339 research outputs found

    Chance-constrained Calculation of the Reserve Service Provided by EV Charging Station Clusters in Energy Communities

    Get PDF
    The concept of energy community is currently under investigation as it is considered central into the energy transition process. One of the main aspects of the successful implementation of community lays in the energy management system that coordinates exchanges among prosumers. This paper deals with the optimal energy management of a local energy community of dc microgrids with electric vehicle charging stations, considering local reserve provided by storage units and vehicle batteries. A two-stage optimal procedure is proposed to assess the optimal scheduling of resources for each community participant. Additionally, the optimal up and down reserve levels able to cover random fluctuations in photovoltaic generation within each EV-based microgrid are determined by a set of specific chance constraints

    Investigating Impacts of CVR and Demand Response Operations on a Bi-Level Market-Clearing With a Dynamic Nodal Pricing

    Get PDF
    This paper investigates the impacts of conservation voltage reduction (CVR) on electricity prices, the local market, and technical issues in distribution networks. An increase in electricity demand is one of the key challenges for developing sustainable societies. An increase in electric consumption puts immense pressure on electricity providers, which forces them to apply for load reduction programs during peak-demand time intervals. The CVR is one of the popular methods for load reduction, but how it would impact the pricing process and electricity market at the distribution level needs further investigation. The proposed methodology includes a power tracing and loss allocation-based pricing method. Since the distribution networks are going to be confronted by penetration of distributed energy resources (DER), prosumers, and microgrids, it is important to have a comprehensive methodology. This paper deploys a bi-level optimization algorithm to consider the financial benefits of all participating agents. In addition to CVR, the demand response (DR) programs are considered to shift and curtail flexible loads by the distribution system operator (DSO) and prosumers, respectively. The price sensitivity of prosumers toward change in the network’s voltage for better planning is calculated. The operation costs/profits of DSO/prosumers decrease/increase during CVR and DR programs by 4.63% / 3%, respectively.©2023 Authors. Published by IEEE. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/fi=vertaisarvioitu|en=peerReviewed

    Modelling and Simulation Approaches for Local Energy Community Integrated Distribution Networks

    Get PDF
    Due to the absence of studies of local energy communities (LECs) where the grid is represented, it is very difficult to infer implications of increased LEC integration for the distribution grid as well as for the wider society. Therefore, this paper aims to investigate holistic modelling and simulation approaches of LECs. To conduct a quantifiable assessment of different control architectures, LEC types and market frameworks, a flexible and comprehensive LEC modelling and simulation approach is needed. Modelling LECs and the environment they operate in involves a holistic approach consisting of different layers: market, controller, and grid. The controller layer is relevant both for the overall energy management system of the LEC and the controllers of single components in a LEC. In this paper, the different LEC modelling approaches in the reviewed literature are presented, several multilayered concepts for LECs are proposed, and a case study is presented to illustrate a holistic simulation where the different layers interact.Modelling and Simulation Approaches for Local Energy Community Integrated Distribution NetworkspublishedVersio

    Reinforcement Learning Based Cooperative P2P Energy Trading between DC Nanogrid Clusters with Wind and PV Energy Resources

    Full text link
    In order to replace fossil fuels with the use of renewable energy resources, unbalanced resource production of intermittent wind and photovoltaic (PV) power is a critical issue for peer-to-peer (P2P) power trading. To resolve this problem, a reinforcement learning (RL) technique is introduced in this paper. For RL, graph convolutional network (GCN) and bi-directional long short-term memory (Bi-LSTM) network are jointly applied to P2P power trading between nanogrid clusters based on cooperative game theory. The flexible and reliable DC nanogrid is suitable to integrate renewable energy for distribution system. Each local nanogrid cluster takes the position of prosumer, focusing on power production and consumption simultaneously. For the power management of nanogrid clusters, multi-objective optimization is applied to each local nanogrid cluster with the Internet of Things (IoT) technology. Charging/discharging of electric vehicle (EV) is performed considering the intermittent characteristics of wind and PV power production. RL algorithms, such as deep Q-learning network (DQN), deep recurrent Q-learning network (DRQN), Bi-DRQN, proximal policy optimization (PPO), GCN-DQN, GCN-DRQN, GCN-Bi-DRQN, and GCN-PPO, are used for simulations. Consequently, the cooperative P2P power trading system maximizes the profit utilizing the time of use (ToU) tariff-based electricity cost and system marginal price (SMP), and minimizes the amount of grid power consumption. Power management of nanogrid clusters with P2P power trading is simulated on the distribution test feeder in real-time and proposed GCN-PPO technique reduces the electricity cost of nanogrid clusters by 36.7%.Comment: 22 pages, 8 figures, to be submitted to Applied Energy of Elsevie

    Energy Management of Prosumer Communities

    Get PDF
    The penetration of distributed generation, energy storages and smart loads has resulted in the emergence of prosumers: entities capable of adjusting their electricity production and consumption in order to meet environmental goals and to participate profitably in the available electricity markets. Significant untapped potential remains in the exploitation and coordination of small and medium-sized distributed energy resources. However, such resources usually have a primary purpose, which imposes constraints on the exploitation of the resource; for example, the primary purpose of an electric vehicle battery is for driving, so the battery could be used as temporary storage for excess photovoltaic energy only if the vehicle is available for driving when the owner expects it to be. The aggregation of several distributed energy resources is a solution for coping with the unavailability of one resource. Solutions are needed for managing the electricity production and consumption characteristics of diverse distributed energy resources in order to obtain prosumers with more generic capabilities and services for electricity production, storage, and consumption. This collection of articles studies such prosumers and the emergence of prosumer communities. Demand response-capable smart loads, battery storages and photovoltaic generation resources are forecasted and optimized to ensure energy-efficient and, in some cases, profitable operation of the resources

    Design of Degradation-Conscious Control Schemes for Energy Storage Systems in Grid-connected Microgrid of High PV Generation

    Get PDF
    The integration of high PV-penetrated prosumers into the distribution system is not without challenges due to the uncertain PV power. This investigation examines a hierarchical HESS scheme that incorporates both distributed and centralized storages. The primary objective is to present a direct methodology for determining the capacities and control strategies of centralized and distributed hybrid storage scheme. Thus, the thesis proposes a degradation-conscious battery control for ESS scheme while the grid constraints are sufficiently met
    • …
    corecore