281 253 2657 0.281 23
j5o5r3lr0.8t14_i2 3404 23 0.422 224 3404 0.422 25
j5o5r3lr0.8t12_i3 6891 26 0.36 237 6891 0.36 27
j5o5r3lr1t10_i1 3862 22 0.39 246 3862 0.39 23
j5o5r3lr1t10_i2 3176 23 0.485 453 3217.71 0.563 27
j5o5r3lr1t11_i3 5992 27 0.516 352 5992 0.547 29

130

j5o5r3lr1.2t8_i1 1171 15 0.203 184 1171 0.219 17
j5o5r3lr1.2t9_i2 3048 17 0.375 500 3136 0.781 43
j5o5r3lr1.2t8_i3 1700 9 0.11 85 1700 0.11 11
j5o8r5lr0.8t11_i1 2725 13 0.359 166 2725 0.375 15
j5o8r5lr0.8t13_i2 8512 46 3.406 7873 8666.37 31.031 353
j5o8r5lr0.8t12_i3 10999 46 2.672 3320 11166.4 9.563 147
j5o8r5lr1t9_i1 1502 72 1.531 826 1502 1.531 73
j5o8r5lr1t9_i2 3667 39 1.266 577 3667 1.297 41
j5o8r5lr1t9_i3 2751 36 1.171 564 2788.88 1.359 43
j5o8r5lr1.2t9_i1 3733 43 1.688 670 3733 1.703 45
j5o8r5lr1.2t8_i2 2059 26 0.64 545 2120.61 1.171 53
j5o8r5lr1.2t8_i3 6796.5 116 3.922 2052 6928.87 4.422 129
j5o10r5lr0.8t15_i1 6713 65 6.844 61873 6916.71 900.312 2983
j5o10r5lr0.8t14_i2 2784 98 7.782 2648 2897.65 8.719 109
j5o10r5lr0.8t16_i3 9682 54 6.703 8381 9944.86 41.922 203
j5o10r5lr1t12_i1 5526 48 6.656 68219 5956.73 901.047 2675
j5o10r5lr1t12_i2 6175 34 3.047 1116 6237.16 4.219 43
j5o10r5lr1t12_i3 5937 556 61.063 66812 6283.92 900.781 3065
j5o10r5lr1.2t10_i1 3559 23 1.359 614 3615.09 1.859 39
j5o10r5lr1.2t10_i2 5461 39 3.766 3222 5707.14 11.797 119
j5o10r5lr1.2t10_i3 4370 111 6.125 2875 4463.52 9.219 177
j8o3r3lr0.8t13_i1 2295 35 0.422 311 2295 0.453 37
j8o3r3lr0.8t13_i2 4313 26 0.313 184 4313 0.313 27
j8o3r3lr0.8t11_i3 4193 19 0.187 154 4193 0.203 21
j8o3r3lr1t9_i1 2889 27 0.188 168 2889 0.203 29
j8o3r3lr1t9_i2 2069 43 0.297 282 2069 0.297 45
j8o3r3lr1t10_i3 3218 25 0.218 174 3218 0.234 27
j8o3r3lr1.2t8_i1 2963 15 0.14 160 2963 0.156 17
j8o3r3lr1.2t8_i2 5436 17 0.234 253 5436 0.25 19
j8o3r3lr1.2t8_i3 3202 56 0.469 447 3202 0.469 57
j8o5r3lr0.8t20_i1 5940 60 1.766 715 5940 1.766 61
j8o5r3lr0.8t20_i2 5941 74 3 924 5941 3 75
j8o5r3lr0.8t20_i3 6924 37 1.125 423 6924 1.172 39
j8o5r3lr1t17_i1 6739 133 6.375 83342 6915.17 900.094 4699
j8o5r3lr1t14_i2 5724 90 2 945 5724 2.016 91
j8o5r3lr1t16_i3 4009 30 0.578 289 4009 0.578 31
j8o5r3lr1.2t14_i1 5371 193 7.265 3178 5371 7.296 195
j8o5r3lr1.2t14_i2 5807 39 1.344 742 5807 1.406 41
j8o5r3lr1.2t12_i3 4004 128 3.063 1770 4004 3.063 129
j8o8r5lr0.8t21_i1 6942 177 45.094 60409 7252 900.515 2077
j8o8r5lr0.8t18_i2 6784 697 59.5 9563 6784 59.64 699
j8o8r5lr0.8t19_i3 14415 55 12.156 69131 14865.7 900.14 2861
j8o8r5lr1t15_i1 15741 131 30.672 77517 16218.5 902.672 1645
j8o8r5lr1t16_i2 10644 771 198.703 68139 10965.7 900.386 2285
j8o8r5lr1t16_i3 10780 86 12.453 68735 10996 900.906 2297
j8o8r5lr1.2t13_i1 9776 941 151.141 72692 10187.3 900.125 2763
j8o8r5lr1.2t13_i2 7055 197 31.39 69320 7342.7 900.719 2709
j8o8r5lr1.2t13_i3 4382 245 36.062 8255 4441.61 39.687 283
j8o10r5lr0.8t26_i1 16650 97 38.484 52009 17432 901.083 1199
j8o10r5lr0.8t23_i2 10866 104 32 55694 11258 900.266 1259
j8o10r5lr0.8t23_i3 18116 1147 531.765 43534 18116 531.984 1149
j8o10r5lr1t19_i1 12560 131 31.375 65360 12863.2 901.594 1621
j8o10r5lr1t17_i2 8884 94 19.297 64462 9314.21 900.706 2865
j8o10r5lr1t19_i3 8704 360 89.953 13987 8809.95 101.297 395
j8o10r5lr1.2t15_i1 8599 411 92.079 64714 9200.57 902.188 2083
j8o10r5lr1.2t16_i2 14060 101 44.782 59747 15110.5 901.485 1909
j8o10r5lr1.2t16_i3 10233 287 84.672 61304 10591.5 901.281 1905
j10o3r3lr0.8t15_i1 7366 33 0.532 290 7366 0.547 35

131

j10o3r3lr0.8t15_i2 3529 35 0.563 376 3529 0.578 37
j10o3r3lr0.8t14_i3 4676 37 0.437 282 4676 0.453 39
j10o3r3lr1t12_i1 3639 30 0.422 323 3639 0.422 31
j10o3r3lr1t12_i2 5195 32 0.594 400 5195 0.61 33
j10o3r3lr1t11_i3 4658 139 1.813 1350 4658 1.828 141
j10o3r3lr1.2t10_i1 4683 40 0.531 355 4683 0.531 41
j10o3r3lr1.2t9_i2 4373 24 0.188 166 4373 0.188 25
j10o3r3lr1.2t10_i3 4306 54 0.703 555 4306 0.703 55
j10o5r3lr0.8t26_i1 9833 76 4.906 928 9833 4.906 77
j10o5r3lr0.8t28_i2 11817 319 37.579 6646 11817 37.844 321
j10o5r3lr0.8t25_i3 9189 58 2.937 691 9189 2.937 59
j10o5r3lr1t20_i1 4672 144 6.781 1740 4672 6.781 145
j10o5r3lr1t19_i2 6156 54 2.766 972 6156 2.766 55
j10o5r3lr1t19_i3 7072 61 3.485 1098 7072 3.563 63
j10o5r3lr1.2t16_i1 3896 93 3.562 1376 3896 3.578 95
j10o5r3lr1.2t18_i2 6193 37 1.735 569 6193 1.766 39
j10o5r3lr1.2t18_i3 7350 39 2.437 951 7350 2.5 41
j10o8r5lr0.8t24_i1 13191 224 43.579 5239 13191 43.594 225
j10o8r5lr0.8t24_i2 10399 109 22.204 58867 10589.1 900.69 2105
j10o8r5lr0.8t22_i3 11163 101 11.406 71622 11289 900.281 2365
j10o8r5lr1t17_i1 12070 1404 574.188 68225 12294 901 1835
j10o8r5lr1t18_i2 8518 58 6.375 76483 8716.19 901.047 2241
j10o8r5lr1t19_i3 9181 2847 878.093 63098 9346 901.656 2903
j10o8r5lr1.2t16_i1 13412 214 42.516 69163 13790 900.672 2577
j10o8r5lr1.2t16_i2 13027 457 95.063 72173 13293 900.094 2271
j10o8r5lr1.2t16_i3 9986 170 29.391 69556 10160.4 900.454 2249
j10o10r5lr0.8t29_i1 18323 128 29.282 2307 18323 29.282 129
j10o10r5lr0.8t29_i2 11760 143 48 48338 12091 901.847 1489
j10o10r5lr0.8t30_i3 17129 391 246.844 47893 17464 901 1031
j10o10r5lr1t24_i1 10422 241 188.75 52179 11023.9 901.282 933
j10o10r5lr1t23_i2 15561 190 68.312 62622 16083.5 900.234 1585
j10o10r5lr1t25_i3 15390 218 88.813 56203 15980.6 900.505 1289
j10o10r5lr1.2t19_i1 17337 336 140.75 57634 18177.1 900.547 1349
j10o10r5lr1.2t21_i2 12694 177 64.172 8026 12694 69.578 187
j10o10r5lr1.2t19_i3 15639 82 24.625 65165 15882.9 900.063 1649

132

APPENDIX L

Instance
Best

Integer
Solution

Best
Integer @

node

Time to
Best

Integer
Solution
(seconds)

Columns
Added

Best
Bound

Runtime
(seconds)

Total
Nodes

j3o3r3lr0.8t4_i1 794 7 0.031 28 794 0.031 9
j3o3r3lr0.8t5_i2 1135 3 0.031 30 1135 0.031 5
j3o3r3lr0.8t5_i3 1807 1 0.031 26 1807 0.031 3
j3o3r3lr1t4_i1 1120 2 0.031 20 1120 0.031 3
j3o3r3lr1t4_i2 1169 3 0.016 25 1169 0.016 5
j3o3r3lr1t3_i3 721 17 0.031 81 721 0.047 19
j3o3r3lr1.2t2_i1 92 0 0 1 92 0.031 3
j3o3r3lr1.2t3_i2 274 0 0 3 274 0.016 3
j3o3r3lr1.2t3_i3 1202 3 0.031 30 1202 0.031 5
j3o5r3lr0.8t8_i1 2703 16 0.234 191 2703 0.234 17
j3o5r3lr0.8t6_i2 3366 0 0 49 3366 0.047 3
j3o5r3lr0.8t7_i3 2157 10 0.125 121 2157 0.125 11
j3o5r3lr1t6_i1 2134 3 0.062 77 2134 0.078 5
j3o5r3lr1t6_i2 3661 8 0.078 80 3661 0.078 9
j3o5r3lr1t6_i3 2367 12 0.093 107 2367 0.093 13
j3o5r3lr1.2t5_i1 2282 18 0.14 123 2282 0.14 19
j3o5r3lr1.2t6_i2 164 0 0 19 164 0.046 3
j3o5r3lr1.2t5_i3 988 0 0 1 988 0.015 3
j3o8r5lr0.8t8_i1 2195 0 0 17 2195 0.047 3
j3o8r5lr0.8t7_i2 1889 1 0.031 19 1889 0.047 3
j3o8r5lr0.8t8_i3 2998 22 0.531 287 2998 0.531 23
j3o8r5lr1t6_i1 266 1 0.046 7 266 0.046 3
j3o8r5lr1t5_i2 1156 3 0.031 18 1156 0.031 5
j3o8r5lr1t6_i3 1550 0 0 29 1550 0.047 3
j3o8r5lr1.2t4_i1 649 0 0 1 649 0.031 3
j3o8r5lr1.2t4_i2 1102 1 0.016 3 1102 0.016 3
j3o8r5lr1.2t5_i3 1806 0 0.031 16 1806 0.031 1
j3o10r5lr0.8t9_i1 1620 3 0.156 57 1620 0.171 5
j3o10r5lr0.8t9_i2 3911 98 4.016 1536 3911 4.031 99
j3o10r5lr0.8t9_i3 2541 14 0.328 144 2541 0.328 15
j3o10r5lr1t8_i1 6634 20 0.516 231 6634 0.516 21
j3o10r5lr1t7_i2 861 0 0 1 861 0.031 3
j3o10r5lr1t7_i3 3171 6 0.218 105 3171 0.218 7
j3o10r5lr1.2t6_i1 1E-07 0 0 0 1E-07 0.031 3
j3o10r5lr1.2t5_i2 3004 1 0.032 10 3004 0.032 3
j3o10r5lr1.2t6_i3 137 0 0 1 137 0.031 3
j5o3r3lr0.8t7_i1 1729 13 0.078 107 1729 0.078 15
j5o3r3lr0.8t8_i2 2259 11 0.078 66 2259 0.078 13
j5o3r3lr0.8t8_i3 2627 13 0.078 68 2627 0.078 15
j5o3r3lr1t6_i1 3621 9 0.078 82 3621 0.078 11
j5o3r3lr1t6_i2 2961 18 0.078 123 2961 0.078 19
j5o3r3lr1t5_i3 3041 11 0.063 114 3041 0.063 13
j5o3r3lr1.2t4_i1 1312 8 0.031 58 1312 0.031 9
j5o3r3lr1.2t5_i2 1311 17 0.078 93 1311 0.078 19
j5o3r3lr1.2t5_i3 2670 33 0.187 268 2670 0.187 35
j5o5r3lr0.8t10_i1 2657 21 0.281 253 2657 0.281 23
j5o5r3lr0.8t14_i2 3404 23 0.453 224 3404 0.453 25
j5o5r3lr0.8t12_i3 6891 26 0.36 237 6891 0.36 27
j5o5r3lr1t10_i1 3862 22 0.375 246 3862 0.375 23
j5o5r3lr1t10_i2 3176 23 0.485 412 3176 0.516 25
j5o5r3lr1t11_i3 5767 0 0 75 5767 0.094 3

133

Instance
Best

Integer
Solution

Best
Integer @

node

Time to
Best

Integer
Solution
(seconds)

Columns
Added

Best
Bound

Runtime
(seconds)

Total
Nodes

j5o5r3lr1.2t8_i1 1171 15 0.203 184 1171 0.219 17
j5o5r3lr1.2t9_i2 3048 17 0.375 245 3048 0.375 19
j5o5r3lr1.2t8_i3 1700 9 0.109 85 1700 0.125 11
j5o8r5lr0.8t11_i1 2725 13 0.344 166 2725 0.375 15
j5o8r5lr0.8t13_i2 8512 46 3.406 1120 8512 3.406 47
j5o8r5lr0.8t12_i3 10839 23 1.453 612 10839 1.531 25
j5o8r5lr1t9_i1 1502 78 1.796 976 1502 1.796 79
j5o8r5lr1t9_i2 3530 34 1.187 515 3530 1.187 35
j5o8r5lr1t9_i3 2751 36 1.156 481 2751 1.156 37
j5o8r5lr1.2t9_i1 3733 43 1.688 670 3733 1.703 45
j5o8r5lr1.2t8_i2 2059 26 0.625 303 2059 0.625 27
j5o8r5lr1.2t8_i3 6796.5 96 3.453 1614 6796.5 3.453 97
j5o10r5lr0.8t15_i1 6628 40 4.515 1048 6628 4.531 41
j5o10r5lr0.8t14_i2 2719 35 2.937 1267 2925.25 3.953 47
j5o10r5lr0.8t16_i3 9682 54 6.672 1631 9682 6.672 55
j5o10r5lr1t12_i1 5526 48 6.609 70360 5961.02 900.484 2027
j5o10r5lr1t12_i2 6175 34 3.032 780 6175 3.032 35
j5o10r5lr1t12_i3 5985 433 58.938 11937 6287.74 64.156 465
j5o10r5lr1.2t10_i1 3501 16 1.047 368 3501 1.047 17
j5o10r5lr1.2t10_i2 5461 39 3.719 1048 5461 3.75 41
j5o10r5lr1.2t10_i3 4346 72 4 1337 4346 4 73
j8o3r3lr0.8t13_i1 2263 0 0 56 2263 0.063 3
j8o3r3lr0.8t13_i2 4181 0 0 64 4181 0.078 3
j8o3r3lr0.8t11_i3 4057 0 0 56 4057 0.063 3
j8o3r3lr1t9_i1 2889 27 0.188 168 2889 0.203 29
j8o3r3lr1t9_i2 2012 24 0.171 147 2012 0.171 25
j8o3r3lr1t10_i3 3218 25 0.219 174 3218 0.219 27
j8o3r3lr1.2t8_i1 2963 15 0.125 160 2963 0.14 17
j8o3r3lr1.2t8_i2 5436 17 0.235 253 5436 0.25 19
j8o3r3lr1.2t8_i3 3081 29 0.25 236 3081 0.265 31
j8o5r3lr0.8t20_i1 5859 34 0.985 381 5859 0.985 35
j8o5r3lr0.8t20_i2 5681 0 0 78 5681 0.172 5
j8o5r3lr0.8t20_i3 6630 0 0 88 6630 0.172 3
j8o5r3lr1t17_i1 6820 142 7.109 2423 6820 7.109 143
j8o5r3lr1t14_i2 5724 90 1.968 945 5724 1.968 91
j8o5r3lr1t16_i3 4009 30 0.61 289 4009 0.61 31
j8o5r3lr1.2t14_i1 5199 65 2.25 1022 5199 2.281 67
j8o5r3lr1.2t14_i2 5807 39 1.344 742 5807 1.391 41
j8o5r3lr1.2t12_i3 3951 41 1 688 3951 1 43
j8o8r5lr0.8t21_i1 6930 87 24.297 3360 6930 24.437 89
j8o8r5lr0.8t18_i2 6565 80 5.359 1176 6565 5.359 81
j8o8r5lr0.8t19_i3 14415 55 12.016 2267 14415 12.25 57
j8o8r5lr1t15_i1 15617 83 18.609 3936 15617 18.687 85
j8o8r5lr1t16_i2 10303 89 18.578 71755 10965.7 901.234 1479
j8o8r5lr1t16_i3 10780 86 12.282 2430 10780 12.297 87
j8o8r5lr1.2t13_i1 9643 1480 385.281 44536 10211.6 408.828 1541
j8o8r5lr1.2t13_i2 6984 60 10.031 3349 6984 14.203 83
j8o8r5lr1.2t13_i3 4329 32 3.64 1173 4329 3.64 33
j8o10r5lr0.8t26_i1 16650 97 38.25 4117 16650 38.516 99
j8o10r5lr0.8t23_i2 10866 104 31.844 3891 10866 31.86 105
j8o10r5lr0.8t23_i3 17926 90 21.344 2854 17926 21.36 91
j8o10r5lr1t19_i1 12339 74 16.032 2624 12339 16.047 75
j8o10r5lr1t17_i2 8884 94 18.953 3434 8884 18.953 95

134

Instance
Best

Integer
Solution

Best
Integer @

node

Time to
Best

Integer
Solution
(seconds)

Columns
Added

Best
Bound

Runtime
(seconds)

Total
Nodes

j8o10r5lr1t19_i3 8530 63 15.672 2501 8530 15.735 65
j8o10r5lr1.2t15_i1 8466 79 24.219 67664 9203.25 900.373 1665
j8o10r5lr1.2t16_i2 14060 101 44.422 66222 15117 900.688 1047
j8o10r5lr1.2t16_i3 10269 419 130.406 15683 10269 130.765 421
j10o3r3lr0.8t15_i1 7366 33 0.516 290 7366 0.516 35
j10o3r3lr0.8t15_i2 3529 35 0.563 376 3529 0.578 37
j10o3r3lr0.8t14_i3 4532 0 0 70 4532 0.078 3
j10o3r3lr1t12_i1 3639 30 0.422 323 3639 0.422 31
j10o3r3lr1t12_i2 5195 32 0.609 400 5195 0.609 33
j10o3r3lr1t11_i3 4574 26 0.328 285 4574 0.328 27
j10o3r3lr1.2t10_i1 4683 40 0.531 355 4683 0.531 41
j10o3r3lr1.2t9_i2 4373 24 0.187 166 4373 0.187 25
j10o3r3lr1.2t10_i3 4240 31 0.438 358 4240 0.453 33
j10o5r3lr0.8t26_i1 9405 0 0 121 9405 0.344 3
j10o5r3lr0.8t28_i2 11709 208 21.969 3851 11709 21.969 209
j10o5r3lr0.8t25_i3 9189 58 2.937 691 9189 2.937 59
j10o5r3lr1t20_i1 4511 61 3.016 820 4511 3.063 63
j10o5r3lr1t19_i2 5903 0 0 138 5903 0.235 3
j10o5r3lr1t19_i3 7072 61 3.469 1098 7072 3.547 63
j10o5r3lr1.2t16_i1 3809 56 2.172 923 3809 2.172 57
j10o5r3lr1.2t18_i2 6193 37 1.719 569 6193 1.765 39
j10o5r3lr1.2t18_i3 7350 39 2.438 951 7350 2.5 41
j10o8r5lr0.8t24_i1 13197 1251 566.344 47446 13197 567.391 1253
j10o8r5lr0.8t24_i2 10458 203 41.047 4370 10458 41.25 205
j10o8r5lr0.8t22_i3 11163 101 11.359 1619 11163 11.641 103
j10o8r5lr1t17_i1 11929 193 48.735 8196 11929 48.969 195
j10o8r5lr1t18_i2 8518 58 6.359 1523 8518 6.359 59
j10o8r5lr1t19_i3 9089 85 13.016 2243 9089 13.141 87
j10o8r5lr1.2t16_i1 13274 68 14.688 3096 13274 14.704 69
j10o8r5lr1.2t16_i2 12875 81 12.844 3024 12875 13 83
j10o8r5lr1.2t16_i3 9873 77 13.657 2681 9873 13.829 79
j10o10r5lr0.8t29_i1 18323 128 29.547 2307 18323 29.562 129
j10o10r5lr0.8t29_i2 11760 143 48 3875 11760 49.031 145
j10o10r5lr0.8t30_i3 16664 139 82.781 5932 16664 83.156 141
j10o10r5lr1t24_i1 10200 125 93.766 51936 11023.9 900.857 839
j10o10r5lr1t23_i2 15561 190 68.124 7955 15561 68.14 191
j10o10r5lr1t25_i3 14936 104 41.078 55796 15980.6 900.438 1157
j10o10r5lr1.2t19_i1 17161 99 38.297 63451 18177.1 900.86 1061
j10o10r5lr1.2t21_i2 12370.5 90 33.859 4285 12370.5 33.859 91
j10o10r5lr1.2t19_i3 15639 82 24.61 3424 15639 24.625 83

135

VITA

SIDDHARTH D. MESTRY

November 9, 1978 Born, Bombay (Mumbai), India

2001 B.E. Mechanical Engineering
University of Mumbai
India

2005 M.S. Industrial & Systems Engineering
Rochester Institute of Technology
Rochester, NY
USA

PUBLICATIONS & PRESENTATIONS

Chen, C.S., Mestry, S., Damodaran, P., Wang, C., “The Capacity Planning Problem in
Make-to-order Enterprises,” Computer & Mathematical Modeling, Vol. 50, November
2009.

Damodaran, P., Mestry, S., M Krishnamurthi., “Genetic Algorithm to Minimize
Makespan of a Capacitated Batch Processing Machine,” Journal of Management and
Engineering Integration (accepted).

Damodaran, P., Mestry S.D., Zuniga M., Perez J., “A Mathematical Model for
Scheduling Shipboard Crew in Cruise Lines”, submitted to Proceedings of the 19th
Annual Industrial Engineering Research Conference, Cancun, 2010.

Mestry, S., Damodaran, P., Chen, C., Wang, C., “A Capacity Planning Model for Make-
to-Order Enterprise,” Proceedings of the 13th Annual International Conference of
Industry, Engineering and Management Systems, Cocoa Beach, FL, 2007.

Mestry, S., Damodaran, P., Krishnamurthi, M., “Scheduling a Capacitated Batch
Processing Machine using Genetic Algorithms,” Proceedings of the 16th Annual
Industrial Engineering Research Conference, Nashville, TN, 2007.

Mestry S.D., Damodaran, P., and Rao, A.G., “Particle Swarm Optimization for
Scheduling Batch Processing Machines in Permutation Flowshops," Proceedings of the
18th Annual Industrial Engineering Research Conference, Miami, 2009.

Mestry, S.D., Damodaran, P., Chen, C.S., "Branch & Price Solution Approach for
Solving Order Acceptance and Capacity Planning Problem in Make-to-Order
Operations," (submitted to European Journal of Operational Research).

136

Perez, J., Mestry, S., Damodaran, P., “Heuristics for Minimizing Makepsan of Batch
Processing Machines in a Flowshop,” Proceedings of the 17th Annual Industrial
Engineering Research Conference, Vancouver, 2008.

Stiebitz, P.H., Carrano, A.L., Taylor, J.B., Plaz, C.R., Mestry, S., “Swarm of
Microsystem Particles for Multi-Axial Morphogenic Rapid Prototyping,” Proceedings of
the 14th Annual Industrial Engineering Research Conference, Atlanta, GA, 2005.

	Florida International University
	FIU Digital Commons
	3-25-2010

	Branch and Price Solution Approach for Order Acceptance and Capacity Planning in Make-to-Order Operations
	Siddharth D. Mestry
	Martha A. Centeno
	Jose A. Faria
	Purushothaman Damodaran
	Chen Chin-Sheng
	Recommended Citation

	Introduction
	Background
	Research Problem
	Research Objective
	Significance of the Research Problem
	Dissertation Structure

	Literature Review
	Order acceptance with dynamic arrivals
	Order acceptance with static arrivals
	Applications of column generation in scheduling
	Summary

	Mathematical Formulation
	Problem characteristics
	Assumptions
	Mathematical model
	“What-if” scenario analysis using the MTO formulation
	Computational runtime analysis

	Branch and price algorithm
	Theory of Branch-and-Price Algorithm
	Decomposition of the MTO model
	Solution approach for solving sub-problem
	Greedy heuristic for initial solution to RMP
	Branching in Branch and Price algorithm
	Definition of an integer feasible solution to RMP
	Branching strategies
	Lagrangian bounds
	Node Selection

	Experimentation
	Pilot experiment
	Experimental setup
	Solution quality of Branch and Price Algorithm

	Branch and Price Heuristic & Approximation Algorithms
	Branch and Price Strategy 2 (BPS2)
	Approximation Algorithms for Branch & Price
	Comparative Analysis
	Comparing solution quality of BPS2 against BPS1

	Conclusions and future work
	Summary
	Contributions & Significance
	Future Work

