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ABSTRACT Due to the absence of studies of local energy communities (LECs) where the grid is represented,
it is very difficult to infer implications of increased LEC integration for the distribution grid as well as for
the wider society. Therefore, this paper aims to investigate holistic modelling and simulation approaches
of LECs. To conduct a quantifiable assessment of different control architectures, LEC types and market
frameworks, a flexible and comprehensive LEC modelling and simulation approach is needed. Modelling
LECs and the environment they operate in involves a holistic approach consisting of different layers: market,
controller, and grid. The controller layer is relevant both for the overall energy management system of
the LEC and the controllers of single components in a LEC. In this paper, the different LEC modelling
approaches in the reviewed literature are presented, several multilayered concepts for LECs are proposed,
and a case study is presented to illustrate a holistic simulation where the different layers interact.

INDEX TERMS Battery energy storage system, community manager, distribution system operator, energy
management system, prosumers, photovoltaic, local energy community.

I. INTRODUCTION
Local energy communities (LECs) are new concepts being
introduced in the power distribution system over the past
ten years. As of yet, there is no established definition of
a LEC, but the EU has issued two official definitions on
Renewable Energy Community [1] and Citizen Energy Com-
munity [2]. The two community types have in common that
their primary purpose is to provide environmental, economic
or social community benefits for its members or the local
areas where they operate rather than financial profits [3]. Both
also require that the community is effectively controlled by
shareholders or members [4]. LECs can make distribution
networks more dynamic and oscillatory due to the increasing
number of actors such as electric vehicles (EVs), battery
energy storage systems (BESS) and other distributed energy
resources (DERs). Hence, the usual approaches of neglect-
ing or averaging high-time resolution transients is no longer
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sufficient to represent the operational dynamics in the distri-
bution system [5].

For real-time price-based activation of demand response,
hourly price signals can be adequate. However, an hourly
lag time between price signals is not capable of reflecting
the actual real-time supply/demand situation regarding power
flow and voltage situations in the distribution grid. There
are real-time constraints of seconds and minutes in relation
to requirements, such as power quality requirements, which
must be considered by a controller [6]. This entails that there
is a need for a different level of model detail and time-
resolution for market, controller, and electric grid component
models.

A holistic model of a LEC is needed to perform simulations
on LECs that can provide insight on how they will affect
the distribution grid.‘Holistic’ refers to the system level mod-
elling of LEC integrated power system, including the relevant
domains such as power, control, market and communication.
Such a holistic model should include the adequate repre-
sentations of the individual components in the LEC, their
primary controllers, the energy management system (EMS)
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of the LEC, the market, and the distribution grid the LEC is
connected to and operating within. Hence, full scale models
of LECs and their operating environment are likely to traverse
across multiple domains such as the electrical, market, con-
troller and possibly ICT domains.

FIGURE 1. General schematic of holistic LEC integrated distribution
network.

This paper aims to investigate the holistic modelling and
simulation approaches of LECs. To achieve this, there is
a need to review literature for all the three domains, i.e.,
market, controller, and grid as discussed earlier and seen
in Fig. 1. Existing literature has presented a comprehensive
review of challenges, opportunities, and modelling needs for
the market layer as mentioned in [7]. However, the literature
on markets often approximates or generally neglects grid and
controller layers. [7]–[9].This paper aims at connecting these
three layers into a single work and model.

In general, existing applications of communities aremainly
focused on economic operation and energy management to
control the point of common coupling (PCC) power or opti-
mise energy interaction among communities or prosumers.
There is ongoing research on energy communities; but the
literature lacks consideration for distribution networks. Since
microgrids can be similar to LECs and are a more mature
field, some microgrid literature is reviewed in this paper to
see how the distribution network is represented.

Inspired by microgrid literature and filling the gaps of
distribution network representation and LEC, holistic models
are proposed, and a case study is presented in this paper. The
aim of presenting a case study is to give readers an overview
of how the economic operation of LEC and its impact can
be studied in a distribution network with basic tools such as
MATLAB and Python.

Specific contributions include:
• Investigating the modelling requirements for LECs
through literature review.

• Developing holistic models for LECs in a distribution
grid.

• Presenting a holistic simulation case study for a LEC.

The paper is organised in the followingway: Section II pro-
vides an overview of literature related to holistic simulation
of LECs. Section III describes proposed holistic models for
LECs. Section IV shows the results of a holistic simulation
case study of a LEC. Section V gives a brief discussion.
Finally paper is concluded in Section VI.

II. LITERATURE REVIEW
We divide the literature review into four separate, but related
areas:
• Literature on EMS in LECs which does not consider
network. This includes community-based and peer-to-
peer (P2P) market structures.

• Literature on EMS in LECs which considers network.
• Solvers, tools, market clearing algorithms and test net-
works used in literature.

• Literature on EMS in microgrids, including agent-based
modelling and EMS using reinforcement learning.

A. ENERGY MANAGEMENT WITHOUT CONSIDERING
NETWORK
The operation of a LEC requires the implementation of an
EMS for the optimal exploitation of the available resources.
The focus of the EMS can be day-ahead scheduling, real time
operation, or both. Further, the scheduling function can be
either structured as a centralised, distributed or decentralised
optimisation framework.

Different categories of LEC market structures can be iden-
tified in literature depending on the degree of decentrali-
sation of the LEC. The main categories are classified into
community-based and P2P.

1) ENERGY MANAGEMENT IN A COMMUNITY-BASED
MARKET STRUCTURE
A community-based structure is a framework wherein a
community operates collaboratively to optimise their assets
and trade their lack or excess of collective energy. A non-
profit virtual node called a community manager is introduced
in [10] to coordinate member assets, provide services to
the distribution system operator (DSO), and interface with
different existing markets.

More generally, a community should be based on members
who share common interests and goals: for instance, a group
of members willing to share green energy even though they
are not at the same location. As a result, the community-based
structure design is the enhancement of involvement and coop-
eration between peers.

For a community-based LEC, the scheduling function can
be structured as either a centralised or decentralised optimi-
sation framework, as described below:
• Centralised: This framework consists of a single cen-
tral node with an EMS, which is characterised by
a high-performance computing unit managing the
assets of the prosumer. This central node performs
computations to calculate optimal reference signals
while considering all the members’ assets in one
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FIGURE 2. Community-based market structure.

optimisation problem. Each asset uses a local con-
troller (LC) in order to communicate and directly inter-
act with the central node as shown in Fig. 4(a). The
central node sends reference signals to the LC.

• Partially Decentralised: Unlike a centralised opti-
misation framework, each prosumer is considered
autonomous and has its own EMS in a decen-
tralised optimisation problem. Therefore, the centralised
optimisation problem can be broken down into
N subproblems that can be solved independently by
each prosumer EMS. Methods for solving decom-
posable optimization problems that involve several
prosumers use a derivative-based approach, such as
distributed gradient descent (DGD), wherein individual
prosumers can can use a local, step-wise update of
their optimization variable in proportion to the gra-
dient of their objective function [11], [12]. However,
such methods generally require a variable step size for
optimal convergence as iterations proceed [13], and
correctly choosing the step size can make the algorithm
more complex. More importantly, the gradient-based
methods only work over differentiable functions, and a
wide variety of prosumer-based models include mixed
integer objectives/constraints (i.e. MIPs), as well as
absolute, max functions, etc.. This therefore makes
derivative-based methods impractical for the proposed
objectives of this manuscript. However, sub-gradient-
based methods can also minimize non-differentiable
convex functions by using sub-gradients instead of gra-
dients. However, such methods rely on their individ-
ual/specific rules of optimal step-size selection, which
differ from gradient-based approaches and have a sig-
nificant impact on the optimality/sub-optimality of the
solutions [14]. The coupling constraints, found in the
proposed scheduling algorithms of manuscript, can be
handled using dual decomposition, which then allows
for an iterative and decentralized update of the primal
and dual variables for optimality. In particular, meth-
ods such as dual-ascent can be used for this purpose;

however, dual-ascent requires very strong assumptions
on the objectives, such as strict convexity to guarantee
convergence. In contrast, Alternating Direction Method
of Multipliers (ADMM) algorithms have been widely
described in the literature. ADMM is known to have
more relaxed convergence requirements [15], and is
therefore more commonly used for objectives where the
prosumer EMS solves its subproblem in order to opti-
mise its assets, and sends the solution to the central node.
The central node checks the power balance, and the final
optimal commands calculated from the prosumer EMS’
are dispatched to the LC as shown in Fig. 4(b).

In the community-based market structure, the prosumer
agents collectively act as community assets, and the commu-
nity manager agent is responsible for coordinating collective
assets. The community manager can interact with different
markets and the DSO agent. The tasks and responsibilities
with different objectives and constraints for different agents
reported in [10], [16], [17] is discussed below:
• Prosumer Agent: A prosumer agent refers to the EMS
used by the prosumer to plan off-line (in advance)
the intended power consumption. Each prosumer is in
charge of optimizing its set of assets and finding the
optimal power set-points for each asset.

• Community Manager Agent: Collaborative systems are
prone to dishonest behaviors whenever one or more par-
ticipants behave strategically. The community manager
agent has the task of preserving fairness among the pro-
sumers, for instance, to prevent strategic behavior in [10]
a community, and may choose to penalise the prosumer
contributing the most to the import by an additional
fee. Therefore, each member is pushed to decrease its
import as this fee increases. The community manager
can coordinate with the prosumers to provide peak shav-
ing services by minimizing the imported energy. The
community manager can play the role of a local market
operator, including the tasks relatedwithmarket clearing
and settlement as described below [16]:
– providing tentative price to prosumers
– gathering all the tentative commitments from pro-

sumers and check if the energy balances
– minimising the costs of importing, maximise the

revenues from exporting energy in day-ahead.
[18] proposes a cooperative strategy in a community of
prosumers in order to maximise the benefits of each prosumer
and the whole community. This cooperative strategy is called
an augmented energy management model [19] for prosumers.
This model considers controlled and uncontrolled generation
and consumption as well as the prosumer’s ability in two
ways:
• planning the power consumption day-ahead;
• managing real-time deviations from the planned
consumption.

The model can be applied to the energy management of pro-
sumer communities by allowing the prosumers to coordinate
their power consumption plan, manage the deviations from
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TABLE 1. Energy management system characteristics for
community-based structures.

the intended consumption, and help each other by compen-
sating deviations.

A design of a community-based LEC is proposed [16],
where the members are allowed to trade energy with each
other through a local pool. The price is set on a day-ahead
basis under the coordination of a community manager. More-
over, every agent participates in determining the local market
price while deciding its own scheduling problem under uncer-
tainty concerning renewable energy generation and storage.
In the energy community discussed in [17], each prosumer
and its assets are connected to a community manager. The
community manager optimises the cost of the community
with a dispatch model while having the constraint on satisfy-
ing the heat and electricity demand. The community manager
can control the prosumers’ assets and decide if the prosumers
should import/export from/to the outer grid or exchange
energy locally.

In [20], a LEC is proposed to provide manual frequency
restoration reserves with a two-stage model. The first stage
is performed day-ahead, when the energy community man-
agement center estimates the amount of flexible capacities
available for frequency restoration reserves provision. In the
second stage, the real-time scheduling of the community is
performed for each hour, taking into account the assigned and
activated amount of reserve power.

In [21], a mixed integer linear programming optimisation
model is performed on a neighborhood consisting of 30 con-
sumers with different amounts of flexible resources to test
grid tariffs’ impact on power peak reduction. Tab. 3 gives an
overview of the characteristics of EMS models found in the
literature. The type of optimisation and scheduling structure
is shown in Tab. 2.

FIGURE 3. P2P market structure.

2) ENERGY MANAGEMENT IN A P2P MARKET STRUCTURE
In situations involving multiple prosumers with conflicting
interests, it can be quite challenging to either capture such
conflicting interests in the decision-making process of each
participant or motivate them to cooperate to achieve the goals
of community. This leads to the second LEC structure, where
trades are conducted bilaterally (i.e., prosumers intercon-
nect directly with each other), and there is no community
manager. There can be a separate entity called P2P Market
Operator (P2PMO) responsible for the execution of energy
trading [22], but this is not always the case [23].

For a P2P-based LEC, the scheduling function can be
either structured as a decentralised or distributed optimisa-
tion framework. The different distributed optimisation frame-
works are described below:
• Partially distributed: An improvement to the conven-
tional ADMM was initially proposed in [27], which
uses a consensus-based approach for a fully distributed
update of primal and dual variables at each prosumer.
However, this requires additional auxiliary variables and
constraints to be included in the optimization frame-
work [28], as well as the communication of the iteration
wise solutions of each prosumer with all its neighbors.
The partially distributed approach has one central node
to check the power balance and the other nodes can act
in a distributed manner to calculate reference commands
for the LC (Fig. 4(c)).

• Fully distributed: The fully distributed nature of the
optimisation framework implies that the optimisation
problem is solved at the individual prosumer EMS
level (most commonly using ADMM). There is no cen-
tral node (Fig. 4(d)) [29] to check the power balance.
The prosumer EMS communicates with the neighbour-
ing EMS and solves the optimisation problem while
considering power exchange information from other

1Energy each prosumer has to respectively import, or export, from outside
the community.

2Each community member or prosumer agent has a contract with the DSO
which limits the amount of power that can be exchanged through its point of
common coupling.
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FIGURE 4. Structure of scheduling function.

TABLE 2. Energy management system algorithm and optimisation type.

prosumers EMS. The use of a distributed approach
limits the information that every prosumer needs to
communicate.

In the P2P market structure, two agents are described in lit-
erature: the prosumer agent and the market mechanism agent.
The P2P LEC model is considered more autonomous with
more dispersed communication infrastructure needs than the
community-based model. The prosumer agents optimise their
assets and can also communicate directly with other prosumer
agents. The market mechanism agent can look into clearing
the market and system stability, thereby eliminating the need
for a DSO. However, if the market mechanism agent role is
limited to market clearing, the DSO agent will validate the
energy flows while considering system stability. The role of
all the agents reported in the literature [22], [23], [25], [26] is
discussed in detail below.
• Prosumer Agent: A prosumer agent is an EMS, as dis-
cussed in Section II-A1. All the prosumer agents in
a community are connected through the bidirectional

power and communication links, and a whole com-
munity is connected to the upstream distribution grid
via one grid connection point [22]. Smart meters are
installed at each prosumer. The smart meter measures
the prosumer’s generation, consumption, and energy
transaction with other prosumers or with the distribution
grid. The objective of the prosumer agent is to optimise
its assets to find the optimal power setpoints for each
asset in view of the respective cost function.

• Market Mechanism Agent: A market mechanism agent
assists with energy trading in a P2P market using con-
tinuous double auction in a community. This software
platform enables the information exchange among pro-
sumers and also assists the DSO in monitoring and
controlling the distribution grid. The market mechanism
agent has the objective of minimizing losses between the
main grid and distribution grid.

In [23], the authors proposed a fully distributed frame-
work with no central coordinator or market mechanism. The
meter positioned at the point of common coupling with the
external distribution grid is bidirectional, and measures the
energy exchanged in each time interval. Furthermore, a dis-
tributed procedure is implemented at the prosumer EMS,
limiting the information that each prosumer needs to com-
municate. A distributed approach plans the optimal use of
the LEC energy resources, with particular reference to the
BESS units, and calculates the prices of the energy trans-
actions between prosumers. It is assumed that the costs of
exchanges with the utility grid are predefined, although they
vary according to the time of day. Reference [25] proposed
a P2P energy market platform based on the new concept of
multi-class EMS to coordinate trading between prosumers.
The P2P platform minimises costs associated with power
losses and battery degradation, while providing added value
by accounting for the prosumers’ individual preferences for
the source/destination of the energy they consume/produce.
The authors in [24] presented an optimization formulation
that considers demand side management and P2P trans-
actions to obtain the optimal social welfare costs of the
community.

In regards to considering the grid, as described in [7],
most of the peer-to-peer markets consider DC approxima-
tions of the distribution grid. Notable exceptions using AC
formulations include [30], which focuses on deriving loca-
tional marginal prices for uncertain renewable and electric
storage; [31], which iterates between optimal power flow and
a market clearing model in order to find an equilibrium for
both; [32], which incorporates grid services via a centralized
peer-to-peer trading system; and [33], which iterates between
the grid problem and a bi-level game-theoretic framework in
order to find an equilibrium solution.

Furthermore, an alternative to markets that still conducts
exchange peer-to-peer is presented in [34], which models the
interactions of multiple decision makers within a micro grid.

Tab. 3 gives an overview of the characteristics of EMS
models found in the literature.
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TABLE 3. Energy management system characteristics for P2P structures.

B. ENERGY MANAGEMENT CONSIDERING NETWORK
As shown in Tab. 4, very little literature on LEC focuses
on capturing the network’s high time resolution dynamics.
The literature is here divided into steady and dynamic states,
where steady state is defined as studies with an hourly time
scale, while dynamic state is defined as studies with a time
scale of minutes and seconds.

In [26], the authors present a partially distributed archi-
tecture wherein a central coordinator ensures that energy is
exchanged between prosumers without violating the network
constraints, while still enabling prosumers to capture the
economic benefits. The authors propose a novel methodology
based on a sensitivity analysis in order to internalise the
external cost linked with the energy exchange and evaluate
the impact of the transactions on the network. The authors
model a DSO agent that validates the transactions using a
network permission structure based on the network’s fea-
tures and sensitivity coefficients. Every time prosumers are
matched, voltage variation and line congestion are evaluated.
The DSO computes a signal for each household that informs
them if they can still participate in the market without causing
problems in the network. For instance, one prosumer could be
blocked from injecting power into the grid at a specific time
due to the risk of creating voltage problems in the network.

TABLE 4. Literature discussing impact on distribution network.

If the transaction is approved, the extra cost associated with
the network constraints is allocated to the users involved
in the matched transaction. The authors of [35] analyse the
impact and challenges of local P2P trading interactions to the
physical grid operation, as well as more specific effects on
power flows, voltage variations, and system losses.

These papers do not study high-resolution dynamics.
To study the dynamics of network, the authors of [36] develop
a co-simulation framework with OpenDSS and a blockchain-
based P2P market (double-auction) agent to analyse the
impacts on low and medium voltage distribution networks.
An alternative to co-simulation is co-modelling, wherein
models are described in a unified language [48]. Hierar-
chical Engine for Large-scale Infrastructure Co-Simulation
(HELICS) is employed in [37] to model interactions between
the prosumer homes, the market, and the electric distribu-
tion grid. The modelled entities are a house (model and
controller), an energy orders broker, a market and a grid.
The house model is made from the OCHRE (Operational,
controllable, high-resolution residential energy model) tool,
the house controller is made by foresee, the market solver
is PLEXOS and FESTIV, and OpenDSS is used as a grid
simulator. The HELICS modelling approach is used to assign
a federate to each entity to model and control the timing of
communication and data transfer between them.

In [38], the Mosaik co-simulation tool, which is designed
for steady state simulators with discrete time steps, is used
to establish a unifying simulation of market clearing rules,
and the electric network ensuring economic incentives are
alignedwith physical constraints. A co-simulation framework
is proposed to handle a variety of DERs and market designs
capable of handling complex device specific constraints,
and a high-level scripting language for blockchain smart
contracts.

3780 VOLUME 10, 2022



R. Rana et al.: Modeling and Simulation Approaches for LEC Integrated Distribution Networks

C. SOLVERS, TOOLS, MARKET AND TEST NETWORKS
There are different solvers and tools used to study LECs in
literature. In [16], the ADMM-based clearing process is anal-
ysed in terms of scalability and convergence by performing
simulations within a Python 3.7 environment, using CVXPY3

to model the subproblems. In [26], local market P2P, static
active power curtailment, tripping, and droop-based active
curtailment are simulated using OpenDSS4 software. In [25],
the ADMM algorithm is run for 300 iterations at each trading
interval in order to achieve agreement between the prosumers
and the market platform agent. In [39], different operation
scenarios of a multi-microgrid energy management optimi-
sation model have been carried out in the MATLAB environ-
ment. In [49], eight LECs under study and the distribution
network are modelled using MATLAB/Simulink, including
a model of the electric power grid, the renewable energy
sources, and various flexibility resources, such as energy stor-
age systems. This work, along with Simulink models, com-
putes an optimal power flow that considers the constraints of
the heterogeneous LEC assets and the distribution network.
A summary of the solvers and tools used in literature is given
in Tab. 5.

TABLE 5. LEC solvers and tools used for implementing EMS.

Market clearing is handled in different ways in the liter-
ature. Reference [23] is an example of a fully distributed
LEC framework. Each prosumer is equipped with a local
bidirectional meter that measures the energy that the specific
prosumer exchanges with the internal network in each time
interval. There is no market platform for achieving trading
among prosumers, and the distributed approach is based
on the ADMM. The optimisation is performed iteratively.
At each ADMM iteration, the power bought or sold by
each prosumer calculated in the previous iteration is made
known to all prosumers. In [26], a continuous double auc-
tion market mechanism is used, which is very well suited
for P2P exchanges. It should be noted that in a continuous
double auction comprising bidders with reasonable goals

3Python-embedded modelling language for convex optimization prob-
lems. It relies on the open-source solvers ECOS, OSQP, and SCS.

4https://sourceforge.net/projects/electricdss/

(i.e., participants only trade at a profit), trades are always
Pareto-improving. The continuous double auction tends
towards a highly efficient allocation of energy. In [25], the
proposed P2P energy market platform allows small-scale
prosumers to trade energy with one another and the wholesale
market. The proposed P2P energy market platform operates
in a distribution network to incentivise local prosumer energy
balancing, while accounting for the costs associated with
importing energy from the main electric network. Through
the P2P market, prosumers can trade energy with one another
and the wholesale market. However, small-scale prosumers
may not wish to be exposed to fluctuating wholesale energy
prices. Thus, retail suppliers could act within the P2P plat-
form on prosumers’ behalf, based on their energy preferences.
Reference [49] presents a Nash bargaining solution (NBS)
approach to offer a fair and financial reimbursement for
changing the operation objectives of LECs. A bargaining
problem represents a situation in which there is a conflict of
interest between multiple agents on how to share a fixed sum
of resources.

Tab. 6 shows the different test networks used in literature
for implementing EMS.

D. ENERGY MANAGEMENT IN MICROGRIDS
Microgrids have been subject to research for several years and
are a more mature field than LECs. It is, however, essential
to distinguish a microgrid from a LEC. A microgrid often
describes the physical structure of a grid with one PCC,which
has the ability to operate in islanded mode. This section
describes microgrid literature considering energy manage-
ment, agent-based modelling and reinforcement learning.
In [39], the DSO and the prosumers in a microgrid create a
partnership where they own and operate a centralised con-
troller that controls a battery energy storage system (BESS),
and calculates the electricity costs using an optimisation
framework. As a result of this coordinated control scheme,
the prosumers in the microgrid share their resources (photo-
voltaics (PV) and BESS) in order to reduce their electricity
cost substantially.

To model different objectives of the DSO and micro-
grids, a coordinated decentralised bilevel problem with DSO
in the upper level and microgrids in the lower level is
formulated in [40]. At the upper level, the DSO guaran-
tees the power flows and voltage levels while minimis-
ing the operational cost. At the lower level, microgrids
optimise their own objective of minimising the operational
costs.

The energy management system (EMS) in [41] has a hier-
archical decentralised system of system architecture; there-
fore, a bi-level optimisation model is developed. Energyman-
agement is achieved at two levels:

• energy management at the level of individual microgrids
• energy management at the DSO level through coordi-
nating energy exchange between microgrids and energy
trading with the distribution networks.
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TABLE 6. Test networks in LEC literature.

Provided with a schedule of power exchange and trading
from DSO, the energy management of each microgrid aims
to minimise the daily operating cost.

In [42], the authors propose a transactive energy control
framework. They introduce an entity called the system coor-
dinator, similar to an independent operator in electricity mar-
kets who onlymanages the energy trading through the electric
network. Therefore, the privacy of individual microgrids is
protected since the system coordinator does not have access
to the data of individual microgrids. The individual micro-
grid operators and system coordinator will interact through
bidirectional communication to efficiently manage resources.
Within the framework, respective microgrid operators submit
price bids to the system coordinator with their preferences to
trade energy among various microgrids. At the same time,
the system coordinator optimises the allocation of the bids
received and provides feedback regarding successful energy
transactions.

The idea of agent-based modelling is quite timely due to
the current decentralisation in power systems.

The multi-agent system (MAS) in hierarchical control has
been applied in microgrids. Under the MAS environment,
individual agents can determine power control strategies for
entities such as DERs or loads.

The implementation of these agents has been discussed in
previous literature, which is summarised in Table 7.

E. ENERGY MANAGEMENT OF AUTONOMOUS AGENTS
USING REINFORCEMENT LEARNING
Due to a resurgence of deep learning, non-linear control
algorithms have gained scientific ground in recent years. The
main advantage of deep learning over comparable non-linear

methods is better problem scalability and robustness to uncer-
tainties. Reinforcement learning is a special form of dynamic
optimisation that uses function approximations for the expec-
tations of future outcomes of a dynamic system [50], [51].
Therefore, it is also being referred to as approximate dynamic
programming. The mentioned approximation concerns the
future state of an optimisation problem. For example, if we
assume the task to optimally schedule charging of a battery
in an LEC, the expectation of future outcomes would include
the system (e.g. expectations of future consumption and gen-
eration in the LEC) as well as the impact of the decision
to be optimised on the system (e.g. what is the value of
storage regarding minimizing the cost of grid feed-in, etc.)
as illustrated in Fig. 5.

FIGURE 5. Agent-environment interaction in agent-based modelling.

Usually the decision process is formulated as a Markov
decision process and discounted in order to require the algo-
rithm to prefer pay-off now compared to future pay-offs. The
approximations used are functions that can be linear, poly-
nomial or non-linear. In recent years, literature has shifted
towards using non-linear approximators in the form of deep
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TABLE 7. Agent-based modelling literature.

neural networks. Applications in power systems are no excep-
tion to this trend.

Deep learning is a subcategory of machine learning, where
non-linear functions are represented via differentiable stacks
of layers, and are most commonly composed of linear regres-
sion layers and non-linear activation layers. Training of such
networks is conducted via ‘‘backpropagation’’, i.e. calculat-
ing the gradients to real data sets starting at the last layer
towards the first.

Even though the technique does not have its origin in deep-
learning, the state of the art of Q-Learning comes in form
of deep Q-Learning [52]. In such systems, the approximator
is used as a ‘‘lookup table’’ in order to select the optimal
action from a discrete set of actions (see example in Fig. 6).
In deep Q-Learning, a neural network acts as a mapping of
the current state to the most optimal state. Training of the
neural network is conducted via backpropagation based on
boot-strapped scenarios. Examples of literature concerning
microgrids is given in Tab. 8.

FIGURE 6. Q-neural network ‘‘lookup table’’ for a battery
charge-discharge decision.

In addition to using a function approximation to both eval-
uate and then decide on the optimal policy whilst adding an
exploration noise, it is also possible to dynamically approx-
imate a stochastic policy, i.e. a decision process. Compared
to Q-Learning, which can be referred to as ‘‘off-policy’’,
these techniques are termed ‘‘on-policy’’ [60]. Recent exam-
ples of this from the domain of LECs are the use of
‘‘soft-actor critic’’ to coordinate flexible units with renew-
ables within buildings [61], coordination of HVAC units
via ‘‘deep deterministic policy gradient’’ [62] and optimal

TABLE 8. Energy management system literature based on deep
reinforcement learning.

scheduling of residential appliances via ‘‘trust-region policy
optimization’’ [63].

The interaction problem of several such agents on whole-
sale electricity markets has been presented in [64]–[66].

III. MODEL TOPOLOGIES
As discussed above, the mentioned agents have to be nested
in more holistic control algorithms that consider distribution
grids and market interactions whilst independently making
their control decisions. In Section II we outline the lack of
studies on such models, here we attempt to conceptualize
multi-layer topologies of these LEC models.

A. MODELING REQUIREMENTS FOR LEC
As described earlier, a holistic study of LECs should include
three layers: grid, controller and market. These layers are
described in more detail in this subsection.

1) GRID LAYER
The grid layer contains the electric grid models of each com-
ponent in the LEC, including the grid itself. Here, analyses
like the power flow analysis are important to assess voltage
levels and overloading lines or transformers. This layer is
essential to study the impact on the distribution grid.
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The level of details in the electrical grid component models
depends on the grid services the LEC is assumed to provide
to the DSO, as well as the power quality requirements that are
imposed on the LEC operation. In principle, the service pro-
visioning capability of a LEC is limited by the capability of
the individual components within the LEC. Typical services
that a LEC might provide to the DSO include peak shaving
and voltage control to improve power quality.

2) CONTROLLER LAYER
The controller layer consists of two layers: the primary con-
trollers, which are managing the operation of single com-
ponents locally, and the secondary controllers, which are
managing the energy flow on a higher level. One example of
a primary controller is a battery management system (BMS),
which keeps the battery within its operating limits. An exam-
ple of a secondary controller is a HEMS, which controls the
energy flow within a house.

In general, EMS schedule generators and flexible loads,
as well as the charging and discharging of BESS within a
specified period of time. EMSs can be found at several levels:
individual components (such as BESS), at a household level
(HEMS), at a LEC level, and at the distribution system level.

3) MARKET LAYER
The market layer consists of a market platform that sends
price signals to the LEC EMS. The work presented in this
paper aims to follow a modelling approach that is flexible
enough to accommodate different market architectures. The
entity that will participate in some form ofmarket architecture
or contractual schemes is the EMS. Therefore, decoupling the
grid models from the EMS algorithms is essential.

B. PROPOSED HOLISTIC MODEL FOR LEC
This section presents three proposed LEC modelling
approaches. All three approaches have community-based
market structures. The modelling approaches are distinct
in terms of the controller layer: the first framework has
a decentralised scheduling function, the second has a dis-
tributed scheduling function, and the third has a decentralised
scheduling function with a P2P market within the LEC.

1) DECENTRALISED FRAMEWORK
Fig. 7 shows the framework with the three layers: grid, con-
troller, and market. The layers are arranged in a decentralised
framework to manage the energy. The controller layer is
divided into two parts to distinguish between the primary
controllers (at an individual level) and the secondary con-
trollers (managing the energy). The market platform in the
market layer attempts to coordinate multiple LECs to achieve
a performance better than operating uncoordinated individ-
ual LECs. This objective is realised through coordinating
an energy exchange between LECs and energy trading with
the distribution network. The market platform interacts with
the DSO and coordinates participating LECs in the system.
Individual LECs are independently managed and operated

FIGURE 7. Decentralised framework.

by LEC_EMS, and they can choose to join the multiple LEC
system.

The LEC_EMS communicates with the HEMS, and local
controllers, such as hot water tanks, EV charging stations, and
BESS. The HEMS can either receive scheduling signals from
the LEC_EMS, or operate on its own and send signals back
to the LEC_EMS.

As such, agents incorporating the grid layer as well as mar-
ket interactions into the control of DERs do not necessarily
have to be sophisticated. We show this through the example
given in the following section, which demonstrates how to
implement this practically via a linear optimisation algorithm.

2) DISTRIBUTED FRAMEWORK
In this framework, as shown in Fig. 8, there are only two
layers: grid and controller. In this distributed framework, each
LEC_EMS communicates with other LEC_EMSs through a
cyber network to achieve the objectives. The communication
network is sparse, and every agent communicates with a
few other agents (neighbours). Distributed frameworks are
characterised by a lack of a supervisory agent. However,
it consists of a simultaneous negotiation over the price and
energy of multi-bilateral trades along with a predefined trad-
ing scheme. Moreover, community EV charging stations
and community BESS receive charge/discharge commands,
and residential households receive scheduling signals for
the HEMS.

3) DECENTRALISED FRAMEWORK WITH P2P-MARKET
WITHIN LEC
As shown in Fig. 9, this framework is based on the decen-
tralised framework described in III-B1. The main differ-
ence is that in this framework, HEMS can communicate
and trade among themselves. Residential prosumers opti-
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FIGURE 8. Distributed framework.

FIGURE 9. Decentralised framework with market within LEC.

mise their assets using HEMS, generate command signals,
and send them back to individual appliances. There is still
interaction with the LEC_EMS, which is responsible for
setting upper limits for the prosumers and maintaining fair-
ness among the prosumers. From a market perspective, there
are three potential markets in this framework: energy trades
between prosumers and members of the community, trades
between the community as a whole and the DSO; and trades
within the community managed by the market platform.

Irrespective of the chosenmethodology, a holistic approach
does not necessarily entail high model complexity and related
efforts. This is shown by the following section, which
presents an illustrative example on how to set up a sim-
ple test bed implementation of such a proposed holistic
model.

IV. A PRACTICAL EXAMPLE
A holistic model of LEC integrated electric power distribu-
tion network entails the modelling of the different domains
such as power, market, control domains and their real-time
interaction. The purpose of such simulation is to illustrate the
system dynamics as whole without losing important details
in the respective domains.

4) ABOUT THE MODEL/SETUP
The model has an electric grid model implemented
in MATLAB Simulink and a LEC_EMS implemented in
Python as it is illustrated in Fig. 10.

The PV-battery system is modelled as a three-phase
dynamic load in MATLAB simulink. After the net timeseries
load is computed with the python optimization script the
active and reactive power is given as reference to the network
model in the simulink. The dynamic load is connected to
a MV/LV transformer which is then further connected to a
MV line modelled as a three phase PI section line. Hence,
the network model is a simple single feeder system of load,
transformer, and line. The simulation of the model is run with
the interest of steady state system evaluations and hence no
dynamic states are simulated. The time step in the simulation
is 100 µ s and the time step for load profiles and price
signal are hourly. In this implementation there is no market
simulation, but a day-ahead hourly market price signal is
streamed from a timeseries data file to represent a price sig-
nal. The LEC formed with different customers having BESS,
PV and residential load is assumed here to be connected to
the rest of the electric power distribution network through
the MV/LV transformer. Load, PV generation and day-ahead
market price timeseries profiles are used as deterministic
simulation. The implementation approximately represent the
decentralised framework presented in Fig. 7.

The load for households is based on the measured energy
consumed by an anonymised household located in the county
Trøndelag, Norway. The rating for the BESS is given below:
• Energy capacity: 1.2 MWh
• Charging/discharging rate: 0.6 MW
• Efficiency when charging/discharging: 95 %
There are two scenarios implemented in this simulation:
• LEC_EMS has the objective to maximise self-
consumption (LEC-MSC).

• LEC_EMS has the objective to maximise profit from
energy arbitrage (LEC-MPEA).

min
∑
t

((
C t
spot

)
ptimport

)
(1a)

ptout + P
t
PV + p

t
import = Ptload + p

t
in, ∀ t (1b)

ptout ≤ Pbat, max ∀ t (1c)

ptin ≤ Pbat, max , ∀ t (1d)∑
t

ptin −
∑
t

ptout = 0 (1e)

etSoC = 0.5 ∗ Ebat , t = 0 (1f)
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FIGURE 10. The setup of the case study.

etSoC = et−1SoC + p
t
in
√
ηbat −

1
√
ηbat

ptout ∀ t > 0 (1g)

etSoC ≤ Ebat , ∀ t (1h)

ptin, p
t
out , e

t
SoC ≥ 0, ∀t (1i)

The corresponding notation is the following:
• C t

spot spot price in hour t [NOK/MWh]
• ptimport average feed-in in hour t [MWh/h]
• ptin average charging rate by the BESS in hour t [MWh/h]
• ptout average discharge in hour t [MWh/h]
• etSoC state of charge in hour t [MWh]
• PtPV average PV generation in hour t [MWh/h]
• Ptload average customer load demand in hour t [MWh/h]
• Pbat, max maximum charging/discharging rate[MW]
• Ebat maximum energy storage capacity [MWh]
• ηbat charging/discharging efficiency [%]
The constraint in (1b) ensures that power balance is ful-

filled, while the constraints in (1c), (1d) impose a limit on
charging and discharging power of BESS. Constraint (1g)
forces the state-of-energy at every interval to have the value
that it had at the previous interval plus the actual amount of
energy that is transferred to the BESS if it is charging at that
interval minus the energy that is subtracted if the BESS is dis-
charging during that interval. Constraint (1h) limits the state-
of-energy of the BESS to be less than the BESS capacity. The
constraint in (1f) ensures that the BESS is 50 percent charged
at the start, while the constraint in (1e) ensures that the BESS
state of energy in the final hour is the same as in the first hour,
i.e. 50 %.

min
∑
t

(
ptimport

)
(2a)

s.t (1b− 1i) (2b)

LECmodelling couples physical grid, energy management
system and market price signal.

The power system components are modelled in MATLAB
Simulink to sufficiently represent their dynamic operating
conditions. The Python scripts however are used as EMS
engines with optimisation capability. The MATLAB Engine
API for Python is used to link the Python scripts with the

FIGURE 11. Impact of LEC operation with energy arbitrage on PCC power.

Simulink model of the physical system. The Simulink models
can be customised based on the operational dynamics of
interest.

5) RESULTS
The simulation results indicate how the power exchange and
voltage level at the PCC is affected as the LEC_EMS operates
under different objective functions. The LEC-MPEA scenario
represents a situation where LEC_EMS actively responds to
the price signal. The fluctuation in power exchange is pre-
sented in Fig. 11 and the resulting impact on voltage level is
presented in Fig. 12. The simulation results shows that active
engagement of LEC-MSC, especially with energy arbitrage,
results in creating a fluctuating load profile with new peaks
and potentially power quality related challenges.

V. DISCUSSION
The LEC EMS can be operated in a centralised, decen-
tralised or distributed manner. From the literature, it is clear
that in cases of different ownership of DERs (P2P-based
LECs), where several decisions should be taken locally,
centralised control is very difficult. Therefore, decentralised
and distributed approaches are adopted. For a community-
based LECs, a mostly centralised or decentralised approach
is implemented.

The existing applications of LECs are mainly focused
on economic operation and energy management to control
the PCC power or optimise energy interaction among LECs
or prosumers. Research on energy communities is ongoing;
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FIGURE 12. Impact of LEC operation with energy arbitrage on PCC voltage.

hence literature lacks the consideration of distribution net-
works in their investigation.

To model and simulate LEC-integrated distribution net-
works, it is important to consider the three layers: the market,
controller and grid layer. The grid layer is essential for study-
ing the impact on the distribution grid. The controller layer
is essential for managing the energy flow and participating in
market frameworks. The market layer is essential for sending
price signals to the controller layer. Based on these identified
needs through literature survey, we propose three frameworks
for LECs and discuss the interaction between individual lay-
ers. We detail the controller layer and proposed primary and
secondary control,

Autonomous agents such as LECEMS, prosumers, HEMS,
DSO models, and aggregators can be modelled via deep
reinforcement learning. Additional uncertainties and more
localised storage capacities also have the potential to further
increase this trend from traditional control models to deep
reinforcement learning.

VI. CONCLUSION
Modelling and simulation of LECs and their operation is
essential for studying and planning LECs integrated in the
distribution network, recommending the right regulatory
measures and designing market architectures. The aim of this
paper was to do a literature review of a LEC integrated in a
distribution network. The literature review touched upon all
the representative domains (grid, controller, and market) of
an LEC integration in a distribution network, unlike existing
reviews. The review found that the grid layer is missing in
most simulation studies concerning LECs. In addition, this
paper proposes three different frameworks needed for LEC
integration based on the literature studies, and illustrates an
implementation of one of the frameworks with a case study.
Future work will include detailing the signals exchanged
between individual domains or stakeholders, and expanding
on the frameworks depending on scenarios for regulation.
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